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ABSTRACT

This paper introduces the t-divergence, a novel divergence measure associated
with the inverse tangent function. We investigate its intriguing consistent and
outlier-robust features, particularly its quasi-metric properties and role in estab-
lishing weak convergence. Additionally, we showcase the efficacy of this diver-
gence measure family in feature-weighted clustering for high-dimensional data.

1 PROPOSED t-DIVERGENCE

Practitioners often select divergence measures for their resilience against outliers. Employing less
sensitive loss functions such as ℓ1, Huber, or Geman-McClure typically guarantees this robustness.
Nonetheless, these functions often lack smoothness, presenting challenges for derivative-based op-
timization methods. Our paper introduces the t-divergence, showcasing its efficacy in robust sta-
tistical estimation through comprehensive theoretical and experimental analysis. Formally, let Ω
be the sample space and let F be a σ-algebra defined on it. Suppose µ : F → [0,∞) be a
measure defined on (Ω,F). Let Dµ be the set of all measures on (Ω,F), dominated by µ and∫

dP
dµ tan−1 dP

dµ dµ < ∞, i.e. Dµ =
{
P : P ≪ µ and

∫
dP
dµ tan−1 dP

dµ dµ <∞
}
. Let, p = dP

dµ and

q = dQ
dµ . The t-divergence, D : Dµ ×Dµ → [0,∞), between measures P,Q ∈ Dµ, is defined as

D(P,Q) =

∫
(p(x)− q(x)) tan−1(p(x)− q(x))dµ(x)

Some intriguing properties of the proposed t-divergence are as follows:

1. D(P,Q) ≥ 0. Moreover, D(P,Q) = 0 iff p = q, a.e. [µ].
2. D(P,Q) <∞, for all P,Q ∈ Dµ.
3. Let Dp

µ denote the set of all probability measures, dominated by µ. Unlike many other divergence
measures, we observe that 0 ≤ D(P,Q) <∞ for any P,Q ∈ Dp

µ. This is because Dp
µ ⊆ Dµ.

4. The t-divergence is symmetric, i.e. D(P,Q) = D(Q,P ).
5. D(P,Q) ≤ πTV (P,Q), where TV (P,Q) is the total variation distance between P and Q.
6. Suppose {Pn}n≥1 be a sequence of probability measures in Dp

µ. Also let P be another probability
measure, dominated by µ. Then limn→∞ D(Pn, P ) = 0 implies Pn −→ P in distribution.

7. D(·, ·) is a near-metric (Burgin, 2017), with ρ = 2.

2 APPLICATIONS

Application to Robust Statistical Inference Suppose X1, . . . , Xn are i.i.d. according to the dis-
tribution G. Let F = {Fθ : θ ∈ Θ ⊆ Rp} be a family of distributions, indexed by θ. We assume
that both G,Fθ ≪ µ, for some dominating measure µ, for all θ ∈ Θ. Let g = dG

dµ and fθ = dFθ

dµ

be respectively. We define the minimum t-functional as: T (G) = argminθ∈Θ D(G,Fθ).In the
context of minimum divergence based estimation, one tries to minimise D(G,Fθ), w.r.t. θ, in order
to obtain a point estimate of θ. Since in practice, the distribution G is unknown, one uses proxies
(such as kernel density estimates or empirical cumulative distribution function) for G, based on the
observed data X1, . . . , Xn. Let this estimate be Ĝn, which has a density ĝn w.r.t µ. The estimate
for θ, based on the data is given by θ̂ = T (Gn) = argminθ∈Θ D(Ĝn, Fθ). We call this estima-
tor as the minimum t-estimator. It can be shown that the t-estimator exists and is unique under
mild regularity conditions (refer to Theorem 2). Additionally, the minimum t-estimator is robust
under certain regularity conditions. This is done by deriving its influence function and showing that
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its bounded. The influence function, IF (·) of a functional T (·) is defined though the following
equation: IF (y;T,G) = limϵ↓0

