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Abstract

Contextual bandits constitute a popular frame-
work for studying the exploration-exploitation
trade-off under finitely many options with side in-
formation. In the majority of the existing works,
contexts are assumed perfectly observed, while
in practice it is more reasonable to assume that
they are observed partially. In this work, we
study reinforcement learning algorithms for con-
textual bandits with partial observations. First,
we consider different structures for partial ob-
servability and their corresponding optimal poli-
cies. Subsequently, we present and analyze re-
inforcement learning algorithms for partially ob-
served contextual bandits with noisy linear obser-
vation structures. For these algorithms that uti-
lize Thompson sampling, we establish estimation
accuracy and regret bounds under different struc-
tural assumptions.

1. Introduction

Contextual bandits provide the framework for sequen-
tial decision-making given the available information. In
general, for contextual bandits, finite options can be
taken given fully observed contexts. Contexts re-
fer to information about available options, often repre-
senting individual characteristics in many applications
(Li et al., 2010; Bouneffouf et al., 2012; Tewari & Murphy,
2017; Nahum-Shani et al., 2018; Durand et al., 2018;
Varatharajah et al., 2018; Ren & Zhou, 2020). In contex-
tual bandits, similarly to other reinforcement learning prob-
lems, the exploration-exploitation trade-off needs to be ad-
dressed to get satisfactory performances. There are two
methods to address the trade-off in the main stream: OFU
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and Thompson Sampling.

The origin of Thompson sampling goes back to the liter-
ature (Thompson, 1933). Recently, Thompson sampling
has become more popular for addressing the trade-off of
exploration and exploitation because of its simplicity as
well as good performance. As compared to methods
with Optimism in the Face of Uncertainty (OFU), Thomp-
son sampling has been known to have easier installment
and heuristically better performance (Chapelle & Li, 2011;
Agrawal & Goyal, 2013).

Meanwhile, stochastic contextual bandits have various as-
sumptions about their features such as reward functions,
context space, and action space. For reward functions,
a popular one is a linear reward function (Dani et al.,
2008; Hamidi & Bayati, 2020; Agrawal & Goyal, 2013),
while more general models assume non-linearity for re-
ward functions (Dumitrascu et al., 2018; Modi & Tewari,
2020). Next, for action space, a common action set is
a pre-fixed finite set representing finite arms, which does
not change over time (Agrawal & Goyal, 2013). On the
contrary, the other general models have an infinite ac-
tion set, which consists of d-dimensional context vectors
(Abbasi-Yadkori et al., 2011). For linear contextual bandits
with finite arms, a reward for each arm is generated based
on a linear function of a given context and parameter with
a noise. Reward functions can take various forms of inputs,
contexts and parameters. For clarity, we define the terms
private and public for contexts and parameters. Here, a pub-
lic one is a common input for reward functions for all arms,
while a private one is associated only with the reward func-
tion of the corresponding arm. Generally, the linear func-
tion can have three structures: private contexts and a public
parameter (Agrawal & Goyal, 2013); a public context and
private parameters; private contexts and private parameters.
For example, for /NV-armed contextual bandits with a public
context and private parameters, all the arms share a pub-
lic context, but each arm has its own private parameter so
there are N private parameters (Agrawal & Goyal, 2013).
In this paper, we analyze all three cases, especially focus-
ing on the one with private contexts and private parameters,
which can be the general case of the other two.

The reinforcement learning community has paid suf-
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ficient attention to decision-making algorithms in the
absence of information uncertainty. However, frame-
works with imperfect information and decision-making
algorithms for them have not drawn sufficient interest,
even though the information for decision-making is of-
ten observed in a partial, transformed, or noisy man-
ner in practice (Bensoussan, 2004). Imperfect observa-
tions are the problems of interest in various areas such
as state-space models, robot control, image processing
and filtering, which are associated with decision-making
problems (Nise, 2020; Nagrath, 2006; Lin et al., 2012;
Dougherty, 2020; Kang et al., 2012). The imperfect obser-
vations in contexts can be caused by many reasons: pri-
vacy regulations, measurement errors, and missing data
(Lin et al., 2012; Kang et al., 2012; Sbeity & Younes, 2015;
Azimi et al., 2019). Ignorance of the imperfectness of ob-
servations can cause imprecise decisions in many applica-
tions such as health care, advertisements, and clinical tri-
als (Dyczkowski, 2018; Nahum-Shani et al., 2018; Li et al.,
2010; Bouneffouf et al., 2012). For example, for sick septic
patients, if missing information is not properly adjusted for
clinical context, clinicians’ decision-making may result in
worse outcomes (Gottesman et al., 2019). To this end, we
suggest decision-making algorithms for contextual bandits
in the presence of imperfectly observed contexts.

Imperfect or partial observations in decision-making get
more interest in the reinforcement learning community. A
Partially Observable Markov Decision Process (POMDP),
which is a generalization of a Markov decision process
(MDP), was introduced to address imperfect observations
in decision making (Astrdm, 1965; Kaelbling et al., 1998).
Recently, some contextual bandits models have started to
take the imperfectness of contexts into account as well.
However, the existing studies consider some particular
cases under certain assumptions. In cases where some ele-
ments of contexts are missing and the others are fully ob-
served, UCB-type algorithms have been employed based
on the correlations between these two types of elements
have been used to minimize the regret (Tennenholtz et al.,
2021). In addition, under the presence of only a pub-
lic parameter, analyses about UCB-type algorithms and
Thompson sampling have been done for contextual ban-
dit with invertible linear observation function (Yun et al.,
2017; Park & Faradonbeh, 2021) and greedy algorithms
are shown to have logarithmic regret with respect to the
time horizon for the general linear observation function un-
der normality assumption (Park & Faradonbeh, 2022). But,
analyses for the case with private parameters and the gen-
eral linear observation function have not been studied yet.
In this paper, we analyze Thompson sampling for partially
observed contextual bandits relaxing the assumptions in the
existing literature. We perform the finite-time worst-case
analysis under the sub-gaussian assumption for observa-

tions, which is more general than the normality assumption.
In addition, we construct the model with a general linear
observation structure, which can include various cases.

The remainder of this paper is organized as follows. In
Section 2, we formulate the model and discuss the relevant
preliminary materials. Next, Thompson sampling for con-
textual bandits with partially observed contexts is presented
in Section 3. In Section 4, we provide theoretical perfor-
mance guarantees for the proposed algorithm. Finally, we
conclude the paper and discuss future directions.

