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ABSTRACT

This paper introduces the ¢-divergence, a novel divergence measure associated
with the inverse tangent function. We investigate its intriguing consistent and
outlier-robust features, particularly its quasi-metric properties and role in estab-
lishing weak convergence. Additionally, we showcase the efficacy of this diver-
gence measure family in feature-weighted clustering for high-dimensional data.

1 PROPOSED ¢-DIVERGENCE

Practitioners often select divergence measures for their resilience against outliers. Employing less
sensitive loss functions such as ¢1, Huber, or Geman-McClure typically guarantees this robustness.
Nonetheless, these functions often lack smoothness, presenting challenges for derivative-based op-
timization methods. Our paper introduces the ¢-divergence, showcasing its efficacy in robust sta-
tistical estimation through comprehensive theoretical and experimental analysis. Formally, let (2
be the sample space and let F be a o-algebra defined on it. Suppose p : F — [0,00) be a
measure defined on (€2, F). Let D, be the set of all measures on (2, ), dominated by y and

f%tan_l %du < oo, ie. D, = {P : P < pand f%tam‘1 %d,u < oo}.Let,p: % and

q= %. The t-divergence, D : D, x D, — [0, 00), between measures P,Q € D,,, is defined as

D(P,Q) = [ (p(x) — q(x)) tan™" (p(z) — q())du(x)
Some intriguing properties of the proposed t-divergence are as follows:

1. D(P,Q) > 0. Moreover, D(P,Q) = 0 iff p = g, a.e. [u].

2. D(P,Q) < oo, forall P,Q € D,,.

3. Let DY denote the set of all probability measures, dominated by . Unlike many other divergence
measures, we observe that 0 < D(P, Q) < oo for any P,Q € Dl’j. This is because Dﬁ CD,.

4. The t-divergence is symmetric, i.e. D(P, Q) = D(Q, P).

5. D(P,Q) < 7TV (P,Q), where TV (P, Q) is the total variation distance between P and Q).

6. Suppose { P, },>1 be a sequence of probability measures in DF. Also let P be another probability
measure, dominated by p. Then lim,,_, o D(P,, P) = 0 implies P,, — P in distribution.

7. D(,) is a near-metric (Burgin, |2017)), with p = 2.

2 APPLICATIONS

Application to Robust Statistical Inference Suppose X, ..., X,, are i.i.d. according to the dis-
tribution G. Let F = {Fy : 6 € © C RP} be a family of distributions, indexed by 6. We assume
that both G, Fy < pu, for some dominating measure p, for all § € ©. Let g = % and fy = %
be respectively. We define the minimum ¢-functional as: T(G) = argmingeo D(G, Fp).In the
context of minimum divergence based estimation, one tries to minimise D(G, Fy), w.r.t. 6, in order
to obtain a point estimate of 6. Since in practice, the distribution G is unknown, one uses proxies
(such as kernel density estimates or empirical cumulative distribution function) for GG, based on the
observed data X1,...,X,,. Let this estimate be G, which has a density g, w.r.t u. The estimate
for 6, based on the data is given by § = T(G,,) = argmingce D(G,,, Fy). We call this estima-
tor as the minimum t-estimator. It can be shown that the t-estimator exists and is unique under
mild regularity conditions (refer to Theorem [Z). Additionally, the minimum ¢-estimator is robust
under certain regularity conditions. This is done by deriving its influence function and showing that
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its bounded. The influence function, /F'(-) of a functional T'(-) is defined though the following
equation: IF(y; T,G) = lim. o 2(T((1 — €)G + €6,) — T(G)), where §, denotes the degenerate
distribution, putting all its mass at y. Informally, we state the following theorem.

Theorem 1. Under mild assumptions, the first order influence function IF(y;T,G) for the
zfgo(m)ugo(m)u’eo(m)

minimum t-functional is given by (3, [W + p(foo (x) — 9(=)) foo () (uj, (z) +

/ -1 2fo0, (Y)uoy () g(x) fo, (z)ug, (x) _ —1 z
oo ()]) (Gt — Leex Tt —atoyn? ) Where p(z) = tan™(z) + 3% and

)
ug(z) = g5 log fo(x).
The first-order influence function for the minimum ¢-estimator remains bounded as shown in Theo-

rem [1] when fj(y)ug(y) is bounded across all § € © and for all y € X. This condition is satisfied
by exponential families and numerous commonly used distributions.