1
ϵ (T ((1 − ϵ)G + ϵδy) − T (G)), where δy denotes the degenerate

distribution, putting all its mass at y. Informally, we state the following theorem.
Theorem 1. Under mild assumptions, the first order influence function IF (y;T,G) for the

minimum t-functional is given by
(∑

x∈X
[ 2f2

θ0
(x)uθ0

(x)u′
θ0

(x)

(1+(fθ0 (x)−g(x))2)2
+ ρ(fθ0(x) − g(x))fθ0(x)(u

2
θ0
(x) +

u′
θ0
(x))

])−1( 2fθ0 (y)uθ0
(y)

(1+(fθ0 (y)−g(y))2)2
−

∑
x∈X

g(x)fθ0 (x)uθ0
(x)

(1+(fθ0 (x)−g(x))2)2

)
,where ρ(x) = tan−1(x) + x

1+x2 and

uθ(x) =
∂
∂θ log fθ(x).

The first-order influence function for the minimum t-estimator remains bounded as shown in Theo-
rem 1 when fθ(y)uθ(y) is bounded across all θ ∈ Θ and for all y ∈ X . This condition is satisfied
by exponential families and numerous commonly used distributions.
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Figure 1: Comparison of dif-
ferent estimates of θ at θ =
0.5 in terms of average point
estimate under different lev-
els of contamination.

To demonstrate the robustness of the t-estimator, we conduct ex-
periments with 100 datapoints which consist of (1 − ϵ)% from
Binomial(50, θ) and ϵ% from Uniform(40, . . . , 50), with ϵ ∈
(0, 45) and true θ = 0.5. We estimate θ under the binomial model
using various methods, including maximum likelihood (MLE), me-
dian, minimum squared Hellinger estimate, minimum total varia-
tion estimate, and minimum t-estimate. We repeat this experiment
100 times and plot the average estimate for θin Figure 1. The re-
sults highlight the vulnerability of MLE and the median to even
small outlier fractions. Conversely, the minimum t-estimate demon-
strates outlier robustness, performing comparably to the minimum
Hellinger and minimum total variation estimates.
Application to Clustering We use the t-divergence induced loss
as opposed to the squarred error or Minkowski loss in the Weighted
k-means algorithm to justtify its performance in practice. Our exper-
imental results show that using the robust t-divergence induced loss
improves the performance of Weighted k-means, even in a high-dimensional setting, where the num-
ber of features (p) far exceeds the number of observations (n). Given data points x1, . . . ,xn ∈ Rp,
the objective function is thus given by,

f(Θ,w) =
∑n

i=1 min1≤j≤k

∑p
l=1 w

β
l (xil − θjl) tan

−1(xil − θjl), subject to
∑p

l=1 wl = 1 (1)

A block coordinate descent algorithm is used to minimize the objective function equation 1 (detailed
derivation given in the supplementary document), similar in spirit to Lloyd’s k-means (Lloyd, 1982).

Table 1: Average ARI values for different peer algorithms on real data benchmarks (+ (≈) denotes
statistically significant (equivalent) results w.r.t. the best performing algorithm of that row; The last
row indicates the average rank in terms of ARI).

Datasets k-means Wk-means Minkowski Sparse Wk-means (Huber) Wk-means (t)
Wine 0.364+(5) 0.561+(4) 0.104+(6) 0.806≈(2) 0.761≈(3) 0.830(1)
WBDC 0.490+(3) 0.013+(6) 0.106+(5) 0.491+(2) 0.486+(4) 0.730(1)
Lymphoma 0.394+(6) 0.768+(4) 0.618+(5) 0.848+(2) 0.790+(3) 0.947(1)
Leukemia 0.683+(3) 0.213+(6) 0.401+(5) 0.727+(2) 0.581+(4) 0.944(1)
Appendicitis 0.229+(4.5) 0.213+(6) 0.229+(4.5) 0.446≈(2) 0.251+(3) 0.452(1)
Brain 0.436+(4) 0.432+(5) 0.392+(6) 0.446+(3) 0.451+(2) 0.534(1)
Colon 0.016+(5) 0.001+(6) 0.014+(4) 0.088+(3) 0.102+(2) 0.447(1)
Average Rank 4.36 5.43 5.07 2.29 3 1