We use AT to refer to the transpose of the matrix A €
CP*4, For a vector v € C¢%, we denote the ¢5 norm
J 1/2 N .
by [[o] = (zizl \vi|2) Additionally, C/(A) is em-
ployed to denote the column space of the matrix A. Further,
polylog(zy/z) is a polynomial of log z, log y and log 2.
Finally, Pc(4) is the projection operator onto C'(A), and
Amin(A) (Amax(4)) denotes the minimum (maximum)
eigenvalue of A.

2. Problem Formulation

In this section, we discuss stochastic contextual bandits
with unobserved contexts, where the reward of the ith arm
is generated based on the following probabilistic assump-
tion

ri(t) = f(x(t),4) +ei(t), (D

where z(t) is an unknown d,-dimensional stochastic con-
text at time ¢ with the mean 04, and a covariance ma-
trix 3, f is a deterministic unknown linear function from
R&“mM(@(1))+1 to R and ,(t) is a sub-Gaussian noise gen-
erated independently such that

2 R2
A2 R2

E [e/\si(t)] <eEt

for some Ry > 0. Instead of the context x(t), a trans-
formed noisy context, denoted as y(t), can be observed
based on the following observation model

y(t) = Az(t) + £(b), @)

where A is a matrix in R%*%=; £(¢) is a sub-Gaussian
noise vector centered at 0 with the positive definite co-
variance Yy. A learner is aware of the probabilistic as-
sumption of rewards (1), but does not know the function
f. At each time ¢, the learner tries to choose the optimal
arm given the history of actions {a(7)}1<r<¢—1, rewards
{ra(r)(T) }1<r<¢—1, and observations {y(7)}1<r<¢—1 as
well as the current observation y(t). f has a linearity as-
sumption such that

f(t),1) = x(t) " Jip, 3)
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where 1, is the parameter of interest and J; is a known
matrix in R4™=*dm. - Since the optimal policy does not
know the value of x(t) as well, f(x(t),%) is not available
for it. Thus, the optimal policy also needs to estimate
f(z(t), 1) based on the observation y(t).

First, assuming the function f to be known, we investigate
how to find the estimate of f(x(t),%). To find an estimate
of f(x(t),7), we first find an estimate of x(t). To proceed,
based on (2), we aim to find an estimate of context x(t).
Since z(t) is an unobserved random variable, the minimizer
of the expected norm of the difference between z(t) and a
linear unbiased predictor Dy(t) such that

Dy(t) =

arg min
Dy(t),DER%y > d=

E[(x(t) — Dy(t) " (z(t) — Dy(1)]. 4

can be a predictor of z(¢). A solution of (4) is the best linear
unbiased prediction (BLUP) of x(t), denoted as Z(¢),

B(t) = (ATSP A+ S ) TTATSR () = Dy(t), (5)

where D = (ATS)'A + 2)71ATES! (Robinson,
1991). Because f is a linear function, f(x(t),%) can be
represented as z(¢) " for a u € R¥™(@®)_ Then, by the
extension of Gauss-Markov theorem, we have a BLUP of
x(t) T, ()T = f(@(t),4). Since Z(t) is a function of
y(t), f(Z(t),1) also can be written as f,(y(t), ) for a func-
tion f,. That is,

Fe(y(t),4) = f(2(2),9).
Specifically, for the ith arm, f(x(t),i) = z(t) " J; . is pre-
dictable with y(t) given u; := J; 114, where the estimate of
F((t), ) = () i is
f*(y(t)a2> = y(t)TDTJi,u*- (6)

Now, we investigate the estimation of f (y(t), ) given y(t).
Define

i i= D" Jipt. (7
Thus, using (1), (2), (6) and (7), we get
ri(t) = y(t) 'mi + G(t) ®)

where (;(t) = (x(t) " Jime — y(t) "m;) + £i(t) is a noise
independent from the others. n; is always guaranteed to
be estimable thanks to the full rank Xy. In fact, given the
observation y(t), the estimation of 7; is necessary and suf-
ficient to estimate f.(y(t),i), while J;u. and p. are not
estimable because of rank deficiencies. For these reasons,
instead of J; 1., we estimate 7);.

The optimal arm is the arm maximizing the expected re-
ward given the observations. Thus, the optimal arm at time
t can be presented as

a*(t) = argmax f.(y(t),i) = argmaxy(t) ' n;.
1<i<N 1<i<N

The framework described is a general observational struc-
ture for partially observed contextual bandits. The follow-
ing two settings are the most common structures for contex-
tual bandits.

1. A single parameter and multiple contexts (SPMC)

fla(t),i) = xi(t) T p and y;(t) = Agwi(t) + &i(t)

x;(t) represents the context of the ith arm at time ¢
and A = diag(Ay, ..., Ao). The context x(t) at time
t is a concatenation of the contexts of all arms such
that z(t) = [z:() T, 22()7,...,2n@®) "], J; =

04, xda, -+ La, - Odmxdm]—r. In this case, the
~—

ith
optimal arm can be represented as

a*(t) = argmaxy(t) ' D' J;p, = argmax y;(t) 1.,
i i
where 7, = D pi.. Note that the column space of .J;
is the same for all ¢ under this assumption. That is,
regardless of which arm has been chosen, the decision
maker can learn the parameter 7),.

2. Multiple parameters and multiple contexts (general
case)
x;(t) represents the context of the 4th arm at
time ¢. The context x(¢) at time ¢ is a con-
catenation of the contexts of all arms such that
(L‘(t) = [‘rl(t)TaxQ(t)Ta~~~7xN(t)T}T' Mg de-
notes the parameter of the ith arm, which is asso-
ciated only with the reward of the ¢th arm. .,

is written as fx = [fa1, a2,y pan]. i =
diag(0d,xd,, -+ la,, -+ Od,xd,)

h

it

a”(t) = arg max y(t) " DT Jip, = arg max y; () T s

K3

where 1.; = Dofhyi-

We consider the second case as the general case because it
includes all the other cases.

