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Learning Context with Priors for 3D Interacting Hand-Object
Pose Estimation
Anonymous Authors

ABSTRACT
Achieving 3D hand-object pose estimation in interaction scenar-
ios is challenging due to the severe occlusion generated during
the interaction. Existing methods address this issue by utilizing
the correlation between the hand and object poses as additional
cues. They usually first extract the hand and object features from
their respective regions and then refine them with each other. How-
ever, this paradigm disregards the role of a broad range of image
context. To address this problem, we propose a novel and robust
approach that learns a broad range of context by imposing priors.
First, we build this approach using stacked transformer decoder
layers. These layers are required for extracting image-wide context
and regional hand or object features by constraining cross-attention
operations. We share the context decoder layer parameters between
the hand and object pose estimations to avoid interference in the
context-learning process. This imposes a prior, indicating that the
hand and object are mutually the most important context for each
other, significantly enhancing the robustness of obtained context
features. Second, since they play different roles, we provide cus-
tomized feature maps for the context, hand, and object decoder
layers. This strategy facilitates the disentanglement of these layers,
reducing the feature learning complexity. Finally, we conduct ex-
tensive experiments on the popular HO3D and Dex-YCB databases.
The experimental results indicate that our method significantly out-
performs state-of-the-art approaches and can be applied to other
hand pose estimation tasks. The code will be released.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
Hand-Object Pose Estimation, Transformer

1 INTRODUCTION
The 3D hand-object pose estimation task simultaneously estimates
the hand and object’s poses in interaction scenarios. It has been
widely applied in augmented and virtual reality [21, 59, 68, 79],
human-computer interaction [48, 57, 73, 86], robotic manipula-
tion [22], robot-assisted surgeries [69], and embodied artificial in-
telligence [37, 72]. While significant progress has been made in
both 3D hand and object pose estimation [4, 5, 14–16, 18, 30, 55,
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Figure 1: Illustration of attention maps produced by the con-
text decoder layer in our Learning Context with Priors (LCP)
framework. The four columns show the original images, at-
tention maps for hand and object queries, and final pose
estimation results. The hand attention maps cover the hand,
object, and forearm. Meanwhile, the object attention maps
highlight the object and the hand touching the object.

61, 66, 70, 71, 74, 85], jointly estimating 3D hand-object poses re-
mains challenging. This is primarily due to the mutual occlusion
between the interacting hand and object, as illustrated in Fig.1.
Occlusion leads to information loss and interference, significantly
affecting the pose estimation accuracy. It is important to overcome
this challenge for applications like robotic manipulation [22] and
robot-assisted surgeries [69], as inaccurate pose estimation may
lead to safety issues.

Since the hand and object poses are coupled when grasping oc-
curs, their pose correlation is a valuable cue that relieves occlusion.
Generally, existing approaches [45, 47] extract the hand and object
features from their respective regions and then enhance each other
using transformer-like modules [65]. These enhanced features are
used to predict 3D hand and object poses independently. Although
this paradigm promotes 3D hand-object pose estimation, it over-
looks leveraging a broad range of image context, such as the pose
correlation between the hand and arm (see Fig. 1).

However, exploring a broad range of context for this task is
challenging, as the model may struggle to identify useful cues in the
entire image. Herein, we solve this problem by imposing priors in
the context-learning process. First, our proposed approach utilizes
the transformer decoder layers [2]. These layers are required for
extracting the image-wide context, the fine-grained hand, and the
object features by restricting the cross-attention operation scope.
The disentangling operation relieves the latter two features from
interference outside the hand or object regions. More importantly,
we propose sharing the context decoder layer parameters between
the 3D hand and object pose estimation tasks. This imposes a strong
prior, emphasizing that the interacting hand and object are mutually
the most important context for each other. This strategy enables
extracting context features more robustly. Moreover, the obtained

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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context features are transferred to the hand and object decoder
layers as decoder embeddings. In this way, we fuse robust image-
wide context and fine-grained hand or object features for 3D hand-
object pose estimation purposes.

Second, since they play different roles, we provide customized
feature maps for the context, hand, and object decoder layers, facil-
itating disentanglement between them. However, since the context
and hand (or object) layers are in series as stacked decoder lay-
ers, the key to this approach is to ensure that the feature maps
utilized are in similar feature spaces. Accordingly, we adopt the
backbone proposed in [45] that not only disentangles the hand and
object feature maps but also ensures them are in the same feature
space. Then, the two types of feature maps are fed into the hand
and object decoder layers, respectively. Furthermore, we propose
concatenating the above hand and object feature maps along the
channel dimension and then halving the channel number using an
efficient 1 × 1 convolution layer. Then, the obtained feature maps
are utilized as the value and key for the context decoder layer. The
experimentation section shows that this operation significantly
enhances the 3D hand-object pose estimation performance.