The study validates the efficacy of a weighted k-means algorithm using t-divergence induced loss
on real-life datasets from Arizona State University and UCI Machine Learning Repository. The al-
gorithm’s performance was compared to classical k-means, Wk-means (Huang et al., 2005), MW -
k-means (De Amorim & Mirkin, 2012), Sparse k-means (Witten & Tibshirani, 2010), and Wk-
means with Huber loss using Adjusted Rand Index (ARI) as a performance indicator. Experiments,
conducted involved running each algorithm 20 times on the same randomly chosen centroids until
convergence. The weighted k-means with t-divergence induced loss showed enhanced performance
over peer algorithms, as shown in Table 1, with statistical significance confirmed by Wilcoxon’s
signed-rank test at a 5% level. This robust approach notably improved the W -k-means algorithm’s
performance on benchmark datasets.
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A PROOF OF PROPERTIES

Proof of Property 1. Follows trivially as ∀x, y ∈ R, (x− y) tan−1(x− y) ≥ 0 and equality holds
iff x = y.

Proof of Property 2. Let p = dP
dµ and q = dQ

dµ . Since we know (x − y) tan−1(x − y) ≤ 2
[
(x −

z) tan−1(x − z) + (z − y) tan−1(z − y)
]
, ∀x, y, z ∈ R, we observe that for all x ∈ Ω, 0 ≤

(p(x) − q(x)) tan−1(p(x) − q(x)) ≤ 2[p(x) tan−1 p(x) + q(x) tan−1 q(x)]. Integrating w.r.t. µ,
we get,

D(P,Q) ≤ 2

∫
(p tan−1 p+ q tan−1 q)dµ <∞.

Proof of Property 3. If P ∈ Dp
µ. Let p = dP

dµ . Then,
∫
p tan−1 pdµ ≤ π

2

∫
pdµ = π

2 <∞.

Proof of Property 4. Follows trivially since x and tan−1 x are both odd functions.
Proof of Property 5. We know that for all z ∈ R, | tan−1(z)| ≤ π

2 . Thus, for all z ∈ R, z ≤
z tan−1(z) ≤ |π2 z|. Thus, we have, z tan−1(z) ≤ π

2 |z|, for all z ∈ R. Now, D(P,Q) =
∫
(p −

q) tan−1(p− q)dµ ≤
∫

π
2 |p− q|dµ = π 1

2

∫
|p− q|dµ = πTV (P,Q).
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Proof of Property 6. We will first show that D(Pn, P )→ 0 implies TV (Pn, P )→ 0. We fix ϵ > 0.
Thus, there exists Nϵ ∈ N, such that n ≥ Nϵ implies D(Pn, P ) < ϵ. For any δ > 0,

ϵ >

∫
(pn − p) tan−1(pn − p)dµ

=

∫
|pn−p|>δ

(pn − p) tan−1(pn − p)dµ+

∫
|pn−p|<δ

(pn − p) tan−1(pn − p)dµ

≥ tan−1 δ

∫
|pn−p|>δ

|pn − p|dµ+

∫
|pn−p|<δ

(pn − p) tan−1(pn − p)dµ

=tan−1 δ

∫
|pn − p|dµ+

∫
|pn−p|≤δ

[(pn − p) tan−1(pn − p)− tan−1 δ|pn − p|]dµ

≥ tan−1 δ

∫
|pn − p|dµ−

∫
|pn−p|≤δ

tan−1 δ|pn − p|dµ

≥ tan−1 δ

∫
|pn − p|dµ− δ tan−1 δ.

Thus, TV (Pn, P ) < ϵ
tan−1 δ +δ, for all δ > 0. Thus, TV (Pn, P ) ≤ infδ>0

(
ϵ

tan−1 δ +δ
)
, which can

be made smaller that η, for any prefixed η > 0, if ϵ is chosen small enough. Thus, TV (Pn, P )→ 0
as n→∞. Now, let g : Ω→ R be any bounded continuous function,

|
∫

gpndµ−
∫

gpdµ| ≤
∫
|g||pn − p|dµ ≤ sup

x∈Ω
|g(x)|TV (Pn, P )→ 0.

