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Abstract

Stochastic Gradient Descent (SGD) has been the method of choice for learning
large-scale non-convex models. While a general analysis of when SGD works
has been elusive, there has been a lot of recent progress in understanding the
convergence of Gradient Flow (GF) on the population loss, partly due to the
simplicity that a continuous-time analysis buys us. An overarching theme of our
paper is providing general conditions under which SGD converges, assuming that
GF on the population loss converges. Our main tool to establish this connection
is a general converse Lyapunov like theorem, which implies the existence of a
Lyapunov potential under mild assumptions on the rates of convergence of GF. In
fact, using these potentials, we show a one-to-one correspondence between rates of
convergence of GF and geometrical properties of the underlying objective. When
these potentials further satisfy certain self-bounding properties, we show that they
can be used to provide a convergence guarantee for Gradient Descent (GD) and
SGD (even when the paths of GF and GD/SGD are quite far apart). It turns out that
these self-bounding assumptions are in a sense also necessary for GD/SGD to work.
Using our framework, we provide a unified analysis for GD/SGD not only for
classical settings like convex losses, or objectives that satisfy PŁ / KŁ properties,
but also for more complex problems including Phase Retrieval and Matrix sq-root,
and extending the results in the recent work of Chatterjee [13].

1 Introduction

Stochastic Gradient Descent (SGD) has been a method of choice to train complex, large scale machine
learning models. While understanding of SGD for convex objectives is comprehensive, a general
understanding of when SGD works for non-convex models has been somewhat elusive. A large
slew of properties like, convexity [47], one-point-convexity [35], linearizability [32], KŁ [5, 40] and
PŁ [33, 49, 41] properties, and more problem specific, tailored analysis of SGD and Gradient Descent
(GD) for specific problem instances like matrix square-root problem, matrix completion [31], phase
retrieval [11, 16, 53] and Dictionary learning [4] have been proposed. Recent success of SGD in
over-parameterized deep learning models have lead to the idea that SGD perhaps optimizes training
objective with an implicit bias given by some implicit regularizer [24, 50, 29, 25, 26]. However,
in [32] it is argued that there are over-parameterized models for which SGD works but no method
that minimizes an implicit regularized training objective can learn successfully, thus showing that in
general, the success of SGD cannot be explained by implicit regularization.
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The goal of our paper is to provide a unifying analysis for when SGD/GD works. More specifically,
we do this via first showing that Gradient Flow (GF) works and then extending this analysis to SGD
and GD. Gradient Flow (GF) can be seen as a continuous time analogue of GD. In an idealized
world, if one had access to the population loss, it turns out that convergence analysis for running
gradient flow on population loss is somewhat simpler due to tools from continuous time analysis and
PDEs. There has been several recent works [6, 14, 17] that have provided convergence analysis for
GF even on non-convex objectives. The high level theme of this paper is to show that, under some
mild/appropriate assumptions of population loss/objective and on the noise of gradient estimates, “if,
GF converges on population loss, then SGD that uses one fresh example per iteration is successful
at learning”. Notice, that GF converging on population loss is a purely deterministic optimization
problem. However, the fact that SGD works is a learning result that implies a sample complexity
bound.

There have been past works that have aimed at providing convergence analysis for Gradient Descent
(GD) starting from Gradient Flow (GF). Typical route to obtain a convergence analysis of GD starting
from GF tries to think of GD updates as approximating GF path. Even with more sophisticated
discretization schemes like Euler discretization, obtaining convergence for GD, starting from GF can
be quite complex. In this paper, to show that when GF converges, SGD/GD also converges, we take a
different approach. A key tool for proving convergence results for GF is by constructing so called
Lyapunov potentials. In the literature of Ordinary Differential Equations (ODEs), when ODEs have
regular enough convergence rates, one can show, so called converse Lyapunov theorems (see [34] for
a nice survey of classic results) that state that when an ODE converges to stable solutions, there has
to exist a corresponding Lyapunov potential. While convergence of GF in terms of sub-optimality is
quite different from convergence in the ODE sense, in this paper, we first prove a converse Lyapunov
style theorem for GF. Specifically, we show that when GF converges in terms of sub-optimality
to a global minimum, then there has to exist a corresponding Lyapunov potential and using such
potential, the rates can be recovered. This result becomes a starting point for our analysis. We show
that if this Lyapunov potential (obtained from the converse Lyapunov style theorem) satisfies certain
extra self-bounding regularity conditions, then one can show that GD and SGD algorithms converge
in terms of sub-optimality when appropriate step sizes are used. Such convergence for SGD/GD
happens even when the GF path and GD/SGD paths can be quite different.

