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SDePR: Fine-Grained Leaf Image Retrieval with Structural Deep
Patch Representation

Anonymous Authors

ABSTRACT
Fine-grained leaf image retrieval (FGLIR) is a new unsupervised
pattern recognition task in content-based image retrieval (CBIR).
It aims to distinguish varieties/cultivars of leaf images within a
certain plant species and is more challenging than general leaf im-
age retrieval task due to the inherently subtle differences across
different cultivars. In this study, we for the first time investigate
the possible way to mine the spatial structure and contextual in-
formation from the activation of the convolutional layers of CNN
networks for FGLIR. For achieving this goal, we design a novel
geometrical structure, named Triplet Patch-Pairs Composite Struc-
ture (TPCS), consisting of three symmetric patch pairs segmented
from the leaf images in different orientations. We extract CNN
feature map for each patch in TPCS and measure the difference
between the feature maps of the patch pair for constructing local
deep self-similarity descriptor. By varying the size of the TPCS,
we can yield multi-scale deep self-similarity descriptors. The final
aggregated local deep self-similarity descriptors, named Structural
Deep Patch Representation (SDePR), not only encode the spatial
structure and contextual information of leaf images in deep feature
domain, but also are invariant to the geometrical transformations.
The extensive experiments of applying our SDEPR method to the
public challenging FGLIR tasks show that our method outperforms
the state-of-the-art handcrafted visual features and deep retrieval
models.

CCS CONCEPTS
• Computing methodologies;

KEYWORDS
Fine-grained leaf image retrieval, object image description, deep
convolutional feature, structural feature representation

1 INTRODUCTION
Conventional leaf image retrieval is the task of searching for leaf
images that belong to the same species as the query leaf. It has
attracted long-term attention [10, 11, 16, 27, 28] in the computer
vision research community due to its significant role in biological
research and biodiversity protection. In recent years, with the rapid
development of crop cultivation technology, more andmore crop va-
rieties/cultivars have been cultivated in modern agriculture system.
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Figure 1: An example fine-grained leaf image collection to
show the high similarity of leaf image patterns across differ-
ent cultivars (the leaf samples are from the different soybean
cultivars).

For instance, there have been about 2500 soybean cultivars released
since the scientific breeding of soybean cultivars began in the early
20th century [18]. Fig. 1 presents some typical leaves of different
soybean cultivars. It can be seen that there are very high similarity
of leaf image patterns across different cultivars which accordingly
have caused increasing concerns [12, 25, 29, 30] about whether leaf
image pattern can be effectively used for distinguishing cultivars.

Unlike conventional leaf image retrieval task that focuses on
distinguishing spe-cies, fine-grained leaf image retrieval (FGLIR)
aims at retrieving leaf images belong-ing to the diverse cultivars
of a certain plant species (e.g. soybean) and returning leaf images
with the same cultivar as the query leaf image [5, 6]. Due to the
great high inter-class similarity as shown in Fig. 1, FGLIR task
requires cultivar-level leaf image similarity, i.e., fine-grained image
similarity in which two images are considered similar if and only if
they belong to the same cultivar. Mining discriminative leaf image
features is at the core of finding fine-grained image similarity. A
desirable leaf image feature representation is expected to narrow
the intra-class distance while increase the inter-class distance as
much as possible in image feature space.

In the past decades, a large body of leaf image descriptors have
been devoted to plant species or cultivar recognition tasks. Most of
them are based on handcrafted features which take shape, texture,
vein, or edge patterns of leaf images as main clues. Although some
methods [4, 21, 22] have reported high accuracies on species recog-
nition, they are still limited to capture the subtle difference of leaf
image pattern across different cultivars in FGLIR task due to the
intrinsic essence of handcrafted features heavily depending on the
human expertise. Inspired by the great success of deep learning in
various image recognition tasks, some recent attempts [9, 15, 32]
have been made to employ deep learning features to leaf image
recognition. However, these methods focuses on leaf image classifi-
cation, a supervised pattern recognition task, and their performance
depend on a large body of labeled training samples.

