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Abstract

Knowledge Distillation is the mechanism by which the insights gained from a
larger teacher model are transferred to a smaller student model. However, the
transfer suffers when the teacher model is significantly larger than the student. To
overcome this, prior works have proposed training intermediately sized models,
Teacher Assistants (TAs) to help the transfer process. However, training TAs is
expensive, as training these models is a knowledge transfer task in itself. Further,
these TAs are larger than the student model and training them especially in large
data settings can be computationally intensive. In this paper, we propose a novel
framework called Controlled Information Flow for Knowledge Distillation (CIFD)
consisting of two components. First, we propose a significantly smaller alternatives
to TAs, the Rate-Distortion Module (RDM) which uses the teacher’s penultimate
layer embedding and a information rate-constrained bottleneck layer to replace the
Teacher Assistant model. RDMs are smaller and easier to train than TAs, especially
in large data regimes, since they operate on the teacher embeddings and do not
need to relearn low level input feature extractors. Also, by varying the information
rate across the bottleneck, RDMs can replace TAs of different sizes. Secondly, we
propose the use of Information Bottleneck Module in the student model, which is
crucial for regularization in the presence of a large number of RDMs. We show
comprehensive state-of-the-art results of the proposed method over large datasets
like Imagenet. Further, we show the significant improvement in distilling CLIP
like models over a huge 12M image-text dataset. It outperforms CLIP specialized
distillation methods across five zero-shot classification datasets and two zero-shot
image-text retrieval datasets.

1 Introduction

A decade ago Hinton et al. proposed a mechanism called Knowledge Distillation (KD), where the
insights from a larger model (the teacher) are transferred to a smaller model (the student) [1]. The
teacher model, on account of larger modeling capacity, is capable of learning complex relationships
in the data and is thus better at performing its target task. KD attempts to help the training of
the student model by showing it the insights learned by the teacher. Specifically, Hinton et al.
suggested the transfer of “dark knowledge" in the logits of a teacher classifier to a student classifier
by minimizing the Kullback-Leibler (KL) divergence between a softened version of the predicted
probability distribution of a teacher and a student model. However, dark knowledge is only one way
of quantifying the insights learned by the teacher. In general, how to quantify the insights and how to
transfer them to the student model remain open questions.
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Figure 1: (a) Proposed: Controlled Information Flow for Knowledge Distillation (CIFD). In CIFD,
we explore the idea of Rate-Distortion Modules (RDM) that use the Teacher’s embeddings to generate
embeddings that act like Teacher Assistants (TAs) to distill knowledge to the Student. It does so
by processing the embedding through a rate constrained communication channel. RDMs are much
cheaper to train as they reuse the feature extractors learned by the teacher. By varying the rate
constraint, RDMs can can simulate different TAs, and enable “TA” based training. (b) Training cost
(normalized w.r.t. KD [1]) for distilling ResNet34 to ResNet18 over ImageNet. Earlier TA based
approaches incurred a huge training cost increase due to the training of the TA models from scratch.
Our proposed idea replaced TAs with RDMs and thus significantly reduces distillation cost while
also improving performance.

Recently many researchers in the knowledge distillation community have been concerned with the
gap between the teacher and student’s modeling capacities [2, 3, 4, 5]. Going back to the human
learning experience, we learn simple concepts first, intermediate concepts next, and finally advanced
concepts. Based on this insight, prior works have proposed the use of Teacher Assistants (TAs),
models whose size is between that of the teacher and the student, to help facilitate the knowledge
transfer better [2, 3]. By distilling knowledge from the teacher to the assistant and then using the
assistant to help the distillation into the student led to large performance improvement. However, as
seen in Figure 1(b), these methods are around 3.5× and 4.5× more expensive than KD [1]. In this
paper we introduce a method called Controlled Information Flow for Knowledge Distillation (CIFD)
which is significantly cheaper to train. This brings the training cost of TA based methods closer to
KD and other counterparts while obtaining state-of-the-art performance.

The proposed CIFD mechanism consists of two parts. First, we propose to process the teacher’s
penultimate layer embedding by a Rate-Distortion Module (RDM) to replace TAs. The RDM
imposes a constraint on the amount of information through it. To replace multiple TAs of different
capacities, we propose using RDMs with different levels of information constraints. Since RDMs
operate on the teacher embeddings, they do not have to relearn low level features and can avoid the
associated training and inference costs. As far as we know, this is the first application of Shannon’s
Rate-Distortion theory to aid knowledge distillation. However, as the number of RDMs increases,
the student model tends to overfit to the teacher and assistants’ outputs, as pointed out in [3] (also
confirmed empirically here), thus reducing the generalization performance of the student model.
Thus, to regularize the training of the student model in the presence of multiple RDMs, we propose
the Information Bottleneck Module (IBM). The following are the contributions of this paper:

1. We propose the use of an RDM that takes the embeddings from a teacher model and mimics a
teacher assistant. Since the RDM does not have to relearn low level features, it is two to three
layers only; significantly smaller than a teacher assistant model.

2. We propose the use of the IBM in the student model during train-time. We find that IBM on its
own provides benefits but is also a crucial regularizer as the number of RDMs increases.

3. On classification models, by distilling ResNet34 and ResNet50 (teachers) into ResNet18 and
MobileNet-V2 (students), we achieve +1.66% (absolute) and +2.71% over KD [1], respectively.

4. To showcase the generality of the proposed CIFD, we apply it to distilling CLIP like models.
Over three different teacher-student combinations, across five zero-shot classification and two
zero-shot retrieval datasets, we find that our proposed method significantly outperforms CLIP
specific distillation methods.
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Figure 2: Training schemes of the proposed CIFD
framework. We first train the RDM modules to mimic
teacher assistants as in (a). Then we train the student
model using both the trained RDMs and the teacher
model as in (b).
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2 Related Works

Knowledge Distillation: Hinton et al. introduced the concept of transfering the knowledge from
a large teacher model to a smaller student model using the logit space for classification models [1].
Many works have focused on different methods for transferring information like in the output space
[6], transferring information in the intermediate layers of the teacher to the student [7, 8], to note a
few. Some authors have focused on efficient distillation when only a subset of the original training
data of the teacher is available [9], distilling easy classes first [10], or recently by looking at feature
distillation as a diffusion process [11].

Recently, many works have pointed out the gap between the teacher and student models. Some
authors looked at encoding the residual error between a large teacher and student [12, 13], using
an ensemble of projectors for feature distillation [6], proposing a correlation based loss function in
place of the KL divergence [9], and rectifying the imbalance at the concept level [4]. Most related to
our work is the work of Mirzadeh et al. [2], and Son et al. [3]. Mirzadeh et al. proposed training
teacher assistant models of progressively smaller size between that of a teacher and student model
and using the smallest teacher assistant for distilling knowledge to the student. Son et al. argued that
such a distillation process could cause error cascading and proposed using all the assistant(s) and the
teacher for distillation. Further, each assistant is trained using all larger assistants and the teacher.
This leads to progressively increasing computation costs as the number of assistants increases. Unlike
their works, instead of explicitly training assistant models whose size is larger than the student, we
propose a mechanism to mimic intermediate teaching assistants by training a small RDM module
which is significantly smaller than even the student model. Further, unlike [3] where TAs need to
be trained sequentially in the order of decreasing size, our RDMs are trained independently and in
parallel. Another important work that is related to the RDM is the paraphraser network proposed by
[14]. However we propose a more principled (from Shannon’s insight on Rate-Distortion theory) loss
function to train the RDMs where the information is compressed at different levels to mimic teacher
assistants of different capacities.

The proposed IBM also has parallels in works like [6, 15]. The former looks at introducing an
ensemble of projector networks that map the student embedding to the teacher embedding. Unlike
the proposed IBM, which has a rate constrained loss function, the projector networks are trained for
reconstruction error only. The concept behind IBM, the Information Bottleneck Principle (IBP), is also
related to Masked-Image-Modeling [16] and Masked Generative Distillation [15]. The connections
between IBP and improved generalization [17] support the success behind MIM and our proposed
IBM. While our IBM loss function attempts to directly upper-bound each of the terms of the IBP
objective, MIM upper bounds by dropping negative terms from the IBP objective. On the otherhand,
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the MGD objective is an upperbound only under certain modeling assumptions. We discuss these
connections in detail in Section 3.2 and Appendix C.