We summarize our main contributions below:

● We prove a converse Lyapunov style theorem that shows that if gradient flow converges with
rate specified by with an appropriate rate function, then there exists a corresponding Lyapunov
potential that recovers this rate.
● We provide a geometric characterization for a given rate of convergence of gradient flow (ie. GF

converges at a particular rate if and only if a specific geometric condition on objective holds.)
● There are problems for which GF converges at a specific rate but GD can be arbitrarily slow to

converge.
● This motivates the necessity of additional conditions to ensure GD/SGD converges even when

GF converges. We provide certain self-bounding regularity conditions on the Lyapunov potential,
under which we show that GD converges. We also provide conditions on gradient estimate
noise under which we show that SGD using these gradient estimates also converges.
● We instantiate our results for problems such KŁ functions, matrix square-root and phase

retrieval, amongst other applications.

2 Setup

Given a continuously differentiable function and non-negative function F ∶ Rd � R, our goal is
to minimize F (w). Without any loss of generality, we assume that minw F (w) = 0. First-order
algorithms are popular for such optimization tasks. In the following, we formally describe the
Gradient Descent and Stochastic Gradient Descent algorithm, and their continuous time counterpart
called gradient flow.

Gradient Descent (GD). Gradient descent is the most popular iterative algorithm to minimize
differentiable functions. Starting from an initial point w0, GD on the function F (w) performs the
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following update on every iteration:

wt+1 ← wt − ⌘∇F (wt), (1)

where ⌘ denotes the step size. After T rounds, GD algorithm returns the point ŵT ∶=
argmins≤T F (ws).
Stochastic Gradient Descent (SGD). Stochastic gradient descent (SGD) has been the method
of choice for optimizing complex convex and non-convex learning problems in practice. In the
learning setting, F (w) corresponds to the unknown population loss and can be written as F (w) =
Ez∼D[f(w; z)] where the expectation is taken with respect to samples z drawn from an unknown
distribution D. SGD algorithm (mini-batch size 1) is an iterative algorithm that at every round t ≥ 0,
draws a fresh sample zt from D to compute a stochastic unbiased estimate ∇f(wi; zi) of the gradient∇F (wi), and performs the update

wt+1 ← wt − ⌘∇f(wt; zt) (2)

where ⌘ is the step size and w0 denotes the initial point. After T rounds, SGD algorithm returns ŵT

by sampling a point uniformly at random from the set {w1, . . . ,wT }.
Gradient Flow (GF). Gradient flow from a point w0 is continuous time process (w(t))t≥0 that
starts at w(0) = w0 and evolves as

dw(t)
dt

= −∇F (w(t)). (3)

GF has been thought of as a continuous time analogue of GD and is popularly used to understand
behavior of gradient based optimization algorithms in the limit, primarily due to its simplicity and
lack of step size.

Additional notation. For a vector w ∈ Rd, w[j] denotes its j-th coordinate and �w� denotes its
Euclidean norm. For any w1,w2 ∈ Rd, �w1,w2� denotes their inner product. For a matrix W , �d(W )
and �M� denotes its minimum singular value and spectral norm respectively. We define the set R+ to
contain all non-negative real numbers. We use 1d to denote a d-dimensional vector of all 1s, and Id to
denote the identity matrix in d-dimensions. N (0,�2Id) denotes d-dimensional Gaussian distribution
with variance �2Id. Ber(p) denotes the Bernoulli distribution with mean p.

For a function f ∶ Rd � R, we denote the p-th derivative at the point w by ∇pf(w) ∈ Rd.
We say that a real valued f is monotonically increasing if f ′ ≥ 0, and monotonically decreas-
ing if f ′ ≤ 0. The function f is said to be L-Lipschitz if f(w1) − f(w2) ≤ L�w1 −w2�
for all w1,w2. For a set of initial points W , we denote clo(W) as its closure under GF, i.e.
clo(W) = {w′ ∶ w′ is in GF path of some w0 ∈W}.
3 Gradient Flow, Potentials and Geometry

Lyapunov potentials are a popular tool for understanding convergence of GF [38, 55, 57]. At an intu-
itive level, a Lyapunov potential is any non-negative function � that satisfies �∇�(w),−∇F (w)� ≤ 0,
i.e. � decreases along the GF paths of F . This monotonicity property helps to show asymptotic
convergence of GF to stable points of the underlying objective. In our work, we consider potential
functions for which the rate of change (decrease) of the potential along the GF path is related to the
suboptimality of the objective at that point.
Definition 1 (Admissible potentials). A differentiable potential function �g ∶ Rd � R+ is admissible
w.r.t. F on a setW if there exists a monotonically increasing function g ∶ R+ � R+ with g(0) = 0
such that for any w ∈W ,4

�∇�g(w),∇F (w)� ≥ g(F (w)). (4)

Existence of potential functions of the above form can be used to provide rates of convergence for GF
as show in the following theorem.