FGLIR is a typical unsupervised pattern recognition task. Its
characteristics of fine-grained leaf images and unlabeled dataset
make it more challenging than other leaf image recognition tasks.
Although some recent efforts [14, 17, 19, 34] have been made to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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employ deep features for image retrieval, few attention has been
paid on leveraging deep features for FGLIR. In this paper, we in-
vestigate the possible way to enhance the discriminative power
of deep convolutional features for setting a new state-of-the-art
performance on fine-grained leaf image retrieval.

Image descriptors produced by deep convolutional neural net-
works (CNN) have emerged as state-of-the art generic descriptors
for various visual recognition tasks [7, 23, 31]. Our work also relies
on using CNN activations as off-the-shelf features for addressing
the challenging FGLIR. Some CNN based image retrieval methods
[20, 27, 38] focus on extracting feature from the fully-connected
layers. However they are limited to capture the spatial structural
features of images due to the loss of spatial information in the fully-
connected layers. Recently, most of methods [2, 14, 19, 31, 34, 35],
concentrate on building image descriptors from the convolutional
layers. Some of them [2, 19, 31] mainly pay attention on the fea-
ture choice or aggregation of the convolutional layers and ignore
the useful spatial structure feature extraction. Although some re-
cent at-tempts [14, 34, 35] have been made to encode the spatial
structure and contextual information from feature maps of the
convolutional layers into the final image descriptors, they require
additional labeled datasets to train the networks.

In this work, we propose a novel CNN feature based leaf image
feature representa-tion, named Structural Deep Patch Represen-
tation (SDePR), for fine-grained leaf image retrieval (FGLIR). The
contributions of this study is highlighted as follows: (1) We for
the first time investigate the possible way to construct leaf image
descriptors that can encode the spatial structure and contextual
information from the feature maps of the convolutional layers in
a training-free manner. (2) We design a triplet patch-pair com-
posite structure (TPCS), to measure the local structure properties
and spatial correlations of leaf images. (3) We conduct extensive
experiments to apply our proposed SDePR method to the public
challenging fine-grained leaf image da-tasets and greatly improve
the retrieval rates of the state-of-the-art methods.

2 RELATEDWORK
In this section, we briefly survey the state-of-the-art leaf image
descriptors for FGLIR and deep CNN feature based image retrieval
methods.

2.1 Leaf Image Descriptor
The early leaf image descriptors are designed for plant species
recognition andmainly extract various shape features [10, 11, 16, 26–
28] to construct feature representations. The leaf texture features
are also considered in this task. However, they are only taken as
the complementary clues for enhancing the recognition accuracy
[1, 34]. While in FGLIR, as shown in Fig. 1, the leaf images have
high intra-class similarity in their shape patterns. So, the existing
methods for FGLIR mainly focuses on the use of no-shape features.

Larese et al. [13] used the Self-Invariant Feature Transform (SIFT)
to detect vein patterns and employed Bag of Words (BoW) model to
aggregate local vein features for distinguishing soybean cultivars.
Oleander has many cultivars exhibiting high inter-class similarity.
Baldi et al. [3] used 18 morphometric and colorimetric parameters
as leaf visual features for distinguishing 22 oleander cultivars.

Recently, some methods treat leaf texture patterns as the most
valuable clues for FGLIR. Wang et al. [29] proposed a novel local
R-symmetry co-occurrence to de-picting discriminative local sym-
metry texture patterns. Chen et al. [5] designed a novel geometrical
configuration, named Symmetric Binary Tree (SBT), for mining
co-occurrence texture patterns. More recently, based on the fan-
beam projection theory, a new texture descriptor, named Fan-Beam
Binarization Difference Projec-tion (FB-BDP) [6], was developed
for various FGLIR tasks. A single leaf image pat-tern may be not
powerful enough to distinguish cultivars. Wang et al. [30] for the
first time constructed leaf image descriptors from the joint leaf im-
age patterns in which the leaves from the lower, middle and upper
parts of plants are combined for joint texture feature extraction.