Regret is a performance measure, which can be written as
the cumulative sum of expected reward differences between
the optimal and chosen arms over time

T
Regret(T) = Z y(t)T(Wa*(t) — Ta(t))s ©)

t=1

where a(t) is the chosen arm at time ¢. The learner even-
tually aims to minimize the regret by trying to choose the
optimal arm at each time. Accordingly, the goals of this pa-
per are to find algorithms minimizing the regret and regret
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bounds of the algorithms, which are attracting attention in
the reinforcement learning community. Here, f, is the func-
tion of interest because it is the best information about the
reward given the observation y(¢).

3. Reinforcement Learning Policy

In this section, we describe Thompson sampling algorithm
for contextual bandits with partial observations. The algo-
rithm assumes the probabilistic structure of the reward gen-
eration of the arm ¢ given the observation

ri(t) = Z/(t)TDT‘]i'u* +eilt),

where ¢;(t) ~ N(0,v?). With a prior distribution of i,
N(0,02X711), the posterior distribution at time ¢ can be
given as N (fi(t), v2B(t)~!), where

t—1

at) = B rem(n)JyDy(r),  (10)
T=1
t—1

B(t) = M+Y_ JlyDyt)yt) DT Juq. (11)
T=1

At time ¢, with

ni(t) = D'Jin(t) (12)
Bi(t) DT J;B(t)J D (13)

by generating a sample
(1) ~ N (@ (), v*Bi(t) ™) (14)

which is the posterior distribution, the optimal arm estima-
tion can be done by

a(t) = argmaxy(t) "7 (t). (15)

1<i<N

Here, D" .J,/i(t) can be an estimate of 7;. We can update
the 7i(¢) based on the recursions below:

B(t+1) = B(t) + J, ) Dy(t)y(t) ' DT Jo@),

At +1) = B(t+ 1) (BOAW) + 70 Dy (1))
17)

(16)

where B(1) = Al and ji(1) = Og,,.

The pseudo-code of Thompson sampling for contextual
bandit with partial observation is given in Algorithm 1. Al-
gorithm starts with initial values B(1) = AI and pi(1) =
04,- Then, at each time, based on the posterior, generate
samples and select an estimate of the optimal arm maximiz-
ing the quantity in (15). With the reward gained from the

chosen arm, update the posterior mean and covariance.

Algorithm 1 : Thompson sampling algorithm for contex-
tual bandits with partial observations
Set B(1) = Mg, ji(1) = 04, fori =1,...,N
fort=1,2,...,do
fori=1,2,..., Ndo
Sample 7; (t) from N (7;(t), v?B;(t)~1)
end for
Select arm a(t) = arg max; y(t) " 7;(t)
Gain reward 74(4)(t) = f(x(t),a(t)) + g4 (1)
Update B(t + 1) and fi(t + 1) by (16) and (17)
end for

4. Results

Next, we establish theoretical results for Algorithm 1 sug-
gested in the previous section. The results provide a high
probability regret bound for Algorithm 1 and estimation
error bounds of the estimators defined in (12). Without
loss of generality, we assume that ||J;u.| < 1 for all
1€{1,2,..., N}. We first show the results for the general
setting encompassing the first (SPMC) and second settings
(MPMC) introduced in Section 2. The complete proof of
the following results is provided in Appendix.

4.1. Results for the general setting
Theorem 4.1. Let wy = 14;)(t) — Z(t) " Joyp and Fy, =

o{{y(T)}et {a(r) YL Y. Then, wy is F;_1-measurable

=1
and conditionally R-sub-Gaussian for some R > 0 such

that
V2 R?
)

For any § > 0, assuming that ||p.|| < h and B(1) =
A, A > 0, with probability at least 1 — §, we have

E[e”"*[#-1] < exp <

t—1
I7(t) = plley = | D Jaimy Dy(m)w-
T=1 B(t)
14 L2t/\
< R\/du log (J“é/) + A2,

where L = \/d,vr (), vr(8) = (2 log(2d,T/5))'/?,
At = Amax(AXx AT + 3y), dy = dim(y(t)) and d,, =
dim(py.).

Theorem 4.1 provides a sub-Gaussian tail property of the
reward estimation error w; given p and shows a self-
normalized bound for vector-valued martingale by using
the sub-Gaussian property. The reward estimation error w;
can be decomposed into two parts. The one is the reward er-
ror €;(t) given (1) due to the randomness of rewards. This
error is created even if the context x(¢) is known. The other
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is the context estimation error (z(t) —Z(t)) " J; i1 caused by
unknown contexts.

The next theorem provides the lower bound of the smallest
eigenvalue of sample covariance matrix B;(t), which is as-
sociated with the error of estimation 7;. We denote n;(t) as
the count of the 7 arm chosen up to the time ¢.

Theorem 4.2, Let £;(t) = Zj;C(J@:C(Jj) n (t). For B(t)
in (16), on the event Wr defined in (20), with probability
at least 1 — 68, if £;(t) > v (8)*/ (222 12,) 1og(T/6), we

m“im
have

Amin (DT J;B(t)J] D) > %a(ﬁ)

and

Amax (DT J:B(t)"'J D) < %éi(t)‘l.

Definition 4.3. A} € R% is the set such that a*(t) = i, if
and only if y(t) € AZ.

Proposition 4.4. For any arm i, there exist a set A; C A
and €; > 0 such that P(y(t) € A;) > $P(y(t) € A}) and
y(O) " (m —ny) > e ify(t) € As.

The proposition above helps to find a lower bound of the
probability P(a(t) = i|.%#;_1) in the next theorem, which
can provide a lower bound of the number of each arm being
chosen.

Theorem 4.5. Let

11og(T/9)
222 12

m”im

where q(T) = Ry/d, log (1 + LfTT) + A2h and €; is de-

fined in Proposition 4.4. Then, if £;(t) > m;;(T) and
t;(t) > mi;(T),

m;;(T) = max (vT(é) , I/jM)\mijq(T)ei_1> ,

P(a(t) = i|Fi-1) >

Pla*(t) = 3 £;(t)e? £;(t)e?
W 1_2(6— O L -4, )

J#i

The results above can be applied to both the two common
cases defined in Section 2. Now, we focus on regret analy-
sis. We investigate regret bounds for two settings discussed
in Section 2. First, we consider setting 1, where all arms
share the parameter.

4.2. Regret upper bound under the SPMC assumption

Under the SPMC assumption, the column spaces of J; for
different arms are identical. Thus, ¢;(t) = ¢ for all i €

[N]. The next theorem guarantees the estimation accuracy
under the SPMC assumption, which is proportional to ¢t ~°-5.
This implies that the parameter of interest 7); can be learned
regardless of which arm is chosen.

