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Abstract

Contextual bandits constitute a popular frame-

work for studying the exploration-exploitation

trade-off under finitely many options with side in-

formation. In the majority of the existing works,

contexts are assumed perfectly observed, while

in practice it is more reasonable to assume that

they are observed partially. In this work, we

study reinforcement learning algorithms for con-

textual bandits with partial observations. First,

we consider different structures for partial ob-

servability and their corresponding optimal poli-

cies. Subsequently, we present and analyze re-

inforcement learning algorithms for partially ob-

served contextual bandits with noisy linear obser-

vation structures. For these algorithms that uti-

lize Thompson sampling, we establish estimation

accuracy and regret bounds under different struc-

tural assumptions.

1. Introduction

Contextual bandits provide the framework for sequen-

tial decision-making given the available information. In

general, for contextual bandits, finite options can be

taken given fully observed contexts. Contexts re-

fer to information about available options, often repre-

senting individual characteristics in many applications

(Li et al., 2010; Bouneffouf et al., 2012; Tewari & Murphy,

2017; Nahum-Shani et al., 2018; Durand et al., 2018;

Varatharajah et al., 2018; Ren & Zhou, 2020). In contex-

tual bandits, similarly to other reinforcement learning prob-

lems, the exploration-exploitation trade-off needs to be ad-

dressed to get satisfactory performances. There are two

methods to address the trade-off in the main stream: OFU

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the Workshop on New Fron-
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tribute.

and Thompson Sampling.

The origin of Thompson sampling goes back to the liter-

ature (Thompson, 1933). Recently, Thompson sampling

has become more popular for addressing the trade-off of

exploration and exploitation because of its simplicity as

well as good performance. As compared to methods

with Optimism in the Face of Uncertainty (OFU), Thomp-

son sampling has been known to have easier installment

and heuristically better performance (Chapelle & Li, 2011;

Agrawal & Goyal, 2013).

Meanwhile, stochastic contextual bandits have various as-

sumptions about their features such as reward functions,

context space, and action space. For reward functions,

a popular one is a linear reward function (Dani et al.,

2008; Hamidi & Bayati, 2020; Agrawal & Goyal, 2013),

while more general models assume non-linearity for re-

ward functions (Dumitrascu et al., 2018; Modi & Tewari,

2020). Next, for action space, a common action set is

a pre-fixed finite set representing finite arms, which does

not change over time (Agrawal & Goyal, 2013). On the

contrary, the other general models have an infinite ac-

tion set, which consists of d-dimensional context vectors

(Abbasi-Yadkori et al., 2011). For linear contextual bandits

with finite arms, a reward for each arm is generated based

on a linear function of a given context and parameter with

a noise. Reward functions can take various forms of inputs,

contexts and parameters. For clarity, we define the terms

private and public for contexts and parameters. Here, a pub-

lic one is a common input for reward functions for all arms,

while a private one is associated only with the reward func-

tion of the corresponding arm. Generally, the linear func-

tion can have three structures: private contexts and a public

parameter (Agrawal & Goyal, 2013); a public context and

private parameters; private contexts and private parameters.

For example, for N -armed contextual bandits with a public

context and private parameters, all the arms share a pub-

lic context, but each arm has its own private parameter so

there are N private parameters (Agrawal & Goyal, 2013).

In this paper, we analyze all three cases, especially focus-

ing on the one with private contexts and private parameters,

which can be the general case of the other two.

The reinforcement learning community has paid suf-
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ficient attention to decision-making algorithms in the

absence of information uncertainty. However, frame-

works with imperfect information and decision-making

algorithms for them have not drawn sufficient interest,

even though the information for decision-making is of-

ten observed in a partial, transformed, or noisy man-

ner in practice (Bensoussan, 2004). Imperfect observa-

tions are the problems of interest in various areas such

as state-space models, robot control, image processing

and filtering, which are associated with decision-making

problems (Nise, 2020; Nagrath, 2006; Lin et al., 2012;

Dougherty, 2020; Kang et al., 2012). The imperfect obser-

vations in contexts can be caused by many reasons: pri-

vacy regulations, measurement errors, and missing data

(Lin et al., 2012; Kang et al., 2012; Sbeity & Younes, 2015;

Azimi et al., 2019). Ignorance of the imperfectness of ob-

servations can cause imprecise decisions in many applica-

tions such as health care, advertisements, and clinical tri-

als (Dyczkowski, 2018; Nahum-Shani et al., 2018; Li et al.,

2010; Bouneffouf et al., 2012). For example, for sick septic

patients, if missing information is not properly adjusted for

clinical context, clinicians’ decision-making may result in

worse outcomes (Gottesman et al., 2019). To this end, we

suggest decision-making algorithms for contextual bandits

in the presence of imperfectly observed contexts.

Imperfect or partial observations in decision-making get

more interest in the reinforcement learning community. A

Partially Observable Markov Decision Process (POMDP),

which is a generalization of a Markov decision process

(MDP), was introduced to address imperfect observations

in decision making (Åström, 1965; Kaelbling et al., 1998).

Recently, some contextual bandits models have started to

take the imperfectness of contexts into account as well.

However, the existing studies consider some particular

cases under certain assumptions. In cases where some ele-

ments of contexts are missing and the others are fully ob-

served, UCB-type algorithms have been employed based

on the correlations between these two types of elements

have been used to minimize the regret (Tennenholtz et al.,

2021). In addition, under the presence of only a pub-

lic parameter, analyses about UCB-type algorithms and

Thompson sampling have been done for contextual ban-

dit with invertible linear observation function (Yun et al.,

2017; Park & Faradonbeh, 2021) and greedy algorithms

are shown to have logarithmic regret with respect to the

time horizon for the general linear observation function un-

der normality assumption (Park & Faradonbeh, 2022). But,

analyses for the case with private parameters and the gen-

eral linear observation function have not been studied yet.

In this paper, we analyze Thompson sampling for partially

observed contextual bandits relaxing the assumptions in the

existing literature. We perform the finite-time worst-case

analysis under the sub-gaussian assumption for observa-

tions, which is more general than the normality assumption.

In addition, we construct the model with a general linear

observation structure, which can include various cases.

The remainder of this paper is organized as follows. In

Section 2, we formulate the model and discuss the relevant

preliminary materials. Next, Thompson sampling for con-

textual bandits with partially observed contexts is presented

in Section 3. In Section 4, we provide theoretical perfor-

mance guarantees for the proposed algorithm. Finally, we

conclude the paper and discuss future directions.

We use A⊤ to refer to the transpose of the matrix A ∈
C

p×q . For a vector v ∈ C
d, we denote the ℓ2 norm

by ‖v‖ =
(∑d

i=1 |vi|2
)1/2

. Additionally, C(A) is em-

ployed to denote the column space of the matrix A. Further,

polylog(xy/z) is a polynomial of log x, log y and log z−1.

Finally, PC(A) is the projection operator onto C(A), and

λmin(A) (λmax(A)) denotes the minimum (maximum)

eigenvalue of A.