4Whenever not specified, we assume that g(z) = z. The function � denote the potential function �g with
g(z) = z.
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Theorem 1 (From potentials to gradient flow). LetW be a set of initial points that we want to consider,
and let �g be an admissible potential w.r.t. F on the set clo(W). Then, for any initialization w0 ∈W ,
the point w(t) on the GF path with w(0) = w0 satisfies for any t ≥ 0,

g(F (w(t))) ≤ �g(w0)
t

.

The idea that admissible potential functions imply convergence rates for GF has appeared in various
forms in the prior literature [7, 37, 55, 57]. As an example, consider the potential function �(w) =�w −w∗��2. Notice that � is an admissible potential for any F that is convex with g(z) = z. This is
because convexity implies that (4) is true for any w. Hence, using Theorem 1 we get a �w −w∗�2�2t
rate of convergence for GF on any convex objective.

Our main result in this section is to establish a converse Lyapunov style theorem−that given a rate,
finds a potential function corresponding to that rate. We start by defining admissible rate functions.
Definition 2 (Admissible rate functions). A function R ∶ Rd ×R� R+ is an admissible rate function
w.r.t. F if for any w ∈ Rd,

(a) R(w, t) is a non-increasing function of t such that limt→∞R(w, t) = 0.

(b) R satisfies the relation: ∫ ∞t=0�@R(w,t)
@t + �∇R(w, t),∇F (w)��dt ≥ 0.

Remark 1. In order to simplify the task of checking whether a given rate is admissible, note that
Definition 2-(b) is satisfied whenever the condition

@R(w, t)
@t

+ �∇R(w, t),∇F (w)� ≥ 0
holds for every w as t → 0. Many rate functions, e.g. R(w, t) = F (w)e−t and F being KŁ, in fact
satisfy this condition for every w, t ≥ 0.

Furthermore, also note that Definition 2-(b) is satisfied whenever the rate function is such that
R(w(s), t) ≤ R(w, s + t) for all s, t ≥ 0 and w ∈ Rd, which may be an easier to check condition, e.g.
when R(w, t) = F (w)e−t.
We utilize admissible rate functions to characterize behavior of GF on F . Before we proceed, let
us motivate the two properties above. Property (a) is natural for any rate function and captures the
fact that running GF for more time leads to better guarantees. Property (b), while seeming a bit
mysterious, characterizes the compatibility of the rate function w.r.t. gradient flow dynamics. For
interpretation consider the relaxed version given in Remark 1 which implies property-(b). Here, the
condition that R(w(s), t) ≤ R(w, s+t) for all s, t ≥ 0 and w ∈ Rd simply captures the fact that having
additional information about the GF path should only improve the rate. Note that R(w(0), s + t)
corresponds to an upper bound on the sub-optimality at w(s + t) and R(w(s), t) corresponds to an
upper bound on the same quantity but with the additional information that w(s) is a point on the GF
path. We remark that for any rate function R, it is easy to construct a new rate function R̄ that always
satisfies this condition (hence, property (b)) by defining R̄(w, t) = mins≥0R(w′, t + s) where w′
is any point such that the point w lies on the GF path from w′ at time s. Furthermore, the function
R(w, t) = F (w(t)) is always an admissible rate function. All the rate functions appearing in this
paper satisfy both properties (a) and (b).
Our next result shows that admissible rate functions for GF can be used to construction admissible
potentials w.r.t. F .
Theorem 2 (From gradient flow to potentials). LetW ⊆ Rd be any set of initial points that we want
to consider, and R be an admissible rate function w.r.t. all GF paths originating from any point inW .
Further, suppose that for any w0 ∈W , the point w(t) on the GF path satisfies F (w(t)) ≤ R(w0, t),
then the function �g defined as

�g(w) = � ∞
t=0 g(R(w, t))dt (5)

is an admissible potential w.r.t. F on the set clo(W), for any differentiable and monotonically increas-
ing function g ∶ R+ � R+ that satisfies ∫ ∞t=0 g(R(w, t))dt <∞ and ∫ ∞t=0 g′(R(w, t))�∇R(w, t)�dt <∞ for every w ∈ clo(W).
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As an illustration on how to apply Theorem 2, assume that for F the rate for GF is R(w, t) = F (w)e−t
For instance, we already know that such a rate holds when F is PŁ. For this rate, by choosing g(z) = z,
we get that the function �g(w) = ∫ ∞t=0 F (w)e−t dt = F (w) is an admissible potential w.r.t. F . We
provide more examples in Section 5.