Theorem 4.6. Ler 1; and 7);(t) be the transformed
true parameter in (7) and the estimate in (12), respec-

tively.  Then, under the SPMC assumption, if t >
8(vr(8)*/(N2,12,)) log(T'/5), with probability at least 1 —

0, forall 0 <t < T, we have

RViM vV Amyim

23

Nl

17: () — mill < q(T).

where v;r and v;,,, are the maximum and the non-zero min-
imum eigenvalue of Ji—r DD J;, respectively; Amin(Zy) =
Ams q(T) is defined in Theorem 4.5.

The next theorem shows a poly-logarithmic upper bound
with respect to the time horizon under the SPMC assump-
tion.

Theorem 4.7. Assume that Algorithm 1 is used in a ban-
dit under the SPMC assumption. Then, with probability at
least 1 — 6, Regret(T) is of the order

Regret(T) = O (N(du +\/d,d,)polylog (T]gdy)> .

4.3. Regret upper bound for the general assumption

Under the general assumption, note that ¢;(t) = n,(t),
since all the column spaces of .J; do not overlap each other.
The next theorem presents the estimation error of 7); and a
lower bound of n;(t). The estimation error is proportional
to the inverse of the square root of h;(t), which is a lower
bound of n;(t).

Theorem 4.8. Ler 1; and 7),(t) be the transformed
true parameter in (7) and the estimate in (12), respec-

tively. Then, under the general assumption, if t >
mazx(8(vr(8)*/ (A2, v2 ) log(T/5),123), with probabil-

ity at least 1 — 6, for all 0 < t < T, we have

1
Rl/f]\/[ vV Am Vim
Vpit

: <\/dulog (1 ”(;LQ/A) +Aéh> :

From the theorem above, we can find the frequency n;(t)
increases linearly with the time horizon. Accordingly, in
the next theorem, the regret upper bound also grows with
at most poly-logarithmic rate thanks to the linear growth of
n;(t) even under the general assumption.

7:(t) — nill2 < (18)
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Theorem 4.9. Assume that Algorithm 1 is used in a bandit
under the general assumption. Then, with probability at

least 1 — 6, Regret(T') is of the order
TNd,
5 .

Regret(T) =

@) (ma_xpi()ﬁN(d# ++/dyd,,)polylog (
Z’j

where p,, = min; P(a*(t) = ).

5. Numerical Experiments

In this section, we show the results in Section 4 based on
numerical simulation. First, to see the relationships be-
tween the regret and dimension of observations and con-
texts, we simulate various cases under the general assump-
tion for N = 5 arms and different dimensions of the ob-
servations d, = 10, 20, 40, 80 and context dimension
d, = 10, 20, 40, 80. Each case is repeated 50 times
and the average and worst quantities amongst all 50 sce-
narios are reported. Figure 1 shows normalized regret over
time for different dimensions of observations and contexts.
Because the regret grows poly-logarithmically with respect
to t, we normalize the regret by (logt)?. Next, Figure 2
shows the normalized errors for different cases of dimen-
sions of observations and contexts at N = 5. Since the
estimation errors decrease with =95 in Theorem 4.8, we
describe v/£||7;(t) — ;|2 over time. We evaluate the aver-
age estimation errors of 7); for 5 different arms over time.
Since the errors decrease rate t %5 and v/t cancel out each
other, the normalized errors for all the arms are flattened
over time. This shows that the estimations of 7; are avail-
able regardless of whether the dimension of observations is
greater or less than that of contexts.

6. Conclusion

We studied Thompson sampling for contextual bandits with
partial observations under relaxed assumptions. Indeed,
the suggested model formulation covers various possible
cases for observation structures and provides estimation
processes for contexts. Further, we show that the parame-
ter estimates converge to the truth, and that as time goes by,
the presented algorithm learns the unknown true parame-
ter accurately. Finally, we proved that Thompson sampling
has upper bounds with a poly-logarithmic rate for the most
common two cases.

A problem of future interest is the modeling, estimation and
algorithms for the unknown observation structure, where
the sensing matrix A is unknown. Further, relaxing the lin-
ear observation structure to non-linear can be a problem of
interest.
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A. Appendix
Proof of Theorem 4.1
Lemma A.1. Given y(t), the estimate (t) " J;uu has the mean x(t)" J;u and a sub-Gaussian tail property such as

2p2
v R3

E eu(f(t)—m(t))TJil‘ y(t)j| S e 2

for any v > 0 and some Ry > 0.

Proof. Since Z(t) is a BLUP, E[(Z(t) — x(t)) " J;u] = 0. In addition, using #(t) = Dy(t) = D(Ax(t) + £(t)),

Var((Z(t) — z(t)) " Jiply(t)) = (Jip) (AT Sy A+ 23" i

Because ||J; || < 1, we can find Re > 0 such that
(Ji) (ATSy A+ 2 Wi < Anax(ATEy A+ 53171 = Ry, (19)

for any J;pu € R¥™(=(®)) Therefore, since £(t) has a sub-Gaussian density, we get

2 p2
v2R3

B [er @O ] (1)) < e

Lemma A.2. For any v > 0, we have

L2 R2

y(t)} <e

E [eu(ri(t)—i(t)TJm)

where R = R + Rs.

Proof. By (8),
ri(t) = 2() " i = (2(t) " Tipe —y(8) "m) + (1),

which implies E[r;(t) — Z(¢) " J;u|y(t),a(t)] = 0 because Z(t)"J;u is a unbaised predictor of z(t)"J;u. Due to
Var(€(t) "nily(t)) < R3 by (19), we have

Var(ry(t) — 2(t) " Jiply(t)) = Var(ei(t)) + Var(£(t) 'mily(1)) < R + R} < R?

Since ¢;(t) and £(t) T n; have a sub-Gaussian distribution, r;(t) — Z(¢) " J; ;1 has a sub-Gaussian distribution as well. Thus,

2 2

E[eu(ri(t)—i(t)TJ,;p)Iy(t)] = E[e"“O|y(t)] < 2

Lemma A.3. For J;uu such that E[r;(t)|x(t)] = z(t) T J;u, let

Dé,l, = exp ([(Ta(t) (t) - /x\(t)TJa(f)M)fv\(t)TJa(f)ﬂ’ _ ;(/x\(t)TJa(t)M)2‘|> ;

R

and M!" = T[%._, D¥. Then, E[M*] < 1.

