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Abstract
Out-of-distribution generalization capabilities of
sequence-to-sequence models can be studied from
the lens of two crucial forms of generalization:
length generalization – the ability to generalize to
longer sequences than ones seen during training,
and compositional generalization: the ability to
generalize to token combinations not seen during
training. In this work, we provide first provable
guarantees on length and compositional general-
ization for common sequence-to-sequence mod-
els – deep sets, transformers, state space models,
and recurrent neural nets – trained to minimize
the prediction error. Taking a first principles per-
spective, we study the realizable case, i.e., the
labeling function is realizable on the architecture.
We show that limited capacity versions of these
different architectures achieve both length and
compositional generalization. Across different ar-
chitectures, we also find that a linear relationship
between the learned representation and the repre-
sentation in the labeling function is necessary for
length and compositional generalization.

1. Introduction
Large language models (LLMs), such as the GPT models
(Achiam et al., 2023) and the Llama models (Touvron et al.,
2023), have led to a paradigm shift in the development of
future artificial intelligence (AI) systems. The accounts of
their successes (Bubeck et al., 2023; Gunasekar et al., 2023)
as well as their failures, particularly in planning and reason-
ing (Bubeck et al., 2023; Stechly et al., 2023; Valmeekam
et al., 2023), continue to rise. The successes and failures of
these models have sparked a debate about whether they actu-
ally learn general algorithms or if their success is primarily
due to memorization and a superficial form of generalization
(Dziri et al., 2024).

A model’s ability to perform well across different distribu-
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tion shifts highlights its ability to learn general algorithms.
For models with fixed-dimensional inputs, considerable ef-
forts have led to methods with provable out-of-distribution
(OOD) generalization guarantees (Rojas-Carulla et al., 2018;
Rame et al., 2022; Chaudhuri et al., 2023; Wiedemer et al.,
2023b; Eastwood et al., 2024). For sequence-to-sequence
models, a large body of empirical works have investigated
OOD generalization (Anil et al., 2022; Jelassi et al., 2023)
but we lack efforts that study provable OOD generalization
guarantees for these models. These provable guarantees
provide a stepping stone towards explaining the success of
the existing paradigm and also shine a light on where the
existing paradigm fails.

OOD generalization capabilities of sequence-to-sequence
models can be studied from the lens of two forms of gener-
alization: length generalization – the ability to generalize to
longer sequences than ones seen during training, and com-
positional generalization – the ability to generalize to token
combinations not seen during training. While transformers
(Vaswani et al., 2017) are the go-to sequence-to-sequence
models for many applications, recently, alternative archi-
tectures based on state-space models, as noted by Gu et al.
(2021), Orvieto et al. (2023b), and Gu & Dao (2023), have
shown a lot of promise. This motivates us to study a range of
natural sequence-to-sequence architectures, including deep
sets (Zaheer et al., 2017), transformers, state space models
(SSMs), and recurrent neural networks (RNNs). We focus
on the realizable case, i.e., the labeling function is in the
hypothesis class of the architecture. Our key contributions
and insights are summarized below.

• Limited capacity versions of the different archi-
tectures namely deep sets, transformers, SSMs, and
RNNs, provably achieve length and compositional gen-
eralization.

• A linear relationship between the learned representa-
tion and the representation in the labeling function, i.e.,
linear identification (Roeder et al., 2021), is necessary
for length and compositional generalization.

• Through a range of experiments, we show the suc-
cess of both forms of generalization, matching the
predictions of the theory and even going beyond.
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2. Provable Length and Compositional
Generalization

We are given a dataset comprising of a sequence of in-
puts {x1, · · · , xt} and a corresponding sequence of labels
{y1, · · · , yt}, where each xi ∈ Rn and yi ∈ Rm. Ob-
serve that this formulation includes both standard down-
stream tasks such as arithmetic tasks, e.g., yi =

∑i
j=1 xj ,

yi = Πi
j=1xj etc., as well as next-token prediction task,

where {y1, · · · , yt} = {x2, · · · , xt+1}. We denote a se-
quence {s1, · · · , st} as s≤t. Consider a sequence {xj}∞j=1,
which is sampled from PX , and a subsequence of this se-
quence x≤t = {xj}tj=1, whose distribution is denoted as
PX≤t

. The label yt = f(x≤t), where f is the labeling
function. The tuple of base distribution and the labeling
function is denoted as P =

{
PX , f

}
and the tuple of base

distribution up to length t is denoted as P(t) =
{
PX≤t

, f
}

.

Define the support of kth token Xk in the sequence sam-
pled from PX as supp(Xk). Given training sequences of
length T from P(T ), we are tasked to learn a model from
the dataset that takes a sequence x≤t as input and predicts
the true label yt as well as possible. If the model succeeds
to predict well on sequences that are longer than T , then
it is said to achieve length generalization (a more formal
definition follows later). Further, if the model succeeds to
predict well on sequences comprising of combination of
tokens that are never seen under training distribution, then
it is said to achieve compositional generalization (a more
formal definition follows later.). We study both these forms
of generalization next.

Learning objective Consider a map h that accepts
sequences of n-dimensional inputs to generate a m-
dimensional output. We measure the loss of predictions of h,
i.e., h(x≤t), against true labels as ℓ

(
h(x≤t), yt

)
, where yt

is the true label for sequence x≤t. In what follows, we use
the ℓ2 loss. Given sequences sampled from P(T ), the ex-
pected risk across all time instances up to maximum length
T is defined as R(h;T ) =

∑T
t=1 E

[
ℓ(h(x≤t), yt)

]
. The

learner aims to find an h∗ that solves

h∗ ∈ argmin
h∈H

R(h;T ), (1)

where H is the hypothesis class of models. We seek to
understand the properties of solutions to (1) through the
lens of following questions.

Can common sequence-to-sequence models H achieve
length & compositional generalization? If so, when do
they succeed and when do they fail?

Definition 2.1. Consider the setting where a model is
trained on sequences (x≤t, y≤t) of length up to T drawn

from P(T ). If the model achieves zero generalization er-
ror on sequences (x≤t, y≤t) of length up to T̃ drawn from
P(T̃ ),∀ T̃ ≥ T , then it length generalizes w.r.t. P .

In the above definition of length generalization, we sim-
ply ask if the model generalizes to longer sequences. We
drop the phrase w.r.t P hereafter to avoid repetition. We
now define a test distribution that evaluates compositional
generalization capabilities. We consider sequences of fixed
length T . Define a uniform distribution QX≤t

such that
the support of QX≤t

equals the Cartesian product of the
support of each token Xk from PX , we write this joint sup-
port as Πt

j=1supp(Xj). In this case as well, the labeling
function continues to be f . Hence, we obtain the tuple
Q(T ) = {QX≤T

, f}.

Definition 2.2. Consider the setting where a model is
trained on sequences (x≤t, y≤t) of length up to T drawn
from P(T ). If the model achieves zero generalization er-
ror on sequences (x≤t, y≤t) of length up to T drawn from
Q(T ), then it achieves compositional generalization.

Impossibility of length and compositional generaliza-
tion We argue that in the absence of any constraints on the
hypothesis class H, neither length generalization nor com-
positional generalization are achievable. Basically, we show
that at least one solution to (1) does not achieve the desired
form of generalization – length or compositional. If there
are no constraints on H, we can always construct a function
h that is equal to f on all sequences of length up to T but
is equal to f + c on sequences longer than T . Therefore,
such a function will solve (1) but length generalization will
not be achieved. The same argument extends to the case of
compositional generalization.

RASP conjecture from (Zhou et al., 2023) (Zhou et al.,
2023) propose a conjecture supported by empirical evidence,
which delineates the conditions that suffice for length gen-
eralization for transformers. The conjecture places three
requirements – a) realizability: the task of interest is real-
izable on the transformer, b) simplicity: the task can be
expressed as a short program in RASP-L language, c) diver-
sity: the dataset is sufficiently diverse such that there is no
shorter program that achieves in-distribution generalization
but not out-of-distribution generalization. In our analysis
below, we use assumptions similar to a) and b) but weaker
than c) to show length and compositional generalization.

2.1. Deep sets

Deep sets are a natural first choice of architecture to study
here. These were introduced in (Zaheer et al., 2017). Infor-
mally stated, (Zaheer et al., 2017) show that a large family
of permutation-invariant functions can be decomposed as
ρ
(∑

x∈X ϕ(x)
)
. Consider the examples of the sum oper-
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ator or the product operator, which take {x1, x2, · · · , xk}
as input, and return the sum y =

∑k
j=1 xj or the product

y = Πk
j=1xj . These operations are permutation invariant

and can be expressed using the decomposition above. For
the sum operator ρ and ϕ are identity and for the product
operator ρ = exp and ϕ = log.

Assumption 2.3. Each function in the hypothesis class
H takes a sequence {x1, · · · , xi} as input and outputs
h(x1, · · · , xi) = ω

(∑
j≤i ψ(xj)

)
, where ω is a single

layer perceptron with continuously differentiable bijective
activation (e.g., sigmoid) and ψ is differentiable.

Assumption 2.4. The joint support supp(X≤i) is a regular
closed set (in standard topology in Rni) for all i ≤ T .

Linear identification Each architecture that we study in
this work relies on a hidden representation that is passsed
on to a last non-linear layer to generate the label. Under the
realizability condition for deep sets, the labeling function
takes the form f(X ) = ρ(

∑
x∈X ϕ(x)), where ϕ(x) is the

hidden representation. If the learned deep set is denoted by
ω(

∑
x∈X ψ(x)), then the learned hidden representation is

ψ(x). If ψ(x) = Aϕ(x), then the learned representation is
said to linearly identify the data generating representation
ϕ(x). We borrow this definition from the identifiability
literature (Khemakhem et al., 2020; Roeder et al., 2021).

Theorem 2.5. If H follows Assumption 2.3, the realizability
condition holds, i.e., f ∈ H, supp(Xj) = [0, 1]n, ∀j ≥ 1,
and Assumption 2.4 holds, then the model trained to mini-
mize the risk in (1) with ℓ2 loss generalizes to all sequences
in the hypercube [0, 1]nt, ∀t ≥ 1 and thus achieves length
and compositional generalization.

The proof is provided in Section A.2.1. In the above result,
we work with ω represented by a single layer perceptron.
In the above result, we require the support of the marginal
distribution of each token to be [0, 1]n. The support of T
token length sequence under the joint training distribution
can still be a much smaller subset of [0, 1]nT . Despite this
the model generalizes to all sequences in [0, 1]nt for all t.
An important insight from the proof is if the output layer
matrix has a left inverse, then the hidden representation
learned by the model is a linear transform of the true hidden
representation, i.e., ψ = Aϕ. As a result, we obtain that
such linear representation identification is necessary for
length and compositional generalization (Further details are
in Section A.2.1). In Theorem A.4, we extend Theorem 2.5
to ω from C1-diffeomorphisms.

High capacity deep sets The above results show that
limited capacity constraints (Assumption 2.3) on deep sets
suffice for length and compositional generalization. What
about deep sets with arbitrary capacity, i.e., no constraints
on ω and ψ? These express a large family of permutation

invariant maps (Zaheer et al., 2017). Suppose H is the class
of all permutation invariant maps and the labeling function
f ∈ H. Consider a map h such that h = f for all sequences
of length up to T , and h = f + c otherwise. Observe that
h is permutation invariant and also belongs to H. h solves
(1) but does not length generalize. Thus high capacity deep
sets do not length generalize. A similar argument follows
for compositional generalization as well.