Thus, Pn
L−→ P , i.e. Pn converges to P in distribution.

Proof of Property 7. The non-negativity, identity of indiscernibles and symmetry properties of
D(P,Q) have been showed before. What remains to show is that D(P,Q) ≤ 2(D(P,Q)+D(R,Q))

for all P,Q,R ∈ Dµ. Let p = dP
dµ , q = dQ

dµ and r = dR
dµ . We note that D(P,Q) =

∫
(p −

q) tan−1(p−q)dµ ≤
∫
2

[
(p−r) tan−1(p−r)+(r−q) tan−1(r−q)

]
dµ = 2(D(P,Q)+D(R,Q)).

B EXISTENCE OF THE t-ESTIMATE

Theorem 2. Let the parametric family F be identifiable and let Θ be a compact subset of Rp. We
also assume that fθ(·) is continuous a.e. [µ]. Then the following holds:

1. For all G≪ µ, T (G) exists.

2. If T (G) is unique, then T (·) is continuous at G, under the total variation topology, i.e.
T (Gn)→ T (G), whenever

∫
|gn − g|dµ→ 0. Here gn = dGn

dµ .

3. T (Fθ) = θ for all θ ∈ Θ.

Proof. Proof of part (1): Let tn → t be a sequence of parameter values in Θ. Let h(t) = D(G∥Ft).
We observe that:

|D(G∥Ftn)−D(G∥Ft)| =
∣∣∣∣ ∫ [

(g − ftn) tan
−1(g − ftn)− (g − ft) tan

−1(g − ft)
]
dµ

∣∣∣∣
≤

∫ ∣∣(g − ftn) tan
−1(g − ftn)− (g − ft) tan

−1(g − ft)
∣∣dµ. (2)

We note that,∣∣(g − ftn) tan
−1(g − ftn)− (g − ft) tan

−1(g − ft)
∣∣ ≤ |(g − ftn) tan

−1(g − ftn)|+ |(g − ft) tan
−1(g − ft)|

≤ π

2

[
|(g − ftn)|+ |(g − ft)|

]
≤ π

2

[
2g + ftn + ft

]
. (3)
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We note that the LHS of equation equation 3 is µ-integrable and thus by simple application of
Dominated Convergence Theorem (DCT) the RHS of equation 2 converges to 0 as n → ∞. Hence
h(t) is continuous on Θ, which is compact. Hence h(·) attains its minimum on Θ.

Proof of part (2): Let {Gn}n≥1 converges to G in total variation sense, i.e.
∫
|gn(x) −

g(x)|dµ(x) → 0, as n → ∞. We define hn(t) = D(Gn∥Ft). We also assume that θn = T (Gn)
and θ = T (G) are also defined uniquely. We observe the following,

|hn(t)− h(t)| =
∣∣∣∣ ∫ [

(gn − ft) tan
−1(gn − ft)− (g − ft) tan

−1(g − ft)
]
dµ

∣∣∣∣ (4)

=

∫ ∣∣ tan−1(ξx) +
ξx

1 + ξ2x

∣∣|gn − g|dµ

≤
(
π

2
+ 1

)∫
|gn − g|dµ

Equation equation 4 follows from applying first order Taylor’s expansion on the function
x tan−1(x). Here ξx lies between gn(x) − ft(x) and (g(x) − ft(x)). From the above calcula-
tions we conclude that limn→∞ supt∈Θ |hn(t) − h(t)| = 0. From the definition of θn and θ, we
observe that:

|h(θn)− h(θ)|
=h(θn)− h(θ)

=(h(θn)− hn(θn)) + (hn(θn)− hn(θ)) + (hn(θ)− h(θ))

≤(h(θn)− hn(θn)) + (hn(θ)− h(θ)) (5)
≤2 sup

t∈Θ
|hn(t)− h(t)| (6)