Besides the handcrafted methods, some works have also con-
sidered the use of deep learning for identifying cultivars. Tavakoli
et al. [25] proposed to use convolu-tional neural networks (CNN)
to classify 12 cultivars of common beans that belong to three dif-
ferent species. They fine-tuned the pre-trained VGG16 model [24]
by replacing the last two dense layers with two new ones of 1024
and 512 neurons. However it is designed to work in the supervised
setting, i.e., annotated images are required for model fine-tuning.
While FGLIR is a pure unsupervised recognition task and annotated
images are unavailable. Therefor this method cannot handle the
challenging FGLIR.

2.2 CNN based Image Retrieval
According to whether the deep feature representations encode the
structural in-formation of images, the existing CNN based image
retrieval methods can be classified into non-structural method and
structural method. Most of the methods to the former. They gen-
erally focuses on using the activations from the fully connected
layers or convolutional layers of CNN models and adopting various
feature aggregat-ing strategies to build image descriptors. Wei et al.
[31] proposed a method, named Selective Convolutional Descriptor
Aggregation (SCDA), for fine-grained image retrieval. It takes the
activations from the convolutional layers of CNNmodels as clues to
select the useful deep descriptors for feature aggregation. Pang et al.
[19] proposed to address deep convolutional feature aggregation by
simulating the dynamics of heat diffusion. Yang et al. [34] made the
first attempt to fuse local and global convolutional layer features
in an orthogonal manner for effective single-stage image re-trieval.
They proposed a novel information fusion framework, named Deep
Orthogonal Local and Global (DOLG), for achieving this goal.

Capturing the structural characteristics of image can enhance the
discriminative power and robustness of image descriptors [8, 14].
Instead simply computing the CNN activation vector over the entire
image, Gong et al. [8] proposed to combine activations of CNN
extracted at multiple local image windows for getting improved
recognition performance. Self-similarity is a classical structural
image descriptor aim-ing to measure how similar a specific part
of an image is to the entire image or its neighborhood region [14].
Lee et al. [14] revisited it in terms of convolutional and proposed a
self-similarity encoder that embeds structural properties in global
embeddings while learning diverse structural properties within
numerous images.
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Figure 2: An Illustration of constructing the triplet patch-pairs composite Structure (TPCS).

3 THE PROPOSED METHOD
In this section, we introduce the details of our proposed Structural
Deep Patch Representation (SDePR) for fine-grained leaf image
retrieval (FGLIR).

3.1 Triplet Patch-Pairs Composite Structure
(TPCS)

Given a leaf image 𝐼 , let Ω denote the leaf contour extracted from
it. We uniformly sample 𝑁 points, 𝑍𝑖 , 𝑖 = 0, . . . 𝑁 − 1, from the
leaf contour Ω. Then the original leaf contour Ω is simplified as
a polygon with 𝑁 edges. For each sample point 𝑍𝑖 , the largest
distance between it and the other 𝑁 − 1 sample ones is defined as

Υ𝑖 = max
𝑗∈[0,𝑁−1]

∥𝑧 𝑗 − 𝑧𝑖 ∥2, (1)

where ∥ · ∥2 denotes L2-norm. Given a length 𝜌 ∈ (0, 𝑅𝑖 ), we use
it as a radius and the contour point 𝑍𝑖 as the center to draw a
circle. Since 𝜌 < Υ𝑖 , the circle intersects with the contour at least
two points. Among all the intersection points, let 𝑍𝑙 and 𝑍𝑟 be
separately the nearest neighboring points of the point 𝑍𝑖 along
contour in clockwise and counter-clockwise directions. We denote
𝛼𝑖,𝜌 as the angle formed by rotating the right chord 𝑍𝑖𝑍𝑟 about the
point 𝑍𝑖 to the left chord 𝑍𝑖𝑍𝑙 in anticlockwise direction.