To demonstrate the effectiveness of our approach, we conducted
extensive experiments on two widely used databases: HO3D [19]
and Dex-YCB [3]. The experimental results validate the effective-
ness of each key design and show that our method consistently
outperforms state-of-the-art approaches. Moreover, our method
can also be applied to the 3D interacting-hands pose estimation,
showcasing exceptional performance.

2 RELATEDWORK
3D Hand-Object Pose Estimation. Existing methods for this task
typically employ a parametric hand model (e.g., MANO [32]) and
assume that the 3D object models are available. This enables them
to focus on the 3D hand and object pose prediction. Furthermore,
another line of closely related approaches [6–8, 24, 29, 33–35, 41,
63, 77, 78, 83] called 3D hand-object reconstruction exists. This
approach does not assume the availability of the 3D object models;
instead, it focuses on reconstructing the hand and object meshes.
This paper targets the 3D hand-object pose estimation task with a
single RGB image adopted as the input data. This section reviews
existing research from model architecture, optimization strategy,
and training data perspectives.

For model architecture, previous approaches [11, 62] adopt a
shared encoder and decoder for the hand and object pose estima-
tion. However, they struggle to thoroughly explore the hand and ob-
ject’s unique characteristics. To address this problem, the following
works [20, 23, 45, 47] adopt a shared encoder and separate decoders
for the two sub-tasks. Given the strong correlation between the
poses of an interacting hand and object, recent methods [20, 45, 47]
usually utilize the hand and object features to enhance each other.
First, they extract the hand and object features from their respec-
tive regions. Then, they use them to enhance each other using
transformer-like modules [65]. For example, Hampali et al. [20]
first detect 2D hand and object keypoints. Then, they extract each
keypoint’s features. In addition, Liu [47] and Lin et al. [45] extract
the hand and object features from their respective bounding boxes.
Lin et al. [45] devise a novel backbone model that disentangles the

hand and object feature maps and ensures they are in a similar
feature space, which facilitates the mutual enhancement between
the hand and object features.

Model optimization strategies typically utilize physically plausi-
ble constraints to refine the hand-object poses, particularly focusing
on stable contact between the interacting hand and object. For ex-
ample, some studies [1, 23] introduce the contact and repulsion loss
functions that encourage stable contact and discourage repulsion be-
tween the hand-object surfaces. Also, some methods [17, 38, 64, 76]
explicitly model the hand-object contact. For instance, Grady et
al. [17] and Tse et al. [64] first estimate contact maps between the
hand and object; then, the maps are used to optimize the hand poses
accordingly. Another noteworthy approach [76] utilizes Contact Po-
tential Fields (CPF) to refine the predicted handmeshwith attractive
and repulsive energy terms between the hand-object meshes.

The third category of methods addresses the difficulty on data
annotation. For example, some studies [1] utilize multiple visual
cues, such as the object detection results, 2D hand pose estimation,
object instance segmentation, and hand-object contact area, to
estimate 3D hand-object poses without supervision. This strategy
does not require ground truth annotations. Some studies employ
constraints based on temporal consistency to propagate the labels
from sparsely annotated frames to the unannotated ones [23] or to
enhance the quality of pseudo-labels [47] estimated by one off-the-
shelf algorithm [47]. Finally, Yang et al. [40] introduce an online
data augmentation method that synthesizes training data with free
labels to promote data diversity.

In this paper, we explore model architecture. Compared to ex-
isting research on 3D hand-object pose estimation, we propose a
novel approach that robustly leverages both image-wide context
and fine-grained regional features.
Transformer-based Pose Estimation. Detection Transformer
(DETR) [2] and its variants [52, 87] utilize decoder layers and object
queries to aggregate image-wide context efficiently for the object
detection task. DETR has been applied to various pose estimation
tasks, e.g., the 2D and 3D human pose estimation task [9, 12, 31,
39, 46, 51, 75, 80]. For instance, some approaches [39, 46, 51, 75]
redefine the 2D human pose estimation task as a regression prob-
lem. Unlike traditional heatmap-based methods [60, 67, 84], they
utilize a query to predict one specific human keypoint. Similarly,
other approaches [9, 12, 80] employ a query to predict the 3D co-
ordinates of one specific human-body joint or vertex. Considering
the increased number of vertices and joints, they design a series of
methods to reduce model size and computational cost. For example,
Huang et al. [31] use a limited number of queries to predict the
pose and shape parameters of the human SMPL [49] model.

In contrast to the above human pose estimation tasks, we dis-
covered that aggregating image-wide context for hand-object pose
estimation, which is more fine-grained and vulnerable to context
inferences, is more challenging. This paper addresses this problem
by imposing strong priors in the context-learning process.