−→ 0 as n −→∞

Equation equation 5 follows from the fact that, since θn is the minimiser if hn(·), hn(θn) ≤ hn(θ).
Thus, we get, limn→∞ h(θn) = h(θ). We will now show that θn → θ. We assume the contrary.
Suppose θn ̸→ θ. We note that {θn}n≥1 is a sequence in the compact set Θ. Thus it has a con-
verging sub-sequence, say, {θnl

}l≥1, such that θnl
→ θ1, where, θ1 ̸= θ. By the continuity of h(·),

h(θnl
)→ h(θ1). This implies that h(θ) = h(θ1), since there cannot be two limit for the converging

sequence h(θnl
). Thus, h(θ) = h(θ1) gives us a contradiction, since, T (G) is assumed to be unique.

Thus, θn → θ.

Proof of part (3): Since the parametric family F is identifiable, D(Fθ∥Ft) = 0, only at the value
t = θ. Thus T (Fθ) = θ, uniquely.

C PROOF OF THEOREM 1

We first derive the estimating equation for a minimum t-estimator. Let θ0 = T (G) and θ0 is an
interior point of Θ, then θ0 satisfies the following equation[

∂

∂θ

∫
(fθ(x)− g(x)) tan−1(fθ(x)− g(x))dµ(x)

]∣∣∣∣
θ=θ0

= 0.

Assuming the differentiability under the integral sign, we get,[ ∫ [
tan−1(fθ(x)− g(x)) +

fθ(x)− g(x)

1 + (fθ(x)− g(x))2

]
∂fθ(x)

∂θ
dµ(x)

]∣∣∣∣
θ=θ0

= 0.

Thus, θ0 satisfies the following equation.∫
ρ(fθ(x)− g(x))fθ(x)uθ(x)dµ(x) = 0. (7)

Here ρ(x) = tan−1(x)+ x
1+x2 and uθ(x) =

∂
∂θ log fθ(x). Equation equation 7 gives the estimating

equation for minimum t-estimator.

We will make the following technical assumptions.
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A1 The support of Fθ is independent of θ.
A2 There exists η > 0 such that T (Gϵ) is an interior point of Θ, for all ϵ < 0 and for all y ∈ R.

Here Gϵ = (1− ϵ)G+ ϵδy .
A3 T (·) is Gateaux differentiable at G.
A4 The derivative on the Left hand side of equation 7 is permitted under the integral sign.

Let Gϵ = (1 − ϵ)G + ϵ∆y . Here ∆y denotes the degenerate distribution at y. We take µ to be the
counting measure. Let θ0 = T (G) and θϵ = T (Gϵ) be defined uniquely for all ϵ ≥ 0. The value of
the influence function at y is given by IF (y) = ∂θϵ

∂ϵ

∣∣
ϵ=0

. Observe that gϵ = (1 − ϵ)g + ϵδy is the
density of Gϵ w.r.t. µ. Here δy(x) = 1 if x = y and is 0, otherwise. Before we proceed, we observe
that ρ′(x) = 2

(1+x2)2 . From the estimating equation equation 7, we observe that∑
x∈X

ρ(fθϵ(x)− gϵ(x))fθϵ(x)uθϵ(x) = 0

=⇒
∑
x∈X

ρ(fθϵ(x)− (1− ϵ)g(x)− ϵδy(x))fθϵ(x)uθϵ(x) = 0

Differentiating both sides w.r.t. ϵ and assuming that the derivative can be passed inside the summa-
tion, we get,∑

x∈X

[
2

(1 + (fθϵ(x)− gϵ(x))2)2
(f ′

θϵ(x)θϵ
′ + g(x)− δy(x))fθϵ(x)uθϵ(x)

+ ρ(fθϵ(x)− gϵ(x))f
′
θϵ(x)θϵ

′uθϵ(x) + ρ(fθϵ(x)− gϵ(x))fθϵ(x)u
′
θϵ(x)θϵ

′
]
= 0.

