
Under review as a conference paper at ICLR 2024

EFFICIENT LONG SEQUENCE MODELING VIA STATE
SPACE AUGMENTED TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer models have achieved superior performance in various natural lan-
guage processing tasks. However, the quadratic computational cost of the atten-
tion mechanism limits its practicality for long sequences. There are existing at-
tention variants that improve the computational efficiency, but they have limited
ability to effectively compute global information. In parallel to Transformer mod-
els, state space models (SSMs) are tailored for long sequences, but they are not
flexible enough to capture complicated local information. We propose SPADE,
short for State sPace AugmenteD TransformEr. Specifically, we augment a SSM
into the bottom layer of SPADE, and we employ efficient local attention methods
for the other layers. The SSM augments global information, which complements
the lack of long-range dependency issue in local attention methods. Experimen-
tal results on the Long Range Arena benchmark and language modeling tasks
demonstrate the effectiveness of the proposed method. To further demonstrate the
scalability of SPADE, we pre-train large encoder-decoder models and present fine-
tuning results on natural language understanding and natural language generation
tasks. Our code and pre-trained model checkpoints will be publicly available.

1 INTRODUCTION

With the rise of large language models, the difficulties of modeling long sequences have gained in-
creasing attention. For instance, ChatGPT is capable of handling context that comprises up to 8k
tokens, while GPT-4 (OpenAI, 2023) scales this ability up to 32k tokens. Conventional Transformer-
based models rely on the attention mechanism (Vaswani et al., 2017), which computes a dependency
score for every pair of tokens in the input sequence. Thus, full attention has a quadratic time and
space complexity with respect to the length of the sequence. However, such complexity proves
computationally prohibitive for tasks that require modeling long sequences such as text summariza-
tion (Nallapati et al., 2016) and question-answering (Kwiatkowski et al., 2019). In fact, we find
that training a Transformer model (250M parameters) takes up over 80G of GPU memory when
modelling an input sequence of length 8k.

In addition, Transformer models that rely on full attention run the risk of overfitting due to the lack
of structural biases (Lin et al., 2022). The attention mechanism does not impose any structural prior
over the input. As a result, order information (such as sinusoidal encoding) is required to train
a Transformer model successfully. Transformer models, equipped with full attention mechanism,
prove overly flexible resulting in overfitting to the noise. This significantly impacts the models’
practicality in long sequence modeling, where the dependency signal is often weak, and signal-to-
noise ratio is low (i.e., in long sequences, a majority of input tokens are useless). Empirical evidence
shows that Transformer models without structural biases have a classification accuracy rate of 57.5%
on a two-way classification task, nearly 30% less than state-of-the-art approaches that are equipped
with powerful structural biases (see Section 4.1 for details).

Several methods have been proposed to address the problem of full attention’s quadratic complexity
and the need to introduce structural biases to Transformer models. One of the primary approaches
is employing approximation methods, which approximates full attention using fast algorithms with
linear complexity. Low-rank approximations (Wang et al., 2020b) or kernel methods (Peng et al.,
2021), for instance, could simplify and speed up calculation of the attention score matrix (i.e.,

1

Under review as a conference paper at ICLR 2024

softmax(QK⊤/
√
d) in Eq. 1). Nevertheless, although these methods mitigate the computational

complexity of full attention, they inherit the problems associated with the lack of structural bias.

To incorporate structural biases into Transformer, partial attention methods have been proposed.
The methods can be further categorized in to sparse attention (Beltagy et al., 2020) and clustering
(Kitaev et al., 2020). In the former approach, individual tokens attend to only a subset of tokens
determined by pre-defined sparsity patterns. In the latter, tokens are divided into clusters and intra-
cluster attention is performed. However, introducing these structural biases restricts the models’
ability to capture global information. Local window attention, for instance, assumes that each token
depends only on its direct neighbors, causing long-range and global information to be lost.

State space models (SSMs) introduce structural biases tailored for computing global information
(Gu et al., 2022), in contrast to partial attention. Specifically, SSMs design fixed global dependency
patterns that facilitate effective and efficient computation, and can be seen as linear recurrent neural
networks with specifically designed fixed weights. Moreover, efficient algorithms have been devel-
oped to train these models. However, it should be noted that SSMs can be restrictive, because they
do not capture local information as effectively as attention-based models, which explicitly compute
dependencies among input tokens.

We propose SPADE, short for State sPace AugmenteD TransformEr. SPADE is a multi-layer Trans-
former model that can effectively and efficiently capture complicated dependencies. Specifically,
we augment a state space model (SSM) into the bottom layer of the model to integrate inputs with
global information. Because the SSM only provides coarse global information, at the subsequent
top layers of SPADE, we employ local attention methods to capture more complicated and refined
local information. With this approach, the SSM induces a strong structural bias that augments global
information and complements the long-range dependency issue in local attention methods.

We demonstrate the efficiency and effectiveness of SPADE on various tasks. First, we show that
SPADE outperforms existing approaches on the Long Range Arena (Tay et al., 2021b) benchmark,
which is designed to test models’ ability in modeling long sequences. Second, we show that in au-
toregressive language modeling, SPADE is not only significantly faster than the vanilla Transformer
(Vaswani et al., 2017), but also yields better performance. Third, we demonstrate the scalability
of SPADE by conducting language model pre-training and fine-tuning experiments. Specifically,
we pre-train an encoder-decoder model similar to T5 (Raffel et al., 2020). And we fine-tune the
model on various tasks, including natural language understanding and natural language generation
benchmarks. In all the settings, SPADE outperforms the baselines. Finally, we provide analysis and
ablation experiments to further analyze and demonstrate the effectiveness of the proposed method.