2.2. Transformers

Ever since their introduction in (Vaswani et al., 2017), trans-
formers have revolutionized all domains of AI. In this sec-
tion, we seek to understand length generalization for these
models. Transformer architectures are represented as alter-
nating layers of attention and position-wise non-linearity.
We drop layer norms for tractability. Following similar
notation as previous section, we denote position-wise non-
linearity as ρ and attention layer as ϕ. We obtain the simplest
form of causal transformer model as ρ

(∑i
j=1

1
i ·ϕ(xi, xj)

)
.

This decomposition captures linear attention, ReLU atten-
tion, sigmoid attention, ReLU squared attention, which were
studied previously in (Wortsman et al., 2023; Hua et al.,
2022; Shen et al., 2023) and found to be quite effective
in several settings. This decomposition does not capture
softmax-based attention and developing provable length
generalization guarantees for the same is an exciting future
work. Other works (Bai et al., 2023) also replaced softmax
with other non-linear attention for a more tractable analysis.

Assumption 2.6. Each function in the hypothesis class
H takes a sequence {x1, · · · , xi} as input and outputs
h(x1, · · · , xi) = ω

(∑
j≤i

1
i · ψ(xi, xj)

)
, where ω is a

single layer perceptron with continuously differentiable bi-
jective activation (e.g., sigmoid) and ψ is differentiable.

Theorem 2.7. If H follows Assumption 2.6, the realiz-
ability condition holds, i.e., f ∈ H, supp(Xi, Xj) =
[0, 1]2n, ∀i ̸= j and the regular closedness condition in
Assumption 2.4 holds, then the model trained to minimize
the risk in (1) (with T ≥ 2) with ℓ2 loss generalizes to all se-
quences in the hypercube [0, 1]nt, ∀t ≥ 1 and thus achieves
length and compositional generalization.

The proof is provided in Section A.2.2. We also obtain that a
linear relationship between the learned attention representa-
tion denoted ψ and attention representation for the labeling
function denoted ϕ is necessary for both length and composi-
tional generalization (details in Section A.2.2). We provide
extension of Theorem 2.7 from single layer perceptron ω to
C1-diffeomorphism in the Appendix.

High capacity transformers In the above results, we
demonstrated that limited capacity transformers (Assump-
tion 2.6, A.8) achieve length and compositional generaliza-
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tion. How about transformers with arbitrary capacity, i.e., no
constraint on ω and ψ? If ψ(x, y) = ψ(x̃, y),∀x ̸= x̃, then
the decomposition for the causal transformer ω

(∑i
j=1

1
i ·

ψ(xi, xj)
)

becomes ω
(∑i

j=1
1
i · ψ(xj)

)
, which is very

similar to deep sets. In such a case, we can use arguments
similar to that of arbitrary capacity deep sets and argue that
compositional generalization is impossible.

On positional encoding The discussion so far uses the
current query and compares it to keys from the past, it does
not distinguish the keys based on their positions. For many
arithmetic tasks such as computing the median, maximum
etc., the positions of keys do not matter but for other down-
stream tasks such as sentiment classification, the position of
the words can be important. In Section A.2.2, we adapt the
architecture to incorporate relative positional encodings and
show how some of the results extend. We modify the model
as ρ(

∑i
j=1

1
iϕi−j(xi, xj)), where ϕi−j(xi, xj) computes

the query key inner product while taking the relative po-
sition i − j into account. We show that if ϕi−j = 0 for
i− j > Tmax, i.e., two tokens sufficiently far apart do not
impact the data generation, then length generalization and
compositional generalization are achievable.

2.3. State space models

In recent years, state space models (Gu et al., 2021; Orvieto
et al., 2023b) have emerged as a promising competitor to
transformers. In (Orvieto et al., 2023a;b), the authors used
the lens of linear recurrent layer followed by position-wise
non-linearities as the main building block to understand
these models. We illustrate the dynamics of these models to
show the generation of x≤t and y≤t next.

h1 = Bx1, · · · , ht = Λht−1 +Bxt,

y1 = ρ(h1), · · · , yt = ρ(ht),
(2)

where ht ∈ Rk is hidden state at t, Λ ∈ Rk×k, B ∈ Rk×n

and ρ : Rk → Rm. Observe that ht =
∑t−1

j=0 Λ
jBxt−j .

Assumption 2.8. Each function in the hypothesis class
H takes a sequence {x1, · · · , xi} as input and outputs
h(x1, · · · , xi) = ω

(∑i−1
j=0 Λ

jBxi−j

)
, where ω : Rk →

Rm is a C1-diffeomorphism, B and Λ are square invertible.

Theorem 2.9. If H follows Assumption 2.8, and the realiz-
ability condition holds, i.e., f ∈ H, and a further condition
on the support, i.e., Assumption A.13, holds, then the model
trained to minimize the risk in (1) with ℓ2 loss (T ≥ 2)
achieves length and compositional generalization.

The proof is provided in Section A.2.3. In the above result
as well, linear representation identification, i.e., the pre-
dicted hidden state h̃t and the true hidden state ht bear a

linear relationship, turns out to be necessary for length and
compositional generalization (See Section A.2.3 for details).

High capacity SSMs In the above result, we have shown
that SSMs with limited capacity can achieve length gener-
alization. How about SSMs with arbitrary capacity, i.e., no
constraint on Λ, B and ω? (Orvieto et al., 2023a) showed
that SSMs with arbitrary capacity (i.e., with appropriately
large Λ and B matrices) can approximate a sequence-to-
sequence mapping up to some length with arbitrary pre-
cision. Consider the true labeling function f and another
function h, which is equal to f for all sequences of length
up to T and f + c for larger lengths. As a result, h is a solu-
tion to (1) for SSMs with arbitrary capacity and it does not
achieve length generalization. The same argument extends
to compositional generalization.

2.4. Vanilla recurrent neural networks

Standard RNNs have a non-linear recurrence unlike the
linear recurrence studied in the previous section. We use
the same notation as the previous section and only add
an activation for non-linear recurrence. We illustrate the
dynamics to show the generation of x≤t and y≤t below.

h1 = σ(Bx1), · · · , hT = σ(ΛhT−1 +BxT )

y1 = ρ(h1), · · · , yT = ρ(hT ),
(3)

Assumption 2.10. Each function in H used by the learner
is a vanilla RNN of the form (3), where the position-wise
non-linearity is a single layer perceptron σ ◦ A, and Λ, B
govern the hidden state dynamics (as in (3)). A,Λ, B are
square invertible matrices, and σ is the sigmoid activation.

Theorem 2.11. If H follows Assumption 2.10, and the real-
izability condition holds, i.e., f ∈ H and regular closedness
condition in Assumption 2.4 holds, then the model trained to
minimize the risk in (1) with ℓ2 loss (with T ≥ 2) achieves
length and compositional generalization.

The proof is provided in Section A.2.4. Here also we find
that a linear relationship between predicted hidden state h̃t
and true hidden state ht is necessary for both length and
compositional generalization (See Section A.2.4 for details).
In fact, the relationship is a permutation map. Similar to pre-
vious sections, we can show that high capacity RNNs cannot
achieve length and compositional generalization. Finally,
we point the reader to Section A.3 for our experimental
findings, which is not included here due to space limit.

3. Conclusion
In this work, we formalized first provable length general-
ization and compositional generalization in sequence-to-
sequence models. This effort gives way to a foundation for
the recently proposed RASP conjecture (Zhou et al., 2023).
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A. Appendix
Contents

We organize the Appendix as follows.

• In Section A.1, we discuss related works.

• In Section A.2, we present the proofs of the main Theorems 2.5-2.11. We also present extensions of these theorems.

– In Section A.2.1, we discuss deep sets and present the proof of Theorem 2.5 and its extensions.
– In Section A.2.2, we discuss transformers and present the proofs of Theorem 2.7,A.9 and its extensions.
– In Section A.2.3, we discuss state space models and present the proofs of Theorem 2.9.
– In Section A.2.4, we discuss vanilla RNNs and present the proof of Theorem 2.11.

• In Section A.3, we provide our experimental findings.

• In Section A.4, we discuss broader impacts of this work.

A.1. Related Works

Length generalization In the field of length generalization, many important empirical insights have been synthesized
over the last few years. (Shaw et al., 2018) discovered the drawbacks of absolute positional embeddings and suggested
relative positional embeddings as an alternative. Subsequent empirical analyses, notably by (Anil et al., 2022) and (Jelassi
et al., 2023), explored length generalization in different settings for transformer-based models. Key findings revealed that
larger model sizes don’t necessarily enhance generalization and that the utility of scratchpads varies, improving significantly
when combined with in-context learning. Additionally, the effectiveness of relative positional embeddings appeared task-
dependent, proving beneficial in simpler tasks like addition but faltering in more complex ones like multiplication. This
led to the innovative approach of model priming with a few long sequence examples. In (Kazemnejad et al., 2024), the
authors did a comprehensive study of different positional embeddings and provided evidence to show that explicit use
of positional encodings is perhaps not essential. Our work is both related and inspired by some of the recent findings in
(Zhou et al., 2023). In this work, the authors proposed the RASP conjecture. The conjecture delineates the tasks where
transformers excel or fall short in length generalization, emphasizing the necessity of task simplicity and data diversity.
While (Zhou et al., 2023) provide empirical evidence for the conjecture, our work formalizes and proves simpler versions of
the conjecture for a range of architectures with minimal assumptions on data diversity.

On the theoretical side of length generalization, in (Abbe et al., 2023), the authors showed an implicit bias of neural
network training towards min-degree interpolators. This bias was used to explain the failures of length generalization on
the parity task from (Anil et al., 2022). In (Xiao & Liu, 2023), the authors leverage directed acyclic graphs (DAGs) to
formulate the computation in reasoning tasks and characterize conditions under which there exist functions that permit
length generalization. Our results crucially differ in the sense we show a range of conditions under which both length and
compositional generalization are actually achieved.

Compositional generalization The breadth of research on compositional generalization, encompassing studies like
(Lake & Baroni, 2018; Loula et al., 2018; Gordon et al., 2019; Hupkes et al., 2020; Kim & Linzen, 2020; Xu et al., 2022;
Arora & Goyal, 2023; Zhang et al., 2024), is too expansive to address comprehensively here. However, we reference
several pertinent works from whom we borrow the formal definition of compositionality. Recent studies, notably those by
(Wiedemer et al., 2023a;b; Lachapelle et al., 2023; Brady et al., 2023), draw inspiration from object-centric architectures
and approach compositional generalization from a first principles perspective. Our work adopts a definition of compositional
generalization similar to these studies but diverges by centering on common sequence-to-sequence architectures as the main
subject of interest.

A.2. Proofs

In all the results that follow, we assume that the Radon-Nikodym derivative of X≤t is absolutely continuous w.r.t Lebesgue
measure ∀t. In all the results that follow, we work with standard topology in RnT , where n is dimension of each token and
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T is the training sequence length. We remind the reader of the definition of a regular closed set – if a set is equal to the
closure of its interior, then it is said to be a regular closed set.