CLIP Distillation: Distillation of CLIP like models is a relatively new direction. One of the earliest
works was to use CLIP to distill task specific knowledge into task specific student models [18]. In the
task agnostic distillation of CLIP, TinyClip proposed a knowledge distillation and a pruning method
for CLIP [19]. Yang et al. studied various losses for distillation including feature distillation and
relational losses [20]. Relational losses attempt to maintain the same relative distances between
embeddings in the teacher and student model [21, 22]. Another noteworthy paper is MobileCLIP
which used an ensemble of teachers and a data refinement technique to obtain powerful small CLIP
models [23]. However, the ideas proposed in these works are CLIP specific, i.e., they exploit the
interactions between different modalities to compute the distillation losses. Unlike these works, our
proposed idea is general, i.e., not CLIP specific.

Rate Distortion and Information Bottleneck via Neural Networks: Neural networks have been
used to learn encoders and decoders for compression using Rate-Distortion theory [24, 25, 26] and
communication over noisy channels [27]. On the other hand, Information Bottleneck has been used
to improve neural networks in areas like improving generalization [28, 29], Out-of-Distribution
detection [30, 31] and Out-of-Distribution generalization [32, 33].

3 Controlled Information Flow for KD

3.1 Controlling the information from the teacher using Rate-Distortion Theory

Shannon proposed Rate-Distortion Theory as a principled way to compress a signal. Given an input
X , the goal of compression is to find a mapping from X to its compressed version X̂ such that X̂
has minimal information about X but at the same time the distortion does not exceed D0. We can
write this as an optimization problem of the form

min
X→X̂:D(X;X̂)≤D0

I(X; X̂), (1)

where D(·, ·) is some distortion measure and I(·; ·) denotes the mutual information between two
random variables [34]. We can convert this to an unconstrained optimization objective of the form

min R ·D(X; X̂) + I(X; X̂), (2)
where R determines the trade-off between information rate and distortion. A larger R corresponds
to more emphasis on minimizing the distortion at the cost of a higher information rate and vice-
versa. This idea is best understood in the context of lossy compression where we wish to compress
as much as possible while allowing tolerable distortion. However, rate-distortion theory is not
only applicable to compression, but also to problems like Joint Source-Channel Coding where the
compressed representation is subject to noise [34]. This case is represented in Figure 1(a). The
encoded representation of the input is denoted as Y and its noisy version as Ŷ . The independent
noise added to encoded representation is denoted as Z.

However, even though Shannon’s theory tells us what optimization problem to solve, it does not tell
us how to solve it. When the encoders and decoders in Figure 1(a) are neural networks this problem
is compounded because the objective cannot be computed (I(X; X̂) is intractable). Instead, we
can use variational approximations to compute an upper bound on the objective, which in turn will
allow us to perform gradient descent to learn the encoder and the decoder. Let us denote q(Ŷ ) as an
approximation of true but unknown distribution of Ŷ , p(Ŷ ). Then, we can compute an upper-bound
on I(X; X̂) as

I(X; X̂) ≤ I(Y ; Ŷ ) ≤ Hq(Ŷ ) +H(Ŷ |Y ), (3)
where H(·) denotes the entropy, and Hq(Ŷ ) denotes the cross entropy computed using the distribution
q(Ŷ ). The first inequality follows from the Data Processing Inequality [34] and the second follows
because cross-entropy is always greater than entropy [34]. Finally, note that H(Ŷ |Y ) is constant
because the noise is independent of the encoder and decoder parameters.

The key here is to choose the approximating distribution q. Popular choices include the Gaussian
distribution (e.g., Variational Autoencoders [35]), learning the distribution [36], or non-parametric
approximations [24], we choose the latter. All these methods yield a mechanism where we can
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compute q(Ŷ ). Now, for simplicity let us assume that distortion measure D is the L2 norm, then we
can learn the parameters of the encoder (Θe) and the decoder (Θd) by putting (3) into (2) as

LR = EX,Z

[
R
∥∥∥X − X̂

∥∥∥2
2
− log

(
q(Ŷ )

)]
. (4)

Figure 1(a) shows how the RDMs are trained. Since the RDMs process extracted teacher embeddings,
they do not have to relearn low level feature extractors from the raw input, thus making them
significantly smaller than teacher assistants, which in turn makes them computationally cheaper.

In the case where we are distilling a classification model, an additional linear layer is used to convert
the reconstructed embeddings to logits. Let V represent the true classification label, V̂T represent the
teacher’s output predictive distribution on the class labels, V̂RDM be the same but as predicted by the
RDM output. Then, the loss function used to train the RDM is

L′
R = EX,Z

[
LCE(V, V̂RDM ) + λKLKL(V̂T ||V̂RDM )

]
+ LR. (5)

Here, LCE(·, ·) is the cross-entropy loss, KL(·||·) is the Kullback-Leibler divergence, and λKL

is weighting factor for the KL loss. For simplicity of writing we have dropped the presence of the
temperature τ from the KL divergence term, however, it is assumed to be present. Figure 7 shows the
illustration of how the RDM is trained for classification.

Connections between Teacher Assistants and RDMs: TAs limit the amount of information extracted
from the input by using limited modeling capacity, i.e., smaller the model poorer the TA performance
on the downstream task. On the other hand, we limit the amount of information extracted from the
teacher embedding by passing it through a rate constrained communication channel. If we place a
higher constraint on the information through the channel, our reconstructed embeddings will have
more distortion compared to the teacher’s and will perform poorly on the downstream task, just like
the embeddings from a TA with a small model capacity. Thus, by choosing different values of R in
(4) we can mimic different TAs with different modeling capacities.

3.2 Controlling the information to the student using Information Bottleneck

In the previous section, we introduced RDMs to control the flow of information from the teacher
model and mimic teacher assistants. However, when the teacher and multiple RDMs are providing
feedback, the feedback can cause the student model to overfit and lead to poor performance. We
can overcome this by constraining the information from the student model exposed to the feedback,
i.e., provide partial feedback. Similar to the teacher model, we can accomplish this using another
rate-constrained channel, but at the student. Further, this rate-constrained model is present only when
there is feedback to the student, i.e., only during training. However, unlike the case of RDMs, we are
not interested in trying to reconstruct the input to the rate constrained channel. Instead we wish to
reconstruct the teacher or RDM embeddings. In Information Theory, the Rate-Distortion problem
deals with compressing a random variable. However, when we want the compressed representation to
be informative about another variable, it is called the Information Bottleneck problem. Thus, we call
our proposed rate constrained module in the student model as Information Bottleneck Module (IBM).

Tishby et al. introduced the Information Bottleneck Principle (IBP) as a generalization to the Rate-
Distortion problem [37]. Given an input XS and some random variable of interest U , the goal in IB
is to find a representation Û that removes as much information about input XS while retaining as
much information about U . This is formulated as

min −I(U ; Û) + λII(XS ; Û), (6)

where, λI is the Lagrange multiplier.

Figure 1 shows the IB Module in the student model. XS represents the input, W the encoded
representation, Ŵ the noisy encoded representation, ZS the noise added during training only, and Û
represents the output of the IBM decoder. When working with neural network based encoders and
decoders, both the mutual information terms in (6) are intractable. To overcome this setback, we use
variational approximations, resulting in an upper bound on the IB objective (6) [28].

LI = EX,ZS

[
D(U, Û)− λI log

(
r(Ŵ )

)]
, (7)

5



where D represents a suitable distortion metric, r(Ŵ ) is the approximation of the true distribution
p(Ŵ ). In the IBM, U is set to be the teacher’s (or RDM’s) embedding. So, at the output the IBM is
attempting to reconstruct the teacher’s (or RDM’s) embedding. In case of a dimensionality mismatch,
a projection layer is used. In practice, we do not use a dedicated encoder for IBM and let the student
backbone model itself function as the encoder, i.e. W = XS . The decoder is a simple network of at
most one to two linear layers. The IBM is not trained separately, instead it is trained along with the
student model.
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Figure 4: Relation between Masked Image
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tion (MGD), and Information Bottleneck Module
(IBM) for Distillation.

Connections to Masked-Image-Modeling: In
this discussion, we compare IBMs with Masked-
Image-Modeling [16] and its extension into dis-
tillation Masked-Generate-Modeling [15]. In
MIM, an input image (T ) is masked (TM ). The
masked image is fed through an encoder fol-
lowed by an MIM encoder. The encoder pro-
vides an embedding of the image and the MIM
encoder uses it to predict the tokens correspond-
ing to the masked out part. The system is
then trained to maximize the likelihood of the
actual values of the masked out tokens. In
Masked-Generative-Distillation, the masking is
done after passing through the student backbone.
Following that a generator attempts to predict
the teacher’s embedding (with a slight abuse
of notation U ). Let us denote the embedding
from the student before the masking as Û−M .
Even though both MIM and MGD attempt to
maximize the log p(U |Û), we can easily show
that this is equivalent to maximizing I(U ; Û)
(Lemma 1 in Appendix C). Following this we
can write the following theorem to connect the
MIM and MGD objectives to IBP.
Theorem 1 (Informal). The objective function
of MIM is an upper bound on the objective func-
tion from IBP. The objective function of MGD is an upper bound on the objective function from IBP if
Û−M is a discrete random variable and the mapping from T to Û−M is deterministic.