Theorem 1 and Theorem 2 are, in a sense, converse of each other. Theorem 1 shows that the existence
of an admissible potential function implies a rate of convergence for GF. On the other hand, Theorem 2
shows how to construct admissible potentials starting from the fact that GF has a rate. One might
wonder whether there always exist a Lyapunov function, more specifically a g function above, such
that the rate implied by the constructed potential in Theorem 1 matches the rate that we started with
for Theorem 2, i.e. R(w, t) ≈ g−1(�g(w)�t). We answer this in the positive for rate functions that
are of the product form.
Corollary 1. LetW ⊆ Rd be any set of initial points that we want to consider, and R be an admissible
rate function w.r.t. all GF paths originating from points inW . Additionally, suppose R has the product
form R(w, t) = h(w)r(t) where h is differentiable and r is a non-increasing function that satisfies
r(t) ≤ ��r′(t)�max{1, t} for any t ∈ R (where � is a universal constant). Furthermore, suppose
that for any w0 ∈ W , the point w(t) on the GF path satisfies F (w(t)) ≤ R(w0, t). Then, there
exists a monotonically increasing function g ∶ R+ � R+ such that the potential �g(w) constructed in
Theorem 2 using g, when plugged in Theorem 1, implies that GF has the rate

F (w(t)) ≤max
w∈W R(w, t� log2(t))

for any initialization w(0) ∈W .

3.1 Geometric Interpretation

The definition of an admissible potential comes with a geometric condition on the function F given in
(4). Since Theorem 2 constructs admissible potentials, when a rate R(w, t) holds for GF it suggests
that the geometric property in (4) holds for the objective function F . As an example, say GF on F
satisfies the rate R(w, t) = F (w)e−t. From Theorem 2, we note that �g(w) = F (w) is an admissible
potential w.r.t F with g(z) = z. This implies the geometric property�∇F (w),∇F (w)� ≥ F (w) (6)
holds for F whenever GF has rate R(w, t) = F (w)e−t. On the other, we know that whenever
(6) holds the function �(w) = F (w) satisfies (4) and is thus an admissible potential for F (with
g(z) = z), and hence Theorem 1 implies the rate of F (w)�t, which is equivalent to the rate F (w)e−t
(c.f. Lemma 6). This implies an equivalence between the rates R(w, t) = F (w)e−t and the geometric
property (6). We formalize this in the following.
Proposition 1. The following two properties are equivalent:

(a) For any w(0) ∈ Rd and t ≥ 0, GF has the rate F (w(t)) ≤ F (w(0))e−�t,
(b) F (w) satisfies the Polyak-Łojasiewicz (PL) property i.e. �F (w) ≤ �∇F (w)�2,

for any � ≥ 0. Theorem 2 implies (b) and yields the potential function �(w) = F (w).
A similar equivalence also holds for the more general class of KŁ functions. We defer this result
to Proposition 3 in Section E.1. In the following, we show a correspondence between the rate
R(w, t) = �w(0)−w∗�2−�w(t)−w∗�22t , and linearizability—a condition that is weaker than convexity but
is sufficient for the corresponding rate of convergence for GF.
Proposition 2. The following two properties are equivalent:

(a) For any w(0) ∈ Rd and t ≥ 0, GF has the admissible rate F (w(t)) ≤ � �w(0)−w∗�2−�w(t)−w∗�22t ,

(b) F (w) is linearizable w.r.t. w∗ i.e. F (w) ≤ ��∇F (w),w −w∗�,
for any � ≥ 0.

More generally, the equivalence between GF rates and the corresponding geometry on F can be
characterized as follows.
Remark 2. GF on F enjoys the admissible rate R(w, t) = g−1(�g(w)�t) if and only if F has the
geometric property �∇�g(w),∇F (w)� ≥ g(F (w)).
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4 Stochastic Gradient Descent and Gradient Descent

GD can be thought of as an approximate discretization of gradient flow. Thus, for problems where GF
converges with a given rate R, one may try to get convergence guarantees for GD from an initial point
w0 by bounding the distance between the GD and GF trajectories starting from w0. This is exactly the
approach taken in prior works [27, 39, 56, 52, 62, 21]. However, coming up with non-vacuous bounds
on the distance between corresponding GF and GD iterated is often quite challenging and requires
much stronger assumptions on the underlying objective. In fact there are cases where both GF and
GD converge to the same global minimum but their paths can be quite far away from each other. We
take a different approach for proving convergence of GD/SGD which directly relies on the properties
of corresponding potential for F . In the following theorem, we note that further assumption on top of
the premise that GF has a rate are required, to even hope that GD succeeds.
Theorem 3. For any integer T0 > 0, there exists a continuously differentiable convex function F for
which minw F (w) = 0 and w∗ = 0 is the unique minimizer, such that:

(a) �(w) = �w�2�2 is an admissible potential for F . Thus, Theorem 1 implies that for any initial
point w0, the point w(t) on its GF path satisfies F (w(t)) ≤ �w0�2

2t .