T=1
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Proof.
E[D!|F, 1] = E exp((rau)(t)f(t)Tﬁ(t)u)i(t)ma(t)u % GO T u)2> y@)’a(t)}
5o (Ca(t)(t)fg)rJa(t)M>‘y(t)’a(t)] o (_;@w Ja(t)u)2>
< e (360 Tom? ) exp (5 GO T ) =1
Then,

E[M{|#11] = E[M{'--- Di_ | D{|F11] = DY -+ Dy E[Dy|#1] < M,

O

Let f, be the normal density of ; with the mean zero and the positive covariance matrix A~'/. By Lemma 9 in (Abbasi-
Yadkori et al., 2011), for M; = E[M}'|.% ], we have

2 det(B(1))'/?
P (STB(T)I > 2log (&let(/\f)l/? <E[M:] <4,

where S; = 320, JT(T)Dy(T)wT. By Theorem 1 in (Abbasi-Yadkori et al., 2011), we have

det(B(T))
P<||ST||B(T)_1 >210g ((Sdet()\l) 5 V7'>0 SCS

Now, to find the bound for ||y(t)||, for § > 0, we define W such that

wr = { a0l < 0r(®)} 20)

where vy (8) = (2\p log(2d,T/6))1/? = O(/\]%M log(d,T/5)) and Aps = Amax(ASx AT + Xy).
Lemma A.4. For the event W defined in (20), we have P(Wp) > 1 — 4.

Proof. Note that y(t) has a sub-Gaussian density with the mean Az(t) and the covariance Xy. Then, using the sub-

Gaussian tail property, we have P (||(ASx AT + Sy ) ~Y2y(t) [ > ) < 2d,, - e 7 By simple calculations, we have

1 &2
P ( max ||y(¢)|| > )\]2\/15) <2d,T-e =

1<t<T

By plugging (2log(2d,T/5))*/? into £, we have

2log(2dyT/$)
P (1%% ly@® > (22 1og(2dyT/5))1/2) <2d,T-e”— 2z =4

Thus,

POVr) > 1= F (s (0] > vri@)) = 1- 6
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Then, by Lemma A.4, we have

ly®)l < V/dyvr () := L = O(/Anrdy log(d, T/5))

for all 1 < ¢ < T with the at least probability 1 — §. Therefore, by Theorem 2 in (Abbasi-Yadkori et al., 2011), we have

2

L2t
I3 = el < R\/dﬂ g (14 5 )

Lemma A.5. (Azuma Inequality, (Tropp, 2012)) Consider the sequence { X }1<k<x random variables adapted to some
filtration {9y }1<k<rk, such that B[ X|9,_1] = 0. Assume that there is a deterministic sequence {ci }1<k<x that satisfy
X? < i, almost surely. Let 0% = doi<k<K 2. Then, for all € > 0, it holds that

K
P (Z My > e) < e /207,

k=1

Proof of Theorem 4.2

Proof. Let 7, = o{x(1),a(1),2(2),a(2),...,z(t),a(t)}. Consider Vi = DT Jywyy(t)y(t)"J, D to identify the be-
havior of B(t). Note that

E[J, oy Dy(t)y(t) " DT Jo| F1] = Ty DVar(y(t)|.F) D Jaq) + Jaiy DAz (t)x(t) AT DT Joq)
= AmdapyDD " Jaq)

where Apmin(Zy) = Ap. Let v, be the non-zero minimum eigenvalue of J," DD J;. Then, forallt > 0 and z € C(J,' D)
such that ||z|| = 1, it holds that

t—1 t—1
2" (Z E[VTL?T]) 2>z Z E[V; 7] | 2 = AmVimni(t). (21
T=1

T=1l:a(7)=1

Now, we focus on a high probability lower-bound for the smallest eigenvalue of B(t). Let

X! = (V; —E[V,| % _1))I(a(r) = 1), (22)
vio= ) (Vi = ElVilF5)) (a(j) = ). (23)

Then, X! =Y/ —Y' ;andE [X!|.Z,_;] = 0. Thus, 2" X!z is a martingale difference sequence. Because v%(0)] —V; =
0forall 0 < ¢t < T and, vp(8)* — (27 X22)2 > 0, forall 0 < 7 < T, on the event Wz. By Lemma A.4, since
S (2TXE2)? < 4i(t)or(5)Y, we get

=1
t—1 52
Plz" Xi z<e] <ex (—)
(1 (Z ) =) oo (s
By plugging /;(t)e into &, we have

t—1 2
P (zT (Z X;) z < éi(t)5> < exp (—2;(;)(2))

for ¢ < 0. Now, using (21) and (22), we obtain
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P (zT (i V(r)I(a(r) = i)> 2 <Li(8)(AmVim + €)> o <_§;(;)(f$)) , -

where —\,, Vi < € < 0 is arbitrary. Indeed, using B(t) > Zt;:ll V(7)I(a(T) = i), on the event Wy defined in (20), for
—AmVim < € < 0 we have

P (2" B(t)z < £i(t) AmVim +¢)) < exp (— gv(;)(‘z)) . (25)

In other words, by equating exp (—¢;(t)e?/(2vr(6)*) to §/T, (25) can be written as

20p(0)*, T
TB(t)z > ¢ o — 2 Jog = 2
2T B0z 2 1) | A — [T on g ) 26)
for all 1 < ¢ < T with the probability at least 1 — 2§. Thus,
2ur(8)4 T
Amin (DT J;B(t)J; D) < vinels(t) ()\myim - ZT_((t; log 5) .

Accordingly, we have

4
A (DT LB~ T D) < vipgla(t) ™! (Amyim N LG T)

If £;(t) > v (0)* log(T/5)/(2A2,v2 ), we have

m“im

% )\m im
Nuin (DT JiB(0)J] D) > ZHZE (1),

and

Amax (DT J:B(t)"'J D) < W#”’”&(t)‘l.