2 BACKGROUND

2.1 ATTENTION MECHANISM

Suppose the input to the layer is X ∈ RL×d, where L is the sequence length and d is the embedding
dimension, then the attention mechanism outputs

Attn(X) = softmax

(
QK⊤
√
d

)
V, where Q = XWq, K = XWk, V = XWv. (1)

Here Wq,Wk,Wv ∈ Rd×d are learnable weights. The attention mechanism can simultane-
ously compute the alignment between any pair of input tokens, such that it models long-range
dependencies better than recurrent neural networks. Specifically, denote the attention score ma-
trix A = softmax(QK⊤/

√
d) ∈ RL×L. Then, Aij captures the alignment between the i-th and the

j-th input tokens.

2.2 STATE SPACE MODELS

Continuous time state space model. A continuous time latent state space model maps a 1-
dimensional input signal u(t) to a ds-dimensional latent state x(t), after which x(t) is mapped
to a 1-dimensional output signal y(t). Concretely,

x′(t) = Ax(t) +Bu(t), y(t) = Cx(t). (2)

2

Under review as a conference paper at ICLR 2024

Here, A ∈ Rds×ds , B ∈ Rds and C ∈ Rds .

Existing works leverage Eq. 2 to model long sequences. For example, Gu et al. (2020) claim that
randomly initialized parameters A, B and C cannot model long-range dependencies well. Subse-
quently, a class of matrices (termed HiPPO, high-order polynomial projection operators) are pro-
posed to initialize A. The HiPPO matrices are designed such that the state x(t) at time t can
memorize the history of the input u(t) up to time t.

Discrete time state space model. In practice, we often work with discrete sequences such as natural
language inputs (u0, u1, · · · , uL), where L is the sequence length. To facilitate modeling discrete
data, the model in Eq. 2 can be discretized (using the bilinear method) by a step size ∆, such that

xk = Axk−1 +Buk, yk = Cxk, (3)

where A = (I−∆/2 ·A)−1(I+∆/2 ·A), B = (I−∆/2 ·A)−1∆B, C = C.

We unroll the above recurrent representation, after which we have

yk = CA
k
Bu0 + · · ·+CABuk−1 +CBuk.

This can be written as a convolutional representation

y = K ∗ u, where K ∈ RL =
(
CB,CAB, · · · ,CA

L−1
B
)
. (4)

Here, K is the convolutional kernel, “∗” is the discrete convolution operator, u represents the input
sequence (u0, u1, · · · , uL), and y represents the corresponding output sequence (y0, y1, · · · , yL).

In Eq. 4, the output y can be computed efficiently given that the convolution kernel K is known
(e.g., using Fast Fourier Transform). However, computing the kernel is non-trivial. Most of existing
algorithms have O(L2) time and space complexity.

Structured State Space Sequence model (S4). Gu et al. (2022) develop the S4 model to efficiently
compute Eq. 4. Specifically, C in Eq. 2 is randomly initialized, and A and B are initialized as

A = A(ds) −PP⊤, Bi = (2i+ 1)1/2, (5)

where Pi = (i+ 1/2)
1/2

, A
(ds)
ij = −


(i+ 1/2)1/2(j + 1/2)1/2, i > j,

1/2, i = j,

−(i+ 1/2)1/2(j + 1/2)1/2, i < j.

Subsequently, the convolution kernel K in Eq. 4 can be computed efficiently with near linear time
and space complexity. Then, for an input u, the S4 output y = K ∗ u can be computed efficiently.

3 METHOD

We first conduct experiments to demonstrate that SSMs do not model local information well. Then,
we present SPADE, which effectively combines global and local information by augmenting SSMs
into the Transformer architecture.

3.1 ATTENTION VS. STATE SPACE MODELS

The motivation behind SPADE is that even though SSMs perform well on several long sequence
classification tasks (Gu et al., 2022), they perform poorly on language modeling, which is a funda-
mental task in natural language processing. To demonstrate such an observation, we compare S4
with Transformer with full attention and Transformer with local (window and chunk) attention. In
local attention, each token can only attend to its neighboring tokens (see Figure 1 for illustrations).
We conduct experiments on token-level language modeling. In this setting, local information is more
important than global information. This is because in practice, we rarely see words (tokens) that are
thousands of positions apart exhibit strong dependencies (Sukhbaatar et al., 2019).

Experimental results are illustrated in Figure 2. We see that both Transformer with full attention and
Transformer with local attention (e.g., window and chunk) outperforms S4. Notice that replacing

3

Under review as a conference paper at ICLR 2024

Figure 1: Illustration of window attention (left) and
chunk attention (right). For window attention, the win-
dow size is 2 (on each side); for chunk attention, the
chunk size is 2.

Figure 2: Performance of Transformer
with full attention, window attention,
chunk attention, and S4. We use lan-
guage modeling experiments (see Sec-
tion 4.2), and the sequence length is 3k.

full attention with local attention does not significantly hurt model performance, indicating that
local information is more important in this setting. We remark that SSMs such as S4 produces a
fixed dependency pattern, e.g., the convolution kernel in Eq. 4. Moreover, unlike attention, SSMs
do not explicitly compute dependencies among tokens. Therefore, SSMs are not refined enough to
capture local information, such that they perform poorly on language modeling tasks.

3.2 SPADE: STATE SPACE AUGMENTED TRANSFORMER

Figure 3: Demonstration of SPADE with 4 layers. Left:
model overview; Right: details of the global layer.