3 METHODS
In this section, we first provide an overview to the 3D hand-object
pose estimation problem and our Learning Context with Priors
(LCP) framework in Section 3.1. Then, we introduce LCP’s main
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Figure 2: An overview of our LCP framework. It stacks the context, hand, and object transformer decoder layers on the feature
maps produced by the backbone. The same context decoder layer is adopted for the hand and object pose estimation tasks.
This implicitly imposes a prior that the interacting hand and object are mutually the most important context for each other.
The hand and object decoder layers extract fine-grained features from their ROI regions, respectively. The context and hand
decoder layers share queries for hand pose estimation. Meanwhile, the context and object decoder layers share queries for
object pose estimation.

components in Section 3.2 and Section 3.3 using the ResNet-50-FPN
model as backbone. Finally, we enhance the LCP’s capacity using a
stronger backbone in Section 3.4.

3.1 Overview
We adopt the popular MANO model [32] M(𝜽 , 𝜷) to represent
the hand, where 𝜽 ∈ R16×3 and 𝜷 ∈ R10 represent the hand pose
and shape coefficients, respectively. Meanwhile, the object mesh is
assumed available, so we focus on object pose estimation, including
the rotation R ∈ 𝑆𝑂 (3) and translation T ∈ R3 parameters [71].
Similar to existing studies [45, 47], instead of directly regressing
R and T, we first estimate the 2D coordinates of object keypoints.
Then, we employ the Perspective-n-Point (PnP) algorithm [36] to
calculate the object pose. The goal of 3D hand-object pose estima-
tion is to estimate 𝜽 , 𝜷,R, and T, using a single unified framework
with an RGB image as input.

The overview of LCP is provided in Fig. 2. We feed a single RGB
image I ∈ R𝐻×𝑊 ×3 into the backbone, which consists of a ResNet-
50 model [26] and a Feature Pyramid Network (FPN) [44]. The FPN
fuses four feature map scales from the ResNet-50 model and outputs
F ∈ R𝐻/4×𝑊 /4×𝐶 , where𝐶 denotes the channel number. Beside the
backbone, LCP mainly consists of three components: the context,
hand, and object decoder layers.

The context, hand, and object decoder layers play different roles.
They are required to extract the image-wide context, fine-grained
hand, and object features, by constraining the scope of cross-attention
operations. This disentanglement operation can free the latter two
features from interference contained in the context. As illustrated in
Fig. 2, the context and hand (or object) decoder layers are in series
as stacked layers. The obtained context features are transferred to
the hand and object decoder layers as decoder embeddings. The

key is how to obtain the context features in a robust manner for
the hand and object, respectively.

3.2 Learning Context with Priors
Naively employing the cross-attention operation to search for image-
wide context is suboptimal, as the model may struggle to identify
useful cues and be vulnerable to inferences. We address this prob-
lem by imposing priors for the hand and object, indicating that
the interacting hand and object are mutually the most important
context for each other. Moreover, the hand is flexible, and its pose
is not only related to the interacting object but also to the wrist and
forearm poses. In contrast, the object is rigid; therefore, its pose
correlates with that of the hand only when the hand touches the
object [45, 47], as shown in Fig. 1.

Based on the above observation, we propose sharing the context
decoder layers for the hand and object pose estimation tasks. This
imposes a strong prior that the hand and object are mutually the
most important context for each other. Specifically, we provide
the context decoder layers with one group of learnable queries
Qℎ ∈ R𝑁ℎ×𝐶 for the hand and another for the object Q𝑜 ∈ R𝑁𝑜×𝐶 ,
where 𝑁ℎ and 𝑁𝑜 denote the number of queries for the hand and
object, respectively. Then, the context decoder layers transform
Qℎ and Q𝑜 into a set of decoder embeddings Dℎ

𝑐 ∈ R𝑁ℎ×𝐶 and
D𝑜
𝑐 ∈ R𝑁𝑜×𝐶 , respectively. The meanings of the hand and object

queries are described in Section 3.3. The above process is formulated
as follows:

Dℎ
𝑐 = 𝑓𝑐 (Qℎ,Dℎ

0 , F, E𝑝𝑜𝑠 ), (1)

D𝑜
𝑐 = 𝑓𝑐 (Q𝑜 ,D𝑜

0 , F ⊙ M𝑜 , E𝑝𝑜𝑠 ), (2)
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where 𝑓𝑐 (., ., ., .) denotes the stacked context decoder layers.Dℎ
0 and

D𝑜
0 denote the initial decoder embeddings (i.e., zero vectors).Dℎ

𝑐 and
D𝑜
𝑐 represent the output decoder embeddings by the context decoder

layers. Epos ∈ R(𝐻/4×𝑊 /4)×𝐶 stands for the position encoding. The
matrixM𝑜 is a mask and ⊙ executes the Hadamard Product between
M𝑜 and each channel of F. Its purpose is to constrain the cross-
attention operation for Q𝑜 within the object bounding box.