2. Problem Formulation

In this section, we discuss stochastic contextual bandits

with unobserved contexts, where the reward of the ith arm

is generated based on the following probabilistic assump-

tion

ri(t) = f(x(t), i) + εi(t), (1)

where x(t) is an unknown dx-dimensional stochastic con-

text at time t with the mean 0dx
and a covariance ma-

trix Σx, f is a deterministic unknown linear function from

R
dim(x(t))+1 to R

1 and εi(t) is a sub-Gaussian noise gen-

erated independently such that

E

[
eλεi(t)

]
≤ e

λ2R2
1

2 ,

for some R1 > 0. Instead of the context x(t), a trans-

formed noisy context, denoted as y(t), can be observed

based on the following observation model

y(t) = Ax(t) + ξ(t), (2)

where A is a matrix in R
dy×dx ; ξ(t) is a sub-Gaussian

noise vector centered at 0 with the positive definite co-

variance ΣY . A learner is aware of the probabilistic as-

sumption of rewards (1), but does not know the function

f . At each time t, the learner tries to choose the optimal

arm given the history of actions {a(τ)}1≤τ≤t−1, rewards

{ra(τ)(τ)}1≤τ≤t−1, and observations {y(τ)}1≤τ≤t−1 as

well as the current observation y(t). f has a linearity as-

sumption such that

f(x(t), i) = x(t)⊤Jiµ∗, (3)
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where µ∗ is the parameter of interest and Ji is a known

matrix in R
dimx×dimµ . Since the optimal policy does not

know the value of x(t) as well, f(x(t), i) is not available

for it. Thus, the optimal policy also needs to estimate

f(x(t), i) based on the observation y(t).

First, assuming the function f to be known, we investigate

how to find the estimate of f(x(t), i). To find an estimate

of f(x(t), i), we first find an estimate of x(t). To proceed,

based on (2), we aim to find an estimate of context x(t).
Since x(t) is an unobserved random variable, the minimizer

of the expected norm of the difference between x(t) and a

linear unbiased predictor Dy(t) such that

Dy(t) =

argmin
Dy(t),D∈R

dy×dx

E[(x(t)−Dy(t))⊤(x(t)−Dy(t))]. (4)

can be a predictor of x(t). A solution of (4) is the best linear

unbiased prediction (BLUP) of x(t), denoted as x̂(t),

x̂(t) := (A⊤Σ−1
Y A+Σ−1

X )−1A⊤Σ−1
Y y(t) = Dy(t), (5)

where D = (A⊤Σ−1
Y A + Σ−1

X )−1A⊤Σ−1
Y (Robinson,

1991). Because f is a linear function, f(x(t), i) can be

represented as x(t)⊤µ for a µ ∈ R
dim(x(t)). Then, by the

extension of Gauss-Markov theorem, we have a BLUP of

x(t)⊤µ, x̂(t)⊤µ = f(x̂(t), i). Since x̂(t) is a function of

y(t), f(x̂(t), i) also can be written as f∗(y(t), i) for a func-

tion f∗. That is,

f∗(y(t), i) := f(x̂(t), i).

Specifically, for the ith arm, f(x(t), i) = x(t)⊤Jiµ∗ is pre-

dictable with y(t) given µi := Jiµ∗, where the estimate of

f(x(t), i) = x(t)⊤µi is

f∗(y(t), i) = y(t)⊤D⊤Jiµ∗. (6)

Now, we investigate the estimation of f∗(y(t), i) given y(t).
Define

ηi := D⊤Jiµ∗. (7)

Thus, using (1), (2), (6) and (7), we get

ri(t) = y(t)⊤ηi + ζi(t) (8)

where ζi(t) = (x(t)⊤Jiµ∗ − y(t)⊤ηi) + εi(t) is a noise

independent from the others. ηi is always guaranteed to

be estimable thanks to the full rank ΣY . In fact, given the

observation y(t), the estimation of ηi is necessary and suf-

ficient to estimate f∗(y(t), i), while Jiµ∗ and µ∗ are not

estimable because of rank deficiencies. For these reasons,

instead of Jiµ∗, we estimate ηi.

The optimal arm is the arm maximizing the expected re-

ward given the observations. Thus, the optimal arm at time

t can be presented as

a∗(t) = argmax
1≤i≤N

f∗(y(t), i) = argmax
1≤i≤N

y(t)⊤ηi.

The framework described is a general observational struc-

ture for partially observed contextual bandits. The follow-

ing two settings are the most common structures for contex-

tual bandits.

1. A single parameter and multiple contexts (SPMC)

f(x(t), i) = xi(t)
⊤µ∗ and yi(t) = A0xi(t) + ξi(t)

xi(t) represents the context of the ith arm at time t
and A = diag(A0, . . . , A0). The context x(t) at time

t is a concatenation of the contexts of all arms such

that x(t) = [x1(t)
⊤, x2(t)

⊤, . . . , xN (t)⊤]⊤. Ji =
[0dx×dx

· · · Idx︸︷︷︸
ith

· · · 0dx×dx
]⊤. In this case, the

optimal arm can be represented as

a∗(t) = argmax
i

y(t)⊤D⊤Jiµ∗ = argmax
i

yi(t)
⊤η∗,

where η∗ = D⊤
0 µ∗. Note that the column space of Ji

is the same for all i under this assumption. That is,

regardless of which arm has been chosen, the decision

maker can learn the parameter η∗.

2. Multiple parameters and multiple contexts (general

case)

f(x(t), i) = xi(t)
⊤µi∗ and yi(t) = Axi(t) + ξi(t)

xi(t) represents the context of the ith arm at

time t. The context x(t) at time t is a con-

catenation of the contexts of all arms such that

x(t) = [x1(t)
⊤, x2(t)

⊤, . . . , xN (t)⊤]⊤. µi∗ de-

notes the parameter of the ith arm, which is asso-

ciated only with the reward of the ith arm. µ∗

is written as µ∗ = [µ∗1, µ∗2, . . . , µ∗N ]. Ji =
diag(0dx×dx

, · · · Idx︸︷︷︸
ith

, · · · 0dx×dx
).

a∗(t) = argmax
i

y(t)⊤D⊤Jiµ∗ = argmax
i

yi(t)
⊤η∗i,

where η∗i = D0µ∗i.

We consider the second case as the general case because it

includes all the other cases.

Regret is a performance measure, which can be written as

the cumulative sum of expected reward differences between

the optimal and chosen arms over time

Regret(T ) =

T∑

t=1

y(t)⊤(ηa∗(t) − ηa(t)), (9)

where a(t) is the chosen arm at time t. The learner even-

tually aims to minimize the regret by trying to choose the

optimal arm at each time. Accordingly, the goals of this pa-

per are to find algorithms minimizing the regret and regret
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bounds of the algorithms, which are attracting attention in

the reinforcement learning community. Here, f∗ is the func-

tion of interest because it is the best information about the

reward given the observation y(t).

3. Reinforcement Learning Policy

In this section, we describe Thompson sampling algorithm

for contextual bandits with partial observations. The algo-

rithm assumes the probabilistic structure of the reward gen-

eration of the arm i given the observation

ri(t) = y(t)⊤D⊤Jiµ∗ + εi(t),

where εi(t) ∼ N (0, v2). With a prior distribution of µ∗,

N (0, v2λ−1I), the posterior distribution at time t can be

given as N (µ̂(t), v2B(t)−1), where

µ̂(t) = B(t)−1
t−1∑

τ=1

ra(τ)(τ)J
⊤
a(t)Dy(τ), (10)

B(t) = λI +
t−1∑

τ=1

J⊤
a(t)Dy(t)y(t)⊤D⊤Ja(t). (11)

At time t, with

η̂i(t) = D⊤Jiµ̂(t) (12)

Bi(t) = D⊤JiB(t)J⊤
i D (13)

by generating a sample

η̃i(t) ∼ N (η̂i(t), v
2Bi(t)

−1) (14)

which is the posterior distribution, the optimal arm estima-

tion can be done by

a(t) = argmax
1≤i≤N

y(t)⊤η̃i(t). (15)

Here, D⊤Jaµ̃(t) can be an estimate of ηi. We can update

the µ̂(t) based on the recursions below:

B(t+ 1) = B(t) + J⊤
a(t)Dy(t)y(t)⊤D⊤Ja(t), (16)

µ̂(t+ 1) = B(t+ 1)−1
(
B(t)µ̂(t) + J⊤

a(t)Dy(t)ra(t)(t)
)
,

(17)

where B(1) = λI and µ̂(1) = 0dµ
.