We propose SPADE, which is a multi-
layer Transformer model that can cap-
ture complicated global and local informa-
tion. The overall architecture of SPADE
is shown in Figure 3 (left). The pro-
posed model employs a hierarchical struc-
ture. Specifically, at the bottom layer of
SPADE (termed the global layer), we cap-
ture global dependencies using a SSM.
Because the SSM only provides coarse
global information, the subsequent local
layers facilitate the model to handle more
refined and complicated local dependen-
cies. In other words, the SSM induces a
strong structural bias that augments global
information to the inputs.

To instantiate the local layer, we re-
place the full attention in the conventional
Transformer layer with off-the-shelf ef-
ficient local attention methods. SPADE
is flexible to accommodate different ap-
proaches, such as window attention and
chunk attention (see Figure 1 for illustrations).

In the global layer (Figure 3, right), given the input X to the layer, we have the output Y as

Y = FFN (LN(Xa)) +Xa, where Xa = W [LN(Xlocal),LN(Xglobal)] +X,

Xlocal = Local (LN(X)) , Xglobal = SSM(LN(X)) .

Here, LN(·) denotes layer normalization (Ba et al., 2016), FFN(·) denotes a two-layer feed-forward
neural network, and W is a trainable weight that combines local and global representations. Notice
that we apply normalization to Xlocal and Xglobal to align their scales. In this work, we choose S4 as
the state space model.

We remark that because of the sequential nature of SSMs (Eq. 3), the global layer can encode
positional information of the inputs. Therefore, we do not need additional fixed-length positional

4

Under review as a conference paper at ICLR 2024

embedding techniques (Devlin et al., 2019). Such a property enables SPADE to extrapolate to longer
sequence length during testing, e.g., we can train a model with sequence length 512 and test the
model with sequence length 1k.

4 EXPERIMENTS

In the experiments, we implement all the models using PyTorch (Paszke et al., 2019) and Fairseq
(Ott et al., 2019). Training details such as hyper-parameter settings are deferred to the appendix.

4.1 LONG RANGE ARENA

Dataset and models. We evaluate SPADE on Long Range Arena (LRA, Tay et al. 2021b), which is
a benchmark tailored for evaluating models’ ability in modeling long sequences. Dataset details are
presented in Appendix A.

Following the setting in Ma et al. 2022, we use small models (less than 2M parameters) for all the
tasks. We limit the computational budget such that all the models are trained with similar speed for
the same amount of time. To aggregate local information, we consider two approaches: window
attention and chunk attention. For window attention, we sparsify the conventional softmax attention
(termed window); and for chunk attention, we sparsify MEGA (Ma et al., 2022), which employs a
gated attention technique (termed chunk).

Results. Experimental results are summarized in Table 1. We see that both variants of SPADE
(window and hunk) significantly outperform all the baselines in terms of average accuracy. For
example, the window attention variant outperforms the best-performing baseline (MEGA-chunk) by
0.5%, and the chunk attention variant has a 1.8% performance gain. Therefore, SPADE is more
suitable to model long sequences than existing approaches.

Table 1: Experimental results on LRA. For Path-X, “✗” indicates unavailable results due to compu-
tational constraints. See Table 11 in the appendix for comparison with other baselines.

Dataset Listops Text Retrieval Image Pathfinder Path-X Avg.

Sequence length 2k 4k 8k 1k 1k 16k —

Transformer (full) 36.37 64.27 57.46 42.44 71.40 ✗ 53.66
S4 (Gu et al., 2022) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
MEGA-chunk (Ma et al., 2022) 58.76 90.19 90.97 85.80 94.41 93.81 85.66

SPADE (window) 59.70 87.55 90.13 89.11 96.42 94.22 86.19
SPADE (chunk) 60.50 90.69 91.17 88.22 96.23 97.60 87.40

4.2 LANGUAGE MODELING

Table 2: Experimental results on Wikitext-103.

Test ppl

Transformer (Vaswani et al., 2017) 18.8

Transformer (window) 19.7
S4 (Gu et al., 2022) 23.2
FLASH-chunk (Hua et al., 2022) 20.9
MEGA-chunk (Ma et al., 2022) 19.8

SPADE (chunk) 19.5
SPADE (window) 18.5

We further evaluate our model by conducting
language modeling experiments on Wikitext-
103. The dataset contains English-language
Wikipedia articles, and the total number of to-
kens is 103M. In all the experiments, we follow
the settings in Baevski & Auli (2019), where
we use a large-scale Transformer model with
16 layers and about 250M parameters. We set
the input sequence length to 3k and train for
286k steps. During testing, we set the sequence
length to 3k and the context window size to
400. Similar to the LRA experiments, we equip
SPADE with either window attention (window)
or chunk attention (chunk).

Experimental results are presented in Table 2. From the results, we see that by combining global
and local information, the proposed model achieves significant performance improvement and out-

5

Under review as a conference paper at ICLR 2024

perform all the baselines. For example, the vanilla window attention has a 19.7 perplexity on the test
set, and by integrating a SSM into SPADE, we achieve a 1.2 perplexity gain. We remark that SPADE
with window attention is not only significantly faster than the Transformer with full attention, but
also yields a better performance.

Remark. We remark that we do not need to train the S4 in the bottom layer of SPADE to achieve the
performance in Table 2. That is, we initialize the parameters in S4 using Eq. 5, and the parameters
are frozen during training. This is because even without training, the initialization of S4 yields
intriguing theoretical properties, which facilitates S4’s ability to capture global information.