3.3 Hand and Object Decoder Layers
The hand and object decoder layers useDℎ

𝑐 andD𝑜
𝑐 as initial decoder

embeddings, respectively. Furthermore, these layers continue to
employ Qℎ and Q𝑜 as queries. Compared to the context decoder
layers, they focus on extracting fine-grained features from the hand
and object regions, respectively. This is described as follows:

Dℎ
𝑐𝑙

= 𝑓ℎ (Qℎ,Dℎ
𝑐 , F

ℎ, Eℎ𝑝𝑜𝑠 ), (3)

D𝑜
𝑐𝑙

= 𝑓𝑜 (Q𝑜 ,D𝑜
𝑐 , F

𝑜 , E𝑜𝑝𝑜𝑠 ), (4)

where 𝑓ℎ (., ., ., .) and 𝑓𝑜 (., ., ., .) denote the stacked hand and object
decoder layers, respectively. Dℎ

𝑐𝑙
and D𝑜

𝑐𝑙
stand for the final decoder

embeddings for the hand and object pose estimation tasks. They
contain both image-wide context features and fine-grained hand or
object features. Similar to existing studies [45, 47], Fℎ ∈ R32×32×𝐶
and F𝑜 ∈ R32×32×𝐶 are obtained from F using the ROIAlign [25]
operation, according to the hand and object bounding boxes, respec-
tively. Finally, Eℎ𝑝𝑜𝑠 and E𝑜𝑝𝑜𝑠 represent the positional embeddings
for Fℎ and F𝑜 , respectively.

Notably,Qℎ includes three types of highly correlated hand queries.
The queries are utilized to predict the hand pose 𝜽 ∈ R16×3 and
shape 𝜷 ∈ R10 of the MANO model [32] and 2D hand joint coordi-
nates Jℎ ∈ R21×2. Accordingly, we adopt 16 pose queries to predict
each of the 3D joint angles in the hand kinematic structure, where
each 3D joint angle is represented by three parameters. Further-
more, we utilize an extra query for estimating 𝜷 . Additionally, we
add 21 more queries, each used to predict the 2D coordinates of one
hand joint. These three types of hand queries are adopted in each
context and hand decoder layer. The decoder embeddings obtained
from these queries exchange information through the self-attention
blocks in the decoder layers.

In addition, Q𝑜 incorporates a single type of queries for objects.
It includes 21 unique queries, each used to predict the 2D coor-
dinates of a specific object keypoint. The same as [45, 47], the 21
keypoints include the projection of 8 corner points, 12 midpoints
along the edges, and the central point of the 3D object bounding
box onto the 2D image plane. Like the hand decoder layers, the
decoder embeddings extracted by the 21 object keypoint queries
conduct self-attention operations to capture the relationships in
object structures.

Finally, the decoder embeddings obtained by Qℎ and Q𝑜 make
predictions via respective feed-forward networks (FFNs). In the
training stage, we supervise the outputs of each context, hand,
and object decoder layer. In the testing stage, we use the 𝜽 and 𝜷
coefficients predicted by the final hand decoder layer to represent
the hand pose. Regarding the object, we follow existing works [45,
47] and adopt the PnP [36] algorithm to calculate the final object
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Figure 3: Illustration of the CFM backbone.

pose according to the object keypoints predicted by the final object
decoder layer.

3.4 LCP with Customized Feature Maps
The LCP model in the above subsections is based on the ResNet-
50-FPN backbone. However, our context, hand, and object decoder
layers play different roles; therefore, it is more reasonable to pro-
vide them with customized feature maps (CFM), facilitating the
disentanglement between these layers. Moreover, since the con-
text layer and the hand (or object) layers are stacked in series, it is
essential to ensure that these customized feature maps are still in
similar feature spaces.

We achieve this goal with the help of the backbone proposed
in [45], which disentangles the hand and object feature maps and
ensures that they share the same feature space. However, this back-
bone’s output comprises only the hand and object feature maps.
The two feature maps are denoted as Fℎ𝑟𝑎𝑤 ∈ R𝐻/4×𝑊 /4×𝐶 and
F𝑜𝑟𝑎𝑤 ∈ R𝐻/4×𝑊 /4×𝐶 , respectively. To integrate this backbone with
LCP, we concatenate Fℎ𝑟𝑎𝑤 and F𝑜𝑟𝑎𝑤 along the channel dimension
and then halve the channel number by an efficient 1×1 convolution
layer. The obtained feature maps F𝑐 ∈ R𝐻/4×𝑊 /4×𝐶 are utilized
as the value and key for the context decoder layer, while Fℎ and
F𝑜 are obtained using the ROIAlign [25] operation from Fℎ𝑟𝑎𝑤 and
F𝑜𝑟𝑎𝑤 , respectively. Finally, we employ the customized feature maps
F𝑐 , Fℎ , and F𝑜 to our LCP model’s context, hand, and object layers,
respectively. The above process to obtain the customized feature
maps is illustrated in Fig. 3.