The pseudo-code of Thompson sampling for contextual

bandit with partial observation is given in Algorithm 1. Al-

gorithm starts with initial values B(1) = λI and µ̂(1) =
0dµ

. Then, at each time, based on the posterior, generate

samples and select an estimate of the optimal arm maximiz-

ing the quantity in (15). With the reward gained from the

chosen arm, update the posterior mean and covariance.

Algorithm 1 : Thompson sampling algorithm for contex-

tual bandits with partial observations

Set B(1) = λIdµ
, µ̂(1) = 0dµ

for i = 1, . . . , N
for t = 1, 2, . . . , do

for i = 1, 2, . . . , N do

Sample η̃i(t) from N (η̂i(t), v
2Bi(t)

−1)
end for

Select arm a(t) = argmaxi y(t)
⊤η̃i(t)

Gain reward ra(t)(t) = f(x(t), a(t)) + εa(t)(t)
Update B(t+ 1) and µ̂(t+ 1) by (16) and (17)

end for

4. Results

Next, we establish theoretical results for Algorithm 1 sug-

gested in the previous section. The results provide a high

probability regret bound for Algorithm 1 and estimation

error bounds of the estimators defined in (12). Without

loss of generality, we assume that ‖Jiµ∗‖ ≤ 1 for all

i ∈ {1, 2, . . . , N}. We first show the results for the general

setting encompassing the first (SPMC) and second settings

(MPMC) introduced in Section 2. The complete proof of

the following results is provided in Appendix.

4.1. Results for the general setting

Theorem 4.1. Let wt = ra(t)(t)− x̂(t)⊤Ja(t)µ and Ft =

σ{{y(τ)}t+1
τ=1, {a(τ)}t+1

τ=1}. Then, wt is Ft−1-measurable

and conditionally R-sub-Gaussian for some R > 0 such

that

E[eνwt |Ft−1] ≤ exp

(
ν2R2

2

)
.

For any δ > 0, assuming that ‖µ∗‖ ≤ h and B(1) =
λI , λ > 0, with probability at least 1− δ, we have

‖µ̂(t)− µ∗‖B(t) =

∥∥∥∥∥

t−1∑

τ=1

J⊤
a(τ)Dy(τ)wτ

∥∥∥∥∥
B(t)

≤ R

√
dµ log

(
1 + L2t/λ

δ

)
+ λ1/2h,

where L =
√
dyvT (δ), vT (δ) = (2λM log(2dyT/δ))

1/2,

λM = λmax(AΣXA⊤ + ΣY ), dy = dim(y(t)) and dµ =
dim(µ∗).

Theorem 4.1 provides a sub-Gaussian tail property of the

reward estimation error wt given µ and shows a self-

normalized bound for vector-valued martingale by using

the sub-Gaussian property. The reward estimation error wt

can be decomposed into two parts. The one is the reward er-

ror εi(t) given (1) due to the randomness of rewards. This

error is created even if the context x(t) is known. The other
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is the context estimation error (x(t)− x̂(t))⊤Jiµ caused by

unknown contexts.

The next theorem provides the lower bound of the smallest

eigenvalue of sample covariance matrix Bi(t), which is as-

sociated with the error of estimation ηi. We denote ni(t) as

the count of the i arm chosen up to the time t.

Theorem 4.2. Let ℓi(t) =
∑

j:C(Ji)=C(Jj)
nj(t). For B(t)

in (16), on the event WT defined in (20), with probability

at least 1 − δ, if ℓi(t) ≥ vT (δ)
4/(2λ2

mν2im) log(T/δ), we

have

λmin

(
D⊤JiB(t)J⊤

i D
)
≥ νiMλmνim

2
ℓi(t)

and

λmax

(
D⊤JiB(t)−1J⊤

i D
)
≤ νiMλmνim

2
ℓi(t)

−1.

Definition 4.3. A∗
i ∈ R

dy is the set such that a∗(t) = i, if

and only if y(t) ∈ A∗
i .

Proposition 4.4. For any arm i, there exist a set Ai ⊆ A∗
i

and ǫi > 0 such that P (y(t) ∈ Ai) >
1
2P (y(t) ∈ A∗

i ) and

y(t)⊤(ηi − ηj) > ǫi, if y(t) ∈ Ai.

The proposition above helps to find a lower bound of the

probability P(a(t) = i|Ft−1) in the next theorem, which

can provide a lower bound of the number of each arm being

chosen.

Theorem 4.5. Let

mij(T ) = max

(
vT (δ)

4 log(T/δ)

2λ2
mν2jm

, νjMλmνjmq(T )ǫ−1
i

)
,

where q(T ) = R
√
dµ log

(
1 + L2T

δ

)
+ λ

1
2h and ǫi is de-

fined in Proposition 4.4. Then, if ℓi(t) > mii(T ) and

ℓj(t) > mij(T ),

P(a(t) = i|Ft−1) ≥

P(a∗(t) = i)

2


1−

∑

j 6=i

(
e−

ℓi(t)ǫ
2
i

8v2 + e−
ℓj(t)ǫ

2
i

8v2

)
 .

The results above can be applied to both the two common

cases defined in Section 2. Now, we focus on regret analy-

sis. We investigate regret bounds for two settings discussed

in Section 2. First, we consider setting 1, where all arms

share the parameter.

4.2. Regret upper bound under the SPMC assumption

Under the SPMC assumption, the column spaces of Ji for

different arms are identical. Thus, ℓi(t) = t for all i ∈

[N ]. The next theorem guarantees the estimation accuracy

under the SPMC assumption, which is proportional to t−0.5.

This implies that the parameter of interest ηi can be learned

regardless of which arm is chosen.

Theorem 4.6. Let ηi and η̂i(t) be the transformed

true parameter in (7) and the estimate in (12), respec-

tively. Then, under the SPMC assumption, if t >
8(vT (δ)

4/(λ2
mν2im)) log(T/δ), with probability at least 1−

δ, for all 0 < t ≤ T , we have

‖η̂i(t)− ηi‖ ≤ Rν
1
2

iM

√
λmνim

2t
1
2

q(T ).

where νiM and νim are the maximum and the non-zero min-

imum eigenvalue of J⊤
i DD⊤Ji, respectively; λmin(ΣY ) =

λm; q(T ) is defined in Theorem 4.5.

The next theorem shows a poly-logarithmic upper bound

with respect to the time horizon under the SPMC assump-

tion.

Theorem 4.7. Assume that Algorithm 1 is used in a ban-

dit under the SPMC assumption. Then, with probability at

least 1− δ, Regret(T ) is of the order

Regret(T ) = O
(
N(dµ +

√
dµdy)polylog

(
TNdy

δ

))
.

4.3. Regret upper bound for the general assumption

Under the general assumption, note that ℓi(t) = ni(t),
since all the column spaces of Ji do not overlap each other.

The next theorem presents the estimation error of η̂i and a

lower bound of ni(t). The estimation error is proportional

to the inverse of the square root of hi(t), which is a lower

bound of ni(t).

Theorem 4.8. Let ηi and η̂i(t) be the transformed

true parameter in (7) and the estimate in (12), respec-

tively. Then, under the general assumption, if t >
max(8(vT (δ)

4/(λ2
mν2im)) log(T/δ), 123), with probabil-

ity at least 1− δ, for all 0 < t ≤ T , we have

‖η̂i(t)− ηi‖2 ≤ Rν
1
2

iM

√
λmνim√
pit

(18)

·
(√

dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.