Lemma A.1. Let X ⊆ Rn. If f : X → Rm and g : X → Rm are continuously differentiable functions that satisfy
f(x) = g(x) almost everywhere in X , where X is a regular non-empty closed set, then f(x) = g(x),∀x ∈ X and
∇f(x) = ∇g(x),∀x ∈ X , where ∇ is the Jacobian w.r.t x.

Proof. Let us consider the interior of X and denote it as X int. We first argue that the two functions f and g are equal at all
points in the interior. Suppose there exists a point x ∈ X int at which f(x) ̸= g(x). Consider a ball centered at x of radius r
denoted as B(x, r) ⊂ X int (such a ball exists as this point is in the interior of X .). We argue that there exists at least one
point x1 in this ball at which f(x1) = g(x1). If this were not the case, then the equality will not hold on the entire ball,
which would contradict the condition that the equality f(x) = g(x) can only be violated on a set of measure zero. Note this
condition holds true for all r > 0. Suppose the distance of x1 from x is r1 ≤ r. Consider another ball with radius r2 < r1
and let x2 ∈ B(x, r2) where the equality holds. By repeating this argument, we can construct a sequence {xk}k∈N that
converges to x, where N is the set of natural numbers. On this sequence, the following conditions hold.

f(xk) = g(xk),∀k ∈ N (4)

Further, from the continuity of f and g it follows that

lim
k→∞

f(xk) = f(x), lim
k→∞

g(xk) = g(x) (5)

Combining the above two conditions, we get that f(x) = g(x). This leads to a contradiction since we assumed that
f(x) ̸= g(x). Thus there can be no such x in the interior at which f(x) ̸= g(x). From this it follows that f(x) = g(x) for
all x ∈ X int. Now let us consider the closure of X int, which is X itself since it is a regular closed set. Every point x ∈ X in
the closure can be expressed as limit of points in X int. Consider an x ∈ X and from the definition of regular closed set it
follows that limk→∞ xk = x, where xk ∈ X int. We already know from the fact that f and g are equal in the interior

f(xk) = g(xk),∀k ∈ N (6)

From the continuity of f and g it follows

lim
k→∞

f(xk) = f(x), lim
k→∞

g(xk) = g(x) (7)

Combining the above two we get that f(x) = g(x) for all x ∈ X . After this we can use Lemma 6 from (Lachapelle et al.,
2023) to conclude that ∇f(x) = ∇g(x),∀x ∈ X . We repeat their proof here for completeness. For all points in the interior
of X , it follows that ∇f(x) = ∇g(x),∀x ∈ X int.

Now consider any point x ∈ X . Since X is a regular closed set, limk→∞ xk = x. Since each xk is in the interior of X it
follows that

∇f(xk) = ∇g(xk),∀k ∈ N (8)

From the continuity of ∇f and ∇g it follows that

lim
k→∞

∇f(xk) = ∇f(x), lim
k→∞

∇g(xk) = ∇g(x) (9)

Combining the above conditions, we get that ∇f(x) = ∇g(x). This completes the proof.

A.2.1. DEEP SETS

In this section, we provide the proofs for length and compositional generalization for deep sets. We restate the theorems
from the main body for convenience of the reader. In what follows, we remind the reader that we denote the labeling function
f(X ) = ρ(

∑
x∈X ϕ(x)) and the function learned is denoted as h(X ) = ω(

∑
x∈X ψ(x)).
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Theorem 2.5. If H follows Assumption 2.3, the realizability condition holds, i.e., f ∈ H, supp(Xj) = [0, 1]n, ∀j ≥ 1, and
Assumption 2.4 holds, then the model trained to minimize the risk in (1) with ℓ2 loss generalizes to all sequences in the
hypercube [0, 1]nt, ∀t ≥ 1 and thus achieves length and compositional generalization.

Proof. Consider any h that solves (1). Since ℓ is ℓ2 loss and realizability condition holds, f is one of the optimal solutions
to (1). For all x≤T ∈ supp(X≤T ) except over a set of measure zero the following condition holds

h(x≤T ) = f(x≤T ). (10)

The above follows from the fact that h solves (1), i.e., E[∥h − f∥2] = 0 and from Theorem 1.6.6. (Ash & Doléans-
Dade, 2000). Since supp(X≤T ) is regular closed, f, h are both continuously differentiable, we can use Lemma A.1,
it follows that the above equality holds for all x≤T ∈ supp(X≤T ). From realizability condition it follows that true

f(x≤T ) = ρ
(∑

j≤T ϕ(xj)
)

. We substitute the functional decomposition from Assumption 2.3 to get

ω
(∑

j≤T

ψ(xj)
)
= ρ

(∑
j≤T

ϕ(xj)
)
. (11)

ω and ρ are both single layer perceptron with a bijective activation σ. We substitute the parametric form of ω and ρ to obtain

σ
(
A
∑
j≤T

ψ(xj)
)
= σ

(
B

∑
j≤T

ϕ(xj)
)

=⇒ A
∑
j≤T

ψ(xj) = B
∑
j≤T

ϕ(xj). (12)

The second equality in the above simplification follows from the fact that the activation σ is bijective, the inputs to σ are
equal. We take the derivative of the expressions above w.r.t xr to get the following condition and equate them (follows from
Lemma A.1). For all xr ∈ supp(Xr), i.e., xr ∈ [0, 1]n,

∇xr

(
A
∑
j≤T

ψ(xj)
)
= ∇xr

(
B

∑
j≤T

ϕ(xj)
)
. (13)

We drop the subscript r to simplify the notation. Therefore, for all x ∈ [0, 1]n

A∇xψ(x) = B∇xϕ(x), (14)

where ∇xψ(x) is the Jacobian of ψ(x) w.r.t x and ∇xϕ(x) is the Jacobian of ϕ(x) w.r.t x. We now take the derivative w.r.t
some component xk of vector x = [x1, · · · , xn]. Denote the components other than k as x−k = x \ xk. From the above
condition, it follows that for all x ∈ [0, 1]n

A
∂ψ(x)

∂xk
= B

∂ϕ(x)

∂xk
. (15)

Using fundamental theorem of calculus, we can integrate both sides for fixed x−k and obtain the following for all xk ∈ [0, 1],

Aψ(xk, x−k) = Bϕ(xk, x−k) + Ck(x
−k) =⇒ Aψ(x)−Bϕ(x) = Ck(x

−k). (16)

The above condition is true of all k ∈ {1, · · · , n}. Hence, we can deduce that for all x ∈ [0, 1]n and for k ̸= j, where
j, k ∈ {1, · · · , d},

9
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Aψ(x)−Bϕ(x) = Ck(x
−k) = Cj(x

−j). (17)

Take the partial derivative of Ck(x
−k) and Cj(x

−j) w.r.t xj to obtain, for all xj ∈ [0, 1],

∂Ck(x
−k)

∂xj
=
∂Cj(x

−j)

∂xj
= 0. (18)

In the above simplification, we use the fact that ∀xj ∈ [0, 1],
∂Cj(x

−j)
∂xj = 0. Therefore, Ck(x

−k) cannot depend on xj . We
can apply the same condition on all j ̸= k. As a result, Ck(x

−k) is a fixed constant vector denoted as C. We write this as

Aψ(x) = Bϕ(x) + C. (19)

Substitute the above into A
∑

j≤T ψ(xj) = B
∑

j≤T ϕ(xj) to obtain

B
∑
j≤T

ϕ(xj) + CT = B
∑
j≤T

ϕ(xj) =⇒ C = 0. (20)

Therefore, we get
∀x ∈ [0, 1]n, Aψ(x) = Bϕ(x). (21)

We now consider any sequence x≤T̃ from [0, 1]nT̃ . The prediction made by h is

h(x≤T̃ ) = σ
(
A
∑
j≤T̃

ψ(xj)
)
= σ

(
B

∑
j≤T̃

ϕ(xj)
)
= f(x≤T̃ ). (22)

We use (21) in the simplification above. From the above, we can conclude that h continues to be optimal for distribution
PX≤T̃

.

Linear identification From the fact that model achieves generalization on sequences of length T , we obtain (21). As a
result, we can state that relationship in (21) is necessary for length generalization and compositional generalization. Suppose
the output layer matrix A has a left inverse. If that is the case, then we can simplify (21) to obtain ψ(x) = A−1Bϕ(x),∀x ∈
(0, 1)d. This condition is known as linear representation identification in the literature (Khemakhem et al., 2020; Roeder
et al., 2021). As a result, this condition as necessary for both length and compositional generalization.

Remarks A few remarks and observations from the proof are in order. Firstly, observe that we do not require ϕ and ψ
to have the same output dimension for the above to proof to go through. Secondly, in Theorem 2.5, we observe all the
labels from t = 1 to T , i.e., y1 to yT . The result continues to hold if we only observe label at length T , i.e., yT . Finally,
we make an observation in this result, which would apply to all the subsequent theorems. The definition of compositional
generalization requires generalization to the Cartesian product over sequences of length T , where T is the training length.
Since our model generalizes to the hypercube [0, 1]nt,∀t, we achieve compositional generalization even beyond the training
lengths.

Extending Theorem 2.5 to ω from C1-diffeomorphisms class
Assumption A.2. Each function in H is expressed as h(x1, · · · , xi) = ω(

∑i
j=1 ψ(xj)), where ω is a C1-diffeomorphism.

Assumption A.3. The joint support supp(X≤i) is a regular closed set for all i ≤ T . The support of all tokens is equal,
i.e., supp(Xj) = [0, 1]n, where j ≥ 1. The support of [ϕ(X1), ϕ(X2)] is R2m, where ϕ is the embedding function for the
labeling function f(X ) = ρ(

∑
x∈X ϕ(x)).
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We provide a remark on the assumption and where it is used following the proof of the next theorem.

Theorem A.4. If H follows Assumption A.2, the realizability condition holds, i.e., f ∈ H, and a further assumption on the
support (Assumption A.3) holds, then the model trained to minimize the risk in (1) (with T ≥ 2) with ℓ2 loss generalizes to
all sequences in [0, 1]nt,∀t ≥ 1 and thus achieves length and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f . We first use the fact h(x≤i) =
f(x≤i) almost everywhere in the support. We can use the continuity of h, f and regular closedness of the support to
extend the equality to all points in the support (follows from the first part of Lemma A.1) to obtain the following. For all
x≤i ∈ supp(X≤i)

ω
(∑

j≤i

ψ(xj)
)
= ρ

(∑
j≤i

ϕ(xj)
)

=⇒
∑
j≤i

ψ(xj) = ω−1 ◦ ρ
(∑

j≤i

ϕ(xj)
)

=⇒

∑
j≤i

ψ(xj) = a
(∑

j≤i

ϕ(xj)
)
,

(23)

where a = ω−1 ◦ ρ. In the above simplification, we used the parametric form for the true labeling function and the learned
labeling function and use the invertibility of ω. Let us consider the setting when i = 1. In that case summation involves only
one term. Substitute x1 = x. We obtain ∀x ∈ [0, 1]n,

ψ(x) = a(ϕ(x)). (24)

The above expression implies that ψ bijectively identifies ϕ. Let us consider the setting when i = 2. Substitute x1 = x and
x2 = y. We obtain

a(ϕ(x)) + a(ϕ(y)) = a
(
ϕ(x) + ϕ(y)

)
. (25)

We now use the that assumption [ϕ(x), ϕ(y)] spans R2m, where ϕ(x) and ϕ(y) individually span Rm. Substitute ϕ(x) = α
and ϕ(y) = β. We obtain ∀α ∈ Rm, ∀β ∈ Rm

a(α) + a(β) = a
(
α+ β

)
. (26)

Observe that a(0) = 0 (substitute α = β = 0 in the above).