(b) There exists an initial point w0 with �w0� ≤ 1 and F (w0) ≤ 2 such that GD fails to find an
1�10-suboptimal solution for any step size ⌘ within t ≤ T0 steps.

Before giving our exact assumptions and the convergence bounds, we provide the intuition behind
how admissible potentials can be used for analyzing GD (or SGD). Let the sequence of iterates
generated by GD algorithm be given by {wt}t≥0, g(z) = z and � be an admissible potential w.r.t. F .
For any time t, the second-order Taylor’s expansion of the potential � implies that

�(wt+1) ≤ �(wt) + �∇�(wt),wt+1 −wt� + (wt+1 −wt)T∇2�(�wt)(wt+1 −wt)
≤ �(wt) − ⌘�∇�(wt),∇F (wt)� + ⌘2(∇F (wt))T∇2�(�wt)(∇F (wt)),

where�wt = �wt + (1 − �)wt+1 for some � ∈ [0,1], and the second line follows by plugging the GD
update wt+1 = wt − ⌘∇F (wt). Rearranging the terms, we get that

�∇�(wt),∇F (wt)� ≤ �(wt) −�(wt+1)
⌘

+ ⌘(∇F (wt))T∇2�(�wt)(∇F (wt)), (7)

The key idea that enables us to get performance guarantees for GD is that the linear term in the
left hand side above upper bounds the suboptimality of F at the point wt since � is an admissible
potential w.r.t. F . In particular, the condition (4) implies that

�∇�(wt),∇F (wt)� ≤ F (wt).
Using the above relation in (7), telescoping t from 0 to T − 1, and dividing by T , we get that

1

T

T−1�
t=0 g(F (wt)) ≤ �(w0) −�(wT )

⌘T
+ ⌘
T
⋅ T−1�
t=0 (∇F (wt))T∇2�(�wt)(∇F (wt)). (8)

Thus, we can bound the expected suboptimality of the point ŵ ∼ Uniform({w0, . . . ,wT−1}) returned
by the GD algorithm after T steps, whenever the second order term in the bound (8) is well behaved.
For example, if (∇F (wt))T∇2�(�wt)(∇F (wt)) ≤K for any wt,wt+1 and w̃t, we immediately get
that

1

T

T−1�
t=0 g(F (wt)) ≤ �(w0) −�(wT )

⌘T
+ ⌘K = O� 1√

T
�,

for ⌘ = O(1�√T ). While the above holds for a very simplified setup, the intuition can be extended to
more general cases as well. Below we present two regularity conditions that are sufficient to show
convergence of GD.
Assumption 1. There exists a monotonically increasing function  ∶ R+ � R+ such that �∇F (w)�2 ≤
 (F (w)) for any point w ∈W .
Assumption 2. The potential function � is second-order differentiable, and there exists a monotoni-
cally increasing function ⇢ ∶ R+ � R+ such that �∇2�(w)� ≤ ⇢(�(w)) at any point w ∈W .
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We will refer to the above conditions on F and � as self-bounding regularity conditions. The
following theorem provides convergence guarantees for GD when an admissible potential exists and
the above assumptions are satisfies.
Theorem 4 (GD convergence guarantee). Let �g be an admissible potential w.r.t. F . Assume that F
satisfies Assumption 1 and �g satisfies Assumption 2. Then, for any T ≥ 0 and setting ⌘ appropriately,
the point ŵT returned by GD algorithm has the convergence guarantee5

g(F (ŵT )) = O� 1√
T
�. (9)

Furthermore, if the function �(z) ∶=  (z)
g(z) is monotonically increasing in z, then for a different

appropriate choice of ⌘,

g(F (ŵT )) = O� 1T �. (10)

Let us consider an example. Suppose that gradient flow on F achieves the admissible rate
R(w, t) = ��w −w∗�2 − �w(t) −w∗�2��2t. This implies that F is linearizable (Proposition 2),
and thus �g(w) = �w −w∗�2�2 is an admissible potential for F with g(z) = z as it clearly satisfies
(4). However, as we saw in Theorem 3 just existence of such a rate function does not imply the
GD will succeed and we need to make further assumptions. Notice that in this case �g(w) satisfies
Assumption 2 with ⇢(z) = 1. If we further assume that F is L-Lipschitz, then Assumption 1 is
satisfied with  (z) = L2. Hence, applying Theorem 4 for this setting, we get that GD has convergence
rate F (ŵT ) = O(�w −w∗�L�√T ). Instead if F was H-smooth, Assumption 1 is satisfied with
 (z) = 4Hz and  (z)�g(z) = 4H is a monotonically increasing function and thus using (10), we get
that GD has the convergence rate F (ŵT ) = O(H�w −w∗�2�T ). Notice that both of these rates are
optimal for GD under the Lipschitz/Smoothness assumptions on F , and the fact that F is linearizable
[47]. On similar lines, using the rates for GF convergence on PL/KŁ functions, we can also recover
optimal convergence rates for GD under appropriate smoothness assumptions on F .