From the theorem above, we can find the frequency ni(t)
increases linearly with the time horizon. Accordingly, in

the next theorem, the regret upper bound also grows with

at most poly-logarithmic rate thanks to the linear growth of

ni(t) even under the general assumption.
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Theorem 4.9. Assume that Algorithm 1 is used in a bandit

under the general assumption. Then, with probability at

least 1− δ, Regret(T ) is of the order

Regret(T ) =

O
(
max
i,j

p−0.5
i N(dµ +

√
dydµ)polylog

(
TNdy

δ

))
.

where pm = mini P(a
∗(t) = i).

5. Numerical Experiments

In this section, we show the results in Section 4 based on

numerical simulation. First, to see the relationships be-

tween the regret and dimension of observations and con-

texts, we simulate various cases under the general assump-

tion for N = 5 arms and different dimensions of the ob-

servations dy = 10, 20, 40, 80 and context dimension

dx = 10, 20, 40, 80. Each case is repeated 50 times

and the average and worst quantities amongst all 50 sce-

narios are reported. Figure 1 shows normalized regret over

time for different dimensions of observations and contexts.

Because the regret grows poly-logarithmically with respect

to t, we normalize the regret by (log t)2. Next, Figure 2

shows the normalized errors for different cases of dimen-

sions of observations and contexts at N = 5. Since the

estimation errors decrease with t−0.5 in Theorem 4.8, we

describe
√
t‖η̂i(t) − ηi‖2 over time. We evaluate the aver-

age estimation errors of ηi for 5 different arms over time.

Since the errors decrease rate t−0.5 and
√
t cancel out each

other, the normalized errors for all the arms are flattened

over time. This shows that the estimations of ηi are avail-

able regardless of whether the dimension of observations is

greater or less than that of contexts.

6. Conclusion

We studied Thompson sampling for contextual bandits with

partial observations under relaxed assumptions. Indeed,

the suggested model formulation covers various possible

cases for observation structures and provides estimation

processes for contexts. Further, we show that the parame-

ter estimates converge to the truth, and that as time goes by,

the presented algorithm learns the unknown true parame-

ter accurately. Finally, we proved that Thompson sampling

has upper bounds with a poly-logarithmic rate for the most

common two cases.

A problem of future interest is the modeling, estimation and

algorithms for the unknown observation structure, where

the sensing matrix A is unknown. Further, relaxing the lin-

ear observation structure to non-linear can be a problem of

interest.

References

Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved
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Figure 1. Plots of Regret(t)/(log t)2 over time for the different dimensions of context at N = 5 and dy = 10, 20, 40, 80. The solid and
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A. Appendix

Proof of Theorem 4.1

Lemma A.1. Given y(t), the estimate x̂(t)⊤Jiµ has the mean x(t)⊤Jiµ and a sub-Gaussian tail property such as

E

[
eν(x̂(t)−x(t))⊤Jiµ

∣∣∣ y(t)
]
≤ e

ν2R2
2

2

for any ν > 0 and some R2 > 0.

Proof. Since x̂(t) is a BLUP, E[(x̂(t)− x(t))⊤Jiµ] = 0. In addition, using x̂(t) = Dy(t) = D(Ax(t) + ξ(t)),

Var((x̂(t)− x(t))⊤Jiµ|y(t)) = (Jiµ)
⊤(A⊤ΣY A+Σ−1

X )−1Jiµ

Because ‖Jiµ‖ ≤ 1, we can find R2 > 0 such that

(Jiµ)
⊤(A⊤ΣY A+Σ−1

X )−1Jiµ ≤ λmax((A
⊤ΣY A+Σ−1

X )−1) = R2, (19)

for any Jiµ ∈ R
dim(x(t)). Therefore, since ξ(t) has a sub-Gaussian density, we get

E

[
eν(x̂(t)−x(t))⊤Jiµ

∣∣∣ y(t)
]
≤ e

ν2R2
2

2 .

Lemma A.2. For any ν > 0, we have

E

[
eν(ri(t)−x̂(t)⊤Jiµ)

∣∣∣ y(t)
]
≤ e

ν2R2

2 .

where R = R1 +R2.

Proof. By (8),

ri(t)− x̂(t)⊤Jiµ = (x(t)⊤Jiµ∗ − y(t)⊤ηi) + εi(t),

which implies E[ri(t) − x̂(t)⊤Jiµ|y(t), a(t)] = 0 because x̂(t)⊤Jiµ is a unbaised predictor of x(t)⊤Jiµ. Due to

Var(ξ(t)⊤ηi|y(t)) ≤ R2
2 by (19), we have

Var(ri(t)− x̂(t)⊤Jiµ|y(t)) = Var(εi(t)) + Var(ξ(t)⊤ηi|y(t)) ≤ R2
1 +R2

2 ≤ R2

Since εi(t) and ξ(t)⊤ηi have a sub-Gaussian distribution, ri(t)− x̂(t)⊤Jiµ has a sub-Gaussian distribution as well. Thus,

E[eν(ri(t)−x̂(t)⊤Jiµ)|y(t)] = E[eνζi(t)|y(t)] ≤ e
ν2R2

2 .

Lemma A.3. For Jiµ such that E[ri(t)|x(t)] = x(t)⊤Jiµ, let

Dµ
t = exp

([
(ra(t)(t)− x̂(t)⊤Ja(t)µ)x̂(t)

⊤Ja(t)µ

R
− 1

2
(x̂(t)⊤Ja(t)µ)

2

])
,

and Mµ
t =

∏t
τ=1 D

µ
τ . Then, E[Mµ

τ ] ≤ 1.



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

Balancing exploration and exploitation in Partially Observed Linear Contextual Bandits via Thompson Sampling

Proof.

E[Dµ
t |Ft−1] = E

[
exp

(
(ra(t)(t)− x̂(t)⊤Ja(t)µ)x̂(t)

⊤Ja(t)µ

R
− 1

2
(x̂(t)⊤Ja(t)µ)

2

)∣∣∣∣∣ y(t), a(t)
]

= E

[
exp

(
ζa(t)(t)x̂(t)

⊤Ja(t)µ

R

)∣∣∣∣∣ y(t), a(t)
]
exp

(
−1

2
(x̂(t)⊤Ja(t)µ)

2

)

≤ exp

(
1

2
(x̂(t)⊤Ja(t)µ)

2

)
exp

(
−1

2
(x̂(t)⊤Ja(t)µ)

2

)
= 1

Then,

E[Mµ
t |Ft−1] = E[Mµ

1 · · ·Dµ
t−1D

µ
t |Ft−1] = Dµ

1 · · ·Dµ
t−1E[D

µ
t |Ft−1] ≤ Mµ

t−1

Let fµ be the normal density of µ with the mean zero and the positive covariance matrix λ−1I . By Lemma 9 in (Abbasi-

Yadkori et al., 2011), for Mt = E[Mµ
t |F∞], we have

P

(
‖Sτ‖2B(τ)−1 > 2 log

(
det(B(τ))1/2

δdet(λI)1/2

))
≤ E[Mτ ] ≤ δ,

where St =
∑t

τ=1 J
⊤
a(τ)Dy(τ)wτ . By Theorem 1 in (Abbasi-Yadkori et al., 2011), we have

P

(
‖Sτ‖B(τ)−1 > 2 log

(
det(B(τ))

δdet(λI)

)
, ∀ τ > 0

)
≤ δ.

Now, to find the bound for ‖y(t)‖, for δ > 0, we define WT such that

WT =

{
max

{1≤τ≤T}
||y(τ)||∞ ≤ vT (δ)

}
, (20)

where vT (δ) = (2λM log(2dyT/δ))
1/2 = O(λ

1
2

M log(dyT/δ)) and λM = λmax(AΣXA⊤ +ΣY ).