To demonstrate the robustness of the ¢-estimator, we conduct ex- hegian
periments with 100 datapoints which consist of (1 — €)% from 0| Minimum Hellinger
Binomial(50,0) and €% from Uniform(40,...,50), with € € Minimum testi

Estimate for ¢

(0,45) and true § = 0.5. We estimate 6 under the binomial model
using various methods, including maximum likelihood (MLE), me-

dian, minimum squared Hellinger estimate, minimum total varia- 0s —

tion estimate, and minimum ¢-estimate. We repeat this experiment

100 times and plot the average estimate for fin Figure The re- L P
sults highlight the vulnerability of MLE and the median to even

small outlier fractions. Conversely, the minimum ¢-estimate demon-
strates outlier robustness, performing comparably to the minimum
Hellinger and minimum total variation estimates.

Application to Clustering We use the ¢-divergence induced loss
as opposed to the squarred error or Minkowski loss in the Weighted
k-means algorithm to justtify its performance in practice. Our exper-
imental results show that using the robust ¢-divergence induced loss
improves the performance of Weighted k-means, even in a high-dimensional setting, where the num-
ber of features (p) far exceeds the number of observations (n). Given data points 1, ..., x, € RP,
the objective function is thus given by,

f(O©,w) =31 minicj<k > o, wlﬁ(azil —6;)tan" ! (zs — 0;1), subject to > w=1 (D

A block coordinate descent algorithm is used to minimize the objective function equation|T](detailed
derivation given in the supplementary document), similar in spirit to Lloyd’s k-means (Lloyd,|1982).

Figure 1: Comparison of dif-
ferent estimates of 6 at =
0.5 in terms of average point
estimate under different lev-
els of contamination.

Table 1: Average ARI values for different peer algorithms on real data benchmarks (+ (=) denotes
statistically significant (equivalent) results w.r.t. the best performing algorithm of that row; The last
row indicates the average rank in terms of ARI).

45

Datasets k-means Wk-means  Minkowski Sparse Wk-means (Huber)  Wk-means (t)
Wine 0.364T(5)  0561T(4) 0.1047(6) 0.806%(2) 0.761%(3) 0.830(1)
WBDC 0.4907(3)  0.0137(6) 0.1067(5)  0.4917(2) 0.486T(4) 0.730(1)
Lymphoma 0.394%(6) 0.7687(4)  0.618T(5)  0.848%(2) 0.790%(3) 0.947(1)
Leukemia 0.6837(3)  0.213%7(6) 040175  0.727F(Q) 0.581%(4) 0.944(1)
Appendicitis ~ 0.2297(4.5)  0.213%(6) 0.2291(4.5) 0.446™(2) 0.2517(3) 0.452(1)
Brain 04367 (4)  0432F(5)  0.3927(6)  0.4461(3) 0.4517(2) 0.534(1)
Colon 0.0167(5) 0.0017(6) 0.0147(4) 0.088"(3) 0.1027(2) 0.447(1)
Average Rank 4.36 5.43 5.07 2.29 3 1

The study validates the efficacy of a weighted k-means algorithm using ¢-divergence induced loss
on real-life datasets from Arizona State University and UCI Machine Learning Repository. The al-
gorithm’s performance was compared to classical k-means, W k-means (Huang et al., 2005), MW -
k-means (De Amorim & Mirkin| 2012), Sparse k-means (Witten & Tibshirani, [2010), and W k-
means with Huber loss using Adjusted Rand Index (ARI) as a performance indicator. Experiments,
conducted involved running each algorithm 20 times on the same randomly chosen centroids until
convergence. The weighted k-means with ¢-divergence induced loss showed enhanced performance
over peer algorithms, as shown in Table [T] with statistical significance confirmed by Wilcoxon’s
signed-rank test at a 5% level. This robust approach notably improved the W-k-means algorithm’s
performance on benchmark datasets.
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A PROOF OF PROPERTIES