We use (26) to show that a is linear. To show that, we need to argue that a(cα) = ca(α) as we already know a satisfies
additivity condition.

From the identity above, we want to show that (51) a(pα) = pa(α), where p is some integer.

Substitute β = −α in a(α+ β) = a(α) + a(β). We obtain a(0) = a(α) + a(−α) =⇒ a(−α) = −a(α). Suppose p is a
positive integer. We simplify a(pα) as follows a(α+(p−1)α) = a(α)+a((p−1)α). Repeating this simplification, we get
a(pα) = pa(α). Suppose p is a negative integer. We can write a(pα) = a(−p×−α) = −pa(−α). Since a(−α) = −a(α),
we get a(pα) = pa(α).

Suppose c is some rational number, i.e., c = p/q, where p and q are non-zero integers. We already know a(pα) = pa(α).
Further, we obtain

a(q 1
qα) = qa( 1qα) =⇒ a( 1qα) =

1
qa(α), where q is some integer.

Now combine these a(p/qα) = pa(1/qα) = p
qa(α). We have established the homogeneity condition for rationals.

We will now use the continuity of the function a and density of rationals to extend the claim for irrationals. Suppose c is
some irrational. Define a sequence of rationals that approach c (this follows from the fact that rationals are dense in R).

a(cα) = a(limn→∞ qnα) = limn→∞ a(qnα).

11
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In the second equality above, we use the definition of continuity (a is continuous since composition of continuous functions
is continuous). We can also use the property that we already showed for rationals to further simplify

limn→∞ a(qnα) = a(α) limn→∞ qn = ca(α).

Observe that a : Rm → Rm and for any α, β ∈ Rm a(α+ β) = a(α) + a(β) and a(cα) = ca(α). From the definition of a
linear map it follows that a is linear. As a result, we can write ∀x ∈ [0, 1]n

ψ(x) = A(ϕ(x)) (27)

Observe that a is invertible because both ρ and ω are invertible. As a result, we know that A is an invertible matrix. From
this we get

ϕ(x) = A−1ψ(x) = C(ψ(x)) (28)

For all z ∈ Rm, we obtain

a(z) = ρ−1 ◦ ω(z) = Cz =⇒ ω(z) = ρ(Cz)

Let us consider any sequence x≤T̃ ∈ [0, 1]nT̃ . We use the above conditions

ω
(∑
j≤T̃

ψ(xj)
)
= ρ(C

∑
j≤T̃

ψ(xj)) = ρ
(∑
j≤T̃

ϕ(xj)
)

Thus we obtain length and compositional generalization.

Remark on Assumption A.3 In Assumption A.3, we require that the support of [ϕ(X1), ϕ(X2)] is R2m. This assumption
is used in the proof in equation (26). We used this assumption to arrive at a(α+ β) = a(α) + a(β),∀α, β ∈ Rm. We then
used continuity of a to conclude a is linear. Now suppose [ϕ(X1), ϕ(X2)] is some subset Z ⊆ R2m. We believe that it is
possible to extend the result to more general Z , it might still be possible to arrive at a is linear. We leave this investigation to
future work.

Remark on expressivity under Assumption A.2 and Assumption A.3 Assumption A.3 requires ω is a C1-
diffeomorphism. Suppose the label is one dimensional, i.e., m = 1. From Assumption A.3 output dimension of ϕ
is restricted to be one dimensional. Consider the map h(x1, · · · , xi) = ρ(

∑
j≤i ϕ(xj)). The output dimension of ϕ is

required to grow with sequence length to express all permutation invariant maps (See Theorem 7 in (Zaheer et al., 2017)).
Thus by restricting the output dimension of ϕ to one, we cannot express all the permutation invariant maps.

Product operator Consider the product operator yi = Πi
j=1xi, where each xi > 0. Observe that we can rewrite this as

yi = exp(
∑i

j=1 log(xj)). This operator is realizable on deep sets from hypothesis class described by Assumption A.2 with
ω = exp and ψ = log. In Assumption A.3, we require the support of [ϕ(X1), ϕ(X2)] to be R2. We let the support of X1

and X2 be (0,∞). In Assumption A.3 we require that the support of each token was equal to [0, 1]. However, the proof of
Theorem A.4 still goes through even if support is (0,∞). Hence, we can use Theorem A.4 to conclude that deep sets trained
to predict the output of multiplication can multiply longer sequences and also multiply new token combinations.

A.2.2. TRANSFORMERS

In this section, we provide the proofs for length and compositional generalization for transformers.

We restate the theorems from the main body for convenience of the reader. In what follows, we want to remind the reader we
denote the labeling function f(x1, · · · , xi) = ρ(

∑
j≤i ϕ(xi, xj)) and the function learned is denoted as h(x1, · · · , xi) =

ω(
∑

j≤i ψ(xi, xj)). Theorem 2.7 presents the results for generalization where ω is a single layer perceptron. Theorem A.6
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adapts it to incorporate positional encodings. Theorem A.9 extends the setting of Theorem 2.7 to ω that come from class of
C1-diffeomorphisms. Theorem A.12 adapts Theorem A.9 to incorporate positional encodings.
Theorem 2.7. If H follows Assumption 2.6, the realizability condition holds, i.e., f ∈ H, supp(Xi, Xj) = [0, 1]2n, ∀i ̸= j
and the regular closedness condition in Assumption 2.4 holds, then the model trained to minimize the risk in (1) (with T ≥ 2)
with ℓ2 loss generalizes to all sequences in the hypercube [0, 1]nt, ∀t ≥ 1 and thus achieves length and compositional
generalization.

Proof. Consider any h that solves (1). Since ℓ is ℓ2 loss and realizability condition holds, f is one of the optimal solutions
to (1). For all i ≤ T, x≤i ∈ supp(X≤i) except over a set of measure zero the following condition holds

h(x≤i) = f(x≤i). (29)

The above follows from the fact that h solves (1), i.e., E[∥h−f∥2] = 0 and from Theorem 1.6.6. (Ash & Doléans-Dade, 2000).
Since supp(X≤i) is regular closed, f, h are both continuously differentiable, we can use Lemma A.1, it follows that the above

equality holds for all x≤i ∈ supp(X≤i). From realizability condition it follows that true f(x≤i) = ρ
(∑

k≤i ϕ(xi, xk)
)

.
We substitute the parametric forms from Assumption 2.6 to get

ω
(∑

k≤i

1

i
· ψ(xi, xk)

)
= ρ

(∑
k≤i

1

i
· ϕ(xi, xk)

)
. (30)

Since ω and ρ are single layer perceptron with bijective activation σ. We substitute the parametric form of ω and ρ to obtain
the following condition. For all x≤i ∈ supp(X≤i),

σ
(
A
∑
k≤i

1

i
· ψ(xi, xk)

)
= σ

(
B
∑
k≤i

1

i
· ϕ(xi, xk)

)
=⇒ A

∑
k≤i

ψ(xi, xk) = B
∑
k≤i

ϕ(xi, xk). (31)

The second equality follows from the fact that the activation σ is bijective and hence the inputs to σ are equal. We take the
derivative of the expressions above w.r.t xj to get the following (follows from Lemma A.1). For j < i (there exists a j < i
as T ≥ 2 and we can set i ≥ 2) and for all xj ∈ supp(Xj), i.e., xj ∈ [0, 1]n,

∇xj

(
A
∑
k≤i

ψ(xi, xk)
)
= ∇xj

(
B
∑
k≤i

ϕ(xi, xk)
)

=⇒

A∇xj
ψ(xi, xj) = B∇xj

ϕ(xi, xj),

(32)

where ∇xj
ψ(xi, xj),∇xj

ϕ(xi, xj) are the Jacobians of ψ and ϕ w.r.t xj for a fixed xi. Note that A∇xj
ψ(xi, xj) =

B∇xj
ϕ(xi, xj) holds for all xi ∈ [0, 1]n, xj ∈ [0, 1]n (here we use the fact that joint support of every pair of tokens

spans 2n dimensional unit hypercube assumed in the Theorem A.6). In this equality, we now consider the derivative w.r.t
some component xkj of xj . Denote the remaining components as x−k

j . From the above condition it follows that for all
xi ∈ [0, 1]n, xj ∈ [0, 1]n,

A
∂ψ(xi, xj)

∂xkj
= B

∂ϕ(xi, xj)

∂xkj
. (33)

Using fundamental theorem of calculus, we can integrate both sides for fixed x−k
j and obtain the following for all xkj ∈ [0, 1],

Aψ
(
xi, [x

k
j , x

−k
j ]

)
= Bϕ

(
xi, [x

k
j , x

−k
j ]

)
+ Ck

(
xi, x

−k
j

)
=

Aψ(xi, xj) = Bϕ(xi, xj) + Ck(xi, x
−k
j ).

(34)
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The same condition is true of all k. Hence, ∀xi ∈ [0, 1]d,∀xj ∈ [0, 1]d and for k ̸= q, where q, k ∈ {1, · · · , d},

Aψ(xi, xj)−Bϕ(xi, xj) = Ck(xi, x
−k
j ) = Cq(xi, x

−q
j ). (35)

Take the partial derivative of both sides w.r.t xqj to obtain, ∀xqj ∈ [0, 1],

∂Ck(xi, x
−k
j )

∂xqj
=
∂Cq(xi, x

−q
j )

∂xqj
= 0. (36)

Therefore, Ck(xi, x
−k
j ) cannot depend on xqj . We can apply the same condition on all q ̸= k. As a result, Ck(xi, x

−k
j ) is

only a function of xi denoted as C(xi). Therefore, for j < i and for all xi ∈ [0, 1]n, xj ∈ [0, 1]n

Aψ(xi, xj) = Bϕ(xi, xj) + C(xi). (37)

If we substitute xi = xj = x, then the above equality extends for i = j and thus we get

Aψ(xi, xi) = Bϕ(xi, xi) + C(xi). (38)

Substitute the above (37), (38) into A
∑

k≤i ψ(xi, xk) = B
∑

k≤i ϕ(xi, xk) to obtain

B
∑
k≤i

ϕ(xi, xk) + (i)C(xi) = B
∑
k≤i

ϕ(xi, xk) =⇒ C(xi) = 0. (39)

Thus we obtain

∀xi ∈ [0, 1]n, xj ∈ [0, 1]n Aψ(xi, xj) = Bϕ(xi, xj). (40)

We now consider any sequence x≤T̃ ∈ [0, 1]nT̃ . The prediction made by h is

h(x≤T̃ ) = σ
(
A
∑
j≤T̃

ψ(xT̃ , xj)
)
= σ

(
B

∑
j≤T̃

ϕ(xT̃ , xj)
)
= f(x≤T̃ ) (41)

We use (40) in the simplification above. From the above, we can conclude that h continues to be optimal for all sequences in
[0, 1]nT̃ .