A more detailed explanation along with the formal statement and its proof are provided in Appendix C.
The loss function of our IBM is directly written as an upper bound on the IBP objective. Unlike
MIM or MGD, we do not drop the second term and instead use a non-parametric upper-bound to
approximate it. This empirically should ensure a tighter approximation to the IBP objective than
the other two. IBM works better because it forces the student to focus on those features necessary
to predict the teacher embedding (first term) and remove information not useful in the prediction
(second term), whereas in MIM and MGD the removal of information is either implicit or not present
respectively. There have recently been works studying how IBP helps reduce generalization errors
[17] which provides support that IBM in the student model should help reduce generalization errors.
Our ablation studies in Section 4.3 also show similar results.

3.3 Controlled Information Flow for KD

With all the components in place, we can now derive the final loss function. Using the methodology
described in Section 3.1, we assume that N RDMs corresponding to different rate-constraints have
been trained. To re-iterate, let X be the input datapoint. Let us denote the teacher model’s embedding
as X; X̂n, Zn are the embedding and noise in the nth RDM respectively, and Û corresponds to
the student model’s embedding. Also for sake of illustration, let us assume that the loss to match
embeddings is the L2 loss. Then, we can write the loss function for training the student model as

LCIFD = EX,ZN
1 ,ZS

[∥∥∥Û −X
∥∥∥2
2
+

n=N∑
n=1

λn

∥∥∥Û − X̂n

∥∥∥2
2
− λI log r(Ŵ )

]
, (8)
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where λn are weighting coefficients.

In the case of classification, let us denote the output predictive distribution of the teacher as V̂T , V̂S

for the student, V̂n for the nth RDM, and the true label as V . Then, we can write the loss function for
training the student model as

L′
CIFD = EX,ZN

1 ,ZS

[
λCELCE(V, V̂S) + λKLKL(V̂T ||V̂S)

+ λKL

n=N∑
n=1

λnKL(V̂n||V̂S)

]
+ LCIFD. (9)

2.3.1. CIFD for CLIP style pretraining

CLIP (Contrastive Language-Image Pretraining) is a class of foundational models that are capable
of embedding inputs from distinct modalities into a shared embedding space [38, 39]. In CLIP a
modality specific encoder processes the input from a specific modality and embeds it into a shared
embedding space. CLIP like models have shown tremendous performance in zero-shot classification,
object-detection, and retrieval [38, 39]. Further, the trained encoders have also proved instrumental
in powering Large Multimodal Models (LMMs) [40, 41, 42] and generative models [43, 44]. So
distillation of these models has far reaching applications especially in on-device generative AI.

For simplicity, let us consider two modalities Image (I) and Language (L). Consider a batch of B
image-text pairs {(I(1), L(1)), . . . , (I(B), L(B))}. Let Û (b)

I denote the L2-normalized embedding of
the b-th image obtained from the image encoder and Û

(b)
L denote the same for the b-th text obtained

from the language encoder (after IBM as in Figure 2(b)). Then we can write the contrastive loss from
image to language embeddings as

LCL,I→L =
−1

B

B∑
b=1

log
exp

(
⟨Û (b)

I , Û
(b)
L ⟩/τ

)
∑

k∈[B] exp
(
⟨Û (b)

I , Û
(k)
L ⟩/τ

) , (10)

where ⟨·, ·⟩ represents the inner-product between the two vectors. Using this we can write the loss to
train CLIP-like models as

LCL = LCL,I→L + LCL,L→I. (11)
The idea in contrastive loss is that embeddings of a paired image and text must be close to each other
(high inner-product) when compared to embeddings of an image and/or text of non-pairs. Going
forward we use CLIP to denote any CLIP like model.

Since the CLIP teacher has modality specific encoders, each encoder has its own set of RDMs. Each
RDM is trained using (4). Let us denote the embedding for b-th image and text from the teacher by
X

(b)
I and X

(b)
L , respectively. We can define the n-th RDM embeddings as X(b)

n,I and X
(b)
n,L. Similarly,

since the student has modality specific encoders, it has modality specific IBMs. Let us define ŴI,
ŴL (similar to Ŵ in Figure 1(a)) for the image and language encoder IBMs respectively. The output
of the IBM decoder for the b-th image and text is denoted as Û (b)

I and Û
(b)
L , respectively. We can now

write the modality specific CIFD loss for CLIP distillation as

LCIFD,I =
1

B

B∑
b=1

[∥∥∥Û (b)
I −X

(b)
I

∥∥∥2
2
+

n=N∑
n=1

λn

∥∥∥Û (b)
I −X

(b)
n,I

∥∥∥2
2
− λI,I log rI(ŴI)

]
, (12)

Now we can write the final loss to perform distillation of CLIP using CIFD as

L′′
CIFD = λCLLCL + LCIFD,I + LCIFD,L, (13)

where λCL is weighting factor.

4 Experiments

Experimental setup: Our experimental results are split into two sections, one dealing with supervised
classification on the CIFAR-100 [45] and Imagenet (IN) [46] datasets, and another with CLIP like

7



models trained on Conceptual Captions 12M dataset [47]. For the evaluation of the latter models,
we conduct zero-shot classification on ImageNet, Imagenet-V2 (IN-V2) [48], Imagenet-A (IN-A)
[49], Imagenet-R (IN-R) [50], and Object Net (ObjNet) [51], and we do zero-shot retrieval on COCO
[52] and FlickR30k test set [53]. Architecture and training details in Appendix A. Unless otherwise
mentioned results from other works are obtained from those papers.

4.1 Supervised Training

Table 1: Acc. (%) on CIFAR-100 over
simple CNNs. All numbers from our
implementation.

Teacher 10 layer CNN
Student 2 layer CNN

Teacher 54.42
Student 44.68

KD [1] 44.76
TAKD (3 TA) [2] 44.45
DGKD (3 TA) [3] 46.05

CIFD (1 RDM) - Ours 46.17
CIFD (3 RDM) - Ours 46.68
CIFD (5 RDM) - Ours 47.25

Table 2: Acc. (%) on CIFAR-100. Com-
parison with more baselines in Table 10.

Teacher WRN-40-2 resnet32x4
Student WRN-40-1 resnet8x4

Teacher 75.61 79.42
Student 71.98 72.50

AT [54] 72.8 73.4
FT [14] 71.6 72.9
KD [1] 73.5 73.3
CRD [55] 74.1 75.5
WSLD [56] 73.7 74.8
IPWD [4] 74.6 76.0
CIFD (3 RDMs) 74.6 76.0

Table 3: Acc. (%) on ImageNet. Com-
parison with more baselines in Table 11.

Same arch. style Diff. arch. style

Teacher ResNet-34 ResNet-50
Student ResNet-18 MobileNet-v1

Top-1 Top-5 Top-1 Top-5
Teacher 73.31 91.42 76.16 92.87
Student 69.75 89.07 68.87 88.76

KD [1] 70.67 90.04 70.49 89.92
FT [14] 71.43 90.29 — —
TAKD [2] 71.37 90.27 — —
DGKD [3] 71.73 90.82 — —
IFD [6] 71.94 90.68 73.16 91.24
NormKD [57] 72.03 90.64 72.79 91.08
IPWD [4] 71.88 90.50 72.65 91.08
DistKD [5] 72.07 90.42 — —

CIFD (3 RDMs) 72.32 90.88 73.20 91.53

In Table 1 we first look at experiments on CIFAR-100
using a simple CNN model to specifically compare against
the works of [2, 3] which only study these models. We see
that using CIFD with just one RDM boosts performance
over KD by +1.41%. However, when using 3 RDMs, we
see a difference of +1.92% (absolute) over KD, and a
boost of +0.63% over DGKD. DGKD uses three teaching
assistants of size eight, six, and four layer CNNs. Since
RDMs are less computationally intensive to train than
teaching assistants, we trained two more and used them
to perform distillation. We see that the resulting student
model is +2.49% over KD, and +1.2% over DGKD. We
present the more comprehensive results over CIFAR-100
in Table 2. We find that our proposed CIFD performs as
good as existing methods.