Taking the left chord𝑍𝑖𝑍𝑙 as the side, we construct a rectangle 𝐵𝑙
with the length being 𝜌 and the width being 𝜌/2 inside the leaf area.
In the same way, we use the right chord 𝑍𝑖𝑍𝑟 to construct another
rectangle𝐵𝑟 inside the right area. As shown in Fig. 2 (a), the obtained
two rectangle are symmetrical about the bisector of the angle 𝛼𝑖,𝜌 .
We use them to cut two rectangular patches from the leaf image 𝐼
and denote them as 𝑃 (1)

𝑙
and 𝑃 (1)

𝑟 , respectively. Where we sample
each of them to 256 × 128 pixels with subtracting the mean of the
pixel values over the patch. By rotating the rectangles 𝐵𝑙 and 𝐵𝑟 by
𝛼𝑖,𝜌/4, in clockwise and counter-clockwise directions, respectively
and using them to cut the leaf image 𝐼 , we can achieve another two

rectangular patches as shown in Fig. 2 (b). We denote them as 𝑃 (2)
𝑙

and 𝑃 (2)
𝑟 , respectively. Obviously, they are still symmetrical about

the bisector of the angle 𝛼𝑖,𝜌 . Continuing to rotate the rectangles
𝐵𝑙 and 𝐵𝑟 by 𝛼𝑖,𝜌/4, in clockwise and counter-clockwise directions,
respectively and using them to cut the leaf image 𝐼 , we can get two
rectangular patches as shown in Fig. 2 (c), denoted by 𝑃 (3)

𝑙
and 𝑃 (3)

𝑟 ,
respectively.

Collecting all the available three patch pairs, associated with the
contour point 𝑍𝑖 , we can construct a composite structure denoted
by

𝑇𝑃𝐶𝑆𝑖,𝜌 = {(𝑃 (𝑡 )
𝑙

, 𝑃
(𝑡 )
𝑟 ), 𝑡 = 1, 2, 3}. (2)

We name it Triplet Patch-Pairs Composite Structure (TPCS). It
has the following appealing characteristics which have potential
to benefit the mining of discriminative deep features: (1) All the
patch pairs in𝑇𝑃𝐶𝑆𝑖,𝜌 have the common axis of symmetry, i.e., the
bisectior of the angle 𝛼𝑖,𝜌 which makes them have tight spatial
connections. (2) As shown in Fig. 3, TPCS varies with the change of
the contour point𝑍𝑖 (resulting the variation of the angle 𝛼𝑖,𝜌 ) which
make it have the merit of capturing the local structure information
of leaf image. (3) The patches in TPCS are segmented from the
leaf image in different orientations which enables the capturing
of direction patterns. (4) The parameter 𝜌 of TPCS can be used to
change the size of the patches in TPCS which potentially facilitating
the extraction of multiscale deep extractions.

3.2 Local Deep Self-Similarity Descriptor
In this subsection, we use each patch pair in TPCS to measure
the local self-similarity of leaf images in deep feature domain. For
each pair of patches 𝑃 (𝑡 )

𝑙
, 𝑃

(𝑡 )
𝑟 in TPCS, we feed them through

a pre-trained CNN network to extract two feature maps, 𝑓 𝑡
𝑙
and

𝑓 𝑡𝑟 ∈ 𝑅𝐻×𝑊 ×𝐶 , respectively, from the same convolutional layer,
where𝐻 ×𝑊 and𝐶 are the spatial resolution and the number of the



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: An example to show that TPCS varies with the
change of the contour point 𝑍𝑖 .

channels of the feature map, respectively. According to the symmet-
ric relationship between the patches 𝑃 (𝑡 )

𝑙
, 𝑃

(𝑡 )
𝑟 , the element (𝑢, 𝑣, 𝑘)

of the feature map 𝑓 𝑡
𝑙
is symmetrical to the element (𝑢,𝑊 −𝑣 +1, 𝑘)

of the feature map 𝑓 𝑡𝑟 . By measuring the symmetric difference be-
tween the two feature maps, 𝑓 𝑡

𝑙
and 𝑓 𝑡𝑟 , we can get a new feature

map 𝑓 𝑡
𝑑
∈ 𝑅𝐻×𝑊 ×𝐶 with each element calculated by

𝑓
(𝑡 )
𝑑

(𝑢, 𝑣, 𝑘) = (𝑓 (𝑡 )
𝑙

(𝑢, 𝑣, 𝑘) − 𝑓
(𝑡 )
𝑟 (𝑢,𝑊 − 𝑣 + 1, 𝑘))2 . (3)