Linear identification Observe that we arrive at equation (40) by starting from the condition that the model generalizes on
sequences of length up to T . If the weight matrix in the output layer A is left invertible, then we obtain that ψ(xi, xj) =
A−1Bϕ(xi, xj), which implies that linear representation identification is necessary for both compositional and length
generalization (this argument is based on the same reasoning as the previous proof of Theorem 2.5).

On the absence of labels at all lengths from t = 1 to t = T A few important remarks are to follow. In the proof above,
we do not require to observe all the labels from t = 1 to t = T , where T ≥ 2. The proof goes through provided we observe
data at two different lengths.

14
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Positional encoding In what follows, we extend the above result (Theorem 2.7) to incorporate positional encoding. We
start with extension of the hypothesis class to incorporate positional encoding.

Assumption A.5. Each function in the hypothesis class H used by the learner is given as h(x1, · · · , xi) =

ω
(∑

j≤i
1
iψi−j(xi, xj)

)
, where ω is a single layer perceptron with continuously differentiable bijective activation (e.g.,

sigmoid) and each ψk is a map that is differentiable. Also, ψk = 0 for k ≥ Tmax, i.e., two tokens that are sufficiently far
apart do not interact.

In the above assumption, we incorporate relative positional encodings by making the function ψi−j depend on the relative
positional difference between token xi and token xj . We would like to emphasize the reasons why we assume that the
tokens that are sufficiently far apart do not interact. Suppose Tmax = ∞, which implies tokens at all positions interact. As a
result, during training since we only see sequences of finite length T , we will not see the effect of interactions of tokens that
are separated at a distance larger than T on the data generation, which makes it impossible to learn anything about ϕi−j ,
where i− j ≥ T − 1.

In the theorem that follows, we show that we can achieve length and compositional generalization for the above hypothesis
class.

Theorem A.6. If H follows Assumption A.5, the realizability condition holds, i.e., f ∈ H, supp(Xi, Xj) = [0, 1]2n, ∀i ̸=
j ∈ {1, · · · ,∞}, the regular closedness condition in Assumption 2.4 holds and T ≥ Tmax ≥ 2, then the model trained to
minimize the risk in (1) with ℓ2 loss generalizes to all sequences in the hypercube [0, 1]nt, ∀t and thus achieves length and
compositional generalization.

Proof. Consider any h that solves (1). Since ℓ is ℓ2 loss and realizability condition holds, f is one of the optimal solutions
to (1). For all i ≤ T and for all x≤i ∈ supp(X≤i) except over a set of measure zero the following condition holds

h(x≤i) = f(x≤i). (42)

The above follows from the fact that h solves (1), i.e., E[∥h−f∥2] = 0 and from Theorem 1.6.6. (Ash & Doléans-Dade, 2000).
Since supp(X≤i) is regular closed, f, h are both continuously differentiable, we can use Lemma A.1, it follows that the above

equality holds for all x≤i ∈ supp(X≤i). From realizability condition it follows that true f(x≤i) = ρ
(∑

k≤i ϕi−k(xi, xk)
)

.
We substitute the parametric forms from Assumption 2.6 to get

ω
(∑

k≤i

1

i
· ψi−k(xi, xk)

)
= ρ

(∑
k≤i

1

i
· ϕi−k(xi, xk)

)
. (43)

Since ω and ρ are single layer perceptron with bijective activation σ. We substitute the parametric form of ω and ρ to obtain
the following condition. For all x≤i ∈ supp(X≤i),

σ
(
A
∑
k≤i

1

i
· ψi−k(xi, xk)

)
= σ

(
B
∑
k≤i

1

i
· ϕi−k(xi, xk)

)
=⇒

A
∑
k≤i

ψi−k(xi, xk) = B
∑
k≤i

ϕi−k(xi, xk).
(44)

The second equality follows from the fact that the activation σ is bijective and hence the inputs to σ are equal. We take the
derivative of the expressions above w.r.t xj to get the following (follows from Lemma A.1). The equality holds true for all
i ≤ T .

From the above, we can use i = 1 and obtain

Aψ0(x1, x1) = Bϕ0(x1, x1),∀x1 ∈ [0, 1]n.

15
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From i = 2, we obtain

Aψ0(x2, x2) +Aψ1(x2, x1) = Bϕ0(x2, x2) +Bϕ1(x2, x1),∀x1 ∈ [0, 1]n, x2 ∈ [0, 1]n

Combining the two conditions we get

Aψ1(x2, x1) = Bϕ1(x2, x1),∀x1 ∈ [0, 1]n, x2 ∈ [0, 1]n.

We can use this argument and arrive at

Aψi−1(xi, x1) = Bϕi−1(xi, x1),∀xi ∈ [0, 1]n, x1 ∈ [0, 1]n,∀i ≤ T.

Thus we obtain
∀i− j ≤ T − 1,∀xi ∈ [0, 1]n, xj ∈ [0, 1]n, Aψi−j(xi, xj) = Bϕi−j(xi, xj). (45)

From Assumption A.5 and T ≥ Tmax, we already know that

∀i− j ≥ T, ∀xi ∈ [0, 1]n, xj ∈ [0, 1]n, Aψi−j(xi, xj) = Bϕi−j(xi, xj) = 0. (46)

If A is left invertible, then the above condition implies that linear representation identification is necessary for both
compositional and length generalization.

We now consider any sequence x≤T̃ ∈ [0, 1]nT̃ . The prediction made by h is

h(x≤T̃ ) = σ
(
A
∑
j≤T̃

ψT̃−j(xT̃ , xj)
)
= σ

(
B

∑
j≤T̃

ϕT̃−j(xT̃ , xj)
)
= f(x≤T̃ ) (47)

We use (40) in the simplification above. From the above, we can conclude that h continues to be optimal for all sequences in
[0, 1]nT̃ .

Assumption A.7. The joint support supp(X≤i) is a regular closed set for all i ≤ T . The support of all pairs of tokens is
equal, i.e., supp(Xi, Xj) = [0, 1]2n, where i ̸= j, i ≥ 1, j ≥ 1. The support of [ϕ(X1, X2), ϕ(X1, X3)] is R2m, where ϕ is
the embedding function for the labeling function ρ(

∑
j≤i ϕ(xi, xj)).

Assumption A.8. Each function in H takes a sequence {x1, · · · , xi} as input and outputs h(x1, · · · , xi) =

ω(
∑i−1

j=1
1

i−1ψ(xi, xj)), where ω : Rm → Rm is a C1-diffeomorphism, ω(0) = 0.

Theorem A.9. If H follows Assumption A.8, the realizability condition holds, i.e., f ∈ H, and a further assumption on the
support (Assumption A.7) holds, then the model trained to minimize the risk in (1) (with T ≥ 3) with ℓ2 loss generalizes to
all sequences in [0, 1]nt,∀t ≥ 1 and thus achieves length and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f . We first use the fact h(x≤i) =
f(x≤i),∀i ≤ T almost everywhere in the support. We can use the continuity of h, f and regular closedness of the support
to extend the equality to all points in the support (follows from the first part of Lemma A.1) to obtain the following. For all
x≤i ∈ supp(X≤i)

ω
(∑

j<i

1

i− 1
· ψ(xi, xj)

)
= ρ

(∑
j<i

1

i− 1
· ϕ(xi, xj)

)
=⇒

∑
j<i

1

i− 1
ψ(xi, xj) = ω−1 ◦ ρ

(∑
j<i

1

i− 1
· ϕ(xi, xj)

)
=⇒

∑
j<i

1

i− 1
ψ(xi, xj) = a

(∑
j<i

1

i− 1
ϕ(xi, xj)

)
,

(48)
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where a = ω−1 ◦ ρ. In the above simplification, we used the parametric form for the true labeling function and the learned
labeling function and use the invertibility of ω. Let us consider the setting when i = 2. In that case summation involves only
one term. Substitute x1 = y and x2 = x. We obtain ∀x ∈ [0, 1]n, y ∈ [0, 1]n,

ψ(x, y) = a(ϕ(x, y)). (49)

The above expression implies that ψ bijectively identifies ϕ. Let us consider the setting when i = 3 (this is possible since
T ≥ 3). We substitute x3 = x, x2 = y, x1 = z and obtain

1

2

[
a(ϕ(x, y)) + a(ϕ(x, z))

]
= a

(1
2

(
ϕ(x, y) + ϕ(x, z)

))
. (50)

Substitute ϕ(x, y) = α and ϕ(x, z) = β. In the simplifcation that follows, we use the that assumption [ϕ(x, y), ϕ(x, z)]
spans R2m, where ϕ(x, y) and ϕ(x, z) individually span Rm.

1

2
(a(α) + a(β)) = a

(1
2
(α+ β)

)
. (51)

Observe that a(0) = 0 because ω−1 ◦ ρ(0) = 0 because ω−1(0) = ρ(0) = 0.

1

2
(a(2α) + a(0)) = a

(1
2
(2α+ 0)

)
a(2α) = 2a(α)

(52)

Next, substitute α with 2α and β with 2β in (51) to obtain

1

2
(a(2α) + a(2β)) = a

(1
2
(2α+ 2β)

)
a(α+ β) = a(α) + a(β)

(53)

We use (53) to show that a is linear. To show that, we need to argue that a(cα) = ca(α) as we already know a satisfies
additivity condition.

Suppose c is some rational number, i.e., c = p/q, where p and q are non-zero integers.

From the identity it is clear that a(pα) = pa(α), where p is some integer.

a(q 1
qα) = qa( 1qα) =⇒ a( 1qα) =

1
qa(α), where q is some integer.

Now combine these a(p/qα) = pa(1/qα) = p
qa(α). We have established the homogeneity condition for rationals.

We will now use the continuity of the function a and density of rationals to extend the claim for irrationals. Suppose c is
some irrational. Define a sequence of rationals that approach c (this follows from the fact that rationals are dense in R).

a(cα) = a(limn→∞ qnα) = limn→∞ a(qnα).

In the second equality above, we use the definition of continuity (a is continuous since composition of continuous functions
is continuous). We can also use the property that we already showed for rationals to further simplify

limn→∞ a(qnα) = a(α) limn→∞ qn = ca(α).

Observe that a : Rm → Rm and for any α, β ∈ Rm a(α+ β) = a(α) + a(β) and a(cα) = ca(α). From the definition of a
linear map it follows that a is linear. As a result, we can write ∀x ∈ [0, 1]n, y ∈ [0, 1]n

ψ(x, y) = A(ϕ(x, y)) (54)

17



On Provable Length and Compositional Generalization

Observe that a is invertible because both ρ and ω are invertible. As a result, we know that A is an invertible matrix. From
this we get

ϕ(x, y) = A−1ψ(x, y) = C(ψ(x, y)) (55)

For all z ∈ Rm, we obtain

a(z) = ρ−1 ◦ ω(z) = Cz =⇒ ω(z) = ρ(Cz)

Let us consider any sequence x≤T̃ ∈ [0, 1]nT̃ . We use the above conditions

ω
(∑
j<T̃

ψ(xT̃ , xj)
)
= ρ(C

∑
j<T̃

ψ(xT̃ , xj)) = ρ
(∑
j<T̃

ϕ(xT̃ , xj)
)
.

Thus we obtain length and compositional generalization.

Linear identification Observe that we arrive at equation (54) by starting from the condition that the model generalizes on
sequences of length up to T . The condition directly implies that ψ linearly identifies ϕ.