We next consider the convergence of SGD algorithm. Recall that at the iterate wt, SGD performs
the updated using ∇f(wt, zt), a stochastic and unbiased estimate of ∇F (wt). Of course, unless
one has some form of control over the distribution of ∇f(wt, zt), one cannot hope to prove any
convergence guarantees of SGD. To this end, we make the following regularity assumption on the
noise in ∇f(w, zt) while estimating ∇F (w).
Assumption 3 (Noise regularity). There exists a monotonically increasing function � ∶ R+ � R+
such that for any point w, the gradient estimate ∇f(w, z) satisfies

Pr��∇f(w; z) −∇F (w)�2 ≥ t ⋅ �(F (w))� ≤ e−t.
Assumption 3 is quite general, and can be specialized by appropriately setting the function � to model
various stochastic optimization problem settings observed in practice. For example, the classical
stochastic optimization setting in which ∇f(w; z) = ∇F (w)+ "t where "t is a sub-Gaussian random
variable with mean 0 and variance �2 is captured by the above assumption when �(z) = �2 [46].
However, it turns out that for many interesting ML problems, the noise typically scales with the
function value [58, 59].
Theorem 5 (SGD convergence guarantee). Let �g be an admissible potential w.r.t. F . Assume that
F satisfies Assumption 1, �g satisfies Assumption 2 and the stochastic gradient estimates ∇f(w; z)
satisfy Assumption 3. Then, for any T ≥ 0 and setting ⌘ appropriately, the point ŵT returned by SGD
algorithm has the convergence guarantee1

g(F (ŵT )) = Õ� 1√
T
�.

with probability at least 0.7 over the randomization of the algorithm and stochastic gradients.
Remark 3. In most classic settings, one expects a 1�√T rate for SGD [10]. However, in cases
where �g is an admissible potential and g(z) = o(z), Theorem 5 seems to suggest a g−1(1�√T )
rate of convergence which is faster than 1�√T . This is where the self-bounding regularity conditions
play an important role. As an example for PŁ style rates, one can show that F (w)p is an admissible
potential with g(z) = zp for any p. However, the self-regularity conditions are not satisfied unless
p ≥ 1. Setting p = 1 recovers the 1�√T rate of SGD for PŁ functions which is optimal [1].

5The O(⋅) notation here hides initialization and problem dependent constants fully specified in the Appendix.
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5 Examples: From Gradient Flow to Gradient Descent

So far, we discussed classical examples like PŁ functions, convex functions, etc. At a high level,
in order to show convergence of SGD for these problems, we first establish an admissible rate of
convergence for GF, which implies an admissible potential that is used to show convergence of SGD.
We next extend this approach for other more complex stochastic non-convex optimization problems.

5.1 Phase retrieval

In the phase retrieval problem [11, 16, 53], we wish to reconstruct a hidden vector w∗ ∈ Rd with�w∗� = 1 using phaseless observations S = {(aj , yj)}j≤T of the form yj = �aj ,w∗�2 where
aj ∼ N (0, Id). The classical approach to recover w∗ is by using the per-sample loss function
fpr(w; (aj , yj)) = ((a�jw)2 − yj)2 for which the corresponding population loss is given by

Fpr(w) = E[fpr(w; (a, y))] = Ea∼N (0,Id)��(a�w)2 − (a�w∗)2�2�. (11)

Fpr is non-convex, and has stationary points (and local minima) that do not correspond to the global
minima. In the following, we provide convergence guarantees for GD algorithm on Fpr, and SGD
algorithms that computes stochastic gradient estimates using S. We first note that Fpr satisfies
self-bounding regularity conditions, and GF has a rate of convergence to global minimizers of Fpr.
Lemma 1. Fpr satisfies Assumption 1. Furthermore, for any initial point w0, the point w(t) on its
gradient flow path satisfies

Fpr(w(t)) ≤min�Fpr(w0), Fpr(w0)e−t+ 1�w0,w∗�2 � =∶ Rpr(w(0), t).
Furthermore, the function Rpr above is an admissible rate of convergence w.r.t. Fpr.