We conduct channel-wise average pooling against it to yield a
feature vector 𝑆 (𝑡 ) ∈ 𝑅𝐶 . Fig. 4 presents a flow chart to illustrate the
procedure of constructing the vector 𝑆 (𝑡 ) . Then using the TPCS and
a pre-trained CNN network, we get three feature vectors 𝑆 (𝑡 ) , 𝑡 =
1, 2, 3. Through normalizing them with L2-norm and concatenating
them, we can build a descriptor

𝑆𝐷𝑖,𝜌 = {𝑆 (𝑡 )/∥𝑆 (𝑡 ) ∥2, 𝑡 = 1, 2, 3}, (4)

associated with the contour point 𝑧𝑖 under the parameter 𝜌 , to
measure the local self-similarity of the leaf image. We tern it Local
Deep Self-Similarity Descriptor.

3.3 SDePR Image-level Representations
Multi-scale descriptors: By changing the parameter 𝜌 of the
local descriptor 𝑆𝐷𝑖,𝜌 , we can extend it to multi-scale descriptors.
Considering that the absolute scale parameter 𝜌 depends on the
size of the leaf image, instead of directly using it, we introduce a
relative scale parameter 𝜑 ∈ [1, . . . ,𝛷] which has the relation of
𝜌 = Υ𝑖/2𝜑 with the parameter 𝜌 (see Equ. 1 for the definition of
Υ𝑖 ), where 𝜑 is the index of the scale level and 𝛷 is the number
of the scale levels. For the contour point 𝑍𝑖 , let the relative scale
parameter 𝜑 vary from 1 to𝛷 , we can generate𝛷 triplet patch-pairs
composite structures: {𝑇𝑃𝐶𝑆𝑖,1, ...,𝑇𝑃𝐶𝑆𝑖,𝛷 }. As an example, Fig.
5 shows the first patch pairs in 𝑇𝑃𝐶𝑆𝑖,1 and 𝑇𝑃𝐶𝑆𝑖,2, respectively.
We separately use 𝑇𝑃𝐶𝑆𝑖,Υ𝑖/2𝜑 , 𝜑 = 1, ...,𝛷 to construct local deep
self-similarity descriptors of𝛷 scale levels: 𝑆𝐷 (𝜑 )

𝑖
, 𝜑 = 1, ...,𝛷 .

Local descriptors aggregation: Since there are𝑁 sample points
in the leaf contour, for each scale 𝜑 ∈ [1, . . . ,𝛷], we can obtain 𝑁

local deep self-similarity descriptors 𝑆𝐷 (𝜑 )
𝑖

, 𝑖 = 1, ..., 𝑁 , we simply

use the average pooling to aggregate them into a single feature
vector

𝑆𝐷
𝜑
=

1
𝑁

∑︁
𝑖∈[0,𝑁−1]

𝑆𝐷
(𝜑 )
𝑖

. (5)

By concatenating the aggregated descriptors of𝛷 scale levels 𝑆𝐷𝜑
, 𝜑 =

1, ...,𝛷 , we build an image-level representation which is a 3𝐶 ·𝛷−
dimensional vector. As an image-level representation, it has the
following characters: (1) According to the definition of the triplet
Patch-Pairs composite structure (TPCS), the triple patch pairs and
their spatial correlations does not depend on the rotation and trans-
lation of the leaf image. Therefore, the resulted descriptors 𝑆𝐷𝜑 are
invariant to the rotation and translation of leaf images. Since we
use a relative scale parameter 𝜑 instead of the absolute parameter
𝜌 , the resulted descriptors 𝑆𝐷𝜑 are also invariant to scaling of leaf
images. (2) The TPCS is a symmetrical geometric structure and each
patch pair is used to measure the local self-similarity of leaf im-
ages. Therefore, the resulted descriptors 𝑆𝐷𝜑 can perfectly capture
the structural information and spatial-contextual information. (3)
The proposed image-level representation uses muti-scale features
which make it have the ability to depict the leaf image from coarse
to fine. (4) The proposed image-level representation is constructed
from the activation of pre-trained CNN model and is training-free,
i.e., does not depend on any training datasets which make it have
strong generalization ability and discriminative power. Considering
the unique characters of the proposed image-level representation,
we name it Structural Deep Patch Representation (SDePR). Since
SDePR is a single vector, we can measure the similarity between
two leaf images by simply calculating their L1-distance for efficient
leaf image retrieval.