3.5 Loss Functions
The LCP’s total loss comprises two parts: one for the hand and
another for the object. It can be formulated as follows:

L𝑡𝑜𝑡𝑎𝑙 = Lℎ𝑎𝑛𝑑 + L𝑜𝑏 𝑗𝑒𝑐𝑡 . (5)

The details of the two parts are as follows:

Lℎ𝑎𝑛𝑑 = 𝜆𝜽

𝜽 − �̂�

2
+ 𝜆𝜷

𝜷 − �̂�

2
+ 𝜆V

V − V̂

2 +

𝜆J
J − Ĵ


2 + 𝜆Jℎ

Jℎ − Ĵℎ

1
,

(6)

L𝑜𝑏 𝑗𝑒𝑐𝑡 = 𝜆J𝑜
J𝑜 − Ĵ𝑜


1 . (7)

where 𝜆𝜽 , 𝜆𝜷 , 𝜆V, 𝜆J, 𝜆Jℎ , and 𝜆J𝑜 are set as 10, 0.1, 10000, 10000,
250, and 300, respectively. 𝜽 and 𝜷 represent the ground truth
MANO [32] pose and shape coefficients, respectively. In addition, V
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and J denote the ground truth 3D coordinates of the hand vertices
and joints. They are obtained according to the MANO [32] model
with ground-truth 𝜽 and 𝜷 coefficients. Furthermore, Jℎ and J𝑜

represent the 2D coordinates of hand joints and object keypoints,
respectively. Moreover, .̂ denotes the predicted values. We impose
the L2 loss function on 𝜽 , 𝜷 , V, and J, and adopt the L1 loss for Jℎ
and J𝑜 .

4 EXPERIMENT
4.1 Datasets and Metrics
HO3D. The HO3D database [19] comprises data from 10 subjects
executing various interactive actions with 10 objects. According to
the official protocol, HO3D includes a total of 66,034 training and
11,524 testing images.
Dex-YCB. Dex-YCB [3] is a recently released large-scale hand-
object manipulation dataset. Its images were captured under more
challenging circumstances. It contains 582,000 frames sampled from
over 1,000 video sequences. These sequences record 10 subjects
interacting with 20 objects. We use the official s0 splitting protocol
to divide the dataset into training and testing sets.
InterHand2.6M. InterHand2.6M [54] is a popular 3D interacting-
hands pose estimation database. Its images include various interac-
tion scenarios between two hands. It contains 1.36 million training
and 849,000 testing images.

We adopt two popular metrics to evaluate the hand pose esti-
mation performance for HO3D and Dex-YCB. Specifically, these
metrics include the mean per joint position error with procrustes
alignment (PA-MPJPE) and the mean per joint position error with-
out procrustes alignment (MPJPE). MPJPE measures the average
Euclidean distance between the predicted coordinate of each hand
joint and the ground truth in millimeters (mm), while PA-MPJPE
corrects the MPJPE score using procrustes analysis.

Similar to existing studies [45, 47], we evaluate the object pose
estimation performance only for the objects viewed during training,
using the average distance of model points (ADD) as the metric.
The ADD metric [27] assesses whether the average deviation of
the predicted model points is within 10% of the object’s diameter.
Consistent with the approach in [45], we adopt a symmetric version
of the ADDmetric, i.e., ADD(-S) [27, 28], on the Dex-YCB dataset [3],
as some objects in this database are symmetric.

4.2 Implementation Details
All the experiments are conducted using PyTorch [56] and NVIDIA
GeForce RTX 3090 GPUs. We consistently utilize the AdamW opti-
mizer [50] for model optimization and set the batch size to 64. The
initial learning rate is set to 2e-4. In addition, for experiments per-
formed on the HO3D dataset [19], we resize the images to 512× 512

Table 1: Ablation study on each key component of LCP. †
denotes using the CFM backbone.

Components Hand Object
Methods w Context w Mask w Sharing CFM PA-MPJPE ↓ MPJPE ↓ ADD(-S) ↑ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒)
Baseline - - - - 5.51 13.37 47.6

LCP
✓ - - - 5.35 12.72 48.0
✓ ✓ - - 5.37 12.66 48.3
✓ ✓ ✓ - 5.33 12.50 49.6

LCP† ✓ ✓ ✓ ✓ 5.14 11.81 50.6

Table 2: More ablation study on the context decoder layer.

Hand Object
Model PA-MPJPE ↓ MPJPE ↓ ADD(-S) ↑ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒)
Ours 5.33 12.50 49.6

variant 1 5.34 12.95 48.8
variant 2 5.35 12.84 49.5

Table 3: Ablation study on using 2D hand-joint queries.

