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Abstract Multi-objective optimization often produces large sets of Pareto-optimal solutions, creating a
bottleneck for human experts who must select the best option. This difficulty is compounded
by the fact that expert preferences are often complex and hard to formalize. To address this,
we introduce LISTEN, a framework that leverages a Large Language Model as a zero-shot
preference oracle. Guided by a high-level description of an expert’s priorities in natural
language, LISTEN uses an iterative ranking algorithm to perform pairwise comparisons
on subsets of items. This approach contends with practical LLM limitations by using these
pairwise judgments to build a preference model, which guides the search and informs
the final selection. We evaluate our framework on a real-world final exam scheduling
problem. Preliminary results suggest this approach is promising, consistently identifying
high-quality solutions and showing encouraging fidelity to the stated preferences. This work
demonstrates a path toward steering complex multi-objective selection problem directly
with natural language, bypassing the need for mathematical utility functions to express
preferences.

1 Introduction

Multi-objective optimization (MOO) of time-consuming black-box functions (Gunantara, 2018;
Daulton et al., 2022) is central to automated machine learning (AutoML) (Hutter et al., 2019). For
example, when tuning the hyperparameters of a machine learning model or pipeline, one must
often trade off speed, memory, and test time accuracy. Moreover, machine learning models are
typically time-consuming to train and do not provide derivative information describing how their
performance characteristics vary with their hyperparameters.

Multi-objective Bayesian optimization (MOBO) and other algorithms for MOO (Knowles, 2006;
Daulton et al., 2022; Tu et al., 2022) can generate hundreds of Pareto-optimal solutions. This creates
a new bottleneck. How can an expert decision-maker efficiently sift through a vast set of viable
candidates to find the one that best reflects their nuanced, often unstated, priorities? This is also
a challenge when tuning hyperparameters in generative Al pipelines via preference learning with
Bayesian optimization (Christiano et al., 2017; Ouyang et al., 2022; Touvron et al., 2023).

Traditional solutions are often inadequate. Manually comparing all options is time-consuming
and prone to error. Pairwise preferences (Obayashi et al., 2007; Wang et al., 2022) or faceted search
(Ozaki et al., 2024) can help, but still require significant human effort. The core difficulty is that
human experts lack a time-efficient way to accurately articulate their preferences.

Large Language Models (LLMs) offer a new paradigm for tackling this challenge. With their
profound ability to interpret nuanced, hierarchical text, LLMs present an opportunity for zero-shot
preference modeling, where a decision-maker’s goals can be understood directly from a verbal
description. This bypasses the need for rigid, numerical utility functions. While recent research has
begun integrating LLMs into preference learning, they are typically used as components within
larger systems—for instance, to guide questioning (Lawless et al., 2023; Austin et al., 2024), extract
preferences from reviews (Bang and Song, 2025), or simulate user behavior (Okeukwu-Ogbonnaya
et al., 2025; Zhang et al., 2025). However, it remains an open question whether an LLM can, on its
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own, effectively navigate the complex trade-offs inherent in a Pareto frontier using only high-level,
natural language instructions.

To address this gap, we introduce LISTEN: LLM-based Iterative Selection with Trade-off
Evaluation from Natural-language, a framework that uses an LLM as a preference oracle for
selection of a human expert’s most preferred item from a list that is too long for the human to
examine directly. In our framework, a human expert first describes their potentially complex
priorities in natural language. An iterative search algorithm then uses this utterance in repeated
LLM calls to compare subsets of items, summarizing the LLM’s responses via a classical utility
surrogate. Ultimately, the algorithm selects its estimate of the best item. Our approach must
contend with limits on the LLM’s context window and the LLM’s ability to reason directly over
large item lists, which prevent the LLM from directly selecting the best item in a single call. Our
approach must also limit the number of calls to the LLM to save computational and financial cost.