However, the interest of this paper is more on large scale
datasets. In Table 3 we look at the performance of our
proposed CIFD methods in eq. (9) for distilling knowledge
from a ResNet-34 to a ResNet-18 model and a ResNet-50
to a MobileNet-V1 model over the 1.28 million ImageNet
dataset, respectively. We compare against multiple prior
works listed in the table. We find that CIFD achieves
State-of-The-Art (SoTA) performance, +1.66% (absolute)
improvement over KD [1], +0.86% (absolute) over TAKD
[2], and +0.5% (absolute) over DGKD [3] on ResNet-18.
Looking at the case of ResNet-50 to MobileNet-V1, we
find that the proposed method performs slightly above
the work of [6] in top-1 accuracy, and achieves the SoTA
performance in top-5 accuracy.

4.2 Image Language Pretraining
Finally, to establish the importance of the proposed method
in the large dataset regime, we study knowledge distilla-
tion for foundational CLIP like models trained over the
12 million image-text pair dataset, CC-12M [47]. In Ta-
ble 4, we look at the zero-shot classification and zero-shot
retrieval results over multiple datasets for CLIP like mod-
els. We tested the distillation mechanism over different
students and found that our distilled models beat the dis-
tillation mechanisms that are specialized to CLIP [19, 20].
To ensure a fair comparison, for TinyCLIP [19], we used
only their knowledge distillation related innovation, not
pruning (details in Appendix D.4). For ViT-B-16 models,
despite multiple attempts of [19], the training diverged. Looking at the results, in zero-shot classifica-
tion, our distilled models show superior zero-shot classification over multiple datasets across three
different teacher-student combinations. We see as high as 5.3% improvement over the nearest prior
work over IN-R dataset on ViT-S-16 (Table 14). Similar trends hold over zero-shot image-to-text and
text-to-image retrieval over both the COCO [52] (Table 15) and Flickr30k dataset [53], where our
proposed models outperform existing distillation methods by as much as 8% (absolute) for I)T@5 on
the COCO dataset on ViT-S-16. We see largest gains in performance when the ratio between teacher
to student size is large.
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Table 4: Zero-shot image-text classification performance on ImageNet and Object Net, and retrieval
performance on FlickR30k [53] test sets. Zero-shot classification over more datasets in Table 14,
zero-shot retrieval results over more datasets in Table 15. All results reproduced by us.

Method Model
IN(%) ObjNet(%) Flickr30k(%)

Top-1 Top-5 Top-1 Top-5 Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

Teacher ViT-L-14 79.22 95.52 72.80 90.01 88.30 98.70 99.80 73.86 91.92 95.44

Student RN50 36.47 64.40 20.99 44.98 59.50 83.90 89.60 45.52 73.44 81.98
OpenCLIP [58] RN50 34.57 61.97 21.33 43.44 52.10 79.20 86.40 40.30 66.62 76.44
TinyCLIP [19] RN50 36.61 64.43 21.86 44.02 59.50 83.20 88.60 43.08 70.58 80.26
CLIPKD [20] RN50 46.32 75.77 27.54 51.66 61.90 85.80 91.10 49.92 77.80 85.62

CIFD (1 RDM) RN50 47.36 76.92 28.85 53.46 65.40 87.60 93.10 50.46 78.34 85.64

TinyCLIP [19] ViT-S-16 31.29 58.01 16.43 36.90 50.40 74.90 84.50 36.74 63.60 74.04
CLIPKD [20] ViT-S-16 39.42 69.71 22.11 45.45 54.70 81.20 88.30 46.26 73.96 82.68

CIFD (1 RDM) ViT-S-16 42.79 73.06 23.11 46.98 62.00 85.50 91.50 50.36 76.70 84.58

CLIPKD [20] ViT-B-16 51.25 79.91 29.63 53.44 69.50 89.50 93.90 55.94 82.42 88.56
CIFD (1 RDM) ViT-B-16 54.10 81.94 32.63 57.14 73.60 91.80 96.00 60.10 84.36 90.00

Table 5: Effect of number of RDMs on zero-shot image-text classification over ImageNet and Object
Net, and retrieval over FlickR30k [53] test sets. Best in bold and second best underlined.

Method Model
IN(%) ObjNet(%) Flickr30k(%)

Top-1 Top-1 Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

CLIPKD [20] ViT-S-16 46.78 27.23 66.30 86.60 91.60 50.92 77.14 85.42

CIFD (1 RDM) ViT-S-16 49.37 29.49 66.90 88.80 93.60 53.32 79.50 87.00
CIFD (3 RDM) ViT-S-16 49.98 29.37 67.80 90.00 95.10 53.54 80.32 87.28

4.3 Ablation studies

Do RDMs mimic Teacher Assistants?
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Figure 5: Effect of rate-constraint on
RDM’s classification performance. The
graph behaves like a rate-distortion
curve, information rate R is proportional
to performance.

In Figure 5 we show the RDMs used to obtain the re-
sults in Table 1. As the information through the RDM is
constrained, the RDM’s output classification performance
also falls. This is because as the information rate is con-
strained, and the RDM is forced to drop some features that
are useful for classification. The corresponding TAs used
by [2] in Table 1, have accuracies of 54.72%, 54.84%,
50.32% for model sizes of eight, six, and four layer CNNs
resepctively. This trend closely matches the RDM trend
in Figure 5. Thus, by varying R we can mimic teaching
assistants of different modeling capacities, i.e., lower R
we mimic a smaller TA, higher R we mimic a larger TA.

How does number of RDMs affect performance? Does
IBM help? In Table 6, we study the effect of the number
of RDMs and the effect of IBM in conjunction with the
RDMs. We find that increasing the number of RDMs without IBM initially improves the performance,
but with five RDMs the performance on CIFAR100 drops. We hypothesized that this is due to
overfitting, which DGKD proposed to overcome by KD dropout [3]. In KD dropout, the gradients
from the teacher and teaching assistants are randomly cut off (Fig. 3 in [3]). Despite incorporating it,
the performance without IBM does not show improvement. However, with IBM we see the expected
benefits. Further, we see that IBM on its own also improves the performance of KD [1]. This further
corroborated on Imagenet as shown in Table 6. The RDMs used in all the experiments correspond to
different values of R. This further shows that having RDMs at different information rate R is key to
improving performance.
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Table 6: Ablation study of number of RDMs and IBM. IBM
is crucial when number of RDMs increases.

Dataset # RDMs w/ IBM w/o IBM

CIFAR-100

No RDM 45.68 44.76
1 RDM 46.17 45.34
3 RDM 46.68 46.04
5 RDM 47.25 45.14

Imagenet (RN34 to RN18) 1 RDM 72.05 71.83
3 RDM 72.32 72.22

In Table 5, we study the affect of num-
ber of RDMs on distilling CLIP like
models. To reduce compute, we use
a smaller teacher of size ViT-B-16
trained by [58]. We see that increasing
number of RDMs leads to improved
performance. We also provide results
from [20] for comaprison.

Analyzing CIFD gains with large
teacher student capacity gap: Here,
we study the performance of CIFD when the teacher student gap is increased. In Table 7 we see that
as the size of the teacher (and correspondingly its performance) increases, the student performance
also increases. In fact, the increase is montonic w.r.t. the teacher size. We also compare with
the performance of DistKD [5] which also studied a similar premise. We find that not only does
our method outperform DistKD, that unlike DistKD the proposed CIFD does not show drop in
performance when the teacher size is increased. This indicates the robustness of our proposed method.
The parameter ratio of teacher to student ranges from 1.86 to 5.12. We also study CLIP like models
where the maximum parameter ratio is a larger 6.9 in Appendix B.4. We see that for 3 out of the 5
zero-shot classification datasets CIFD yields larger improvements over the next best competitor of
ClipKD [20] when the capacity gap is larger. In zero-shot image-text retrieval, CIFD almost always
yields larger improvements over the ClipKD when the capacity gap is larger. This indicates that CIFD
excels when the teacher-student capacity gap is large.

Table 7: Acc. (%) on ImageNet when distilling increasingly
larger teachers into ResNet18.