Proof of Property 1. Follows trivially asVx,y € R, (x — y) tan~!(z — y) > 0 and equality holds
iffz=y.
Proof of Property 2. Let p = ‘% and q = %. Since we know (z — y)tan~!(z — y) < 2[(95 —
z)tan"!(z — 2) + (2 — y)tan~'(z — y)|, Vz,y,2 € R, we observe that for all z € Q, 0 <
(p(z) — q(2)) tan™" (p(z) — q(x)) < 2[p(z)tan™" p(x) + q(z) tan™" q()]. Integrating w.rt. p,
we get,

D(P,Q) < 2/(ptan*1p+ qtan~! q)dp < oo.
Proof of Property 3. If P € D¥. Letp = ‘fi—i. Then, [ptan~'pdp < % [pdp =% < occ.

Proof of Property 4. Follows trivially since x and tan™! x are both odd functions.

Proof of Property 5. We know that for all z € R, |tan™'(2)| < 5. Thus, forall z € R, z

ztan~!(2) < |5z|. Thus, we have, ztan~'(z) < Z|z|, for all z € R. Now, D(P,Q) = [(p —
q)tan~(p — q)dp < [ 5|p—qldu = 7% [ |p — qldu = 7TV (P, Q).

IN
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Proof of Property 6. We will first show that D(P,,, P) — 0 implies TV (P,,, P) — 0. We fix e > 0.
Thus, there exists N, € N, such that n > N, implies D(P,,, P) < e. Forany § > 0,

€> /(pn —p)tan~" (p, — p)dp

= / (pn — p) tan™" (pp, — p)dp + / (pn — p) tan™" (p, — p)dp
[P —p|>6 [pn—p|<d
>tan~'d [P — pldp + / (pn — p) tan™" (pp, — p)dp
[pn—p|>0 [pn—p|<d

:tan*15/|pn — pldu + / [(pn — p) tanfl(pn -p) —tan"! d|pn — plldp
‘Pn_plgé

> tan” ! 5/ [pn — pldp — / tan™"! 8|p, — pldp
‘Pn_plgé

Ztan_15/|pn—p\dy—5tan_l d.

Thus, TV (P, P) < —5=+9, forall § > 0. Thus, TV (P,, P) < infss¢ (ﬁ —1—5), which can

tan—1§

be made smaller that n, for any prefixed n > 0, if € is chosen small enough. Thus, TV (P,,, P) — 0
asn — o0o. Now, let g : Q2 — R be any bounded continuous function,

I/gpndu*/gpdu\ < /Igllpn —pldp < suglg(I)ITV(Pn,P) — 0.
TE

L . . .. .
Thus, P, — P, i.e. P, converges to P in distribution.

Proof of Property 7. The non-negativity, identity of indiscernibles and symmetry properties of
D(P, Q) have been showed before. What remains to show is that D(P, Q) < 2(D(P,Q)+D(R, Q))

forall P.Q,R € D,. Letp = ‘2—5, q = % and r = i—ﬁ. We note that D(P,Q) = [(p —

q) tan"! (p—q)dp < f2[(p—r) tan~! (p—7)+(r—q) tan~ (r—q) | dp = 2(D(P,Q)+D(R, Q)).

B EXISTENCE OF THE t-ESTIMATE

Theorem 2. Let the parametric family F be identifiable and let © be a compact subset of RP. We
also assume that fy(-) is continuous a.e. [p]. Then the following holds:

1. Forall G < p, T(G) exists.

2. If T(QG) is unique, then T(+) is continuous at G, under the total variation topology, i.e.

T(G,) = T(G), whenever [ |g, — g|ldu — 0. Here g, = ﬁ”-

3. T(Fy) =0 forallf € ©.

Proof. Proof of part (1): Let t,, — ¢ be a sequence of parameter values in ©. Let h(t) = D(G|| F}).
We observe that:

|D(G||Fy,) — D(G||Fy)| = ‘ / (g — fe,)tan"" (g — fi,) — (g — fo) tan™" (g — fo)]dp