5 LANGUAGE MODEL PRE-TRAINING

We implement model pre-training using Fairseq, and we implement model fine-tuning using MT-
DNN (Liu et al., 2019a; 2020b). Note that all our experiments only use single task fine-tuning.
Details such as pre-training settings and hyper-parameter settings are deferred to the appendix.

5.1 PRE-TRAINING DETAILS

To demonstrate the scalability of the proposed method, we pre-train an encoder-decoder variant of
SPADE. The model architecture is the same as T5base (Raffel et al., 2020), except that we use post-
layernorm instead of pre-layernorm to improve model performance (Liu et al., 2020a; Xiong et al.,
2020). The embedding dimension is 768, the hidden dimension of the FFN is 3072, the number of
attention heads is 12, and both the encoder and the decoder have 12 layers. We add a S4 module to
the bottom layer of SPADE, and the parameters of the S4 are fixed after initialization (Eq. 5). We
use the window attention as the local information extractor, where we set the window size to 128.
The model contains about 290M parameters.

We consider two pre-training settings. In the first setting, we follow the pre-training settings in
BERT (Devlin et al., 2019), and we term the trained model SPADEbase. In the second setting, we
follow the pre-training settings in RoBERTa (Liu et al., 2019b), and we term the trained model
SPADEbase++.

We remark that because the S4 module is not trained after proper initialization, and we do not use
fixed-length positional embedding, our pre-trained model can extrapolate to any sequence length.
For example, we can set the sequence length to 16k during fine-tuning, which is longer than the
sequence length used in pre-training.

5.2 NATURAL LANGUAGE UNDERSTANDING

We fine-tune the pre-trained models on the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019), which is a collection of natural language understanding tasks.
Dataset details are presented in Appendix A. We do not consider the long sequence setting in these
tasks. In the experiments, all models are fine-tuned under the sequence length of 512.

Table 3: Experimental results on GLUE development set. T5base results are from Raffel et al. 2020.

RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI-m/mm Avg.
Acc Acc/F1 Mcc Acc P/S Corr Acc Acc/F1 Acc Score

T5base 76.9 90.8/– 55.5 92.8 86.5 91.9 90.9/– 84.4/83.5 —

T5base (re-imp) 78.0 91.7/88.6 61.5 93.6 88.2 92.9 91.2/87.9 87.0/86.9 85.1

SPADEbase 77.9 92.2/89.0 63.2 94.0 87.9 92.8 91.6/88.2 87.1/87.2 85.4
SPADEbase++ 80.5 92.3/89.2 64.7 95.9 89.2 93.9 91.7/88.4 89.6/89.2 86.8

Experimental results are presented in Table 3. We see that both variants of SPADE significantly
outperforms T5base. For example, T5base has a 83.9 average accuracy on the MNLI dataset (average
of MNLI-m and MNLI-mm); while SPADEbase has a 87.2 average accuracy (+3.3) and SPADEbase++
has a 89.4 average accuracy (+5.5). Recall that the sequence length is set to 512, which is the
standard setting instead of the long-sequence setting. Therefore, the results indicate that SPADE is
universal in that it is suitable to model both long and short sequences.

6

Under review as a conference paper at ICLR 2024

5.3 NATURAL LANGUAGE GENERATION

We also fine-tune the pre-trained models on several abstractive summarization datasets. Dataset
details are presented in Appendix A. We use ROUGE-2 scores as the evaluation metric.

We compare SPADE with LongT5 (Guo et al., 2022), which is a state-of-the-art model tailored for
long sequences. Experimental results are summarized in Table 4. From the results, we see that
our model significantly outperforms LongT5. Note that SPADEbase++ have about 290M parameters,
while LongT5large contains about 770M parameters and LongT5xl contains about 3B parameters.
From the results, we see that in all the tasks, our base-sized models have on par or better performance
compared with LongT5large. On the MultiNews dataset, our model even outperforms LongT5xl,
which is over ten times larger than our model.

Table 4: Experimental results (ROUGE-2) on test sets.
LongT5 results are from Guo et al. 2022.

arXiv CNN/DailyMail
Length R-2 Length R-2

LongT5base 4k 18.54 4k 20.11
LongT5large 16k 21.63 4k 20.51
LongT5xl 16k 21.92 4k 21.40

SPADEbase++ 16k 21.65 4k 20.40

MediaSum MultiNews
Length R-2 Length R-2

LongT5base 4k 18.35 4k 17.37
LongT5large 4k 19.04 8k 18.44
LongT5xl 4k 19.66 8k 19.43

SPADEbase++ 4k 19.03 8k 19.63

Figure 4: Performance of models with
different global information extractors
under two sequence length. We con-
duct language modeling experiments
on Wikitext-103 with window attention
(window=128).

6 ANALYSIS

6.1 EFFECTIVENESS OF GLOBAL INFORMATION EXTRACTORS

Recall from Eq. 3 that SSMs are essentially linear recurrent neural networks which can be computed
much more efficiently than conventional RNNs. In Figure 4, we explore model variants with differ-
ent global information extractors. Specifically, we equip Transformer with window attention with
either S4 or LSTM (Hochreiter & Schmidhuber, 1997).

From the results, we see that RNNs can indeed capture global information. Also, we see that SSMs
are more effective than RNNs. This is because RNNs suffer from known numerical problems such as
forgetting and gradient explosion/vanishing (Pascanu et al., 2013). On the other hand, the theoretical
properties of SSMs (Gu et al., 2020; 2021; 2022) can greatly alleviate such issues.