Student Teacher DistKD [5] CIFD

Top-1/Top-5 Top-1/Top-5

ResNet18 ResNet34 72.07/90.42 72.32/90.88
ResNet18 ResNet50 72.12/— 72.40/91.01
ResNet18 ResNet101 72.08/— 72.48/91.16
ResNet18 ResNet152 72.24/— 72.60/91.17

Training cost analysis: Although,
prior works on Teacher Assistants
like [2, 3] showed promising results,
training Teacher Assistants led to pro-
hibitive increase in complexity as seen
in Figure 1(b) where TA based meth-
ods are 3.5× and 4.5× more expen-
sive than [1] when distilling from
ResNet34 to ResNet18 on Imagenet.
We computed these numbers based on
the number of Multiply and Accumulations (MACs) for every forward pass, more details in Ap-
pendix D.2. On the otherhand, our method is only 1.08× more expensive than [1, 4, 57, 6, 5], thus
bringing training cost of TA based methods close to other current innovations. For the CIFAR-100
experiments in Table 1, TAKD [2] is 2× more expensive and DGKD [3] is 5× more expensive than
proposed.

5 Conclusion
In this paper we present a novel knowledge distillation framework called the Controlled Information
Flow (CIFD). CIFD consists of two main components. The first is a lightweight Rate Distortion
Module (RDM) that replaces the expensive Teacher Assistants by using the teacher model’s embed-
ding and a noisy communication channel. Importantly, since the RDM uses the teacher model’s
input embeddings, it does not have to relearn low level feature extractors, thus making the model
significantly smaller than a TA. Second, we propose an Information Bottleneck Module to prevent
the student model from overfitting in the presence of the teacher and multiple RDMs. The resulting
framework shows impressive performance on Imagenet and significantly outperforms CLIP specific
distillation methods on CLIP models. Finally, we corrobrated that an increased number of RDMs
with diverse Rs is a key factor for better distillation, entailing only a small increase in computation.

Limitations and impact: An interesting direction is to study alternative algorithmic formulations
for using the information from RDMs, i.e., sequentially enabling and disabling which RDM give
feedback at what points of training. Regarding societal impact, the student model depends on the
teacher model to transfer concepts. Unfortunately, this also means biases present in the teacher due to
its training data are also transferred to the student.
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A Implementation Details

A.1 CIFAR-100

A.1.1 Simple CNNs (studied in Table 1)

Table 8: CIFAR-100 Model architecture for simple CNNs. ‘C’ stands for convolution layer with
kernel size 3, stride 1, and padding 1. The number following it indicates the number of filters. ‘FC’
stands for fully connected layer with the number following it indicating the number of hidden neurons.
‘MP’ stands for MaxPool. After every convolutional or fully connected layer (except the output layer),
we have a ReLU activation.

Model Architecture

10 layer CNN C32, C32, MP, C64, C64, MP, C128, C128, MP, C256, C256, C256, C256, MP, FC512, FC100
8 layer CNN C32, C32, MP, C64, C64, MP, C128, C128, MP, C256, C256,MP, FC64, FC100
6 layer CNN C32, C32, MP, C64, C64, MP,C128, C128 , FC256, FC100
4 layer CNN C32, C32, MP, C64, C64, MP, FC256, FC100
2 layer CNN C32, MP, C32, MP, FC256, FC100

Table 8 shows the CNN architectures used for the experiments. The output of FC512 from the
10-layer CNN is taken as the teacher’s image embedding and passed to the RDM module. The RDM
module consists of three hidden layers FC512, FC306, FC100, followed by an output layer of FC100.
A bottleneck based on the design of [24] is placed after FC306. The bottleneck adds noise and
computes the probability log q(Ŷ ) as shown in (4). During inference, i.e., when the RDM is not
being trained, for stability, we quantize the representation to integers instead of adding uniform noise.
Note that since the uniform noise during training is sampled from [−0.5, 0.5], statistically, the two
are equivalent.

The IBM module is only used in the two layer CNN, the student model. Unlike the RDM, in the IBM
we do not design a dedicated encoder or decoder, we allow the preceding and succeeding layers of
the model itself to act like the encoder and decoder respectively. The IBM just consists of a layer that
adds uniform random noise in the range [−0.5, 0.5]. During inference the noise addition is disabled.

The student model is trained using the loss function (9). We used the Optuna algorithm [59]
along with the Asynchronous Hyperband Scheduler [60] in the RayTune package [61] package for
hyperparameter optimization. Using this package we optimized, distillation temperature (τ ), learning
rate of the optimizer (SGD), learning rate decay, momentum of the optimizer, dropout (this is the KD
dropout proposed in [46]), and all the λs (λKL, λ1, . . . , λ5, λIBM ) involved in (9). The weight decay
was fixed to 10−4. We did the same tuning for both DGKD [3] and TAKD [2]. The RDM model is
trained using the loss function (5), without the reconstruction losses. We did similar hyperparamter
tuning as above for TAKD [2]and DGKD [3].

A.1.2 Competitive CNNs (studied in Table 2)

In this case, the architectures are standard and we follow it from [4]. The RDM module is a fully
connected network with three hidden layers with the bottleneck after the second hidden layer. We
train three RDMs with R = 1.0, 0.8, 0.6 for 30 epochs.

For training student models, we train with SGD for 240 epochs. Starting learning rate is 0.05 and
decayed by a factor of 0.1 at 150, 160, and 180 epochs. We set λCE = λKL = λ1 = λ2 = λ3 = 1,
where n ∈ 1, ..., 3 indexes the three RDMs and KD dropout was set to 0.25. We set τ = 2.0. The
weight of the embedding loss (set to 100.0). We explored λI ∈ {0.001, 0.005, 0.01} and set it to
0.005.

Unlike the RDM, in the IBM we do not design a dedicated encoder or decoder, we allow the preceding
and succeeding layers of the model itself to act like the encoder and decoder respectively. The IBM
just consists of a layer that adds uniform random noise in the range [−0.5, 0.5]. During inference the
noise addition is disabled.

16



A.2 ImageNet

For the experiments related to ImageNet we used the standard model architectures. Similar to
CIFAR-100, the RDM module is a fully connected network with three hidden layers with a bottleneck
after the second hidden layer. The teacher embedding is accessed after the avgpool. For RDMs for
the ResNet34 model, there are three hidden layers of size 512, with activation after the first and third
layers only. The embedding is linearly transformed to a logits of a 1000 class classifier to compute
the other components in (9). For the ResNet50 RDM, instead of hidden neuron size of 512, we had
1024. The bottleneck follows the mechanism [24]. Instead of MSE loss, the bottleneck is trained
with the smooth L1 loss in (5). We split the training data in imagenet into a training and validation
set with ratio 0.95 : 0.05. We train the RDMs for 30 epochs and monitor the classification accuracy
on this validation set. The values of R are 104, 5× 103, 103.

For training the student model, in (9), we set, λCE = λKL = λ1 = λ2 = λ3 = 1, where n ∈ 1, ..., 3
indexes the three RDMs and KD dropout was set to 0.25. We set τ = 2.0. Instead of MSE loss for
embedding reconstruction, we use the smooth L1 loss. We search for only two hyperparameters of λI

(set to 0.001) and the weight of the embedding loss (set to 100.0). We set the learning rate to 2.0 for
the SGD optimizer, batch size of 1024 per GPU (4 GPUs), and weight decay to 5× 10−5. We train
the system for 88 epochs. For all other hyperparameters, we used the defaults from [62]. We split the
training data with a ratio of 0.95 : 0.05 and used the smaller part as validation for hyperparameter
tuning.

Unlike the RDM, in the IBM we do not design a dedicated encoder or decoder, we allow the preceding
and succeeding layers of the model itself to act like the encoder and decoder respectively. The IBM
just consists of a layer that adds uniform random noise in the range [−0.5, 0.5]. During inference the
noise addition is disabled.

A.3 CLIP

Table 9: CLIP model architectures. The architecture corresponds to the implementation in [58].

Model
Tag

Embedding
Dimension

Vision Encoder Text Encoder Total
ParamsModel arch Image Size Layers Width Patch Size Model arch Context length Vocabulary size Width Heads Layers

RN50 1024 ResNet50 224 [3, 4, 6, 3] 64 N/A Transformer 77 49408 512 8 12 106M
ViT-S-16 384 ViT 224 12 384 16 Transformer 77 49408 384 6 12 62M
ViT-B-16 512 ViT 224 12 768 16 Transformer 77 49408 512 8 12 154M
ViT-L-14 768 ViT 224 24 1024 14 Transformer 77 49408 768 12 12 428M

We use the package [58] for implementation. We implemented and ran the experiments for the works
of both TinyClip [19] and CLIPKD [20]. For TinyClip we only used the Knowledge Distillation
part of the proposed idea and not the pruning methodology as pruning is orthogonal to Knowledge
Distillation and can be combined with any of the proposed models here. We used a batch size of
1024 (256 per GPU), and a learning rate of 10−3. For TinyClip we got better results from using a
larger batch size of 6000. The models are trained for 32 epochs, with 3 million image-text pairs per
epoch. Warmup is set to around 1/6th of the training. For hyperparameter tuning we use a subset of
the CC12 dataset [47]. Hyper-parameters for CLIP involve only two λI and λCL. We tried the λCL

suggested value from (Yang et al., 2023) of 0.0005 and another 0.005, we chose the latter. For λI ,
we tested four values and selected the best based on validation performance. All hyper-parameter
tests were restricted to the RN-50 architecture. For all other architectures, the same hyper-parameter
settings were used, unchanged.