S/|(g*ftn)tan’1(g*ftn)*(gfft)tan’l(gfff,)ldu- )

‘We note that,
(g = fr,)tan" (g — fi,) — (g — fi) tan™ (g — fo)| < (g — fi,,) tan™ (g — fu,)| + |(g — fi) tan~" (g — f1)]

< Zlltg = Fi)l +1g = £)]
< S[29+ fu + £1]- 3)
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We note that the LHS of equation equation [3] is p-integrable and thus by simple application of
Dominated Convergence Theorem (DCT) the RHS of equation [2] converges to 0 as n — oco. Hence
h(t) is continuous on O, which is compact. Hence h(-) attains its minimum on ©.

Proof of part (2): Let {G,},>1 converges to G in total variation sense, i.e. [ |g,(z) —
g(z)|du(x) — 0, as n — oo. We define h,(t) = D(G,]||F;). We also assume that §,, = T(G,
and § = T'(G) are also defined uniquely. We observe the following,

|hn () = h(t)| =

/ (g0 — Sy tan~ (g, — fi) = (g — f) tan " (g — f)]du| @)

=/|tan*1(§x) + 1f§2|\gn —gldu

™
< <2+1)/|gn—g|du

Equation equation [ follows from applying first order Taylor’s expansion on the function
rtan~!(x). Here &, lies between g, (7) — fi(z) and (g(x) — fi(z)). From the above calcula-
tions we conclude that lim,,_, sup,cg |hn(t) — h(t)| = 0. From the definition of #,, and 6, we
observe that:

|[h(0n) — ()]
—h(6.) — h(6)
=(h(0n) — hn(0)) + (hn(0n) — i (0)) + (R (0) — h(9))
<(h(0n) — hn(6r)) + (hn(8) — h(6)) (5)
<2sup |ha () = h(t)] (6)

Equation equation [5|follows from the fact that, since 6,, is the minimiser if A, (+), hy (65,) < ha(6).
Thus, we get, lim, o 2(6,) = h(0). We will now show that §,, — 6. We assume the contrary.
Suppose 6,, / 6. We note that {6,,},,>1 is a sequence in the compact set ©. Thus it has a con-
verging sub-sequence, say, {0y, };>1, such that 6,,, — 61, where, 6; # 6. By the continuity of A(-),
h(6,,) — h(61). This implies that h(6) = h(61), since there cannot be two limit for the converging
sequence h(f,,). Thus, h(0) = h(61) gives us a contradiction, since, T'(G) is assumed to be unique.
Thus, 6,, — 0.

Proof of part (3): Since the parametric family F is identifiable, D(Fy||F;) = 0, only at the value
t = 6. Thus T'(Fy) = 6, uniquely. O

C PROOF OF THEOREM

We first derive the estimating equation for a minimum ¢-estimator. Let §p = T'(G) and 6, is an
interior point of ©, then 6 satisfies the following equation

0 . ]
a9 [ 0@~ tan ) ol |
Assuming the differentiability under the integral sign, we get,
_ fo(x) —g(x) |0fo(x) _
| [t 00 - o + 5 2 e | P ], =
Thus, 6 satisfies the following equation.
[ #tdo@)  g(a) fola)uo(a)ua) = 0 )

Here p(z) = tan™ ! (z) 4 1352 and ug(z) = 2 log fo(z). Equation equationgives the estimating
equation for minimum ¢-estimator.

We will make the following technical assumptions.
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A1l The support of Fj is independent of 6.

A2 There exists > 0 such that T'(G.) is an interior point of ©, for all ¢ < 0 and for all y € R.
Here G, = (1 — €)G + €0,,.

A3 T(-) is Gateaux differentiable at G.

A4 The derivative on the Left hand side of equation [/|is permitted under the integral sign.