6.2 EFFICIENCY COMPARISON

We compare the efficiency of SPADE with other models: Transformer with full attention, Trans-
former with window attention, MEGA-chunk, and S4. The results are illustrated in Figure 5. We
see that SPADE is efficient in terms of both training speed and GPU memory usage. For example,
when the sequence length is 6k, Transformer uses about 60GB of GPU memory, whereas SPADE
with window attention only uses 27GB. Moreover, notice that SPADE also trains significantly faster
than the vanilla Transformer under all settings. Notice that S4 may be less efficient than the vanilla
Transformer (e.g., when the sequence length is 3k). This is because in Gu et al. 2022, each layer
of the model contains multiple S4 modules and expensive non-linear components. Therefore, the
per-layer computational cost can exceed full attention when the sequence is not extremely long.

We remark that even though we add a S4 module to the bottom layer of SPADE, such an additional
module does not induce much computational overhead. We see that both the training speed and the

7

Under review as a conference paper at ICLR 2024

Figure 5: Efficiency comparison of differnet models on
language modeling tasks.

Figure 6: Performance vs. location of
SSMs. We conduct language model-
ing experiments with window attention
(window=256). By default, the model
has 16 layers, where the bottom layer
is a global layer and the rest are local
layers. Here, “b-k” means the bottom-
k layers are global layers, “all” means
all layers are global layers, and “top-1”
means the top-1 layer is a global layer.

memory usage of SPADE with window is only marginally different from those of window-attention
Transformer. We have similar observations for the chunk attention variant.

6.3 LOCATION AND NUMBER OF GLOBAL LAYERS

Recall that in SPADE, the bottom layer is equipped with a SSM and serves as the global layer, while
the rest are local layers (see Figure 3). In Figure 6, we empirically justify this design choice.

We first investigate the possibility of incorporating more global layers: we set the bottom 1 (the
default choice), 4, 8, and 16 (all) layers as global layers. From the results, we see that model
performance decreases as we use more global layers. This is because the SSM in the bottom layer
captures and filters out global information, such that subsequent SSMs only introduce noise to the
intermediate representations.

We also investigate whether the global layer can be the top instead of the bottom layer in SPADE.
From Figure 6, we see that model performance drops significantly. This is because as a global
information extractor, the global layer encodes positional information, on which the local attention
modules rely. Therefore, using the global layer as the top layer is akin to using Transformer models
without positional encoding, which will yield unsatisfactory performance.

6.4 DIFFERENT CONFIGURATIONS

Figure 7: Performance with different configurations. Left:
Transformer with full attention using different sequence
length; Right: Transformer with window attention using dif-
ferent window size and sequence length.

Sequence length
2k 3k 4k 6k

128 19.55 19.42 19.50 19.55
256 18.90 18.95 18.99 19.00
512 18.63 18.64 18.52 18.67

Table 5: Performance of SPADE
with window attention using dif-
ferent sequence length and window
size. The first column is window
size. We conduct language model-
ing experiments on Wikitext-103.

We examine how performance changes when we change the sequence length and window size.

From Figure 7 (left), we see that when we increase the sequence length from 512 to 3k, performance
of Transformer with full attention increases. However, when we further increase the sequence length

8

Under review as a conference paper at ICLR 2024

to 4k, model performance drastically drops. This is because in long sequences, the signal-to-noise
ratio is low, such that the full attention may easily fit to the noise. From Figure 7 (right), we see
that performance of Transformer with window attention increases when we increase the window
size. Moreover, model performance is better with shorter sequences for the same window size. Such
findings indicate that performance of window attention depends on the proportion of information
within its perception.

From Table 5, we see that for the same sequence length, performance of SPADE increases when
we increase the window size. Also, we see that performance of SPADE marginally decreases when
we increase the sequence length from 4k to 6k. Recall from Figure 7 (left) that performance of
Transformer with full attention drastically deteriorates when we increase the length from 3k to 4k.
Such a result indicates that the proposed model is more suitable to model long sequences.

7 RELATED WORKS

In Eq. 1, we have Q,K,V ∈ RL×d, such that computing the attention Attn(X) introduces O(L2)
time and space costs. Such quadratic costs are prohibitive when the sequence length L is large. There
are various attempts to reduce the quadratic time and space complexity of the vanilla attention.

One approach is to employ sparse attention. That is, each token only attends to a subset of all
the tokens according to pre-defined patterns, e.g., neighboring tokens within a fixed size window.
Some examples include Sparse Transformer (Child et al., 2019), BlockBERT (Qiu et al., 2020),
Longformer (Beltagy et al., 2020), ETC (Ainslie et al., 2020), BigBird (Zaheer et al., 2020), HEPOS
(Huang et al., 2021), and Poolingformer (Zhang et al., 2021).

Another approach is to use low-rank projection. For example, in Linformer (Wang et al., 2020b), the
attention mechanism in Eq. 1 becomes Attn(X) = softmax(Q(EK)⊤/

√
d)(FV). Here, the two

additional parameters satisfy E,F ∈ Rr×L, where r is the projection rank such that r ≪ L. Similar
methods include Nyströmformer (Xiong et al., 2021), Synthesizer (Tay et al., 2021a), Transformer-
LS (Zhu et al., 2021a), and Luna (Ma et al., 2021). However, these approaches face difficulty when
handling causal tasks, such as auto-regressive language modeling. Specifically, in Eq. 1, we mask
out the upper triangular part in the attention score matrix A ∈ RL×L such that each token can only
attend to its previous tokens. However, this is implausible in Linformer since we project the L× L
matrix to a L× r matrix.