On absence of labels at all lengths from 1 to T We argue that the above proof can be adapted to the setting where we do
not observe labels at all lengths from 1 to T . Suppose we only observe label at length T . Take equation (48) and substitute
xi = x and xj = y for all j < i to obtain the same condition as equation (49). Suppose T is odd and larger than or equal to
3. Fix xi = x, x2j−1 = y,∀j ∈ {1, · · · , (T − 1)/2}, x2j = z,∀j ∈ {1, · · · , (T − 1)/2}. We obtain the same condition as
equation (50). Rest of the proof can be adapted using a similar line of reasoning.

Remark on Assumption A.8 We require that the support of [ϕ(X1, X2), ϕ(X1, X3)] is R2m. This assumption is used
in the proof in equation (53). We used this assumption to arrive at a(α+ β) = a(α) + a(β),∀α, β ∈ Rm. We then used
continuity of a to conclude a is linear. Now suppose [ϕ(X1, X2), ϕ(X1, X3)] is some subset Z ⊆ R2m. We believe that it
is possible to extend the result to more general Z , it might still be possible to arrive at a is linear. We leave this investigation
to future work.

Multiple attention heads Our choice of the archictecture did not invoke multiple attention heads. If we include multiple
attention heads, then also we can arrive at the same length generalization guarantees. The model class with two attention
heads ψ1, ψ2 can be stated as follows ω

(∑
j<iA[ψ1(xi, xj), ψ2(xi, xj)]

⊤
)

, where A combines the outputs of the attention
heads linearly. Following the same steps of proof of Theorem A.9, we obtain the following.

ω
(∑

j<i

A[ψ1(xi, xj), ψ2(xi, xj)]
⊤
)
= ρ

(∑
j<i

B[ϕ1(xi, xj), ϕ2(xi, xj)]
⊤
)
,

ω
(∑

j<i

ψ̃(xi, xj)
)
= ρ

(∑
j<i

ϕ̃(xi, xj)
)
,

∑
j<i

ψ̃(xi, xj = a
(∑

j<i

ϕ̃(xi, xj)
)
,

(56)

where a = ω−1 ◦ ρ. In the above simplification, the RHS shows the labeling function and the RHS is the function that is
learned. We can follow the same strategy as the proof of Theorem A.9 for the rest of the proof. We set i = 2 and obtain a
condition similar to (49) and for i = 3 we obtain a condition similar to (50). Following a similar proof technique, we obtain
a is linear and the proof extends to multiple attention heads.
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Positional encoding We next present the result when ω is continuously differentiable and invertible.
Assumption A.10. Each function in the hypothesis class H used by the learner is given as h(x1, · · · , xi) =

ω
(∑

j≤i ψi−j(xi, xj)
)

, where ω is a C1-diffeomorphism. Also, ψi−j = 0 for i − j > Tmax − 1, i.e., two tokens
that are sufficiently far apart do not interact. For all k ≤ Tmax − 1 each x ∈ [0, 1]n, ∃ y ∈ [0, 1]n we ψk(x, y) = 0.

In the theorem that follows, we require the support of training distribution under consideration is already sufficiently diverse
and hence we only seek to prove length generalization guarantees.
Assumption A.11. The joint support supp(X≤T ) = [0, 1]T . The support of [ϕ1(X1, X2), ϕ2(X1, X3)] is R2k, where ϕi−j

is the embedding function for the labeling function ρ(
∑

j≤i ϕi−j(xi, xj)).

Theorem A.12. If H follows Assumption A.10, the realizability condition holds, i.e., f ∈ H, Assumption A.11 holds and
T ≥ Tmax, then the model trained to minimize the risk in (1) (with T ≥ 2) with ℓ2 loss achieves length generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f . We first use the fact h(x≤i) =
f(x≤i) almost everywhere in the support. We can use the continuity of h, f and regular closedness of the support to
extend the equality to all points in the support (follows from the first part of Lemma A.1) to obtain the following. For all
x≤i ∈ supp(X≤i)

ω
(∑

j<i

1

i− 1
ψi−j(xi, xj)

)
= ρ

(∑
j<i

1

i− 1
ϕi−j(xi, xj)

)
,

∑
j<i

1

i− 1
ψi−j(xi, xj) = ω−1 ◦ ρ

(∑
j<i

1

i− 1
ϕi−j(xi, xj)

)
,

∑
j<i

1

i− 1
ψi−j(xi, xj) = a

(∑
j<i

1

i− 1
ϕi−j(xi, xj)

)
,

(57)

where a = ω−1 ◦ ρ. In the above simplification, we used the parametric form for the true labeling function and the learned
labeling function. We also used the invertibility of ρ. Let us consider the setting when i = 2. In that case summation
involves only one term. Substitute x1 = y and x2 = x. We obtain ∀x ∈ [0, 1]n, y ∈ [0, 1]n,

ψ1(x, y) = a(ϕ1(x, y)). (58)

For i = 3, substitute x1 = x, x3 = z and set x2 = y in such a way that ϕ1(x, y) = 0 (follows from Assumption A.10).
Thus we obtain

ψ2(x, y) = a(ϕ2(x, y)). (59)

Similarly, we can obtain the following. For all k ≤ Tmax

ψk(x, y) = a(ϕk(x, y)). (60)

The above expression implies that ψ bijectively identifies ϕ. Let us consider the setting when i = 3 (this is possible since
T ≥ 3). We substitute x3 = x, x2 = y, x1 = z to give

1

2

(
a(ϕ1(x, y)) + a(ϕ2(x, z))

)
= a

(1
2
(ϕ1(x, y) + ϕ2(x, z))

)
. (61)

We now use the that assumption [ϕ1(x, y), ϕ2(x, z)] spans R2k and substitute ϕ1(x, y) = α and ϕ2(x, z) = β

1

2
(a(α) + a(β)) = a

(1
2
(α+ β)

)
. (62)

Rest of the proof follows the same strategy as proof of Theorem A.9.
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A.2.3. STATE SPACE MODELS

In this section, we discuss SSMs and provide the proofs of Theorem 2.9.

Assumption A.13. The joint support supp(X≤i) is a regular closed set for all i ≤ T . The support of X1 is Rn. For some
length 2 ≤ i ≤ T an there exists in sequences x≤i such that their concatenation forms a in× in matrix of rank in.

Theorem 2.9. If H follows Assumption 2.8, and the realizability condition holds, i.e., f ∈ H, and a further condition on the
support, i.e., Assumption A.13, holds, then the model trained to minimize the risk in (1) with ℓ2 loss (T ≥ 2) achieves length
and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f . We first use the fact h(x≤i) =
f(x≤i),∀i ≤ T almost everywhere in the support. We can use the continuity of h, f and regular closedness of the
support to extend the equality to all points in the support (from first part of Lemma A.1) to obtain the following. For all
x≤i ∈ supp(X≤i).

f(x≤i) = h(x≤i) =

ρ(

i−1∑
j=0

ΛjBxi−j) = ω(
i−1∑
j=0

Λ̃jB̃xi−j) =⇒

ω−1 ◦ ρ(
i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j =

c(

i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j

(63)

For i = 1, ∀x1 ∈ Rn, c(Bx1) = B̃x1. Substitute Bx1 = x, we obtain ∀x ∈ Rn, c(x) = B̃B−1x = Cx, where we use the
fact that Bx1 spans Rn as B is invertible.

From linearity of c, we obtain

ω−1 ◦ ρ(z) = Cz =⇒ ρ(z) = ω(Cz),∀z ∈ Rn (64)

We use this linearity of c to simplify

c(

i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j =⇒

C(

i−1∑
j=0

ΛjBxi−j) =

i−1∑
j=0

Λ̃jB̃xi−j =⇒

[CB,CΛB,CΛ2B, · · · , CΛi−1B]


xi
xi−2

...
x1

− [B̃, Λ̃B̃, Λ̃2B̃, · · · , Λ̃i−1B̃]


xi
xi−2

...
x1

 = 0 =⇒

[
[CB,CΛB,CΛ2B, · · · , CΛi−1B]− [B̃, Λ̃B̃, Λ̃2B̃, · · · , Λ̃i−1B̃]

]
X = 0,

(65)

where X =


xi
xi−2

...
x1

.
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Denote R =
[
[CB,CΛB,CΛ2B, · · · , CΛi−1B] − [B̃, Λ̃B̃, Λ̃2B̃, · · · , Λ̃i−1B̃]

]
. We collect a set of points X+ =

[X(1), · · · ,X(l)] where l ≥ ni and rank of X+ = ni (from Assumption A.13). Since the matrix X+ is full rank, we have

RX+ = 0 =⇒ R = 0.

This yields

CB = B̃, CΛB = Λ̃B̃, · · · , CΛiB = Λ̃iB̃. (66)

Observe that from the second equality, we get Λ̃ = CΛC−1. Given the parameters (Λ, B), the set of parameters (Λ̃, B̃) that
solve the first two equalities are – {B̃ is an arbitrary invertible matrix, Λ̃ = CΛC−1, where C = B̃B−1}.

Take any solution of the first two equalities and compute

Λ̃iB̃ = CΛiC−1B̃ = CΛiB, ∀i ≥ 1 (67)

From (67) and (64), we obtain that for all x≤i ∈ Rni

h(x≤i) = ω(

i−1∑
j=0

Λ̃jB̃xi−j) = ω(C

i−1∑
j=0

ΛjBxi−j) = ρ(

i−1∑
j=0

ΛjBxi−j) = f(x≤i) (68)

This establishes both compositional and length generalization.

Linear identification Observe that equation (63) is arrived at under the condition that the model generalizes at all
lengths up to T . From (63) and linearity of c(·) it follows that

∑i−1
j=0 Λ̃

jB̃xi−j = C(
∑i−1

j=0 Λ
jBxi−j). Recall that∑i−1

j=0 Λ̃
jB̃xi−j = h̃j and

∑i−1
j=0 Λ

jBxi−j = hj . From this it follows that h̃j = Chj , which proves that learned hidden
state are a linear transform of the hidden state underlying the labeling function.

A.2.4. VANILLA RNNS

In this section, we discuss RNNs and present the proof of Theorem 2.11.

Lemma A.14. The kth derivative of sigmoid function denoted ∂kσ(s)
∂sk

is not zero identically.

Proof. The first derivative of the sigmoid function ∂σ(s)
∂s = σ(s)(1− σ(s)). We argue that the ∂kσ(s)

∂sk
is a polynomial in

σ(s) with degree k + 1. Consider the base case of k = 1. This condition is true as ∂σ(s)
∂s = σ(s)(1 − σ(s)). Now let us

assume that ∂kσ(s)
∂sk

is a polynomial of degree at most k + 1 denoted as Pk+1(σ(s)). We simplify

∂kσ(s)

∂sk
= Pk+1(σ(s)) =

k+1∑
j=1

aj(σ(s))
j

We take another derivative of the term above as follows.