A.1. Proof of Proposition 4.4

Proof. We assume that each arm has a positive probability of being the optimal arm at each time, and the event of being
the optimal arm does not depend on the history. Let A¥ C R% be the event such that arg max; y(t)Tn; =i, ify(t) € Ar.
The probability of being the optimal arm for the arm ¢ is denoted as

pi = P(y(t) € A7) =P(a™(t) = 1)

and does not change over time. Note that, for ¢ > 0, cy(t) € A}, if y(t) € Af. A} is a convex set, because (sy; + (1 —
$)y2) "m; = max;(sy1 + (1 — 8)ya) 'n;j for y1, y2 € A; and ¢ > 0. Thus, we take a subset A; C A7 and ¢; > 0 such that

P(y(t) € A;) > pi/2and (y(t)/|y(®)]) " (n; —n;) > € forany j,if y(t) € A;. O
A.2. Proof of Theorem 4.5

Denote A;; = {y(t) € A;}. Then, we want to have a lower bound of the probability P(a(¢) = 7) to find a lower bound of
n;(t) using

Bla(t) = il Fio1) > Bla(t) = il A, Fro)B(Ai) > [ 1= S B0 () < y(0) i (6)| Aus Fir) | B(Au):
J#i
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P(y(t) () < y(t) 75 ()| A, Fe-1)
1

< P(y(®)" (1) = 75(1) > 5O @) —m = () + ) +y(0) " (0 = )| Aie, Foa)

Py () T (7:() — (1) > %(y(t)T(ﬁi(t) =i = (&) + 1) + y(&) " (i — 1)) Aie, Fi-1)

Since y(t)T(ﬁl(t) = _ﬁ](t) +77J < | ()‘max ’L t)_1> + Amax( )_ )) ||ﬁ(t) _M*”B(t)s USing Theorem 1 and
2,if £;(t) > vr(8)*1log(T/5)/(2)2, fm) d;(t) > vT(5)4log(T/6)/(2/\fn v2,,), we have

~ ~ L2t 1 v; ArnVim — Vj AWLV’m _
YT @(e) — e = B(0) + ) < ()] RV%A%(1+(5)+Am>(M2&a>1+JM2ﬂ£Awl).

Virt AmVim (R, [ tog (14552 ) +2% h> Vin AmVim (R, [, 10g (14+£32) +23 h)
Assume ¢;(t) > — and ¢;(t) >

€

, then we have

y(®)T @t = m = 7 (6) +my) < w015

Accordingly, we have

P(y(t) " mi(t) < y(t) "7;(0)| Aie, Fi1)
< Ply() " (300 = 75(0) > ly@)lleil e, Foor) + By(t) T (@7 (t) = () > lly(t)llei] Aie, For).

If

£;(t) > max (vT(5)4log(T/5)/(2/\me) Vit AmVim (R\/d log 1+ L2T) + )\éh> eil> =myu(T) (27)

and

£;(t) > max (UT(6)4log(T/5)/(2)\mI/jm) ViMAmVjm (R\/d 1og T) + A§h> 61'1) =m;;(T), (28)

we have

£;(t)e? £;(8)e?

Py(t) " m(t) < y(t) " 7;(8)| A, Fro1) S e w7 4o s
Thus, if ¢;(t) and £;(t) satisfy (27) and (28), respectively, we have

£;(t)e? £j(t)e?
]P(a(t) = i|Ait,gt71) 2 1-— Z (6 sv2 4 e 82 > .

J#i

Therefore,

£;()e? 0 (t)e?
Pla(t) = i|Fi_1) > P(a(t) = i|Ai, Fo_1)P(As )21“2 1-Y (e STE 4 e et )
J#i

The results above can be applied to all two cases defined in Section 2. Now, we focus on regret analysis. We investigate
regret bounds for two settings discussed in Section 2. First, we consider setting 1, where all arms share the parameter.
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Proof of Theorem 4.6
By Theorem 4.1, forall 1 < ¢ < T, we have

IB()* (A(t) = )| < R\/d# log <1+t6L/A> o

Suppose that D T J; has the singular value decomposition U;3;V,". Using (V;S; U7 )DTJ; < I, we get
I1B(t)* (V27 U DT Ji(f() — o)l < B (E(t) — )l (29)
Accordingly,
A= (VE7UD)TB@(VETUD) 21D Ti(A(E) — )| < 1B (Vi U )D T Ji(f(t) — ), (30)

where \n. (M) is the smallest non-zero eigenvalue of M for a square matrix M. Finally, by putting together (29), (30)
and Theorem 4.2, we have

1 1+TL2/\ 1
1700 | < AmawaJiB(t)1JJD>2R<\/dulog(+/)+A2h>

]

) 2 1
<\/d# log <1+T6L/A> + A2h>

If £;(t) > 8(vr(86)/(M\2,v2,)) log(T/5), with £;(t) = t for all i under the SPMC assumption, we have

m“im

1 1 2up (6 4 T
va,/li(t) 2R ()\muim - ET((t)) log 6)

IN

~ R Aot L+ TL2/A\ .
17:(8) —mall < AQT <\/du log ((5/) + A3 h) .

Lemma A.6. Let 7;(t) be a sample in (14). Then, ift > 8(vr(8)*/(A2,v2,)) log(T'/§), with probability at least 1 — §, for
alli € [N]and 0 < t < T, we have

1
_ RUZ N AmVim 2NT 1+TL2/\ .
17:(8) — mall < Agf <v 2dy log —— + \/du log (5/> +Aéh> ,

Proof. Using P (||7;(t) — 1;(t)|| > €) < P (/d,Z > €), where Z ~ N'(0,v? max(B;(t)) "), we have

2
P (|7 () — 7 ()]| > €) < 2- € 27 maxBn T

2
By putting 2 - ¢ 27 max(Bi(0- D) = 0

T > We have
~ ~ 2TN
[17:(8) — s (£) ] < 'U\/Qdy max(B;(t) ") log ——.
If t > 8(vr(8)*/(A2,12))1log(T/§), we have
o R2 v/ Noim 3TN
[17:(2) = ma(B)] < UMQT 2dy log ——.