Substituting ϵ = 0 in the above equation, we get,∑
x∈X

[
2

(1 + (fθ0(x)− g(x))2)2
(f ′

θ0(x)IF (y) + g(x)− δy(x))fθ0(x)uθ0(x)

+ ρ(fθ0(x)− g(x))f ′
θ0(x)IF (y)uθ0(x) + ρ(fθ0(x)− g(x))fθ0(x)u

′
θ0(x)IF (y)

]
= 0.

Thus,

IF (y) =
∑
x∈X

[
2f ′

θ0
(x)fθ0(x)u

′
θ0
(x)

(1 + (fθ0(x)− g(x))2)2
+ ρ(fθ0(x)− g(x))f ′

θ0(x)uθ0(x) + ρ(fθ0(x)− g(x))fθ0(x)u
′
θ0(x)

]
=

∑
x∈X

2(δy(x)− g(x))fθ0(x)uθ0(x)

(1 + (fθ0(x)− g(x))2)2

=
2fθ0(y)uθ0(y)

(1 + (fθ0(y)− g(y))2)2
−

∑
x∈X

g(x)fθ0(x)uθ0(x)

(1 + (fθ0(x)− g(x))2)2
.

simplifying the above equation, we get,

IF (y) =

2fθ0 (y)uθ0
(y)

(1+(fθ0 (y)−g(y))2)2 −
∑

x∈X
g(x)fθ0 (x)uθ0

(x)

(1+(fθ0 (x)−g(x))2)2∑
x∈X

2f2
θ0

(x)uθ0
(x)u′

θ0
(x)

(1+(fθ0 (x)−g(x))2)2 + ρ(fθ0(x)− g(x))fθ0(x)(u
2
θ0
(x) + u′

θ0
(x))

.
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D APPLICATION TO CLUSTERING

D.1 CLUSTERING ALGORITHM

The proposed clustering algorithm with t-divergence has been proposed at Algorithm 1.

Algorithm 1 Weighted k-means with t-divergence induced loss

Input: X ∈ Rn×p, β > 1. Output: Cluster assignment matrix U , feature weight vector w.
repeat

Step 1: Update U by u
(t+1)
ij ←

{
1 if j = arg min

1≤j′≤k

∑p
l=1 w

(t)β
l (xil − θ

(t)
j′l) tan

−1(xil − θ
(t)
j′l),

0 Otherwise.

Step 2: Update Θ by taking θ
(t+1)
jl ← argminθ∈R

∑n
i=1 u

(t+1)
ij (xil − θ) tan−1(xil − θ) by

the Newton-Raphson method.

Setp 3: Update w by taking w
(t+1)
l ← 1/D

(β−1)
l∑p

m=1 1/D
(β−1)
m

, where Dl =
∑n

i=1 u
(t+1)
ij (xil −

θ
(t+1)
jl ) tan−1(xil − θ

(t+1)
jl ).

until objective equation 1 converges.

D.2 STRONG CONSISTENCY

The proposed t-divergence based clustering enjoy elegant theoretical properties such as strong con-
sistency under general assumptions. This property can be guaranteed through standard tools avail-
able in the literature (Pollard, 1981; Paul & Das, 2020; Paul et al., 2021; 2022; Chakraborty et al.,
2022). We note that since the t-divergence induced loss is a near-metric property, the strong consis-
tency of the (global) minimizers of equation 1 can be assessed through the works of Chakraborty &
Das (2019). We assume that X1, . . . ,Xn are independently and identically distributed according to
the distribution P. We assume that P has finite first moment, i.e. E(∥X1∥1) < ∞. It is easy to see
that the t-divergence induced loss satisfies all the assumptions A1-A6 of (Chakraborty & Das, 2019).
A7 can be assessed by observing that

∫ ∑p
l=1(xl−θl) tan

−1(xl−θl)dP ≤ π
2

∫ ∑p
l=1 |xl−θl|dP ≤

π
2

∫ ∑p
l=1(|xl|+ |θl|)dP = π

2 (E(∥X1∥1)+∥θ∥1) <∞. Thus, we have the following theorem guar-
anteeing the strong consistency of the W -k-means algorithm under the t-loss.
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