∂k+1σ(s)

∂sk+1
=
∂Pk+1(σ(s))

∂s
=

k+1∑
j=1

aj
∂(σ(s))j

∂s
=

k+1∑
j=1

ajjσ(s)
j−1(σ(s)(1− σ(s)))

Observe that the ∂k+1σ(s)
∂sk+1 is also a polynomial in σ(s). Observe that the degree k + 2 term has one term with coefficient

−ak+1 · (k + 1). Since ak+1 ̸= 0, the coefficient of degree k + 2, −ak+1 · (k + 1), is also non-zero. Since ∂kσ(s)
∂sk

is a
polynomial in σ(s) with degree k + 1 and hence, it cannot be zero identically.
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Lemma A.15. Let x ∈ Rn and A ∈ Rn×n. Suppose Ax = 0,∀x ∈ X , where X has a non-empty interior. Under these
conditions A = 0.

Proof. Since X has a non-empty interior, we can construct a ℓ∞ ball centered on θ, defined as follows – X̃ = {θ +∑n
j=1 αjej |∥α∥∞ ≤ αmax }, where ej is a vector that is zero in all components and one on the jth component. Suppose

A was non-zero. One of the columns say aj is non-zero. Consider two points in the ball X̃ such that jth coefficients are
non-zero but rest of the coefficients are zero. We denote the jth components for the two components as αj and α̃j , where
αj ̸= α̃j . We now plug these two points into the condition that Ax = 0

A(θ + αjej) = 0 =⇒ Aθ = αjaj ,

A(θ + α̃jej) = 0 =⇒ Aθ = α̃jaj ,
(69)

We take a difference of the two steps above and obtain

(αj − α̃j)aj = 0 =⇒ aj = 0

This is a contradiction. Hence, A = 0.

Theorem 2.11. If H follows Assumption 2.10, and the realizability condition holds, i.e., f ∈ H and regular closedness
condition in Assumption 2.4 holds, then the model trained to minimize the risk in (1) with ℓ2 loss (with T ≥ 2) achieves
length and compositional generalization.

Proof. We start with the same steps as earlier proofs and equate the prediction of h and f everywhere in the support of the
training distribution (using first part of Lemma A.1). We start with equating label at length 1, i.e., y1. For all x1 ∈ supp(X1)

σ(Aσ(Bx1)) = σ(Ãσ(B̃x1)) =⇒ Aσ(Bx1) = Ãσ(B̃x1) =⇒
σ(BB̃−1B̃x1) = A−1Ãσ(B̃x1)

(70)

Say y = B̃x1, A−1Ã = U , BB̃−1 = V . We substitute these expressions in the simplificaction below. We pick a y in the
interior of B̃ · supp(X1).

σ(V y) = Uσ(y) (71)

Take the first row of V and U as v⊤ and u⊤ to obtain

σ(v⊤y) = u⊤σ(y) (72)

Suppose there is some non-zero component of v say i but the corresponding component is zero in u.

∂σ(viyi + v−iy−i)

∂yi
= σ

′
(viyi + v−iy−i)vi =

∂u⊤−iσ(y−i)

∂yi
= 0 (73)

From the above we get σ
′
(v⊤y) = 0. But sigmoid is strictly monotonic on R, σ

′
(x) > 0,∀x ∈ R and v⊤y ∈ R. Hence,

σ
′
(v⊤y) = 0 is not possible. Similarly, suppose some component is non-zero in u and zero in v.

∂σ(v⊤−iy−i)

∂yi
= 0 =

∂(uiσ(yi) + u⊤−iσ(y−i))

∂yi
= uiσ

′
(yi) (74)

Since the derivative of σ cannot be zero, the above condition cannot be true.

From the above, we can deduce that both u and v have same non-zero components.

Let us start with the case where p ≥ 2 components of u, v are non-zero. Below we equate the partial derivative w.r.t all
components of y that have non-zero component in u (since y is in the interior of the image of B̃x1, we can equate these
derivatives).

22



On Provable Length and Compositional Generalization

σ(v⊤y) = u⊤σ(y),

∂pσ(s)

∂sp
Πui ̸=0ui = 0 =⇒ ∂pσ(s)

∂sp
= 0.

(75)

Since support X1 has a non-empty interior, the set of values v⊤y takes also has a non-empty interior in R. Hence, the above
equality is true over a set of values s, which have a non-empty interior. Since σ(s) is analytic, ∂pσ(s)

∂sp is also analytic. From
(Mityagin, 2015), it follows that ∂pσ(s)

∂sp = 0 everywhere. From Lemma A.14, we know this condition cannot be true.

We are left with the case where u and v have one non-zero component each.
1

1+e−vy = u
1+e−y =⇒ 1 + e−y = u+ ue−vy In the simplification above, we take derivative w.r.t y to obtain e−(v−1)y =

1/uv. We now again take derivative again w.r.t y to get v = 1 and substitute it back to get u = 1. Note that no other row of
U or V can have same non-zero element because that would make matrix non invertible. From this we deduce that U and V
are permutation matrices. From σ(V y) = Uσ(y) it follows that U = V = Π. Thus B = ΠB̃ and Ã = AΠ.

Next, we equate predictions for y2 to the ground truth (label y2 exists as T ≥ 2). For all x1 ∈ supp(X1)

σ(Aσ(Λσ(Bx1) +Bx2)) = σ(Ãσ(Λ̃σ(B̃x1) + B̃x2)) =⇒
Aσ(Λσ(Bx1) +Bx2) = Ãσ(Λ̃σ(B̃x1) + B̃x2) =⇒
Ãσ(Λ̃σ(B̃x1) + B̃x2) = AΠσ(Λ̃Π⊤σ(Bx1) + Π⊤Bx2) = Aσ(ΠΛ̃Π⊤σ(Bx1) +Bx2).

(76)

We use the simplification in the second step to equate to LHS in the first step as follows.

Aσ(ΠΛ̃Π⊤σ(Bx1) +Bx2) = Aσ(Λσ(Bx1) +Bx2)

=⇒ (ΠΛ̃Π⊤ − Λ)σ(Bx1) = 0.
(77)

Since σ(Bx1) spans a set that has a non-empty interior, we get that Λ̃ = Π⊤ΛΠ (from Lemma A.15).

From the above conditions, we have arrived at Λ̃ = Π⊤ΛΠ, B̃ = Π⊤B, Ã = AΠ.

We want to show that for all k ≥ 1

hk = Πh̃k, (78)

where hk = σ(Λhk−1 +Bxk) and h̃k = σ(Λ̃h̃k−1 + B̃xk) and h0 = h̃0 = 0. In other words, we define Tk as a mapping
that takes x≤k as input and outputs hk, i.e., T (x≤k) = hk. Similarly, we write T̃ (x≤k) = h̃k. We want to show

Tk = ΠT̃k,∀k (79)

We show the above by principle of induction. Let us consider the base case below. For all x1 ∈ Rn

Ãσ(B̃x1) = AΠσ(Π⊤Bx1) = Aσ(Bx1) = Ah1 =⇒ h1 = Πh̃1 =⇒ T1(x1) = ΠT̃1(x1) (80)

Suppose ∀j ≤ k, Tj = ΠT̃j .

Having shown the base case and assumed the condition for j ≤ k, we now consider the mapping T̃k+1

ΠT̃k+1(x≤k+1) = Πσ(Λ̃h̃k + B̃xk+1) = Πσ(Π⊤ΛΠh̃k +Π⊤Bxk) = σ(Λhk +Bxk) = Tk+1(x≤k+1). (81)

The prediction from the model (Ã, Λ̃, B̃) at a time step k is denoted as ỹk and it relates to h̃k as follows ỹk = σ(Ãh̃k). We
use the above condition in equation (79) to arrive at the following result. For all x≤k ∈ Rnk

ỹk = σ(Ãh̃k) = σ(ÃT̃ (x≤k)) = σ(AΠT̃ (x≤k)) = σ(AT (x≤k)) = yk

This completes the proof.
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Permutation identification In the previous proof we start with condition that the model generalizes at all lengths up to T
and arrive at equation (78). This condition directly implies that h̃j linearly identifies hj . Since the two are related to each
other through a permutation matrix, we state that h̃j satisfies permutation identification w.r.t hj (following the notion of
permutation identification (Khemakhem et al., 2020)).

A.3. Experiments

Here we present the empirical evaluation of compositional and length generalization capabilities of the architectures studied
in Sections 2.1- 2.4. All the experiments are carried out in the realizable case where f ∈ H. More specifically, depending
on the architecture in question, we use a random instance of the architecture to generate the labels. We train a model h
from the same architecture class to minimize the ℓ2 loss between h and f . Under different scenarios, we ask if h achieves
length generalization and compositional generalization. We also seek to understand the relationship between the hidden
representations of h and hidden representations of f .

Length generalization We sample sequences x≤t of varying length with a maximum length of T = 10. Each token
xi ∼ Uniform[0, 1]n, where n = 20. The sequences are then fed to the labeling f , which comes from the hypothesis class
of the architecture, to generate the labels. We minimize the empirical risk version of (1) over the same hypothesis class with
ℓ2 loss. For evaluation, we present the ℓ2 loss on the test datasets. We also evaluate R2 of linear regression between the
learned hidden representations denoted ψ(xi) and true hidden representations ϕ(xi) for all xi ∈ x≤t from the test dataset
sequences. This metric is often used to evaluate the claims of linear identification (Khemakhem et al., 2020), i.e., the higher
this value, the closer the linear relationship.

In Figure 1 we present results averaged over five seeds for models with one hidden layer MLP for ρ (ϕ is one hidden layer
MLP for deep sets). Figure 1 shows a very small test loss of models on increasing sequence lengths when only trained with
sequences of up to length T = 10, which is in agreement with Theorem 2.5-2.11. Further, in Figures 2, 3, 4, 5 we show an
exemplar sequence from test set and how the trained model from each architecture tracks it. Table 1 shows the average of
R2 score of ψ(xi), ϕ(xi) across different positions i at test time. These results demonstrate a linear relationship between
learned and true hidden representations, which agrees with our claims of linear identification. In Section A.3, we show that
when realizability condition does not hold, i.e., f ̸∈ H, then length generalization is not achieved.

Additionally, to support the theory on other types of attention, Figures 6, 7 demonstrate the loss and prediction of a
Transformer with ReLU attention and one hidden layer MLPs for ω, ψ trained on output sequences of a Transformer with
ReLU attention and one hidden layer MLP for ρ, ϕ. Similarly, all these models were trained to predict sequences of length
up to T = 10 output by a true labeling function f in their respective hypothesis classes H, and were tested with sequences
of length up to 100. As a reminder, the output tokens yi ∈ Rm, where m = 20, and the figures below show only one
representative dimension for illustration. All models demonstrate strong length generalization capacity.

In Figure 8, we present additional findings for length generalization capability of all architectures when both the learner and
the generating process MLPs all consist of two hidden layers with input, output, and hidden size matching n = m = k = 20.

Figures 9, 10, 11 present the prediction behaviour of Transformer with softmax attention, SSM, and RNN architectures
with two hidden layers in ρ (and two hidden layer MLPs for the learner ω). Training procedure remains the same. We can
observe that all models length generalize.

Model R2 (t = 20) R2 (t = 100)
Deep set 0.97± 0.01 0.97± 0.01

Transformer 0.99± 0.01 0.99± 0.01

SSM 0.99± 0.01 0.99± 0.01

RNN 0.99± 0.01 0.99± 0.01

Table 1. Average test R2 of true and learned hidden represen-
tations ψ(xi), ϕ(xi) across all positions i at various lengths
unseen during training. A strong linear relationship is ob-
served for all models across lengths.