The RDM training in CLIP models is done for seven epochs, each epoch consisting of 3 million
image-text pairs. We use the same settings as training the student model.

B More experimental results

B.1 CIFAR-100

Table 10 compares the results on CIFAR-100 dataset with more baselines. As we can see, our
proposed method achieves competitve performance on this dataset.
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Table 10: Top-1 accuracies (%) on CIFAR-100.
Teacher WRN-40-2 resnet32x4
Student WRN-40-1 resnet8x4

Teacher 75.61 79.42
Student 71.98 72.50

AT [54] 72.8 73.4
SP [63] 72.4 72.9
VID [8] 73.3 73.1
RKD [64] 72.2 71.9
PKT [65] 73.5 73.6
AB [66] 72.4 73.2
FT [14] 71.6 72.9
NST [67] 72.2 73.3
KD [1] 73.5 73.3
CRD [55] 74.1 75.5
WSLD∗ [56] 73.7 74.8
IPWD [4] 74.6 76.0
CIFD 74.6 76.0

B.2 ImageNet

Table 11 shows more baselines for experiments on ImageNet. As we can see our proposed method
outperforms all the compared methods.

B.3 Zero-shot results for CLIP distilled models

Table 14 shows the zero-shot image text classification results using CLIP like models over five
datasets. Table 15 shows the zero-shot image text retrieval results over COCO and FlickR30k test sets.
Across all classification and retrieval, our model consistently outperforms CLIP spcific distillation
methods. This showcases the generality of the idea proposed. Further, we see the largest gains due to
the proposed method when the gap between the teacher and student size is the largest.

B.4 Studying the effect of student-teacher capacity gap in CLIP distilled models

We study the effect of large teacher student capacity gaps in CLIP like models. In Table 12 and
Table 13, we compare the difference when a ViT-L-14 teacher was used to train ViT-B-16 and ViT-S-
16 students. The parameter ratios are 2.8 and 6.9, respectively. CIFD shows greater improvement
over baseline when the teacher student ratio is large for 3 out of the 5 zero-shot classification datasets
and almost always for the two zero-shot retrieval datasets.

C Connections between IBM and Masked Image Modeling

Masked Image Modeling (MIM), as shown in Figure 6a, has had major success in pretraining large
image models like BEiT[16]. Here, T is used to represent the input, TM is used to represent the
masked input, U is the tokens of the image corresponding to the masked out parts, and Û is their
predicted value as predicted the MIM model. In the BEiT variant of MIM, an image is first converted
into tokens using a pretrained tokenizer (like a discrete VAE). Next, a masked version of the image
(TM ) is fed into the MIM encoder which attempts to predict the tokens of the masked parts. We can
write the MIM training objective as

min−EU,Û

[
log p(U |Û)

]
(14)

Masked Generative Distillation (MGD), as shown in Figure 6b, is an extension of using MIM type of
training for distillation. Here, T is used to represent the input, U is the teacher model embedding
corresponding to the full image, and Û is their predicted value as predicted the MIM model. In MIM,
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Table 11: Acc. (%) on ImageNet.
Same arch. style Diff. arch. style

Teacher ResNet-34 ResNet-50
Student ResNet-18 MobileNet-v1

Top-1 Top-5 Top-1 Top-5
Teacher 73.31 91.42 76.16 92.87
Student 69.75 89.07 68.87 88.76

AT [54] 71.03 90.04 70.18 89.68
NST [67] 70.29 89.53 — —
RKD [64] 70.40 89.78 68.50 88.32
Online KD [68] 70.55 89.59 — —
FSP [69] 70.58 89.61 — —
SP [63] 70.62 89.80 — —
AT [54] 71.03 90.04 70.18 89.68
Overhaul [7] 71.03 90.15 71.33 90.33
CRD [55] 71.17 90.13 69.07 88.94
KD [1] 70.67 90.04 70.49 89.92
FT [14] 71.43 90.29 — —
SSKD [70] 71.62 90.67 — —
DKD [71] 71.70 90.41 72.05 91.05
Residual KD [13] 71.79 90.25 — —
TAKD [2] 71.37 90.27 — —
DGKD [3] 71.73 90.82 — —
IPWD [4] 71.88 90.50 72.65 91.08
CD [72] 71.90 90.70 — —
IFD [6] 71.94 90.68 73.16 91.24
NormKD [57] 72.03 90.64 72.79 91.08
WSLD [56] 72.04 90.70 71.52 90.34
DistKD [5] 72.07 90.42 — —
MGD [15] 71.80 90.40 72.59 90.94
MLKD [73] 71.90 90.55 73.01 91.42
CTKD [74] 71.51 90.47 — —
LSKD [75] 72.08 90.74 73.22 91.59
DiffKD [11] 72.22 90.64 73.62 91.34

CIFD 72.32 90.88 73.51 91.74

the target for prediction are the tokens corresponding to the masked parts of the input. In the case of
MGD, the student model is tasked to predict the teacher model’s embedding of the original image.
MGD has shown promising results in distillation. The loss corresponding to the Masked Generative
Distillation is written as

min−EU,Û

[
log p(U |Û)

]
. (15)

The loss functions rightfully appear the same. However, the process differs in two key places. First
is where the masking is applied. In MIM, the masking is done on the input. In MGD, the masking
is done after student backbone preprocessing. Secondly, the likelihood maximization formulation
is different, i.e., in MIM, the tokens are discrete classes so a cross-entropy loss is used, whereas in
MGD, the teacher embedding is continuous so MSE is used. Thus the likelihood distribution in MIM
is multinomial whereas in MGD it is gaussian. Note, for MGD we are only studying the masked
distillation loss proposed. The other loss function is not relevant here.

Before comparing with IBP we present a small lemma that minimizing the negative log-likelihood is
the same as minimizing the negative of the Mutual Information between two variables.
Lemma 1. Minimizing the negative log-likelhood of predicting a non-learnable U from some
learnable Û

min−EU,Û

[
log p(U |Û)

]
. (16)

is equivalent to
min−I(U ; Û). (17)

19



Table 12: Zero-shot image classification performance with same teacher different students. Larger
the parameter ratio between teacher to student, CIFD shows larger benefit over CLIPKD for 3 out 5
datasets.

Method Model Param ratio IN(%) IN-V2(%) IN-R(%) IN-A(%) ObjNet(%)
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Teacher ViT-L-14 79.22 95.52 72.05 92.22 90.85 97.80 69.07 89.40 72.80 90.01

CLIPKD [20] ViT-S-16 6.9 39.42 69.71 33.83 63.54 45.43 70.50 9.21 29.17 22.11 45.45
CIFD (1 RDM) ViT-S-16 6.9 42.79 73.06 37.14 66.75 50.75 75.80 10.31 32.40 23.11 46.98

∆ (CIFD-CLIPKD) ViT-S-16 6.9 3.37 3.35 3.31 3.21 5.32 5.3 1.1 3.23 1.0 1.53

CLIPKD [20] ViT-B-16 2.8 51.25 79.91 44.81 73.40 61.92 82.19 15.56 41.27 29.63 53.44
CIFD (1 RDM) ViT-B-16 2.8 54.10 81.94 47.36 76.24 65.55 85.26 17.69 45.19 32.63 57.14

∆ (CIFD-CLIPKD) ViT-B-16 2.8 2.85 2.03 2.55 2.84 3.63 3.07 2.13 3.92 3.0 3.7

Table 13: Zero-shot image-text retrieval performance on COCO [52] and FlickR30k [53] test sets.
Larger the parameter ratio between teacher to student, CIFD shows larger benefit over CLIPKD
almost always.