Kernel-based approaches can be used to approximate the full attention Attn(X). In these ap-
proaches, the quadratic-time softmax attention is replaced by fast linear-time kernel approximations
(e.g., Gaussian and arc-cosine kernel). Some examples include Linear Transformer (Katharopoulos
et al., 2020), Performer (Choromanski et al., 2021), Random Feature Attention (Peng et al., 2021),
and FMMformer (Nguyen et al., 2021). Both low-rank projection and kernel-based approaches
approximate the full attention, and thus, they often suffer from non-negligible approximation error.

We can also adopt clustering-based approaches, where we divide Q or K into several clusters,
and only perform inter-cluster attention. Such methods include Reformer (Kitaev et al., 2020),
Clusterformer (Wang et al., 2020a), Sinkhorn Transformer (Tay et al., 2020), Fast Transformer (Vyas
et al., 2020), Routing Transformer (Roy et al., 2021), and FLASH (Hua et al., 2022).

8 CONCLUSION AND DISCUSSION

In this work, we propose SPADE, a state space augmented Transformer model that targets long se-
quence modeling. SPADE is a multi-layer Transformer model, where the bottom layer is a global
layer and the rest are local layers. In the global layer, we use a SSM to augment coarse global
information, which are subsequently refined by the following local layers. We instantiate the local
layers with off-the-shelf efficient attention methods, such as window attention. The proposed model
has linear time and space computationally complexity, facilitating it to handle long sequences. We
conduct extensive experiments on the Long Range Arena (LRA) benchmark and language model-
ing datasets to demonstrate the effectiveness and efficiency of SPADE. We also pre-train encoder-
decoder models to demonstrate the scalability of SPADE, and we perform fine-tuning experiments
on natural language understanding (GLUE) and natural language generation (summarization) tasks.
In all the experiments, SPADE exhibits superior performance and outperforms the baselines.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. ETC: Encoding long and structured
inputs in transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pp. 268–284, Online, 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.19.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. ArXiv preprint,
abs/1607.06450, 2016.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and Danilo Giampiccolo. The second PASCAL
recognising textual entailment challenge. In Proceedings of the Second PASCAL Challenges
Workshop on Recognising Textual Entailment, 2006.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
ArXiv preprint, abs/2004.05150, 2020.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The
fifth pascal recognizing textual entailment challenge. In In Proc Text Analysis Conference
(TAC’09, 2009.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task
1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, Vancouver,
Canada, 2017. Association for Computational Linguistics. doi: 10.18653/v1/S17-2001.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. ArXiv preprint, abs/1904.10509, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
formers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. In Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers),
pp. 615–621, New Orleans, Louisiana, 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-2097.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment chal-
lenge. In Proceedings of the First International Conference on Machine Learning Challenges:
Evaluating Predictive Uncertainty Visual Object Classification, and Recognizing Textual Entail-
ment, MLCW’05, pp. 177–190, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-33427-0,
978-3-540-33427-9. doi: 10.1007/11736790 9.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

10

Under review as a conference paper at ICLR 2024

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. Multi-news: A large-scale
multi-document summarization dataset and abstractive hierarchical model. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 1074–1084, Florence,
Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1102.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recog-
nizing textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing, pp. 1–9, Prague, 2007. Association for Computational Linguistics.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 572–585, 2021.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, and
Yinfei Yang. LongT5: Efficient text-to-text transformer for long sequences. In Findings of the
Association for Computational Linguistics: NAACL 2022, pp. 724–736, Seattle, United States,
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.55.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer quality in linear time. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato
(eds.), International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pp. 9099–9117.
PMLR, 2022.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
1419–1436, Online, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.112.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 5156–5165. PMLR, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

11

Under review as a conference paper at ICLR 2024

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl a 00276.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. FNet: Mixing tokens with
Fourier transforms. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 4296–4313,
Seattle, United States, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.319.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI Open,
2022.

Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning
long-range spatial dependencies with horizontal gated recurrent units. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
152–164, 2018.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 5747–5763, Online, 2020a. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2020.emnlp-main.463.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks for
natural language understanding. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4487–4496, Florence, Italy, 2019a. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1441.

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng, Xueyun Zhu, Emmanuel Awa, Pengcheng He,
Weizhu Chen, Hoifung Poon, Guihong Cao, and Jianfeng Gao. The Microsoft toolkit of multi-
task deep neural networks for natural language understanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 118–126,
Online, 2020b. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-demos.16.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv preprint, abs/1907.11692, 2019b.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke Zettle-
moyer. Luna: Linear unified nested attention. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 2441–2453, 2021.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving average equipped gated attention. ArXiv preprint,
abs/2209.10655, 2022.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, 2011. Association for Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. Abstrac-
tive text summarization using sequence-to-sequence RNNs and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural Language Learning, pp. 280–290, Berlin,
Germany, 2016. Association for Computational Linguistics. doi: 10.18653/v1/K16-1028.

12

Under review as a conference paper at ICLR 2024

Nikita Nangia and Samuel Bowman. ListOps: A diagnostic dataset for latent tree learning. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Student Research Workshop, pp. 92–99, New Orleans, Louisiana, USA,
2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-4013.

Tan M. Nguyen, Vai Suliafu, Stanley J. Osher, Long Chen, and Bao Wang. Fmmformer: Efficient
and flexible transformer via decomposed near-field and far-field attention. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 29449–29463,
2021.