In our experiments, we adopt the real-world multi-objective problem of final exam scheduling,
leveraging a large-scale codebase used to schedule final exams at a major university (Ye et al.,
2024). This shares the characteristics of MOO in AutoML: evaluating the characteristics resulting
from a particular decision requires a time-consuming black box optimization step using many
hours of server time; and decision-makers (university registrars) must juggle competing priorities
(faculty want to avoid writing make-up exams, students need adequate study time between tests,
and administrators aim to clear facilities efficiently).

Our approach combines principles from preference-based optimization (Chu and Ghahramani,
2005; Brochu et al., 2010) and active ranking (Jamieson and Nowak, 2011; Yue et al., 2012), situating
these classical methods within the emerging field of LLMs for decision-making (Hao et al., 2023; Xi
et al., 2025). While prior work uses LLMs to assist in planning or preference elicitation (Valmeekam
et al., 2022; Zhang et al., 2023; Lawless et al., 2023, 2025), we specifically investigate if an LLM can
serve as the primary, zero-shot oracle for selecting from a pre-computed Pareto frontier, guided
only by high-level natural language goals.

This paper’s primary contribution is the exploration of a framework, LISTEN, that uses an LLM
as a preference oracle for multi-objective decision-making. Our preliminary evaluation on a real-
world final exam scheduling dataset suggests this approach is promising, identifying higher-quality
solutions than baselines and showing encouraging fidelity to the stated preferences. We present
these initial findings as part of our ongoing work to understand the potential and limitations of
using LLMs for multi-objective decision-making.

Problem Description

We are given a collection of items & = {sy,s,...,sn}. Each item s; is a d-dimensional vector
giving the values for each of d attributes. We are focused on settings where N > 1000 is too large
for the user to directly examine all items. Such collections are often produced in MOO when a
MOO algorithm identifies a large collection of items on the Pareto frontier. We are also given a
natural language utterance describing a human decision-maker’s preferences, the name of each
attribute, and a pre-trained LLM. An example utterance and items are given in the appendix. In our
experiments, items are final exam schedules considered by a university registrar. Our goal is to use
a limited number of calls to the LLM to select the item that the human decision maker most prefers.

Methodology

To address the selection problem, we propose LLM-based Iterative Selection with Trade-off Evaluation
from Natural-language (LISTEN), a framework that uses a Large Language Model (LLM) as a zero-
shot preference oracle within an iterative ranking procedure.

The LLM as a Zero-Shot Preference Oracle. We leverage an LLM as a surrogate for the human
decision-maker. An advantage of our approach is its zero-shot nature; the LLM is not fine-tuned on
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any preference data. Instead, we provide it with a carefully crafted natural language prompt that
establishes a persona, outlines a hierarchical set of preferences, and presents two or more candidate
solutions for evaluation, each represented by its vector of objective values. The LLM’s task is to
choose the superior solution in the prompt based only on the provided context.

One naive approach for using the LLM to select the item’s most preferred item is to directly
compare all items in the list in a single prompt. Unfortunately, when N is large, the prompt may
not fit in the LLM’s context window. We have also found in our experiments that the LLMs we
evaluate have a strong bias against items in the middle of the list presented in the prompt, making
the preference oracle unreliable for long lists. Another naive approach is to compare pairs of items
against each other using the preference oracle and remove those that the LLM judges to be less
preferred, only keeping the winner in each comparison. Evaluating all items, however, requires
N — 1 calls to the LLM, which may be prohibitively expensive when N is large.

Iterative Ranking via Pairwise Comparisons. Our framework uses an iterative process to efficiently
explore the solution pool, as detailed in Algorithm 1 in the appendix. The process begins by querying
the LLM on a small number of randomly selected item pairs to gather an initial set of preferences.
Then, in each iteration, a flexible selection strategy is used to choose a new batch of pairs for
the LLM to evaluate. This strategy is a modular component of our framework. For instance, an
active learning strategy can be employed, where a probabilistic surrogate model (e.g., a Gaussian
Process) is fit to the collected preferences, and an acquisition function (e.g., Expected Improvement)
is used to select the most informative pairs (Chu and Ghahramani, 2005; Astudillo and Frazier,
2020). Alternatively, a simpler strategy like uniform random sampling can be used. In either case,
the LLM’s choice for each pair provides a new preference label, which is used to inform subsequent
selections.