Therefore, by Theorem 4.8,

1
_ Rv2 N AmVim 2TN 1+ TL2/\ '
17:(t) — mill < % (v 2dy log =<~ + \/du log (5/> +)\2h> .
2
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A.3. Proof of Theorem 4.7

Letreg(t) = (y(6)/Ily()[) " (a- (1) () — Nae) (£))- Then,

Regret(T) = Y y(t) " (nax 1) (t) = Naqe (1)
< D YO Oar ) (8) = Tam (1) (£) + Ta(ey (8) = Nage) ()T (a* () # a(t))
T
< vr(6) Y (a0 (8) = Ta= )| + [1Thagey (t) = nagy DT (a* () # a(t)),
t=1

since ||y(t)|| < vr(8) forallt € [T]. By Lemma 22, if t > 8(vr(8)*/()\2

2 v2 1) log(T/§), with a probability at least 1 — 4,
we have

_ N Rmax; (V2,7 D mvim) 1+TL2 A
M0 6y () —a ) [+ [1a ey () —Nagpy | < v \Nf <U 2d, log 5 \/d log / ) + Az h>~

Now, we construct a martingale sequence with respect to the filtration .%;_;. To that end, let G; = H; = 0,
G- =t"21(a*(t) # a(t)) — t 7 °P(a*(t) # a(t)|.Fi 1),

and H, = 23:1 G,. Since E[G,|.Z-_1] = 0, the above sequences {G; }.>o and {H,},>¢ are a martingale difference
sequence and a martingale with respect to the filtration {.%; }1<, <7, respectively. Let ¢, = 2712 Since Zle |G| <
ST, 2 < 4log T, by Lemma A.5, we have

g2 e2
P(Hr —Hy >¢)<exp| ————— gexp().
( 1>€) ( s 2 32log T

Thus, with the probability at least 1 — 4, it holds that
T
—I(a*(¢t 32logTlogd—1 + a(t . 31
;ﬁ(( < V/32log Tlog Z ™) # a(7)|.F; 1) (31)

Now, we proceed to the upper bound of the second term on the right side in (31).

Assumption A.7. The support of standardized observation y(¢)/||y(¢)|| is a subset of a unit sphere with the dimension d,,.

The density of y(t)/||y(t)| is bounded by a constant C,
Ply@®)/ly®ll =y) <C.

Accordingly, d;;(t) = (y(t)/|ly@)|) T (n; — n;)|(a*(t) = i) has a density f;; bounded by a constant, ¢;; > 0.

Let Af, = {y(t) € A}
P(y(t) " (77;(t) — 7:(t)) > 0| Fo—1, Azy) = P(y(t) " (1;(t) — my — :(t) —ms) > y(@) " (s — mj) > | Feo1, Ay)
< Ply(t) " (1(t) —my) > 0.5y(t) " (i — i) | Fr1, Af) + P(y(t) T (7:(t) — mi) > 0.5y(t) " (i — mj)| Fe-1, Afy)
< Py(t) " () — (1) > 0.25y(8) T (n; — ;) > [Fro1, Afy) + Ply(t) T (7:(t) — 7i(t)) > 0.25y(8) T (ns — ;) > [ Fi,
+ Ply(t) " (@) — ny) > 0.25y(t) " (mi — nj)| Feo1, Aj) + Ply(t) " (7 (t) — ni) > 0.25y(t) " (n; — ;)| Fim1, Afy)

By Theorem 4.6 and Assumption 1, if ¢ > 8(vp(6)* /(N2 2

mzm

))log(T/9), we have

PO (0 ) > 0.259(0) (0~ )1 Fic, A1) < B ( 2 5 507 Iyl — )| Fioa, 43) < 2000
B(y(t)T (@(t) — n5) > 0.259(0)T (s — )| For, AL ><P<2hf) > 4/l @)l o7 — ) ﬂA) < th(fg"”

A7)
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where

s ey 2
hi(T) = M <\/dﬂlog (HT(SL/)‘) +)\éh> .

Because

T~ R T _tw® T (mi=ny)?
P(y(t) (m:(t) — mi(t)) > 0.25y(t) " (i —my) > | Fi—1, Afy,y(t)) < e S2Mv@I7e2
_ty® =)

P (y(t) " (i) = (1) > 0.25y(t) " (mi — ;) > | Fro1, Afpuy (1)) < e PO

based on Assumption 1, we have

ty® T (mi—m;)?

P(y(t) " (7;(t) = (1)) > 0.25y(t) " (i — ) > [ Fer, Afy) < Ble” S0 |7y, Ay

llme=nsll .2 26+
= / e 8u2 f”(Z)dZ S Y
0

Vit

Accordingly, we have

N N
P(a®(t) # a(t)|#1) < ZZ = 7i(t)) > 0[F1—1, Ajy)pi

N N N N

dejv - 4h;(T) cw> 4Neps
E E i + = E E i Ci i v+h
i=1 j:1p ( Vi Vi =1 j=1 A = Vi

where ¢y = max;; ¢;; (v + h;(T)) = O(y/d,, logT'). Thus, we have

T

T

1
Z t) # a(t)| 7, )<4NCJWZ < 4NcplogT.
t=1 t t=1

By (31), with a probability at least 1 — J, we have

T
Z iI(a*(t) #a(t)) < +/32logTlogd~! +4NcylogT.

= Vi
Therefore,
1 / 2T'N 1+TL?/)\
Regret(T) < Rmax(yi%\/[ V )\77LViTTL) (U 2dy log T + \/du 1Og (_|—5/) + A§h> (\/ 32 longog o1 + 4NCM log T)
i

@) <N(d# + +/d,dy,)polylog (T]\gdy>> .

A.4. Proof of Theorem 4.8

Lemma A.8. Under the general assumption, with a probability at least 1 — §, the algorithm 1 guarantees
Di / /
ni(t) > 5 (£ = Y (mi(T) +miy(T) — (N = 1)/T | - /2tlog(2/5),
J#i
where mi;(T) = max(mg;(T), 16(v*/€;)log T) and mi;(T) = max(m;;(T), 16(v?/€7)logT).
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Proof. By Theorem 3, if £;(t) = n;(t) > m;;(T') and £;(t) = n;(t) > m,;(T),

. £;(t)e? £;(t)e?
P(a(t) = ilthl) > ]P’(a(t) = i|Ft,1,Ait)P(Ait) > % 1-— Z (e_ 8vZ e 82 ) s
J#i

where p; = P(a*(t) = i). If £;(t) > m};(T) := max(m;;(T), 16(v?/€?)logT), we have exp (—(;(t)e?)/
T2, Similarly, if £;(t) > mj;(T) := max(m;;(T), 16(v?/€})logT), we have exp (—(;(t)e7)/(8v*)) < T—2. Since
I(a(t) = 1) — (pi/2) (1 =2 Pla(t) = j|Ait)> is a submartingale difference,

(8v?2)) <

t

ZP(G(T) =i|Fr_1) t—

T=1 T

vV
|3
Mﬁ

ST P (y(n) T () — (7)) > €] Air, Fr1)
1 j#i

v
\

5 |t 2_(miu(T) +miy(T)) = (N = 1)/T
J#i

With a probability of at least 1 — 4,

n(t) > 5 (£ = D (mi(T) +miy (1)) = (N = 1)/T | = /2t10g(2/9).