3.4 Muti-Layer SDePRs Fusion
The ensemble of multiple layers of CNN models can boost the fi-
nal recognition performance [31]. However, the feature vectors
extracted from different layers generally have different dimension-
alities. The simple concatenation of them may not make them
complementary with each other to contribute to the performance
improvement. Considering that developing a novel feature fusion
scheme is not the focus of this study, we adopt a recent feature
fusion scheme, KNN-HDFF, proposed by [5]. KNN-HDFF is a simple
way originally designed for fusing handcrafted features and deep
features. It considers the neighbouring information of different
feature spaces in the normalization of distance measures. In this
study, we use it to fuse the SDePRs constructed from different lay-
ers. Limited by the length of the article, we omit the introduction
of its details (refer to [5] for the details of KNN-HDFF).

4 EXPERIMENTS
In this section, to gauge the performance of the proposed method
for fine-grained leaf image retrieval (FGLIR), we conduct extensive
experiments on the publicly available benchmarks and compare our
method with the state-of-the-art methods with standard evaluation
metrics.
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Figure 4: A flow chart to illustrate the procedure of constructing the local deep self-similarity descriptor.

4.1 Evaluation Metrics and Baselines
Two standard evaluation metrics, Bulls-eye test [5, 6, 10, 16, 27]
and precision-recall (PR) curves [5, 6, 26] are used to quantify the
retrieval performance of all the competing algorithms. Eight state-
of-the-art image descriptors, Local RsCoM [29], SBT [5], FB-BDP [6],
DSFH [17], ReSW [20], HeW-ResNet50 [19], DOLG [34], and SENet

Figure 5: An example to show the multicale TPCSs (only the
first path pair is shown for simplified illustration).

[14] are used as baselines. Among them, the first three descriptors
are recently published handcrafted leaf image descriptors focus-
ing on the characterization of fine-grained leaf images and report
state-of-the-art performance on fine-grained leaf image recogni-
tion. While the last five descriptors are based on deep CNN features
and achieve state-of-the-art performance on image retrieval tasks.
DSFH [17] used the off-the-shelf features extracted from the fully-
connected layer of pr-trained VGG-16 model. ReSW [20] used the
the features of convolutional layers from the pre-trained or fine-
tuned VGG-16 models. HeW-ResNet50 [19] extracted patch-level
faetures from the last convolutional layer of the pre-trained and
fine-tuned ResNet50 models. While as for DOLG [34] and SENet
[14], they both took ResNet50 as backbone and consider the output
of the convolutional layers for constructing their own network.
Their networks require an additional dataset such as Google land-
marks dataset V2 (GLDV2) [33] to train them. Their parameters all
follow their original settings.

4.2 Implementation Details
All the competing methods are performed on a computer equipped
with an intel i5-10500 CPU and a NVIDIA RTX 3070 GPU. Since our
method focuses on developing training-free deep feature representa-
tion for FGLIR, a new challenging unsupervised pattern recognition
task, we directly use the pre-trained CNN model and treat it as an
generic feature extractor. VGG-16 is a popular pre-trained model
which has been widely used for various pattern recognition tasks
due to its great generalization ability and low computation cost. We
therefore choose it as the extractor of feature maps for constructing
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our SDePR image-level representation. We use the publicly avail-
able VGG-16 model (imagenet-matconvnet-vgg-verydeep-16) using
the open-source library MatConvNet. The existing VGG-16 based
methods generally use layers in the 5th convolutional blocks such
as ’pool5’, ’conv5-2’ and ’conv5-3’ for feature extraction. Different
from them, besides the the use of ’pool5’, we also consider the
use of ’pool4’ due to its preservation of richer spatial information
over the deeper layers which benefit the capturing of structural
and spatial-contextual information. We use the KNN-HDFF [5] to
fuse the SDePRs from the ’pool4’ and ’pool5’ layers of pre-trained
VGG-16 for image retrieval. The parameter settings for our method
are: the number of the points sampled from the contour is 𝑁 = 64
and the number of scale levels are𝛷 = 4.