Lemma A.4. For the event WT defined in (20), we have P(WT ) ≥ 1− δ.

Proof. Note that y(t) has a sub-Gaussian density with the mean Ax(t) and the covariance ΣY . Then, using the sub-

Gaussian tail property, we have P
(
‖(AΣXA⊤ +ΣY )

−1/2y(t)‖∞ ≥ ε
)
≤ 2dy · e−

ε2

2 . By simple calculations, we have

P

(
max
1≤t≤T

‖y(t)‖ ≥ λ
1
2

Mε

)
≤ 2dyT · e− ε2

2

By plugging (2 log(2dyT/δ))
1/2 into ε, we have

P

(
max
1≤t≤T

‖y(t)‖ ≥ (2λM log(2dyT/δ))
1/2

)
≤ 2dyT · e−

2 log(2dyT/δ)

2 = δ.

Thus,

P(WT ) ≥ 1− P

(
max
1≤t≤T

‖y(t)‖ ≥ vT (δ)

)
≥ 1− δ.
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Then, by Lemma A.4, we have

‖y(t)‖ ≤
√

dyvT (δ) := L = O(
√
λMdy log(dyT/δ))

for all 1 ≤ t ≤ T with the at least probability 1− δ. Therefore, by Theorem 2 in (Abbasi-Yadkori et al., 2011), we have

‖µ̂(t)− µ∗‖B(t) ≤ R

√
dµ log

(
1 +

L2t

δ

)
+ λ

1
2h.

Lemma A.5. (Azuma Inequality, (Tropp, 2012)) Consider the sequence {Xk}1≤k≤K random variables adapted to some

filtration {Gk}1≤k≤K , such that E[Xk|Gk−1] = 0. Assume that there is a deterministic sequence {ck}1≤k≤K that satisfy

X2
k ≤ c2k , almost surely. Let σ2 =

∑
1≤k≤K c2k. Then, for all ε ≥ 0, it holds that

P

(
K∑

k=1

Mk ≥ ε

)
≤ e−ε2/2σ2

.

Proof of Theorem 4.2

Proof. Let Ft = σ{x(1), a(1), x(2), a(2), . . . , x(t), a(t)}. Consider Vt = D⊤Ja(t)y(t)y(t)
⊤J⊤

a(t)D to identify the be-

havior of B(t). Note that

E[J⊤
a(t)Dy(t)y(t)⊤D⊤Ja(t)|Ft] = J⊤

a(t)DVar(y(t)|Ft)D
⊤Ja(t) + J⊤

a(t)DAx(t)x(t)⊤A⊤D⊤Ja(t)

� λmJ⊤
a(t)DD⊤Ja(t)

where λmin(ΣY ) = λm. Let νim be the non-zero minimum eigenvalue of J⊤
i DD⊤Ji. Then, for all t > 0 and z ∈ C(J⊤

i D)
such that ‖z‖ = 1, it holds that

z⊤

(
t−1∑

τ=1

E[Vτ |Fτ ]

)
z ≥ z⊤




t−1∑

τ=1:a(τ)=i

E[Vτ |Fτ ]


 z ≥ λmνimni(t). (21)

Now, we focus on a high probability lower-bound for the smallest eigenvalue of B(t). Let

Xi
τ = (Vτ − E[Vτ |Fτ−1])I(a(τ) = i), (22)

Y i
τ =

τ∑

j=1

(Vj − E[Vj |Fj−1]) I(a(j) = i). (23)

Then, Xi
τ = Y i

τ −Y i
τ−1 and E

[
Xi

τ |Fτ−1

]
= 0. Thus, z⊤Xi

τz is a martingale difference sequence. Because v2T (δ)I−Vt �
0 for all 0 < t ≤ T and , vT (δ)

4 − (z⊤Xi
τz)

2 ≥ 0, for all 0 < τ ≤ T , on the event WT . By Lemma A.4, since∑t−1
τ=1

(
z⊤Xi

τz
)2 ≤ ℓi(t)vT (δ)

4, we get

P

(
z⊤

(
t−1∑

τ=1

Xi
τ

)
z ≤ ε

)
≤ exp

(
− ε2

8ℓi(t)v4T (δ)

)
.

By plugging ℓi(t)ε into ε, we have

P

(
z⊤

(
t−1∑

τ=1

Xi
τ

)
z ≤ ℓi(t)ε

)
≤ exp

(
− ℓi(t)ε

2

2v4T (δ)

)

for ε ≤ 0. Now, using (21) and (22), we obtain
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P

(
z⊤

(
t−1∑

τ=1

V (τ)I(a(τ) = i)

)
z ≤ ℓi(t)(λmνim + ε)

)
≤ exp

(
− ℓi(t)ε

2

8v4T (δ)

)
, (24)

where −λmνim ≤ ε ≤ 0 is arbitrary. Indeed, using B(t) �∑t−1
τ=1 V (τ)I(a(τ) = i), on the event WT defined in (20), for

−λmνim ≤ ε ≤ 0 we have

P
(
z⊤B(t)z ≤ ℓi(t)(λmνim + ε)

)
≤ exp

(
− ℓi(t)ε

2

2v4T (δ)

)
. (25)

In other words, by equating exp
(
−ℓi(t)ε

2/(2vT (δ)
4
)

to δ/T , (25) can be written as

z⊤B(t)z ≥ ℓi(t)

(
λmνim −

√
2vT (δ)4

ℓi(t)
log

T

δ

)
, (26)

for all 1 ≤ t ≤ T with the probability at least 1− 2δ. Thus,

λmin

(
D⊤JiB(t)J⊤

i D
)
≤ νiMℓi(t)

(
λmνim −

√
2vT (δ)4

ℓi(t)
log

T

δ

)
.

Accordingly, we have

λmax

(
D⊤JiB(t)−1J⊤

i D
)
≤ νiMℓi(t)

−1

(
λmνim −

√
2vT (δ)4

ℓi(t)
log

T

δ

)−1

.

If ℓi(t) ≥ vT (δ)
4 log(T/δ)/(2λ2

mν2im), we have

λmin

(
D⊤JiB(t)J⊤

i D
)
≥ νiMλmνim

2
ℓi(t),

and

λmax

(
D⊤JiB(t)−1J⊤

i D
)
≤ νiMλmνim

2
ℓi(t)

−1.

A.1. Proof of Proposition 4.4

Proof. We assume that each arm has a positive probability of being the optimal arm at each time, and the event of being

the optimal arm does not depend on the history. Let A∗
i ⊂ R

dy be the event such that argmaxj y(t)
⊤ηj = i, if y(t) ∈ A∗

i .

The probability of being the optimal arm for the arm i is denoted as

pi = P(y(t) ∈ A∗
i ) = P(a∗(t) = i)

and does not change over time. Note that, for c > 0, cy(t) ∈ A∗
i , if y(t) ∈ A∗

i . A∗
i is a convex set, because (sy1 + (1 −

s)y2)
⊤ηi = maxj(sy1 + (1− s)y2)

⊤ηj for y1, y2 ∈ Ai and c > 0. Thus, we take a subset Ai ⊆ A∗
i and ǫi > 0 such that

P(y(t) ∈ Ai) ≥ pi/2 and (y(t)/‖y(t)‖)⊤ (ηi − ηj) > ǫi for any j, if y(t) ∈ Ai.