J#i

Now we are ready to prove Theorem 6.

Proof. The following inequality

B (0= St + it (1) (v = 1)/ | — BrTog2]6) > B,

J#i

is satisfied, if t > m}/(T') = 2(aqn + (4/pi)ak) + 21/ (ain + (4/pi)ay)? — afy, where an = Y., (mi; (T) +mj;(T)) +
(N —1)/T and a;o = +/2log(2/6) based on the quadratic formula. By Lemma A.8, with a probability at least 1 — §,
ni(t) > (pit)/4, if ¢ > m{(T). Similarly to Theorem 4, we have

[N

R 1 1 2UT(5)4 T
3 . < 2 1/4)"2 im — log —
7)) —nill: < va(pit/4) R(“”m pitjd 85

<\/du log (H?Q/A) + Aéh> .

Thus, if ¢ > (32/p;) (v (6)*/(A2,7,)) log(T'/d),
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1
~ RV AmVim 1+TL2/\ i
17: () = mil|2 < MT <\/du log <5/> + Az h) .

O

Theorem A.9. Assume that Algorithm 1 is used in a bandit the MPMC assumption. Then, with probability at least 1 — 6,
Regret(T) is of the order

Regret(T) = O ((maxpi_l) N+/dyd,poly <10g <T]:;dy>>) .

Proof. The regret can be decomposed as

Dy a1y (1) = nay (1) I (a” (1) # a(t))
< 9O T a1 (1) = T ) () + Ty (8) = Tlagey () I (™ (2) # a(t))

R(T)

T
(6) Y~ (0= @y (®) = a1+ 7o) () = 1hay 1)1 (0™ (1) # alt)),

t=1

IN

since ||ly(t)]| < vrp(d) forall t € [T].

(7 ) (8) = nax ) [l + [Mae) (8) = agey NI (a”(2) # a(t))
N
Z 170~ (6 (8) = a= oy | + 1175 (£) — 5 NI (@™ (2) # a(t), alt) = 7)

By Theorem ??, if ¢ > m[/(T'), we have

Py RV% )\m’/im 1 +TL2/>\ 1
(1) — iy < TViMV AmVim LETL2AN )
I7:6) = mlle < =22 <\/du log ( : ) A h)

P(y(t) " (1;(t) — 7:(t)) > O|Fy—1, A7) = P(y(t) " (5 (t) — mj — 73 (t) — i) > y(t) " (i —m3) > |Fyo1, Ay)
< Ply(t) " (1;(t) —my) > 0.5y(t) " (i — i) | Fr1, Afy) + P(y(t) T (7:(t) — mi) > 0.5y(8) " (mi — mj) | Feo1, Afy)
< Py() T (@) — 7;(t) > 0.25y() T (n; — m;) > [Fi1, Afy) + P(y(t) T (7:(t) — 7:(£)) > 0.25y(t) " (n; — ;) > [Fi1, Afy)
+ Ply@) " (@) — n;) > 0.25y(t) " (mi — nj) | Feer, Afy) + Ply(t) " (7 () — ni) > 0.25y(t) " (n; — ;)| Fiz1, Afy)

By Theorem 4.6 and Assumption 1, if ¢ > 8(v7(8)*/(A\2,v2 ) log(T/5), we have

mzm

>y(®) " /IlyOll (; = ny)

P(y(t) T (7:(t) — mi) > 0.25y(8) T (i — m;)| Fi_1, AL) < P ( hi(f)

pit \/Iﬂ
P(y(t) " (@5(t) — n;) > 0.25y(t) " (i — ;) |[Fi—1, Ay) < P(hjgg >y /Iy (0 — )| Fe 1,A2‘t> < hj(gj”
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3 . 2
h(T) = i ¥ AmVim ;m”“” <\/d# log (1 +7;L /A) + Aéh> .

T N T _tpi(y(® " (ni—m;))?
P(y(t)" (mi(t) — mi(t)) > 0.25y(t) " (i —ny) > [Fie1, Ay y(t)) < e 2@
tp; () " (n;—n;))2

P (y(t) " (7;() = (1) > 0.25y(t) " (mi —11;) > [Fem, Afy y(t)) < e T

based on Assumption 1, we have

where

Because

i T (mi—m;)?

P(y(t) " (7;(t) = (1)) > 0.25y(t) " (i — ) > [Fuor, A7) < Ble #0072 |F_y, Aj]

lni=njll  4p, 22 g
— / e 11;%2 f’Lj( )dz S 1601]1)
0 Vit

N N
P(a*(t) # a(t)|Fimr) < > pi Y Pla(t) = j|Fi_1, A})
i=1  j=1
N N
T)ci; h i(T)ei;  16cv  16¢;5v 2Necpr
< D; ( j j i §v i j ><
; ; Vit Vpit Vbt /it Vi

where )y = max; ; p; %% (hi(T) + 16v)c;; = O(max; p; °°+/d,, log T).

Since t~Y/21(a*(t) # a(t)) —t=/?P(a*(t) # a(t)|F,_1) is a martingale difference w.r.t F;, by Azuma, with a probability
at least 1 — 4, we have

T

Y TVPI(at(t) # alt) <

t=1 t

t=Y2P(a*(t) # a(t)|Fi_1) + /64 log T log 61

B

1

Thus, we have

T
3 %I(a*(t) £ a(t)) < \/64Tog Tlogd 1 + 2Near log T

o~
Il
—
o~

Therefore,

1 1 TL2 A
Regret(T) < leax(z/fM\/)\muim) ( 2d, log +\/ + / > +)\§h> (\/6410gT10g5*1 +2Ncar logT)

TNd

O (ma.XpiOﬁN(dﬂ ++/dyd,,)polylog ( 5 y))
Z’j