4.3 Soybean FGLIR
Soybeans are commonly known as one of the most important eco-
nomic crops in the world. SoyCultivar200 [30] is a public available
soybean leaf image dataset. It has 200 cultivars with each having
30 leaves collected from different parts of soybean plants: 10 sam-
ples from the upper part, 10 samples from the middle part, and 10
samples from the lower part. All the samples from the same part of
soybean plants are grouped into a subset which makes the dataset
divided into three subsets, Soy-Up, Soy-Mid, and Soy-Low, respec-
tively. Each subset accordingly consists of 200×10=2000 single leaf
patterns. Besides the above three subsets focusing on the testing
of single leaf image patterns, this benchmark also designs another
evaluation protocol on the use of joint leaf image patterns. In this
protocol, all the 6000 leaves in the dataset are divided into 2000
groups with each containing three leaves of the same cultivar sepa-
rately from the upper part, middle part and lower part of different
soybean plants. Each group is treated as a joint leaf pattern and all
of them form a set, Soy-Joint, consisting of 200×10=2000 joint leaf
patterns. For a evaluated method, its feature descriptors extracted
from the joint leaf patterns are concatenated as a single vector
for image retrieval. Fig. 6 shows parts of leaf images of different
cultivars from the three subsets, Soy-Up, Soy-Mid, and Soy-Low.
More details about the SoyCultivar200 dataset refer to [30].

The Bull-eye scores of all the competing methods are summa-
rized in Table 1. It can be seen that on the use of single leaf image
patterns (performing on the test cases, Soy-Up, Soy-Mid and Soy-
Low, respectively), the proposed methods achieves the scores of
65.59%, 64.28%, and 59.91% which are separately 4.55%, 6.09% and
3.77% higher than the other competing methods. While using joint
leaf image patterns (Soy-joint), the proposed method achieves an
exciting score of 92.64% which outperforms the other competing
methods by 1.98%.We also report the results of our method on using
’pool4’ or ’pool5’ layer for soybean FGLIR. Although their scores
are both lower than those of using the fusion of ’pool4’ and ’pool5’
layers, they are still significantly higher than those of all the other
competing methods. We plot the PR curves for all the competing
methods on the four test cases in Fig. 7. It can be clearly observed
that on all the test cases, the proposed method consistently achieves
the best PR curves.

Figure 6: Parts of Soybean leaf images of different cultivars
from the three subsets of the SoyCul-tivar200 dataset.

4.4 Peanut FGLIR
Peanut is another economic crop in the world which is widely
grown in the tropics and subtropics, contributing to both small
and large commercial producers. The PeanCultiar120 dataset [6]
is another public available benchmark designed for FGLIR. It has
600 leaf images from 120 peanut cultivars with each consisting of 5
samples. Different from the SoyCultivar200, this dataset is designed
only for testing the performance of single leaf image pattern. An
example sample for each peanut cultivar is shown in Fig. 8.

The Bull-eye scores for all the competing methods are summa-
rized in Table 2. As can be seen that the proposed method obtains
the score of 59.93% which out-performers the other competing
methods by 5.4%. We also report the scores of our method on using
’pool4’ or ’pool5’ layer for peanut FGLIR. Although their scores
are both lower than that of using their fusion, they still achieve
better scores over the all the other competing methods. In Fig. 9,
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Table 1: The Bull-eye scores (%) of all the competing methods on the three benchmarks, Soy-Up, Soy-Mid, Soy-Low of the
SoyCultivar200 leaf image dataset [30].

Algorithm Up Mid Low AVERAGE

Local RsCoM 42.77 43.11 41.60 70.44
SBT 47.57 48.40 47.92 81.69
FB-BDP 49.12 51.76 50.59 84.20
DSFH 41.52 41.82 40.35 69.90
ReSW 45.12 46.33 43.78 80.97
HeW-Resnet50 48.07 49.13 45.23 80.42
DOLG 56.61 55.90 56.14 88.39
SENet 61.04 58.19 53.94 90.66
Proposed SDePR (Pool4) 61.55 60.63 57.10 91.76
Proposed SDePR (Pool5) 61.48 60.65 57.05 92.35
Proposed SDePR (Pool4+Pool5) 65.59 64.28 59.91 92.64

Figure 7: The precision-recall curves for all the ten competing methods on the four test cases, Soy-Up, Soy-Mid, Soy-Low and
Soy-Joint of the SoyCultivar200 leaf image dataset[30].