A.2. Proof of Theorem 4.5

Denote Ait = {y(t) ∈ Ai}. Then, we want to have a lower bound of the probability P(a(t) = i) to find a lower bound of

ni(t) using

P(a(t) = i|Ft−1) ≥ P(a(t) = i|Ait,Ft−1)P(Ait) ≥


1−

∑

j 6=i

P(y(t)⊤η̃i(t) < y(t)⊤η̃j(t)|Ait,Ft−1)


P(Ait).
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P(y(t)⊤η̃i(t) < y(t)⊤η̃j(t)|Ait,Ft−1)

≤ P(y(t)⊤(η̃j(t)− η̂j(t)) >
1

2
(y(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj) + y(t)⊤(ηi − ηj))|Ait,Ft−1)

+P(y(t)⊤(η̃i(t)− η̂i(t)) >
1

2
(y(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj) + y(t)⊤(ηi − ηj))|Ait,Ft−1)

Since y(t)⊤(η̂i(t)−ηi− η̂j(t)+ηj) ≤ ‖y(t)‖
(
λmax(Bi(t)

−1) + λmax(Bj(t)
−1)
)
‖µ̂(t)−µ∗‖B(t), using Theorem 1 and

2, if ℓi(t) ≥ vT (δ)
4 log(T/δ)/(2λ2

mν2im) and ℓj(t) ≥ vT (δ)
4 log(T/δ)/(2λ2

mν2jm), we have

y(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj) ≤ ‖y(t)‖
(
R

√
dµ log

(
1 +

L2t

δ

)
+ λ

1
2h

)(
νiMλmνim

2
ℓi(t)

−1 +
νjMλmνjm

2
ℓj(t)

−1

)
.

Assume ℓi(t) >
νiMλmνim

(
R

√
dµ log

(
1+L2T

δ

)
+λ

1
2 h

)

ǫi
and ℓj(t) >

νjMλmνjm

(
R

√
dµ log

(
1+L2T

δ

)
+λ

1
2 h

)

ǫi
, then we have

y(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj) ≤ ‖y(t)‖ǫi
2
.

Accordingly, we have

P(y(t)⊤η̃i(t) < y(t)⊤η̃j(t)|Ait,Ft−1)

≤ P(y(t)⊤(η̃j(t)− η̂j(t)) > ‖y(t)‖ǫi|Ait,Ft−1) + P(y(t)⊤(η̃i(t)− η̂i(t)) > ‖y(t)‖ǫi|Ait,Ft−1).

If

ℓi(t) > max

(
vT (δ)

4 log(T/δ)/(2λ2
mν2im), νiMλmνim

(
R

√
dµ log

(
1 +

L2T

δ

)
+ λ

1
2h

)
ǫ−1
i

)
:= mii(T ) (27)

and

ℓj(t) > max

(
vT (δ)

4 log(T/δ)/(2λ2
mν2jm), νjMλmνjm

(
R

√
dµ log

(
1 +

L2T

δ

)
+ λ

1
2h

)
ǫ−1
i

)
:= mij(T ), (28)

we have

P(y(t)⊤η̃i(t) < y(t)⊤η̃j(t)|Ait,Ft−1) ≤ e−
ℓi(t)ǫ

2
i

8v2 + e−
ℓj(t)ǫ

2
i

8v2 .

Thus, if ℓi(t) and ℓj(t) satisfy (27) and (28), respectively, we have

P(a(t) = i|Ait,Ft−1) ≥ 1−
∑

j 6=i

(
e−

ℓi(t)ǫ
2
i

8v2 + e−
ℓj(t)ǫ

2
i

8v2

)
.

Therefore,

P(a(t) = i|Ft−1) ≥ P(a(t) = i|Ait,Ft−1)P(Ait) ≥
pi
2


1−

∑

j 6=i

(
e−

ℓi(t)ǫ
2
i

8v2 + e−
ℓj(t)ǫ

2
i

8v2

)
 .

The results above can be applied to all two cases defined in Section 2. Now, we focus on regret analysis. We investigate

regret bounds for two settings discussed in Section 2. First, we consider setting 1, where all arms share the parameter.



715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

Balancing exploration and exploitation in Partially Observed Linear Contextual Bandits via Thompson Sampling

Proof of Theorem 4.6

By Theorem 4.1, for all 1 ≤ t ≤ T , we have

‖B(t)
1
2 (µ̂(t)− µ∗)‖ ≤ R

√
dµ log

(
1 + tL2/λ

δ

)
+ h.

Suppose that D⊤Ji has the singular value decomposition UiΣiV
⊤
i . Using (ViΣ

−
i U

⊤
i )D⊤Ji � I , we get

‖B(t)
1
2 (ViΣ

−
i U

⊤
i )D⊤Ji(µ̂(t)− µ∗)‖ ≤ ‖B(t)

1
2 (µ̂(t)− µ∗)‖. (29)

Accordingly,

λmnz(((ViΣ
−
i U

⊤
i )⊤B(t)(ViΣ

−
i U

⊤
i ))

1
2 ‖D⊤Ji(µ̂(t)− µ∗)‖ ≤ ‖B(t)

1
2 (ViΣ

−
i U

⊤
i )D⊤Ji(µ̂(t)− µ∗)‖, (30)

where λmnz(M) is the smallest non-zero eigenvalue of M for a square matrix M . Finally, by putting together (29), (30)

and Theorem 4.2, we have

‖η̂i(t)− ηi‖ ≤ λmax(D
⊤JiB(t)−1J⊤

i D)
1
2R

(√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)

≤ ν
1
2

iM ℓi(t)
− 1

2R

(
λmνim −

√
2vT (δ)4

ℓi(t)
log

T

δ

)− 1
2
(√

dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)

If ℓi(t) > 8(vT (δ)
4/(λ2

mν2im)) log(T/δ), with ℓi(t) = t for all i under the SPMC assumption, we have

‖η̂i(t)− ηi‖ ≤ Rν
1
2

iM

√
λmνim

2t
1
2

(√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.

Lemma A.6. Let η̃i(t) be a sample in (14). Then, if t > 8(vT (δ)
4/(λ2

mν2im)) log(T/δ), with probability at least 1− δ, for

all i ∈ [N ] and 0 < t ≤ T , we have

‖η̃i(t)− ηi‖ ≤ Rν
1
2

iM

√
λmνim

2t
1
2

(
v

√
2dy log

2NT

δ
+

√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.

Proof. Using P (‖η̃i(t)− η̂i(t)‖ > ǫ) ≤ P
(√

dyZ > ǫ
)
, where Z ∼ N (0, v2 max(Bi(t))

−1), we have

P (‖η̃i(t)− η̂i(t)‖ > ǫ) < 2 · e−
ǫ2

2v2 max(Bi(t))
−1 .

By putting 2 · e−
ǫ2

2v2 max(Bi(t)
−1) = δ

TN , we have

‖η̃i(t)− η̂i(t)‖ < v

√
2dy max(Bi(t)−1) log

2TN

δ
.

If t > 8(vT (δ)
4/(λ2

mν2im)) log(T/δ), we have

‖η̃i(t)− η̂i(t)‖ < v
Rν

1
2

iM

√
λmνim

2t
1
2

√
2dy log

2TN

δ
.

Therefore, by Theorem 4.8,

‖η̃i(t)− ηi‖ ≤ Rν
1
2

iM

√
λmνim

2t
1
2

(
v

√
2dy log

2TN

δ
+

√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.
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A.3. Proof of Theorem 4.7

Let reg(t) = (y(t)/‖y(t)‖)⊤(ηa∗(t)(t)− ηa(t)(t)). Then,

Regret(T ) =
∑

y(t)⊤(ηa∗(t)(t)− ηa(t)(t))

≤
∑

y(t)⊤(ηa∗(t)(t)− η̃a∗(t)(t) + η̃a(t)(t)− ηa(t)(t))I(a
∗(t) 6= a(t))

≤ vT (δ)
T∑

t=1

(‖η̃a∗(t)(t)− ηa∗(t)‖+ ‖η̃a(t)(t)− ηa(t)‖)I(a∗(t) 6= a(t)),

since ‖y(t)‖ ≤ vT (δ) for all t ∈ [T ]. By Lemma ??, if t > 8(vT (δ)
4/(λ2

mν2im)) log(T/δ), with a probability at least 1− δ,

we have

‖η̃a∗(t)(t)−ηa∗(t)‖+‖η̃a(t)(t)−ηa(t)‖ ≤ Rmaxi(ν
1
2

iM

√
λmνim)√

t

(
v

√
2dy log

2TN

δ
+

√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.