When we prompt the preference oracle, we include the result of previous comparisons in the
prompt. We find that this in-context learning mechanism helps the model establish a more stable
internal representation of the trade-offs.

Experiments

To evaluate the LISTEN framework, we apply it to the real-world problem of final exam scheduling.

The Final Exam Scheduling Problem. We conduct our experiments using a MOO benchmark
introduced in Ye et al. (2024). This benchmark focuses on final exam scheduling using mixed integer
programming (MIP). The MIP solver and formulation have hyperparemeters and decision-makers
care about a variety of solution attributes (see the appendix for full list). For each attribute, smaller
is better. Using ParEGO (Knowles, 2006), we generate a diverse set S of 5,000 unique candidate
solutions on the Pareto frontier.

Experimental Setup and Results. To measure performance, we simulate a decision-maker with a
known ground-truth utility function. For each experimental run, we define a ground-truth utility as
a weighted linear combination of the scheduling conflict metrics. The weights are hidden from all
algorithms. The primary evaluation metric is the value of the hidden ground-truth utility function
for the final schedule selected by an algorithm. The default LLM is Gemini 2.5 Flash’s Reasoning
model (Comanici et al., 2025). We run 10 replicates for each algorithm and report the average
performance +/- two times the standard error.

We explore several variants of LISTEN. Our main algorithm, LISTEN, uses the complete prompt
with persona, hierarchical preferences, and conversational history. We test two ablations: LISTEN-
NoPref, which removes the explicit natural language preferences to test reasoning from context
alone, and LISTEN-NoHist, which omits the history of previous comparisons to test the impact of
in-context learning by making each comparison independent.
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To benchmark performance, we use a Perfect Oracle as a practical upper bound, which replaces 1
the LLM and makes pairwise comparisons using the true hidden utility function. To isolate the 13
LLM’s contribution, a Random Oracle baseline uses active search, but the winner of each pairis 1
determined by a coin flip. Finally, as a non-Bayesian alternative, we use a Tournament Selection 1o
approach, where the LLM selects the best schedule from 50 random batches of 100, and then selects 1
the top 5 from the resulting 50 winners. 142

Figure 1 compares our approach against baselines and ablations across two ground-truth utility 14
functions. The first setting (Fig. 1a) involves a simple utility over back-to-back conflicts, where 14
we employ an active learning selection strategy using a GP surrogate and the EI-UU acquisition s
function. The second setting (Fig. 1b) uses a complex, lexicographical utility function that prioritizes s
simultaneous conflicts, then three-in-a-row, and finally back-to-back conflicts (see appendix for 1
weights); in this more complex case, we use a uniform random search selection strategy. 148

These results suggest that LISTEN can identify high-quality solutions within a limited budget 1o
of LLM calls. Compared to the baselines, LISTEN consistently found higher-utility solutions. It 10
significantly outperformed Random Selection, which confirms that the LLM’s reasoning is superior s
to chance. It also surpassed the non-Bayesian Tournament Selection, highlighting the benefit of 12
iterative surrogate modeling. We observed that providing the utility-driven prompt significantly 1
improved performance over the baseline prompt. Furthermore, including conversational history as 1
context consistently accelerated convergence, suggesting that in-context learning provides value. 15
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° ® 1 Iteration s 2 » Iteration
(a) Avg. # of Back-to-backs vs. Iterations (b) Avg. Utility vs. Iterations

Figure 1: Comparison of our proposed LISTEN approach against benchmarks and ablations on two
example settings: minimizing the number of back-to-back exams (left) and prioritizing a
more complex hierarchical goal (right).