Hand Object
Methods PA-MPJPE ↓ MPJPE ↓ ADD(-S) ↑ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒)
LCP 5.33 12.50 49.6

LCP w/o 2D joints 5.77 13.94 49.0

pixels and set the number of training epochs to 60. Due to the Dex-
YCB dataset [3] being significantly larger, we resize all its images
to 256 × 256 pixels and reduce the number of training epochs to 40.
Besides, we set the number of context, hand, and object decoder
layers to 1, 3, and 3, respectively.

4.3 Ablation Study
We conduct ablation studies on the large-scale Dex-YCB database
and employ ResNet-50-FPN as the backbone unless otherwise spec-
ified. CFM refers to customized feature maps.
Effectiveness of key components in LCP. The experimental
results are summarized in Table 1. To ensure a fair comparison
with LCP, the baseline model contains four hand and four object
decoder layers. These layers use Fℎ and F𝑜 as the value and key in
the cross-attention operations, respectively. Then, we replace the
first hand and object decoder layers in the baseline model with a
context decoder layer, respectively. The two context decoder layers
do not share parameters. This experiment is denoted as ‘w Context’
and significantly reduced the hand’s MPJPE by 0.65 mm and PA-
MPJPE by 0.16 mm, with a slight performance improvement in the
object’s ADD(-S) score. This suggests that image-wide context is
essential for hand pose estimation.

Next, we introduce a mask to the object branch’s context decoder
layer, constraining the cross-attention operation in Eq. 2 within
the object bounding-box area. This experiment is presented as ‘w
Mask’ in Table 1, and it slightly improves the performance of the
object pose estimation, supporting our conjecture that rigid objects
may not require extensive contextual information. Furthermore, ‘w
Sharing’ implies sharing the context decoders’ parameters with the
hand and object. This operation reduces the hand’s MPJPE by 0.16
mm and increases the object’s ADD(-S) score by 1.3%. These results
demonstrate that the interacting hand and object are mutually the
most important context for each other.

Finally, with the robust CFM backbone, the performance of LCP
improves significantly, reducing the hand’s MPJPE by 0.69 mm,
PA-MPJPE by 0.19 mm, and increasing the object metric by 1.0%.
The above experimental results validate the effectiveness of LCP.
Ablation study on the context decoder layer. In Table 2, we
compare the performance of LCP’s context decoder layer with two
potential variants. In the first variant, a mask for Qℎ is imposed on
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Table 4: Ablation study on the CFM backbone.

Hand Object
Model PA-MPJPE ↓ MPJPE ↓ ADD(-S) ↑ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒)
Ours 5.14 11.81 50.6

variant 1 5.22 11.97 49.6
variant 2 5.18 11.95 50.5

Table 5: Results of different numbers of context, hand, and
object decoder layers.

Context Hand Object PA-MPJPE ↓ MPJPE ↓ ADD(-S) ↑ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒)
1 3 3 5.33 12.50 49.6
1 1 1 5.58 13.23 42.3
1 5 5 5.20 12.36 52.2
2 3 3 5.32 12.52 49.8
3 3 3 5.31 12.43 50.1

the context decoder layer, restricting the cross-attention operation
within the hand bounding-box, which is similar to the operation
defined in Eq.2. In the second variant, we enlarge the cross-attention
operation for Qℎ to cover both the hand and object bounding-box
areas.

As shown in Table 2, the performance of both variants is lower
than our method, especially on the challenging MPJPE metric. In-
deed, without procrustes alignment with the ground-truth, the
MPJPE metric requires more context for robust hand pose estima-
tion. These experimental results justify the effectiveness of our
designs.
Effectiveness of using 2D hand-joint queries. Table 3 compares
LCP’s performance with and without the queries for detecing 2D
hand joints. We observe that using the 21 hand-joint queries sub-
stantially improves the hand’s PA-MPJPE and MPJPE metrics (i.e.,
0.44mm and 1.44mm, respectively). This is because 3D hand pose
estimation and 2D hand joint prediction are closely related. It also
increases the object’s ADD(-S) score by 0.6%. This may be because
high-quality hand features provide more accurate context for object
pose estimation.
Ablation study on the CFM backbone. We compare CFM’s per-
formance with two possible variants, as displayed in Table 4. The
two variants’ model structures are provided in the supplementary
material. The first variant directly utilizes the disentangled hand
and object feature maps produced by the original backbone in [45]
for the context decoder layer. In other words, the hand and object
queries utilize their respective feature maps in the context layer
instead of our combined feature maps. The second variant replaces
our concatenation operation described in Section 3.4 with simple
element-wise addition between the hand and object feature maps.

As shown in Table 4, the performance of the original backbone
model in [45] is significantly lower than ours, whichmay be because
the disentangled featuremaps in [45] lose the hand or object context.
Moreover, the second variant’s performance is only slightly lower
than ours, meaning that our proposal can be achieved using the
simple element-wise addition or concatenation operations.
Number of decoder layers. In Table 5, “Context," “Hand", and
“Object" denote the number of context, hand, and object decoder
layers, respectively. The table shows that increasing the number

Table 6: Comparison with state-of-the-art methods on Dex-
YCB in terms of hand pose estimation metrics. † denotes
using the CFM backbone.