The above rate follows from independently analyzing the parallel and perpendicular components�w,w∗� and �w�2 − �w,w∗� respectively. Our main tool for getting the convergence guarantee for
GD / SGD is to utilize Theorem 2 to get an admissible potential w.r.t. Fpr, which can be plugged in
Theorem 4 and 5 to get the corresponding rates.
Theorem 6. Consider the phase retrieval objective Fpr given in (11). For any initial point w0 and
T ≥ 1, setting ⌘ appropriately,

(a) The point ŵT returned by GD starting from w0 satisfies Fpr(ŵT ) = O�min� 1
T , e

−O(T−t0)��
for all T ≥ t0, where t0 is a w0 dependent constant.

(b) The point ŵT returned by SGD starting from w0 and using stochastic gradient estimates for
which Assumption 3 holds, satisfies Fpr(ŵT ) = Õ� 1√

T
� with probability at least 0.7.

The O(⋅) notation above hides w0 dependent constants which we specify in the Appendix. Our rate
for GD above matches the best known result in the literature in terms of the dependence on T [16].
To the best of our knowledge, ours is also the first convergence analysis of SGD under arbitrary noise
conditions satisfying Assumption 3. While this rate is optimal under certain noise conditions, e.g.
when �(z) = �2, further improvements are possible when � is favorable. For example, suppose
the stochastic gradient estimates were computed using samples from S by taking a fresh sample
for each estimate, i.e. ∇f(w; (a, y)) = 4((a�w)2 − y)(a�w)w. In this case, the stochastic gradient
satisfy Assumption 3 with �(z) =min{√z, c} where c is a universal constant (c.f. Candes et al. [11,
Lemma 7.4, 7.7]). While, our framework implies that this SGD algorithm (computing estimates using
samples) converges at the rate of 1�√T , this rate can be improved further [16], and we defer the
refined analysis for future research.

5.2 Initialization specific rates

In many applications, GF is only known to converge from nice enough initial points that satisfy
certain properties. In this section, we extend show how to use our tools for establishing convergence
of GD/SGD for such problems, and consider matrix square root as an example. We first provide the
following general utility lemma that shows how to construct admissible potentials when the rate for
GF from w0 holds only when w0 satisfies a certain property characterized by h(w0) ≥ 0.
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Lemma 2. Let h ∶ Rd � [0,1] be a continuously differentiable function, and suppose that for any
point w for which h(w) > 0, GF with w(0) = w has rate F (w(t)) ≤ R(w, t) where R(w, ⋅) is a
monotonically decreasing function in t. Furthermore, suppose that F (w) ≤ R(w,0), F satisfies
Assumption 1, R(w,h(w)t) is an admissible rate function w.r.t. F , and for any w,

(a) the function �(w) ∶= ∫ ∞t=0R(w, t)dt is continuously differentiable, and
max{�∇�(w)�, �∇2�(w)�} ≤ �(�(w)) where � is a positive, monotonically increas-
ing function.

(b) max{�∇h(w)�, �∇2h(w)�} ≤ ⇡(�(w)) where ⇡ is a positive, monotonically increasing func-
tion.

(c) (h(w) − h(w∗))2 ≤ µ(�(w)) where µ is a positive, monotonically increasing function with
the property that kµ(z) ≤ µ(kz) for any k ≥ 1.

Then, the function �g(w) = �(w)�h(w) is an admissible potential w.r.t. F with g(z) = z, and
satisfies the self-bounding regularity condition in Assumption 2.

5.2.1 Matrix square root

In the matrix square root problem [19, 28], we are given a positive definite and symmetric matrix
M ∈ Rd×d with �d(M) > 0, and wish to find a symmetric W ∈ Rd×d that minimizes the objective

Fms(W ) = �M −W 2�2F . (12)

Fms is non-convex in W , and has spurious stationary points. In the following, we provide convergence
guarantees for GD/SGD algorithm on Fms. We first note that Fms satisfies self-bounding regularity
conditions, and GF on Fms converges to the global minimizer when the initial point w0 satisfies
additional assumptions. We capture these initial conditions using the function hms defined as

hms(W ) = ���(W 2) − ↵�, (13)

where the function �(Z) ∶= −1� log(tr(e−�Z) + e−16↵�), ↵ = �min(M)�1600, � = log(d + 1)�↵, and
� denotes a smoothened version of the indicator function given by �(z) = {0 if z ≤ 0, 2

↵2 z
2 if 0 ≤

z ≤ ↵
2 , − 2

↵2 z
2 + 4

↵z − 1 if ↵2 ≤ z ≤ ↵, and 1 if ↵ ≤ z}.
Lemma 3. Fms satisfies Assumption 1. Furthermore, for any initial point W0 for which hms(W0) > 0,
the point W (t) on its GF path satisfies

Fms(W (t)) ≤ Fms(W0) exp(−16↵t) =∶ Rms(W (0), t),
where ↵ = �min(M)�1600, � = log(d + 1)�↵ and the function hms is defined in (13).