Model Test Loss ×106 R2

Deep set 1.27± 0.24 0.96± 0.01

Transformer 4.50± 3.28 1.00± 0.00

SSM 11.00± 10.92 1.00± 0.00

RNN 1.22± 0.12 0.99± 0.00

Table 2. Compositional generalization: Test ℓ2 loss and R2

score for models on sequences of length T = 10. A strong lin-
ear relationship is observed for all models for new sequences
made of unseen token combinations.
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Figure 1. Length generalization: Test ℓ2 loss on sequences of different lengths. The models are trained only on sequences of length up to
T = 10. All models achieve small error values ≈ 10−5 − 10−6 at all sequence lengths and thus length generalize. Since the error values
are already quite small, the increasing or decreasing trends are not numerically significant.
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Figure 2. A transformer model with softmax attention and one hidden layer MLP trained on sequences of length up to T = 10 shows
perfect generalization to sequences of length up to 100.

Compositional generalization During training, we sample each component k of a token from Uniform[0, 1] and accept
the sampled sequences that satisfy the following for all components i: −0.5 ≤ ∑T

j=1(x
k
j − 0.5) ≤ 0.5 ∀k, where xkj is the

kth component of token j. During testing, we sample x≤t from the complementary set of the training set, i.e., corners of
hypercube [0, 1]nt. We present the ℓ2 loss on the test dataset, as well as the mean R2, where the results are averaged over 5
seeds. The rest of the details are the same as the previous section, i.e., T = 10, n = 20, ρ is one hidden layer MLP (ϕ is one
hidden layer MLP for deep sets). Table 2 shows the test ℓ2 loss of models and the R2 scores for linear identification.

Additionally we present the prediction behavior of different architectures on the test sequences that consist of unseen token
combinations during training. This helps us better interpret qualitatively how the model actually performs in following the
true labels. Figures 13- 16 show the prediction trajectories for different architectures. We can observe that not only do these
models perform quite well on unseen sequences of length up to T = 10, but they also length generalize and continue to
remain consistent with the true labels on unseen combinations at longer lengths than the training.

Figures 17, 18, 19, 20 present the prediction behaviour of deep set, transformer with softmax attention, SSM, and RNN
architectures with two hidden layers in ρ (and two hidden layer MLPs for the learner ω) when trained on sequences of
length up to T = 10 sampled from the red region in Figure 12. We can observe that all models continue to generalize to
unseen combinations beyond their training length. Table 3 presents the test loss and R2 on the test set when the model
is only trained on the red region in Figure 12. All models generalize to unseen combination of tokens and the learned
representations linearly identify the true hidden representations

Failure Cases Although most of our focus has been on the success scenarios for length and compositional generalization,
here we provide an example to show how a model might fail. In Figure 21, we present the prediction of a deep set model
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Figure 3. A deep set model with one hidden layer MLP for ψ, ω trained on sequences of length up to T = 10 shows perfect generalization
to sequences of length up to 100.
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Figure 4. A SSM model with one hidden layer MLP for ω trained on sequences of length up to T = 10 length generalizes to sequences of
length up to 100.
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Figure 5. A RNN model with one hidden layer MLP for ω trained on sequences of length up to T = 10 length generalizes to sequences of
length up to 100.
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Figure 6. Tess loss of a transformer model with ReLU attention and one hidden layer MLP for ω, ψ trained on sequences of length up to
T = 10 length generalizes to sequences of length up to 100. The results are averaged over five seeds.
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Figure 7. A transformer model with ReLU attention and one hidden layer MLP for ω, ψ trained on sequences of length up to T = 10
length generalizes to sequences of length up to 100.
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Figure 8. Length generalization: Test ℓ2 loss on sequences of different lengths. The models are trained only on sequences of length up to
T = 10. All models achieve small error values ≈ 10−4 − 10−7 at all sequence lengths and thus length generalize. Since the error values
are already quite small, the increasing or decreasing trends are not numerically significant.
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Figure 9. A transformer model with softmax attention with two hidden layer MLP for ω, ψ trained on sequences of length up to T = 10
length generalizes to sequences of length up to 100.
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Figure 10. A SSM model with two hidden layer MLP for ω trained on sequences of length up to T = 10 length generalizes to sequences
of length up to 100.
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Figure 11. A RNN model with two hidden layer MLP for ω trained on sequences of length up to T = 10 length generalizes to sequences
of length up to 100.

that is sampled from a hypothesis class H that does not contain the true data generating function. In particular, the true
labeling function f is a deep set with one hidden layer MLPs for ρ, ϕ, but the learner uses h, a deep set model for which the
MLPs ψ, ω have no hidden layers. We can observe that the model can predict the test sequence well up to the length it has
learned during training, but starts to diverge from the true labels beyond that. This demonstrates a failure case in which the
realizability condition is violated.

Next we provide additional experimental results as well as the training details.

Model Architecture In all the architectures, there are two types of non-linearities, ω that generates the target label, ψ that
operates on inputs (used in deep sets and transformers). We use MLPs to implement these non-linearities. We instantiate
MLPs with k hidden layers, and the input, output, and hidden dimensions are all the same m = n = k. Recall that under the
realizability assumption f ∈ H. Therefore, we need to select the labeling function from H. To do so, the weights of MLP
are initialized according to N (µ, σ2), where µ = 0.0, σ = 0.6. For RNNs and SSMs, A,B,Λ are initialized separately for
the learner and true generating process as orthogonal matrices. All hidden layers, as well as the output layer are followed by
a sigmoidal activation function.

Training Details and Hyperparameter Selection We train all models with AdamW optimizer (Loshchilov & Hutter,
2019) with a learning rate of 10−3, weight decay of 0.01, ϵ = 10−8, β1 = 0.9, β2 = 0.95. We reduce the learning rate by
a factor of 0.8 if the validation loss is not improved more than 10−6 for 1 epochs. This drop is followed by a cool-down
period of 1 epochs, and the learning rate cannot decrease to lower than 10−7. For all datasets we use a streaming dataset
where each epoch contains 100 batches of size 256 sampled online from the specified training and test distributions, and we
train all models for 100 epochs. Therefore, the size of the training dataset is 256× 104 and the size of the testing dataset is
256× 102. Since our models are generally small, running the experiments is rather inexpensive, and we carried out each
experiment on 4 CPU cores using 20 GB of RAM. For inference, specially for SSM and RNN with very long sequences, we
use RTX8000 GPUs.

Practical Considerations For training and evaluating compositional aspect of generalization, we follow the sampling
procedure described in A.3 with a slight modification that allows for faster sampling and easier training. This procedure is
illustrated in Figure 12, and results in a more difficult testing strategy, as the test set spans a smaller area than the complement
of the training set.

We opted for such a procedure because rejection sampling from the complement of the training set given A.3 is extremely
slow. In particular, given our batch size of 256, token dimension n = 20, and having 100 batches per epoch, constructing
the full test set requires finding 256 × 100 × 20 sequences of length t ≤ T that are rejected by the original constraints.
This becomes quite inefficient and slow specially in higher dimensions as the sum of the sequence along each component
tends to concentrate more around t/2, therefore it becomes harder to find such sequences (the sum follows Irwin-Hall
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Figure 12. Illustrating the modified support of train vs test distribution for compositional generalization. This enables speed up in the
sampling procedure, while keeping the challenging aspect of generalization to the corners.
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Figure 13. A deep set model with one hidden layer MLP for ω, ψ trained on sequences of length up to T = 10 sampled according to
Figure 12 can generalize to unseen test sequences (Figure 12). Additionally, the compositional generalization holds even beyond the
training length.

distribution since the components come from the Uniform distribution). To improve the speed of sampling the test dataset,
we sample token dimensions xki from the smaller corners shown in Figure 12 which allows for parallel sampling. These
corners correspond to sampling xki ∼ Uniform[0, 1/2T ] or xki ∼ Uniform[1/2 + 1/2T, 1]. This way we can sample token
components independently and in parallel without having to reject any samples, since by construction no test sequence
coincides with the training set. This procedure leaves a gap (see Figure 12) that will not be sampled neither during training
nor testing.

A.4. Broader Impacts

When machine learning models are deployed to assist in making decisions in safety-critical applications (e.g., self-driving
cars, healthcare, etc.), we want to ensure that they make decisions that can be trusted well beyond the regime of the training
data that they are exposed to. In this work, we took some steps towards building a well-founded theory that helps us establish
guarantees well beyond the training data regime. At this point, we do not anticipate a negative impact specifically of this
work.
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Figure 14. A Transformer model with softmax attention and one hidden layer MLP for ω trained on sequences of length up to T = 10
sampled according to Figure 12 can generalize to unseen test sequences (Figure 12). Additionally, the compositional generalization holds
even beyond the training length.
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Figure 15. A SSM model with one hidden layer MLP for ω trained on sequences of length up to T = 10 sampled according to Figure 12
can generalize to unseen test sequences (Figure 12). Additionally, the compositional generalization holds even beyond the training length.
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Figure 16. A RNN model with one hidden layer MLP for ω trained on sequences of length up to T = 10 sampled according to Figure 12
can generalize to unseen test sequences (Figure 12). Additionally, the compositional generalization holds even beyond the training length.
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Figure 17. A deep set model with two hidden layer MLP for ω, ψ trained on sequences of length up to T = 10 sampled according to
Figure 12 can generalize to unseen test sequences. Additionally, the compositional generalization holds even beyond the training length.
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Figure 18. A Transformer model with softmax attention and two hidden layer MLP for ω trained on sequences of length up to T = 10
sampled according to Figure 12 can generalize to unseen test sequences. Additionally, the compositional generalization holds even beyond
the training length.
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Figure 19. A SSM model with two hidden layer MLP for ω trained on sequences of length up to T = 10 sampled according to Figure 12
can generalize to unseen test sequences. Additionally, the compositional generalization holds even beyond the training length.

32



On Provable Length and Compositional Generalization

0 20 40 60 80 100
Sequence Length

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

V
al

ue
of

tr
ue

/p
re

di
ct

ed
la

be
l Train Test True Label

Predicted Label

Figure 20. A RNN model with two hidden layer MLP for ω trained on sequences of length up to T = 10 sampled according to Figure 12
can generalize to unseen test sequences. Additionally, the compositional generalization holds even beyond the training length.

0 20 40 60 80 100
Sequence Length

0.5

0.6

0.7

0.8

0.9

1.0

1.1

V
al

ue
of

tr
ue

/p
re

di
ct

ed
la

be
l Train Test True Label

Predicted Label

Figure 21. A failure case of length generalization: The predictions come from a deep set with linear layers for ψ, ω trained to predict the
sequences (of length up to T ) output by a deep set with 1 hidden layer MLPs for ϕ, ρ. In this case the realizability condition does not hold,
and the learner fails to length generalize.

Model Test Loss ×106 R2

Deep set 0.08± 0.02 0.96± 0.01
Transformer 3.06± 1.11 1.00± 0.00
SSM 5.92± 2.47 1.00± 0.00
RNN 0.35± 0.17 0.96± 0.01

Table 3. Compositional generalization: Test ℓ2 loss and R2 score for models with two hidden layers on sequences of length T = 10. A
strong linear relationship is observed for all models for new sequences made of unseen token combinations.
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