Methods PA-MPJPE ↓ MPJPE ↓

Single-hand

METRO [43] 6.99 15.24
Spurr et al. [58] 6.83 17.34
HandOccNet [55] 5.80 14.04
H2ONet [74] 5.7 14.0

Hand-object
HFLNet [45] 5.47 12.56

LCP 5.33 12.50
LCP† 5.14 11.81

of context, hand, or object decoder layers improves performance.
However, increasing the number of decoder layers also results in
more computational costs. To strike a balance between performance
and efficiency, we utilize only one context decoder layer and three
hand-object decoder layers in the subsequent experiments.

4.4 Comparisons with State-of-the-Art Methods
Comparisons on Dex-YCB. Dex-YCB [3] is a recently released
database. Table 6 shows that LCP outperforms the state-of-the-
art 3D hand-object pose estimation methods [45] and surpasses
approaches that only perform the hand pose estimation task [55].
Specifically, with the ResNet-50-FPN backbone and the backbone
introduced in Section 3.4, LCP’s MPJPEs perform better than the
state-of-the-art method [45] by 0.06mm and 0.75mm, respectively;
and LCP’s PA-MPJPEs outperform those of [45] by 0.14mm and
0.33mm, respectively.

Table 7 compares LCP’s ADD(-S) scores for object pose esti-
mation with those of state-of-the-art methods. Specifically, with
the ResNet-50-FPN backbone and the backbone introduced in Sec-
tion 3.4, LCP’s ADD(-S) score significantly outperforms the state-
of-the-art method [45] by 19.4% and 20.4%, respectively. This su-
periority can be attributed to the advantages of employing disen-
tangled decoder layers in our approach. In particular, our method
leverages both robust contextual information and fine-grained re-
gional hand or object features. Simultaneously, the self-attention
operations within the decoder facilitate learning the dependen-
cies between object keypoints. Consequently, our approach shows
stronger robustness on the challenging Dex-YCB dataset [3] com-
pared to HFLNet [45].
Comparisons onHO3D. Table 8 shows that LCP achieves superior
performance on hand pose estimation. Specifically, with very simi-
lar backbones, LCP† outperforms the recent method [45] by 4.7mm
in terms of the MPJPE score. Compared with the PA-MPJPE score,
MPJPE measures the mean joint position error without aligning
the estimated hand pose with the ground truth; therefore, it may
be more practical in real-world applications. We attribute the ad-
vantages of LCP† to the exploration of image-wide context, which
facilitates holistic estimation of hand poses. Moreover, LCP achieves
comparable performance even when compared with approaches
that only focus on hand pose estimation (i.e., the “single-hand"
approaches), as shown in Table 8.

Table 9 further compares the object pose estimation accuracy
between our method and state-of-the-art approaches. Specifically,
equipped with similar backbones, the average ADD score of LCP†
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Table 7: Comparisons with state-of-the-art method [45] on
Dex-YCB in terms of object pose estimation metrics.

Method Lin et al. [45] LCP LCP†

Metric ADD(-S) ↑ ADD(-S) ↑ ADD(-S) ↑
master_chef_can 23.3 50.6 50.8
cracker_box 66.6 92.9 91.6
sugar_box 35.6 70.1 67.9

tomato_soup_can 12.2 26.4 30.6
mustard_bottle 48.1 69.3 70.8
tuna_fish_can 8.6 19.6 21.8
pudding_box 31.2 56.9 57.8
gelatin_box 26.0 48.1 50.2

potted_meat_can 21.1 37.4 41.1
banana 16.9 35.1 33.3

pitcher_base 36.5 60.3 66.6
bleach_cleanser 42.5 67.0 70.0

bowl∗ 36.2 53.0 55.0
mug 16.8 31.0 27.6

power_drill 45.1 70.8 76.3
wood_block∗ 45.9 64.8 63.9

scissors 13.6 28.7 28.3
large_marker 3.7 9.5 8.6

extra_large_clamp∗ 44.8 52.0 52.5
foam_brick∗ 28.8 48.0 47.1
average 30.2 49.6 50.6

Table 8: Comparisonswith state-of-the-artmethods onHO3D
in terms of hand pose estimation metrics. ‘(P)’ denotes pre-
training on the Dex-YCB dataset.

Methods PA-MPJPE ↓ MPJPE ↓

Si
ng

le
-h
an
d

Pose2Mesh [10] 12.5 33.3
Hasson et al. [24] 11.0 31.8
I2L-MeshNet [53] 11.2 26.0
Hampali et al. [19] 10.7 30.4

METRO [43] 10.4 28.9
H2ONet [74] 9.0 -

HandOccNet [55] 9.1 24.0

H
an
d-
ob
je
ct

Hasson et al. [23] 11.4 36.9
Liu et al. [47] 10.1 31.7
ArtiBoost [40] 11.4 25.3

Keypoint Trans [20] 10.8 25.7
HFLNet [45] 8.9 28.4

HFLNet (P) [45] 8.7 27.0
LCP† 8.9 23.7

LCP† (P) 8.5 21.5

is higher than [45] by 9.1%. The above comparisons validate the
effectiveness of our approach.