Now, we construct a martingale sequence with respect to the filtration Ft−1. To that end, let G1 = H1 = 0,

Gτ = t−1/2I(a∗(t) 6= a(t))− t−1/2
P(a∗(t) 6= a(t)|Ft−1),

and Ht =
∑t

τ=1 Gτ . Since E[Gτ |Fτ−1] = 0, the above sequences {Gτ}τ≥0 and {Hτ}τ≥0 are a martingale difference

sequence and a martingale with respect to the filtration {Fτ}1≤τ≤T , respectively. Let cτ = 2τ−1/2. Since
∑T

τ=1 |Gτ | ≤∑T
τ=2 c

2
τ ≤ 4 log T , by Lemma A.5, we have

P(HT −H1 > ε) ≤ exp

(
− ε2

8
∑T

t=1 c
2
t

)
≤ exp

(
− ε2

32 log T

)
.

Thus, with the probability at least 1− δ, it holds that

T∑

t=1

1√
t
I(a∗(t) 6= a(t)) ≤

√
32 log T log δ−1 +

T∑

t=1

1√
t
P(a∗(τ) 6= a(τ)|F ∗

τ−1). (31)

Now, we proceed to the upper bound of the second term on the right side in (31).

Assumption A.7. The support of standardized observation y(t)/‖y(t)‖ is a subset of a unit sphere with the dimension dy .

The density of y(t)/‖y(t)‖ is bounded by a constant C,

P (y(t)/‖y(t)‖ = y) < C.

Accordingly, dij(t) = (y(t)/‖y(t)‖)⊤(ηi − ηj)|(a∗(t) = i) has a density fij bounded by a constant, cij > 0.

Let A∗
it = {y(t) ∈ Ai}.

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
∗
it) = P(y(t)⊤(η̃j(t)− ηj − η̃i(t)− ηi) > y(t)⊤(ηi − ηj) > |Ft−1, A

∗
it)

≤ P(y(t)⊤(η̃j(t)− ηj) > 0.5y(t)⊤(ηi − ηj)|Ft−1, A
∗
it) + P(y(t)⊤(η̃i(t)− ηi) > 0.5y(t)⊤(ηi − ηj)|Ft−1, A

∗
it)

≤ P(y(t)⊤(η̃j(t)− η̂j(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A
∗
it) + P(y(t)⊤(η̃i(t)− η̂i(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A

∗
it)

+ P(y(t)⊤(η̂j(t)− ηj) > 0.25y(t)⊤(ηi − ηj)|Ft−1, A
∗
it) + P(y(t)⊤(η̂i(t)− ηi) > 0.25y(t)⊤(ηi − ηj)|Ft−1, A

∗
it)

By Theorem 4.6 and Assumption 1, if t > 8(vT (δ)
4/(λ2

mν2im)) log(T/δ), we have

P(y(t)⊤(η̂i(t)− ηi) > 0.25y(t)⊤(ηi − ηj)|Ft−1, A
∗
it) ≤ P

(
2hi(T )√

t
> y(t)⊤/‖y(t)‖(ηi − ηj)

∣∣∣∣Ft−1, A
∗
it

)
≤ 2hi(T )cij√

t

P(y(t)⊤(η̂j(t)− ηj) > 0.25y(t)⊤(ηi − ηj)|Ft−1, A
∗
it) ≤ P

(
2hj(T )√

t
> y(t)⊤/‖y(t)‖(ηi − ηj)

∣∣∣∣Ft−1, A
∗
it

)
≤ 2hj(T )cij√

t
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where

hi(T ) =
Rν

1
2

iM

√
λmνim
2

(√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.

Because

P(y(t)⊤(η̃i(t)− η̂i(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A
∗
it, y(t)) ≤ e

−
t(y(t)⊤(ηi−ηj))

2

32‖y(t)‖2v2

P
(
y(t)⊤(η̃j(t)− η̂j(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A

∗
it, y(t)

)
≤ e

−
t(y(t)⊤(ηi−ηj))

2

32‖y(t)‖2v2 ,

based on Assumption 1, we have

P(y(t)⊤(η̃j(t)− η̂j(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A
∗
it) ≤ E[e

−
t(y(t)⊤(ηi−ηj))

2

8‖y(t)‖2v2 |Ft−1, A
∗
it]

=

∫ ‖ηi−ηj‖

0

e−
tz2

8v2 fij(z)dz ≤ 2cijv√
t

Accordingly, we have

P(a∗(t) 6= a(t)|F ∗
t−1) ≤

N∑

i=1

N∑

j=1

P (y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
∗
it)pi

≤
N∑

i=1

N∑

j=1

pi

(
4cijv√

t
+

4hj(T )cij√
t

)
=

4√
t

N∑

i=1

N∑

j=1

picij (v + hj(T )) =
4NcM√

t
.

where cM = maxij cij (v + hj(T )) = O(
√

dµ log T ). Thus, we have

T∑

t=1

1√
t
P(a∗(t) 6= a(t)|F ∗

t−1) ≤ 4NcM

T∑

t=1

1

t
≤ 4NcM log T.

By (31), with a probability at least 1− δ, we have

T∑

t=1

1√
t
I(a∗(t) 6= a(t)) ≤

√
32 log T log δ−1 + 4NcM log T.

Therefore,

Regret(T ) ≤ Rmax
i

(ν
1
2

iM

√
λmνim)

(
v

√
2dy log

2TN

δ
+

√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)(√
32 log T log δ−1 + 4NcM log T

)

= O
(
N(dµ +

√
dµdy)polylog

(
TNdy

δ

))
.

A.4. Proof of Theorem 4.8

Lemma A.8. Under the general assumption, with a probability at least 1− δ, the algorithm 1 guarantees

ni(t) >
pi
2


t−

∑

j 6=i

(m′
ii(T ) +m′

ij(T ))− (N − 1)/T


−

√
2t log(2/δ),

where m′
ii(T ) = max(mii(T ), 16(v

2/ǫ2i ) log T ) and m′
ij(T ) = max(mij(T ), 16(v

2/ǫ2i ) log T ).
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Proof. By Theorem 3, if ℓi(t) = ni(t) > mii(T ) and ℓj(t) = nj(t) > mij(T ),

P(a(t) = i|Ft−1) ≥ P(a(t) = i|Ft−1, Ait)P(Ait) ≥
pi
2


1−

∑

j 6=i

(
e−

ℓi(t)ǫ
2
i

8v2 + e−
ℓj(t)ǫ

2
i

8v2

)
 ,

where pi = P(a∗(t) = i). If ℓi(t) ≥ m′
ii(T ) := max(mii(T ), 16(v2/ǫ2i ) log T ), we have exp

(
−(ℓi(t)ǫ

2
i )/(8v

2)
)
≤

T−2. Similarly, if ℓj(t) ≥ m′
ij(T ) := max(mij(T ), 16(v

2/ǫ2i ) log T ), we have exp
(
−(ℓj(t)ǫ

2
i )/(8v

2)
)
≤ T−2. Since

I(a(t) = i)− (pi/2)
(
1−∑j 6=i P(a(t) = j|Ait)

)
is a submartingale difference,

t∑

τ=1

P (a(τ) = i|Fτ−1) ≥ pi
2


t−

t∑

τ=1

∑

j 6=i

P
(
y(τ)⊤(η̃j(τ)− η̃i(τ)) > ǫi

∣∣Aiτ , Fτ−1

)



≥ pi
2


t−

∑

j 6=i

(m′
ii(T ) +m′

ij(T ))− (N − 1)/T


 .