Let Ge = (1 — €)G + €A,. Here A, denotes the degenerate distribution at y. We take 4 to be the
counting measure. Let 6y = T'(G) and 6. = T(G.) be defined uniquely for all € > 0. The value of
the influence function at y is given by I F'(y) = %9; —o- Observe that ge = (1 — €)g + €4, is the
density of G w.r.t. ;.. Here 5y(33) = 1if z = y and is 0, otherwise. Before we proceed, we observe

that p/(z) = ﬁ From the estimating equation equation we observe that

Z p(fo.(x) — ge(x)) fo. (x)up, (v) =0

reX

= Y plfo.(x) = (1= )g(x) — eb,(2)) fo, (x)ug, (x) = 0

reX

Differentiating both sides w.r.t. € and assuming that the derivative can be passed inside the summa-
tion, we get,

& 9 ' - x x)u x
x; [(14'(]095(3?)—gg(x))Q)Q(fee(x)eﬁ +9(x) = by (2)) fo. (x)ug, (x)

+p(fo. () = ge(@)) fo. (2)0c uo, (x) + p(fo. (x) — ge(2)) fo. ()up, (m)Hel} =0.

Substituting € = 0 in the above equation, we get,

2 ’ - x XT)u X
2 [<1+<feo<x>—g<x>>2>2(f90<x>” () + 9(@) = 3, (2) foq (@)ug, (x)

+ p(foo (x) — 9(2)) fo, (@) TF (y)ue, (x) + p(fo, (x) — 9(2)) fo, (x)ug, (w)IF(y)} =0.

Thus,

29, () fo, (x)up,

{ ()
2 [T+ (fa (@) — g(a)
2

e T p(fo, () = g(x)) fo, (2)ue, () + p(fo, () = g(x)) fo, (), (2)

_ 2o, (y)ue, (y) = g(x) fa, (x)ug, (x)
(1 + (foo () — 9(y))?)? (

simplifying the above equation, we get,

zeX

2y Wung () 5~ 9(2) fog (2)uoy (z
IF(y) = (TF oy (1) —9W)P)2_ 2a€X T+ (o (2)—9()
v = s a0, @)

o
2eX (T+(fo, (@) —9(2))2)? + p(fo, () — g()) fo, (x)(ugo (z) + uleo (z))
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D APPLICATION TO CLUSTERING

D.1 CLUSTERING ALGORITHM

The proposed clustering algorithm with ¢-divergence has been proposed at Algorithm 1]

Algorithm 1 Weighted k-means with ¢-divergence induced loss

Input: X € R"*P, 5 > 1. Output: Cluster assignment matrix U, feature weight vector w.
repeat

®B(... _ o) (., _ p(t)
Step 1: Update U by u(fH) +— Loity= arglgn}gk Yo wy (@i = O5) tan™ (za — 65),
0 Otherwise.

Step 2: Update © by taking 9 ) arg mingegr Y., U, tH)( xy —0)tan 1 (z; — 6) b

the Newton-Raphson method.
(B-1)

Setp 3: Update w by taking wf™™") ¢ Pl where D = 0L uy ™ (a —
05 ) tan~ (g — 0571).
until objective equatlon [T]converges.

m=1

D.2 STRONG CONSISTENCY

The proposed ¢-divergence based clustering enjoy elegant theoretical properties such as strong con-
sistency under general assumptions. This property can be guaranteed through standard tools avail-
able in the literature (Pollard, 1981} |Paul & Das, 2020; [Paul et al., 2021} [2022; |Chakraborty et al.,
2022). We note that since the ¢-divergence induced loss is a near-metric property, the strong consis-
tency of the (global) minimizers of equation [I]can be assessed through the works of [Chakraborty &
Das|(2019). We assume that X1, . .., X, are independently and identically distributed according to
the distribution P. We assume that P has finite first moment, i.e. E(]| X1]|1) < oo. It is easy to see
that the ¢-divergence induced loss satisfies all the assumptions A1-A6 of (Chakraborty & Dasl[2019).
A7 can be assessed by observing that [ Y7, (z;—6;) tan™! (2 —0;)dP < T [ >]_ |21 —6;[dP <
z fz (Jzr] +160:])dP = Z(E(|| X1 ]|1)+1/0]]1) < oo. Thus, we have the following theorem guar-
anteeing the strong con51stency of the W-k-means algorithm under the ¢-loss.
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