Method Model Param ratio
COCO Flickr30k

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Teacher ViT-L-14 63.60 84.90 90.84 44.91 70.20 79.00 88.30 98.70 99.80 7386 91.92 95.44

CLIPKD [20] ViT-S-16 6.9 31.04 56.76 69.10 23.10 46.89 59.18 54.70 81.20 88.30 46.26 73.96 82.68
CIFD (1 RDM) ViT-S-16 6.9 37.70 64.84 76.12 25.29 49.73 61.17 62.00 85.50 91.50 50.36 76.70 84.58

∆ (CIFD-CLIPKD) ViT-S-16 6.9 6.66 8.08 7.02 2.19 2.84 1.99 7.3 4.3 3.2 4.1 2.74 1.9

CLIPKD [20] ViT-B-16 2.8 39.44 66.64 77.62 28.78 54.53 66.42 69.50 89.50 93.90 55.94 82.42 88.56
CIFD (1 RDM) ViT-B-16 2.8 44.90 71.72 80.66 31.64 56.73 67.49 73.60 91.80 96.00 60.10 84.36 90.00

∆ (CIFD-CLIPKD) ViT-B-16 2.8 5.46 5.08 3.04 2.86 2.2 1.07 4.1 2.3 2.1 4.16 1.94 1.44

Table 14: Zero-shot image classification performance. For ease we identify models based on their
image encoder configuration. The full architecture details are given in Table 9. All methods use the
first Teacher, MobileCLIP additionally uses Teacher-2†.

Method Model IN(%) IN-V2(%) IN-R(%) IN-A(%) ObjNet(%)
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Teacher ViT-L-14 79.22 95.52 72.05 92.22 90.85 97.80 69.07 89.40 72.80 90.01
Teacher-2† ViT-L-14 75.54 94.58 69.84 90.89 87.59 97.08 70.49 90.87 66.00 86.00

Student RN50 36.47 64.40 30.96 57.69 42.02 68.20 7.08 26.83 20.99 44.98
OpenCLIP [76] RN50 34.57 61.97 30.08 57.48 42.36 67.97 7.25 25.12 21.33 43.44

MobileCLIP† [23] RN50 31.09 57.96 26.89 52.76 37.24 63.15 7.12 24.45 19.00 41.00
TinyCLIP [19] RN50 36.61 64.33 32.05 59.15 45.53 71.00 8.16 27.24 21.86 44.02
CLIPKD [20] RN50 46.32 75.77 40.77 70.98 53.88 76.62 11.51 34.28 27.54 51.66

CIFD (1 RDM) RN50 47.36 76.92 41.67 72.15 53.89 76.19 12.35 36.96 28.85 53.46

MobileCLIP† [23] ViT-S-16 28.93 54.82 24.86 49.41 33.11 58.54 5.75 21.61 17.00 37.00
TinyCLIP [19] ViT-S-16 31.29 58.01 26.30 52.25 37.03 62.87 5.69 22.44 16.43 36.90
CLIPKD [20] ViT-S-16 39.42 69.71 33.83 63.54 45.43 70.50 9.21 29.17 22.11 45.45

CIFD (1 RDM) ViT-S-16 42.79 73.06 37.14 66.75 50.75 75.80 10.31 32.40 23.11 46.98

MobileCLIP† [23] ViT-B-16 31.38 58.32 26.48 52.41 37.72 63.52 6.51 22.79 18.00 39.00
CLIPKD [20] ViT-B-16 51.25 79.91 44.81 73.40 61.92 82.19 15.56 41.27 29.63 53.44

CIFD (1 RDM) ViT-B-16 54.10 81.94 47.36 76.24 65.55 85.26 17.69 45.19 32.63 57.14

Proof. −I(U ; Û) = −H(U) + H(U |Û) = −H(U) − EU,Û

[
log p(U |Û)

]
which follow from

definitions of Mutual Information and conditional entropy [34]. Since U is not optimizable, H(U) is
a constant w.r.t. optimization. Thus the proof follows.
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Table 15: Zero-shot image-text retrieval performance on COCO [52] and FlickR30k [53] test sets.
All methods use the first Teacher, MobileCLIP additionally uses Teacher-2†.

Method Model
COCO Flickr30k

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Teacher ViT-L-14 63.60 84.90 90.84 44.91 7020 79.00 88.30 98.70 99.80 7386 91.92 95.44
Teacher-2† ViT-L-14 55.88 79.68 86.62 35.86 60.13 70.21 85.90 97.60 99.20 65.88 87.72 92.78

Student RN50 33.44 59.80 70.96 22.91 47.18 59.03 59.50 83.90 89.60 45.52 73.44 81.98
OpenCLIP [58] RN50 31.48 56.98 68.06 19.83 43.30 54.74 52.10 79.20 86.40 40.30 66.62 76.44

MobileCLIP† [23] RN50 28.82 55.26 66.16 18.34 40.17 52.36 48.20 74.40 83.70 36.74 63.58 73.84
TinyCLIP [19] RN50 35.38 60.66 72.02 21.97 45.78 57.42 59.50 83.20 88.60 43.08 70.58 80.26
CLIPKD [20] RN50 38.24 63.94 74.56 25.98 50.47 62.06 61.90 85.80 91.10 49.92 77.80 85.62

CIFD (1 RDM) RN50 40.70 66.78 76.64 26.02 50.90 62.50 65.40 87.60 93.10 50.46 78.34 85.64

MobileCLIP† [23] ViT-S-16 28.08 54.70 66.00 17.59 39.46 51.48 48.60 75.50 84.40 35.92 63.38 73.94
TinyCLIP [19] ViT-S-16 29.06 54.78 66.52 17.95 40.19 52.02 50.40 74.90 84.50 36.74 63.60 74.04
CLIPKD [20] ViT-S-16 31.04 56.76 69.10 23.10 46.89 59.18 54.70 81.20 88.30 46.26 73.96 82.68

CIFD (1 RDM) ViT-S-16 37.70 64.84 76.12 25.29 49.73 61.17 62.00 85.50 91.50 50.36 76.70 84.58

MobileCLIP† [23] ViT-B-16 30.80 55.80 67.50 19.38 41.71 54.01 53.20 79.80 88.30 39.72 67.24 77.54
CLIPKD [20] ViT-B-16 39.44 66.64 77.62 28.78 54.53 66.42 69.50 89.50 93.90 55.94 82.42 88.56

CIFD (1 RDM) ViT-B-16 44.90 71.72 80.66 31.64 56.73 67.49 73.60 91.80 96.00 60.10 84.36 90.00
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Figure 6: Relation between Masked Image Modeling (MIM), Masked Generative Distillation (MGD),
and Information Bottleneck Module (IBM) for Distillation.

The IBP objective function, applicable to all systems shown in Figure 6 is written as

min−I(U ; Û) + λII(T ; Û). (18)

For simplicity of exposition we split Theorem 1 into the following lemmas one each for MIM and
MGD respectively.
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Lemma 2. The objective function of MIM (14) is an upper bound on the objective function from the
Information Bottleneck Principle (18).

Proof. We start with the Information Bottleneck objective

−I(U ; Û) + λII(T ; Û). (19)

We note that Û − TM − T forms a Markov Chain. Thus leveraging the Data Processing Inequality
[34], we note that I(T ; Û) ≤ I(T ;TM ). We note that I(T ;TM ) is constant w.r.t. the minimization,
since it does not have any parameters that are optimized by gradient descent. Hence, we can drop
that term. By leveraging Lemma 1, we can see that the MIM objective (14) is an upper-bound on the
(18).

It is tempting to assume that MGD is also an upper-bound similar to MIM. Unfortunately, this is not
the case in general. This is because the noise is added after backbone processing and this processing
is optimizable. However, under certain conditions, we show that it is a valid upper-bound.

Lemma 3. Let Û−M denote the random variable prior to the masking operation in MGD (Figure 6b).
Then, the objective function of MGD (15) is an upper bound on the objective function from the
Information Bottleneck Principle (18) if Û−M is a discrete random variable and the mapping from T

to Û−M is deterministic.

Proof. We again start with the Information Bottleneck objective

−I(U ; Û) + λII(T ; Û). (20)

We note that Û − Û−M − T forms a Markov Chain. Thus leveraging the Data Processing Inequality
[34], we note that I(T ; Û) ≤ I(T ; Û−M ). Unlike the MIM case, I(T ; Û−M ) is not a constant w.r.t.
minimization. By definition of Mutual Information, we can write

I(T ; Û−M ) = H(Û−M )−H(Û−M |T ), (21)

where by slight abuse of notation H represents differential or discrete entropy based on if the random
variable is continuous or discrete respectively. Since the mapping from T to Û−M is deterministic, it
follows that H(Û−M |T ) = 0. If we assume that Û−M is discrete, then H(Û−M ) is discrete entropy
and we know that H(Û−M ) ≥ 0 [34]. Thus, by dropping that term, we get an upper bound on the
IBP objective.