The above rate follows from directly solving the PDE associated with the gradient flow on the
underlying objective. Lemma 3 provides conditions on W0 under which the GF path converges with
the rate function Rms. Our main tool for showing the convergence of GD / SGD is by using Lemma 2
to get admissible potentials. Note that the function hms takes values in [0,1], is continuously
differentiable, and as we show in the appendix satisfies all the required self-bounding regularity
conditions in Lemma 2. Thus, Lemma 2 provides an admissible potential w.r.t. Fpr which can be
used to get the following rates.
Theorem 7. Consider the matrix square root objective Fms given in (12). For any  > 0, initial point
W0 for which hms(W0) > 0 and setting ⌘ appropriately,

(a) The point�WT returned by GD starting from W0 satisfies Fms(�WT ) = O�min� 1
T , e

−O(T−t0)��
for all T ≥ t0, where t0 is a w0 dependent constant.

(b) The point�WT returned by SGD starting from W0 and using stochastic gradient estimates for
which Assumption 3 holds, satisfies Fms(�WT ) = Õ� 1√

T
� with probability at least 0.7.

The O(⋅) notation above hides W0 dependent constants which we specify in the Appendix. Our
rate for GD above matches the best known result in the literature in terms of the dependence on T
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[28]. Ours is also the first convergence analysis of SGD under arbitrary noise conditions satisfying
Assumption 3. Note that the classical stochastic optimization setting in which ∇fms(w; z) = 2(W 2 −
M)W + 2W (W 2 −M) + "t where "t is a sub-Gaussian random variable with mean 0 and variance
�2 satisfies Assumption 3 with �(z) = �2, and as a result of Theorem 7, we get that SGD converges
at the rate of 1�√T . To the best of our knowledge, convergence of SGD in the stochastic optimization
setting for matrix square root problem was not known before.

6 Conclusion

In this paper, we provide a new framework for establishing performance guarantees for SGD in
stochastic non-convex optimization. We introduce admissible potentials, and use them to get finite-
time convergence guarantees for SGD. We also provide a method for constructing such admissible
potentials using the rate function with which gradient flow converges on the underlying non-convex
objective, provided that this rate function satisfies additional admissibility conditions. Thus, infor-
mally speaking, our results suggest that whenever gradient flow has an admissible rate of convergence
and additional regularity conditions hold, SGD succeeds in minimizing the underlying non-convex
objective (with the rate given in Theorem 5). We discuss some extensions and open problems below:

● Contrary to the prior approaches [27, 39, 56, 52, 62, 21], our convergence proof for SGD does
not proceed by showing that the corresponding paths of SGD and gradient flow dynamics are
point-wise close to each other. In fact, the example in Theorem 3 suggests that this may not be
true even for convex functions, since for that example, gradient flow converges to minimizers but
SGD diverges away from good solution. Our key technique is to use admissible potentials, that
satisfy (4) w.r.t. gradient flow dynamics, to analyze discrete time algorithms like SGD.
● Our framework is motivated by Lyapunov analysis of dynamical systems [12, 15, 18, 57]. The

property (4) in fact implies that any admissible potential is a Lyapunov potential w.r.t. the gradient
flow dynamics on the underlying non-convex loss. It would be interesting to explore if techniques
from the Lyapunov analysis of dynamical systems can be used to improve our rates further, or to
relax various regularity and admissibility assumptions that we assume for our results. In particular,
it would be interesting to explore how to extend our framework for non-smooth non-convex
stochastic optimization.
● While we restricted ourselves to GD in the paper, our framework can be easily extended to

analyze mirror descent algorithms (to get improved dependence on the problem geometry), by
modifying the admissibility condition (4) to hold w.r.t. gradient flow dynamics in the dual space
(mirror space). Furthermore, we can also extend our framework to other first-order algorithms
like acceleration, momentum, etc., by changing (4) to hold w.r.t. the corresponding continuous
time dynamics for these algorithms [36, 52, 48].
● Theorem 2 gives a construction of admissible potentials using the rate function R for gradient

flow on the underlying objective. However, the convergence bound for SGD in Theorem 5 holds
only when this constructed potential satisfies additional self-bounded regularity conditions in As-
sumption 2. In order to get an end-to-end result, it would be interesting to explore what structural
conditions on the rate function R implies that the obtained potential satisfies Assumption 2.

In the paper, we demonstrate the generality of our framework by considering various non-convex
stochastic optimization problems including PŁ/KŁ functions, phase retrieval and matrix square root,
and show that admissible rate functions and the corresponding admissible potentials can be easily
obtained by explicitly solving the partial differential equation associated with gradient flow; hence
getting rates of convergence for SGD for these problems. Looking forward, it would be interesting to
apply our framework for other non-convex stochastic optimization problems appearing in machine
learning, and in particular deep learning.
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