P

(
ni(t)−

t∑

τ=1

P (a(τ) = i|Fτ−1) < −ǫ

)
≤ e−

ǫ2

T .

With a probability of at least 1− δ,

ni(t) >
pi
2


t−

∑

j 6=i

(m′
ii(T ) +m′

ij(T ))− (N − 1)/T


−

√
2t log(2/δ).

Now we are ready to prove Theorem 6.

Proof. The following inequality

pi
2


t−

∑

j 6=i

(m′
ii(T ) +m′

ij(T ))− (N − 1)/T


−

√
2t log(2/δ) >

pi
4
t,

is satisfied, if t > m′′
i (T ) = 2(ai1 + (4/pi)a

2
i2) + 2

√
(ai1 + (4/pi)a2i2)

2 − a2i1, where ai1 =
∑

j 6=i(m
′
ii(T ) +m′

ij(T )) +

(N − 1)/T and ai2 =
√

2 log(2/δ) based on the quadratic formula. By Lemma A.8, with a probability at least 1 − δ,

ni(t) > (pit)/4, if t > m′′
i (T ). Similarly to Theorem 4, we have

‖η̂i(t)− ηi‖2 ≤ ν
1
2

iM (pit/4)
− 1

2R

(
λmνim −

√
2vT (δ)4

pit/4
log

T

δ

)− 1
2
(√

dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.

Thus, if t ≥ (32/pi)(vT (δ)
4/(λ2

mν2im)) log(T/δ),
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‖η̂i(t)− ηi‖2 ≤ Rν
1
2

iM

√
λmνim√
pit

(√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.

Theorem A.9. Assume that Algorithm 1 is used in a bandit the MPMC assumption. Then, with probability at least 1 − δ,

Regret(T ) is of the order

Regret(T ) = O
((

max
i

p−1
i

)
N
√
dydµpoly

(
log

(
TNdy

δ

)))
.

Proof. The regret can be decomposed as

R(T ) =
∑

y(t)⊤(ηa∗(t)(t)− ηa(t)(t))I(a
∗(t) 6= a(t))

≤
∑

y(t)⊤(ηa∗(t)(t)− η̃a∗(t)(t) + η̃a(t)(t)− ηa(t)(t))I(a
∗(t) 6= a(t))

≤ vT (δ)

T∑

t=1

(‖η̃a∗(t)(t)− ηa∗(t)‖+ ‖η̃a(t)(t)− ηa(t)‖)I(a∗(t) 6= a(t)),

since ‖y(t)‖ ≤ vT (δ) for all t ∈ [T ].

(‖η̃a∗(t)(t)− ηa∗(t)‖+ ‖η̃a(t)(t)− ηa(t)‖)I(a∗(t) 6= a(t))

=

N∑

j=1

(‖η̃a∗(t)(t)− ηa∗(t)‖+ ‖η̃j(t)− ηj‖)I(a∗(t) 6= a(t), a(t) = j)

By Theorem ??, if t > m′′
i (T ), we have

‖η̂i(t)− ηi‖2 ≤ Rν
1
2

iM

√
λmνim

2
√
pit

(√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
∗
it) = P(y(t)⊤(η̃j(t)− ηj − η̃i(t)− ηi) > y(t)⊤(ηi − ηj) > |Ft−1, A

∗
it)

≤ P(y(t)⊤(η̃j(t)− ηj) > 0.5y(t)⊤(ηi − ηj)|Ft−1, A
∗
it) + P(y(t)⊤(η̃i(t)− ηi) > 0.5y(t)⊤(ηi − ηj)|Ft−1, A

∗
it)

≤ P(y(t)⊤(η̃j(t)− η̂j(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A
∗
it) + P(y(t)⊤(η̃i(t)− η̂i(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A

∗
it)

+ P(y(t)⊤(η̂j(t)− ηj) > 0.25y(t)⊤(ηi − ηj)|Ft−1, A
∗
it) + P(y(t)⊤(η̂i(t)− ηi) > 0.25y(t)⊤(ηi − ηj)|Ft−1, A

∗
it)

By Theorem 4.6 and Assumption 1, if t > 8(vT (δ)
4/(λ2

mν2im)) log(T/δ), we have

P(y(t)⊤(η̂i(t)− ηi) > 0.25y(t)⊤(ηi − ηj)|Ft−1, A
∗
it) ≤ P

(
hi(T )√

pit
> y(t)⊤/‖y(t)‖(ηi − ηj)

∣∣∣∣Ft−1, A
∗
it

)
≤ hi(T )cij√

pit

P(y(t)⊤(η̂j(t)− ηj) > 0.25y(t)⊤(ηi − ηj)|Ft−1, A
∗
it) ≤ P

(
hj(T )√

pjt
> y(t)⊤/‖y(t)‖(ηi − ηj)

∣∣∣∣Ft−1, A
∗
it

)
≤ hj(T )cij√

pjt
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where

hi(T ) =
Rν

1
2

iM

√
λmνim
2

(√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)
.

Because

P(y(t)⊤(η̃i(t)− η̂i(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A
∗
it, y(t)) ≤ e

−
tpi(y(t)⊤(ηi−ηj))

2

128‖y(t)‖2v2

P
(
y(t)⊤(η̃j(t)− η̂j(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A

∗
it, y(t)

)
≤ e

−
tpj(y(t)⊤(ηi−ηj))

2

128‖y(t)‖2v2 ,

based on Assumption 1, we have

P(y(t)⊤(η̃j(t)− η̂j(t)) > 0.25y(t)⊤(ηi − ηj) > |Ft−1, A
∗
it) ≤ E[e

−
tpj(y(t)⊤(ηi−ηj))

2

128‖y(t)‖2v2 |Ft−1, A
∗
it]

=

∫ ‖ηi−ηj‖

0

e−
tpjz

2

128v2 fij(z)dz ≤ 16cijv√
pjt

P (a∗(t) 6= a(t)|Ft−1) ≤
N∑

i=1

pi

N∑

j=1

P (a(t) = j|Ft−1, A
∗
it)

≤
N∑

i=1

pi

N∑

j=1

(
hi(T )cij√

pit
+

hj(T )cij√
pjt

+
16cijv√

pit
+

16cijv√
pjt

)
≤ 2NcM√

t

where cM = maxi,j p
−0.5
i (hi(T ) + 16v)cij = O(maxi p

−0.5
i

√
dµ log T ).

Since t−1/2I(a∗(t) 6= a(t))−t−1/2P (a∗(t) 6= a(t)|Ft−1) is a martingale difference w.r.t Ft, by Azuma, with a probability

at least 1− δ, we have

T∑

t=1

t−1/2I(a∗(t) 6= a(t)) ≤
T∑

t=1

t−1/2P (a∗(t) 6= a(t)|Ft−1) +
√
64 log T log δ−1

Thus, we have
T∑

t=1

1√
t
I(a∗(t) 6= a(t)) ≤

√
64 log T log δ−1 + 2NcM log T.

Therefore,

Regret(T ) ≤ Rmax
i

(ν
1
2

iM

√
λmνim)

(
v

√
2dy log

2TN

δ
+

√
dµ log

(
1 + TL2/λ

δ

)
+ λ

1
2h

)(√
64 log T log δ−1 + 2NcM log T

)

= O
(
max
i,j

p−0.5
i N(dµ +

√
dydµ)polylog

(
TNdy

δ

))
.