Remark 1. If Û−M is not discrete, then H(Û−M ) < 0 is possible, i.e., differential entropy can be
negative. Thus, we cannot guarantee that the MGD objective is always an upper-bound of IBP in that
case.

Remark 2. The MGD upper-bound employs two relaxations that make it an upper-bound on IBP.
First is the Data Processing Inequality to show that I(T ; Û) ≤ I(T ; Û−M ). The second (under the
discrete assumption) that H(Û−M ) ≥ 0.

The loss function of our IBM is directly written as an approximation of the IBP objective as shown in
Section 3.2. Unlike MIM or MGD, we do not drop the second term and instead use a non-parametric
upper-bound to approximate it. This empirically should ensure a tighter approximation to the IBP
objective than the other two. IBM works better because it forces the student to focus on those features
necessary to predict the teacher embedding (first term) and remove information not useful in the
prediction (second term), whereas in MIM and MGD the removal of information is not present. There
have recently been works studying how IBP helps reduce generalization errors [17] which provides
support to the proposed idea.
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Figure 7: Training the RDM for classification

D More details

D.1 Illustration of training RDMs and Student Models for classification tasks

In Figure 7 we show how the RDMs are trained for classification. This is the analogue of Figure 1(a)
where there is no classification involved. In this setup, the input (image as an example here) is
passed through the teacher backbone model. The resulting embedding is passed through the RDM
encoder, subject to some noise (Z) and is reconstructed by the RDM decoder. The RDM in the case
of classification is trained like a multi-task learning module, i.e., it is tasked with reconstructing both
the input embedding and projecting the reconstructed embedding to perform classification. The RDM
is trained in a similar fashion to a student model during knowledge distillation, i.e., there is feature
distillation (reconstruct the teacher embedding), logit distillation to preserve the dark knowledge, and
a supervised cross entropy loss component. The resulting loss function used to train the RDM can be
written as (5) which we re-iterate here.

L′
R = EX,Z

[
λCELCE(V, V̂ ) + λKLKL(V̂T ||V̂RDM ) +R

∥∥∥X − X̂
∥∥∥2
2
− log

(
q(Ŷ )

)]
. (22)

In Figure 8 we show how the student models are trained for classification in the presence of an
RDM and the IBM. For simplicity, we assume there is one RDM. The input image is passed through
the teacher backbone model and the obtained embedding is passed through the RDM to get the
reconstructed embedding from the RDM. The RDM then provides a predictive distribution, like
a teaching assistant, and we can also get the teacher’s predictive distribution. The input image is
also passed through the student model and the IBM to obtain the student embedding. The student
embedding is then subject to feature distillation, i.e., the loss between the student embedding and
the teacher embedding, and the student embedding and the RDM embedding is computed. In the
case where the student embedding’s dimension does not match the teacher or the RDM embedding
dimension, a small trainable projector network is used. Finally, the output predictive distribution of
the student is subject to both the classification loss and the KL divergence losses w.r.t. the teacher’s
distribution and the RDM’s distribution. So, this mechanism combines feature distillation and the
output logit distillation along with the RDM. In the figure, we only show 1 RDM, however, it can
easily be extend to multiple RDMs. The loss function used in this case is

L′
CIFD = EX,ZN

1 ,ZS

[
λCELCE(V, V̂S) + λKLKL(V̂T ||V̂S) + λKL

n=N∑
n=1

λnKL(V̂n||V̂S)

+ ∥US − UT ∥22 +
n=N∑
n=1

λn ∥US − Un∥22 − λI log r(Ŵ )

]
. (23)
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Figure 8: Training the Student Model for classification

D.2 Computing training costs

Here, we explain how we compute the training cost for ResNet34 to ResNet18 distillation using CIFD.
First, we compute the training costs of RDMs. The RDMs consist of a three layer fully Connected
Network, with a computational complexity of 1.31 MMACs (Mega or 106 MACs) per image per
forward pass. We train them for 30 epochs on 1.28 × 106 images for 30 epochs. Thus the cost of
training three RDMs is 151 TMACs (Terra or 1012 MACs). The significant chunk of computation in
training RDMs is coming from running the teacher model in inference mode, which is 142 PMACs
(Peta or 1015 MACs). We can potentially extract the features from the teacher model once and reuse
it for 30 epochs, in which case the training cost reduces to 4.7 PMACs, but we do not consider that
here.

The rest of the 619 PMACs (out of the total 762 PMACs), comes from the student model training.
Note that the RDM forward passes are computationally insignificant at this stage, accounting for
0.38 PMACs (out of the total 619 PMACs). We do similar computations for [2, 3] while adding the
computation for training one Teacher Assistant based on the training settings given in those papers.

Similarly we also compute the training cost for Knowledge Distillation [1]. The training costs of
other high performing works [4, 6, 57, 5] are the same as Knowledge Distillation [1].

D.3 Visualizing the Teacher and RDM embeddings

In Figure 9 we study the embeddings obtained from the teacher model and two of the RDM models
trained on CIFAR-100 by plotting their tSNE [77]. The RDM in Figure 9b has a test accuracy of
52.32% which is significantly closer to the teacher’s accuracy than the other RDM in Figure 9c
which has a test accuracy of 48.83%. First let us look at the orange class. The orange class which
forms a concentrated cluster in the teacher and the more powerful RDM’s embeddings, appears more
scattered in the less accurate RDM’s embeddings. The less concentrated cluster is easier for the
student model to learn because coming up with a good representation that is sufficiently general to
cover all examples in a class but at the same time not cover samples in another class is a hard problem.
Thus, the RDM effectively bridges the gap by providing easier representation that the student can
learn more easily before progressing to the harder representation. Further, we also notice that orange
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(a) tSNE of the Teacher model embeddings. Acc.
54.42 %.

(b) tSNE of the RDM model embeddings. Acc.
52.32 %.

(c) tSNE of the RDM model embeddings. Acc. 48.83
%.

Figure 9: tSNE plots of embeddings for a subset of 10 classes of the CIFAR-100 dataset.

and blue clusters that are close to each other in both the teacher and the better performing RDM’s
embeddings are now farther apart in the poor performing RDM’s embeddings.

D.4 Details on CLIP baselines

While comparing with TinyCLIP [19], we disabled pruning, as pruning is orthogonal to our proposed
idea. Instead we focused only on the Knowledge Distillation part from [19]. To do that in addition to
the contrastive loss (11), we added the two terms as proposed in equations (1), Section 3.1 of [19].
These equations transfer the relative embedding distances from the teacher’s embedding space to the
student’s embedding space.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: Yes, the paper proposes a mechanism for Knowledge Distillation using Teacher
Assistants, especially for large datasets. We show multiple experiments as supporting
evidence for our proposed method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss this in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes] .
Justification: The formal statements of the propositions and their proofs appear in Ap-
pendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We provide detailed figures of how different loss functions are computed and
the models are trained, see Figure 2, Figure 7, and Figure 8. Along with that we provide
details on the hyper-parameters for all experiments in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: As our experiments are implemented based on open-source code and publicly
available datasets, we have provided the necessary details in our paper for reproducing the
results on top of the public code base and database, with the associated URLs provided. We
also provide detailed figures of how different loss functions are computed and the models
are trained, see Figure 2, Figure 7, and Figure 8. Along with that we provide details on the
hyper-parameters for all experiments in Appendix A.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments in this paper mainly focus on large datasets like Imagenet (1
million samples) and CC12M (12 million samples) that require lots of compute. For these
datasets, we follow the best practices of existing papers and report accordingly. CLIP like
models take 6 A100 GPU days for training. Given that we already had to train the baseline
methods too, training multiple models for all of them would be very compute intensive.
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Alternatively, we focus on a large set of inference experiments to showcase our proposed
method’s superior performance. For example for CLIP like models, we perform zero-shot
classification tests on five datasets and zero-shot retrieval on two datasets showcasing
superior performance on all of them on three different teacher-student pairs.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: We provide those details along with the hyperparameters in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
[Yes]
Justification: We have read and followed the ethics guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We address this in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper proposes a method for Knowledge Distillation and uses standard
and widely accepted datasets and model architectures.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: The paper uses standard widely accepted datasets. We provide references for
all such datasets and code base used where applicable.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: [NA] .
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: [NA] .
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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