Figure 8: 120 example peanut leaf images of the PeanCulti-
var120 dataset [6] (one example for each cultivar).

we plot the PR curves of all the competing methods. It can be seen
that the PR curve achieved by our method is obviously better than
those of the other methods which consistently indicate its superior
performance over the state-of-the-art methods on FGLIR.

Figure 9: The precision-recall curves of all the competing
methods on the PeanCultivar120 leaf image dataset [6].).
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Table 2: The Bull-eye scores (%) of all the competing methods
on the PeanCultivar120 dataset.

Algorithm Bull-eye scores (%)

Local RsCoM 45.23
SBT 46.83
FB-BDP 51.80
DSFH 37.10
ReSW 44.73
HeW-Resnet50 49.27
DOLG 53.77
SENet 54.53
Proposed SDePR (Pool4) 56.23
Proposed SDePR (Pool5) 57.93
Proposed SDePR (Pool4) 59.93

Table 3: The retrieval scores of individually using the differ-
ent pool lyaers.

layer The size of feature map Bull-eye scores (%)

Pool1 128 × 64 × 64 45.27
Pool2 64 × 32 × 128 51.37
Pool3 32 × 16 × 256 55.43
Pool4 16 × 8 × 512 56.23
Pool5 8 × 4 × 512 57.93

4.5 Ablation Experiments
In this subsection, we use the PeanCultiar120 dataset to separately
study the influences of the choice of layers in the pre-trained VGG-
16 model. For the choice of layers, we first conduct a group of ex-
periments on the individual use of ’poo1’, ’poo2’, ’poo3’, ’poo4’, and
’poo5’. The experimental results are summarized in Table 3. It can
be seen that the features extracted from the deep layers work better
than those of shallow layers due to the lack of high-level semantic
information. However, due to the strong ability of our proposed
SDePR on modelling the structural and spatial-contextual infor-
mation, the use of middle layer (’pool3’) for our method achieves
the score 55.43% which still outperforms all the other competing
methods. Next, we conduct another group of experiments to fuse
the SDePR of ’pool5’ with the SDePRs of ’pool4’, ’pool3’, ’pool2’ and
’pool1’. The results are summarized in Table 4. It can be seen that
compared with the individual use of ’pool5’ layer, the fusions of
’pool5’ with ’pool3’ and ’pool4’, respectively can both significantly
improve the retrieval performance (resulting an increase of about
2%).

5 CONCLUSION
Fine-grained leaf image retrieval (FGLIR) is a new challenging unsu-
pervised pattern recognition task. Due to the very high inter-class
similarity across different cultivars, FGLIR tasks require powerful
leaf image descriptors to handle the subtle difference among vari-
eties within the same plant species. In this work, we make the first
attempt to investigate the possible way to encode spatial structure
and contextual information into the image-level representation for

Table 4: The retrieval scores of fusing the SDePR of ’pool5’
layer with the other ’pool’ layers.

The fusion of ’Pool5’ with others Bull-eye scores (%)

Pool5 57.93
Pool5+Pool4 59.93
Pool5+Pool3 59.73
Pool5+Pool2 57.00
Pool5+Pool1 52.07

FGLIR. We design triplet patch-pairs composite Structure (TPCS)
to extract patch-level deep features from the a pre-trained CNN
model and measure the difference between the feature maps of the
patch pair for constructing local deep self-similarity descriptors.
The final aggregated local deep self-similarity descriptors, named
Structural Deep Patch Representation (SDePR), have the strong abil-
ity to capture the spatial structure and contextual information of
leaf images which make it more suitable for depicting fine-grained
leaf images. We conduct extensive experiments to apply our pro-
posed SDePR method to the public challenging fine-grained leaf
image retrieval tasks which greatly improve the retrieval rates of
the state-of-the-art methods.
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