OpenAI. Gpt-4 technical report. arXiv, 2023.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguis-
tics (Demonstrations), pp. 48–53, Minneapolis, Minnesota, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-4009.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 8024–8035, 2019.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
Random feature attention. In 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise self-
attention for long document understanding. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 2555–2565, Online, 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.findings-emnlp.232.

Dragomir R Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-Jbara. The acl
anthology network corpus. Language Resources and Evaluation, 47(4):919–944, 2013.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ ques-
tions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2383–2392, Austin, Texas, 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguis-
tics, 9:53–68, 2021. doi: 10.1162/tacl a 00353.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, 2013. Association for Computational Lin-
guistics.

13

Under review as a conference paper at ICLR 2024

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 331–335, Florence, Italy, 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1032.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 9438–9447.
PMLR, 2020.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer: Re-
thinking self-attention for transformer models. In Marina Meila and Tong Zhang (eds.), Proceed-
ings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 10183–10192.
PMLR, 2021a.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021b.

Trieu H Trinh and Quoc V Le. A simple method for commonsense reasoning. ArXiv preprint,
abs/1806.02847, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017.

Apoorv Vyas, Angelos Katharopoulos, and François Fleuret. Fast transformers with clustered at-
tention. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun Chen, Yuwei Fang, Siqi Sun, Yu Cheng, and
Jingjing Liu. Cluster-former: Clustering-based sparse transformer for long-range dependency
encoding. ArXiv preprint, abs/2009.06097, 2020a.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. ArXiv preprint, abs/2006.04768, 2020b.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/
tacl a 00290.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 1112–1122, New Orleans, Louisiana, 2018. Association
for Computational Linguistics. doi: 10.18653/v1/N18-1101.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architec-
ture. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp.
10524–10533. PMLR, 2020.

14

Under review as a conference paper at ICLR 2024

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nystöm-based algorithm for approximating self-attention. In
Proceedings of the... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial
Intelligence, volume 35, pp. 14138. NIH Public Access, 2021.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santi-
ago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan, and Weizhu Chen.
Poolingformer: Long document modeling with pooling attention. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pp. 12437–12446. PMLR, 2021.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
17723–17736, 2021a.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng. MediaSum: A large-scale media interview
dataset for dialogue summarization. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
5927–5934, Online, 2021b. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.474.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In 2015 IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 19–27. IEEE Computer Society, 2015.
doi: 10.1109/ICCV.2015.11.

15

Under review as a conference paper at ICLR 2024

A DATASET DETAILS

Long Range Arena. We evaluate the effectiveness of the proposed model on Long Range Arena
(LRA, Tay et al. 2021b), which is a benchmark tailored for evaluating models’ ability in mod-
eling long sequences. The benchmark contains six tasks: ListOps, which tests the capability of
modeling hierarchically structured data (Nangia & Bowman, 2018); byte-level text classification on
the IMDB movie review dataset (Text, Maas et al. 2011); byte-level document retrieval on the ACL
anthology network (Retrieval, Radev et al. 2013); pixel-level image classification on CIFAR-10 (Im-
age, Krizhevsky et al. 2009); Pathfinder, which tests the capability in modeling spatial dependency
(Linsley et al., 2018); and a longer version of Pathfinder (Path-X, Tay et al. 2021b).

GLUE. For natural language understanding, we fine-tune the pre-trained models on the General
Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), which is a collection
of natural language understanding tasks. The benchmark includes two single-sentence classification
tasks: CoLA (Warstadt et al., 2019) is a linguistic acceptability task; and SST-2 (Socher et al., 2013)
is a binary classification task that classifies movie reviews to positive or negative. The benchmark
also contains three similarity and paraphrase tasks: STS-B (Cer et al., 2017) is a text similarity task;
MRPC (Dolan & Brockett, 2005) is a paraphrase detection task; and QQP is a duplication detection
task. Additionally, there are natural language inference tasks: MNLI (Williams et al., 2018); QNLI
(Rajpurkar et al., 2016); RTE (Dagan et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2009). Statistics of the GLUE benchmark is summarized in Table 7.

Summarization. For natural language generation, we fine-tune the pre-trained models on several
abstractive summarization datasets. The sources and statistics are summarized in Table 6.

Table 6: Statistics and sources of abstractive summarization datasets.

Train # Validation # Test Mean Median Max 90th percentile

arXiv (Cohan et al., 2018) 203,037 6,436 6,440 10,720 8,519 378,825 20,170
CNN/DailyMail (Nallapati et al., 2016) 287,113 13,368 11,490 982 894 5,268 1,659
MediaSum (Zhu et al., 2021b) 443,596 10,000 10,000 2,302 1,748 125,974 4,128
MultiNews (Fabbri et al., 2019) 44,972 5,622 5,622 2,594 1,902.5 683,544 4,853

Table 7: Statistics of the GLUE benchmark.

Corpus Task # Train # Dev # Test # Labels Metrics

Single-Sentence Classification
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

B TRAINING DETAILS

B.1 LANGUAGE MODEL PRE-TRAINING AND FINE-TUNING

For language model pre-training, we consider two pre-training settings:

⋄ SPADEbase: We follow the pre-training settings in BERT (Devlin et al., 2019). Specifically,
we train the model on Wikipedia (Devlin et al., 2019) and BookCorpus (Zhu et al., 2015).

16

Under review as a conference paper at ICLR 2024

⋄ SPADEbase++: We follow the pre-training settings in RoBERTa (Liu et al., 2019b). Specifi-
cally, we train the model on Wikipedia (Devlin et al., 2019), BookCorpus (Zhu et al., 2015),
STORIES (Trinh & Le, 2018), CC-News (Liu et al., 2019b), and OpenWebText (Gokaslan
et al., 2019).