Finally, since the HO3D dataset is relatively small, overfitting
may occur on this database. To cope with this problem, we conduct
an additional experiment that is similar to the one in H2ONet [74].

Table 9: Comparisonswith state-of-the-artmethods onHO3D
in terms of object pose estimation metrics. ‘(P)’ denotes pre-
training on the Dex-YCB dataset.

Methods cleanser ↑ bottle ↑ can ↑ average ↑ (𝐴𝐷𝐷)
Liu et al. [47] 88.1 61.9 53.0 67.7
HFLNet [45] 81.4 87.5 52.2 73.3

HFLNet (P) [45] 91.9 77.0 59.4 76.1
LCP† 95.4 92.0 60.0 82.4

LCP† (P) 93.8 92.9 69.5 85.4

Table 10: Comparisons with state-of-the-art methods on
InterHand2.6M. ⋄ denotes the LCP variant without using
ground-truth hand bounding boxes.

MPJPE MPVPE MPJPE-S MPVPE-S
Moon et al. [54] 16.02 - - -
Fan et al. [13] 14.27 - - -

Zhang et al. [82] - - 11.28 12.01
IntagHand [42] 10.27 10.53 9.40 9.68

ACR [81] 9.08 9.31 8.41 8.53
LCP⋄ 8.39 8.74 7.41 7.63
LCP 8.09 8.46 7.10 7.33

Specifically, we first pre-train LCP† and HFLNet [45] on the large-
scale Dex-YCB database, respectively. Then, we fine-tune each of
them on the HO3D dataset. Experimental results show that with
proper pre-training, LCP† outperforms HFLNet with very similar
backbones.
Comparisons on InterHand2.6M. We extend our approach to
the 3D interacting-hands pose estimation task [13, 42, 54, 81, 82].
Specifically, we utilize LCP’s hand and object decoder layers to pre-
dict the left- and right-hand poses, respectively. In this extension,
we remove the masking operation in Eq. 2, enabling the right-hand
to search for image-wide context. In Table 10, we compare LCP’s
performance with state-of-the-art methods on the InterHand2.6M
database [54]. Similar to ACR [81], we evaluate our method us-
ing metrics such as MPJPE and Mean Per Vertex Position Error
(MPVPE), as well as their scaled versions denoted as MPJPE-S and
MPVPE-S, respectively.

Table 10 shows that LCP continues to achieve the best perfor-
mance across all metrics: MPJPE, MPVPE, MPJPE-S, and MPVPE-S.
Moreover, existing 3D interacting-hands pose estimation methods
usually do not assume the availability of hand bounding boxes.
Therefore, to facilitate fair comparison with these approaches, we
adopt the bounding box enclosing all 2D joints of a hand that are
predicted by the context decoder layer as the bounding box for
this hand. To promote hand joint prediction accuracy, we stack one
more context decoder layer and employ the second context layer
for hand joint prediction. We denote this LCP variant as LCP⋄ in
Table 10. Furthermore, Table 10 shows that LCP⋄ still outperforms
state-of-the-art methods. Thus, the experimental results validate
LCP’s effectiveness.

4.5 Qualitative Comparisons
Fig. 4 illustrates the qualitative comparisons between LCP† and the
state-of-the-art methods [45]. We compare their performance on
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Figure 4: Qualitative comparisons between LCP† and state-of-the-art methods [45] on the HO3D [19] (the first three rows) and
Dex-YCB [3] (the remaining rows) databases.

images with severe hand-object occlusions. It is shown that LCP†
estimates the hand and object poses more robustly. Since LCP†
and [45] adopt similar backbones, we attribute the advantages of
LCP† to its robust learning capacity of broad-ranged context and
fine-grained regional features, facilitating the accurate estimation
of hand and object poses.

5 CONCLUSION AND LIMITATIONS
This paper explores robustly achieving a broad context range for
the 3D hand-object pose estimation task. Our approach stacks disen-
tangled transformer decoder layers to extract image-wide context,

hand, and object regional features. By imposing priors to the con-
text decoder layer, our model robustly extracts context for the hand
and object, respectively. We also introduce customized feature maps
for the three decoder layer types Finally, our approach outperforms
existing methods on 3D hand-object and interacting-hands pose
estimation. However, this study encounters certain limitations. For
example, the utilized LCP queries remain the same for different
images. In the future, we will enable adaptive adjustment of each
image’s queries according to its content to enhance pose estimation
accuracy.
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