For language model pre-training and fine-tuning experiments, we use Adam (Kingma & Ba, 2015)
as the optimizer. Hyper-parameters for pre-training are detailed in Table 8; and hyper-parameters
for fine-tuning are detailed in Table 9.

Table 8: Hyper-parameters for pre-training.

Parameters Base Base++
Peak Learning Rate 4e-4 2e-4
Batch Size 2,048 2,048
Warmup Steps 10,000 10,000
Total Steps 125,000 2,000,000
Sequence Length 1024 1024
Relative Position Encoding Buckets 32 32
Relative Position Encoding Max Distance 128 128
Adam ϵ 1e-6 1e-6
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Clip Norm – 1.0
Dropout 0.1 0.1
Weight Decay 0.01 0.01

Table 9: Hyper-parameters for fine-tuning.

Parameters Range
Learning Rate {2e-5, 4e-5, 5e-5, 1e-4}
Batch Size {16, 32}
Maximum Training Epochs {3, 5, 10}
Dropout 0.1
Warmup Step Rate 0.1
Weight Decay 0.1

B.2 LONG RANGE ARENA

We follow the model architecture settings in Ma et al. 2022. In all the experiments, we use
Adam (Kingma & Ba, 2015) as the optimizer. We use a linear decay learning rate schedule. The rest
of the hyper-parameters are detailed in Table 10.

Table 11 shows additional experimental results, where we compare SPADE with existing efficient
Transformer models.

B.3 LANGUAGE MODELING

We follow the settings in Baevski & Auli 2019, including model architecture and hyper-parameters.
For the efficient Transformer variants, we set the window size to 512 when using window attention,
and we set the chunk size to 512 when using chunk attention.

17

Under review as a conference paper at ICLR 2024

Table 10: Hyper-parameters for training on LRA.

Task Batch Size Learning Rate Weight Decay Dropout Clip Norm Chunk Size

Listops 64 0.0015 0.0 0.2 1.0 128
Text 100 0.01 0.01 0.2 1.0 128
Retrieval 128 0.004 0.03 0.1 1.0 128
Image 100 0.01 0.02 0.0 1.0 128
Pathfinder 128 0.01 0.01 0.0 1.0 128
Path-X 16 0.01 0.01 0.0 1.0 1024

Table 11: Experimental results on Long Range Arena (LRA). Path-X uses 16k as the input sequence
length, and “✗” indicates unavailable results due to computational constraints. All the baseline
results, except for MEGA-chunk, are from Gu et al. (2022). MEGA-chunk results are from Ma et al.
(2022).

Dataset Listops Text Retrieval Image Pathfinder Path-X Avg.

Sequence length 2k 4k 8k 1k 1k 16k —

Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67
Transformer (full) (Vaswani et al., 2017) 36.37 64.27 57.46 42.44 71.40 ✗ 53.66
Transformer (window) 15.82 52.98 53.39 41.46 66.63 ✗ 46.71
Sparse Trans. (Child et al., 2019) 17.07 63.58 59.59 44.24 71.71 ✗ 51.03
Longformer (Beltagy et al., 2020) 35.63 62.85 56.89 42.22 69.71 ✗ 52.88
Linformer (Wang et al., 2020b) 35.70 53.94 52.27 38.56 76.34 ✗ 51.14
Reformer (Kitaev et al., 2020) 37.27 56.10 53.40 38.07 68.50 ✗ 50.56
Sinkhorn Trans. (Tay et al., 2020) 33.67 61.20 53.83 41.23 67.45 ✗ 51.23
Synthesizer (Tay et al., 2021a) 36.99 61.68 54.67 41.61 69.45 ✗ 52.40
BigBird (Zaheer et al., 2020) 36.05 64.02 59.29 40.83 74.87 ✗ 54.17
Linear Trans. (Katharopoulos et al., 2020) 16.13 65.90 53.09 42.34 75.30 ✗ 50.46
Performer (Choromanski et al., 2021) 18.01 65.40 53.82 42.77 77.05 ✗ 51.18
FNet (Lee-Thorp et al., 2022) 35.33 65.11 59.61 38.67 77.80 ✗ 54.42
Nystromformer (Xiong et al., 2021) 37.15 65.52 79.56 41.58 70.94 ✗ 57.46
Luna-256 (Ma et al., 2021) 37.25 64.57 79.29 47.38 77.72 ✗ 59.37
FMMformer (Nguyen et al., 2021) 36.74 67.84 81.88 45.10 72.12 ✗ 60.74
S4 (Gu et al., 2022) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
MEGA-chunk (Ma et al., 2022) 58.76 90.19 90.97 85.80 94.41 93.81 85.66

SPADE (window) 59.70 87.55 90.13 89.11 96.42 94.22 86.19
SPADE (chunk) 60.50 90.69 91.17 88.22 96.23 97.60 87.40

18

	Introduction
	Background
	Attention Mechanism
	State Space Models

	Method
	Attention vs. State Space Models
	SPADE: State Space Augmented Transformer

	Experiments
	Long Range Arena
	Language Modeling

	Language Model Pre-Training
	Pre-Training Details
	Natural Language Understanding
	Natural Language Generation

	Analysis
	Effectiveness of Global Information Extractors
	Efficiency Comparison
	Location and Number of Global Layers
	Different Configurations

	Related Works
	Conclusion and Discussion
	Dataset Details
	Training Details
	Language Model Pre-Training and Fine-Tuning
	Long Range Arena
	Language Modeling