5 Discussion & Future Work 156

Our initial experiments suggest that LLMs can interpret structured, hierarchical preferencesina 1
zero-shot prompt to make consistent lexicographic choices. This points toward a promising new s
avenue for preference elicitation that could avoid explicit utility function design. 159

This capability, however, is not without its limitations. A core challenge is evaluation: without 1
a ground-truth utility function, assessing the “correctness" of the LLM’s choices remains an open 1
question. The current framework serves as a snapshot interaction, and future work must explore 1
how to manage evolving preferences and learn from feedback over repeated interactions with a 1
human decision-maker. Moreover, it is worthwhile to explore more sophisticated selection strategies e
within the iterative ranking procedure for better exploration-exploitation trade-off. 165
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A Algorithm Pseudocode 25

Algorithm 1 LISTEN: LLM-based Iterative Selection w/ Trade-off Evaluation from Natural-language

1:

T =
Wy e

Input: Solution pool S, selection strategy 7, number of iterations T, batch size K, initial sample
size Njpi;.
Select Nj,;; random pairs from S; let S, .41 be the set of these solutions.
Let D be the set of preferences obtained by querying the LLM on the initial pairs.
fort=1,...,T do
Use selection strategy 7 and preferences D to select a new batch of K pairs from S \ Sepq;-
for each new pair (s;, s;) in the batch do
Construct prompt P with persona and solution data.
Query LLM with prompt P to get preferred solution s, .
Add the preference (syref = Sother) to D.
Add s; and s; to Separ-
end for

: end for
: Determine the best solution s* from S,,,; based on the final preferences in D.

Return: s*.




B Metrics Used in Final Exam Scheduling

Table 1 provides a comprehensive documentation of the metrics used in the final exam scheduling

problem.
Table 1: Final Exam Scheduling Conflict Metrics

Metric Description

Conflicts Instances of a student having two or more exams in the
same time slot.

Quints Instances of a student having five exams in consecutive time
slots.

uads Instances of a student having four exams in consecutive
g

Four in Five Slots

Triple in 24h (no gaps)
Triple in Same Day (no gaps)
Three in Four Slots
Evening/Morning B2Bs
Other B2Bs

Two in Three Slots

time slots.

Instances of a student having four exams within five con-
secutive time slots.

Instances of a student having three back-to-back exams in
a 24-hour period.

Instances of a student having three back-to-back exams on
the same day.

Instances of a student having three exams within four con-
secutive time slots.

Instances of a student having an exam in the last slot of one
day and the first slot of the next day.

All other instances of a student having exams in adjacent
time slots.

Instances of a student having two exams within three con-
secutive time slots.
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C Weights for the Complex Utility Function 29

The specific (normalized) weights used to define the complex, lexicographical utility function are 20
detailed in Table 2. 21

Table 2: Normalized Weights for the Complex Utility Function

Conflict Type Weight
Simultaneous Conflicts -3
All Triple Conflicts -2
All Back-to-Back Conflicts -1




D Prompts

Schedule A: conflicts=1.0, quints=0.0, quads=>5.0, four in five slots=3.0, triple in 24h (no gaps)=53.0,
triple in same day (no gaps)=31.0, three in four slots=441.0, evening/morning b2b=586.0, other
b2b=1303.0, two in three slots=3100.0

Schedule B: conflicts=18.0, quints=0.0, quads=>5.0, four in five slots=15.0, triple in 24h (no gaps)=75.0,
triple in same day (no gaps)=46.0, three in four slots=456.0, evening/morning b2b=838.0, other
b2b=982.0, two in three slots=3163.0

You are an expert in final exam schedule optimization. All metrics represent student exam schedules,
they all should be minimized . When comparing Schedule A and Schedule B, provide a few sentence
analysis that highlights key trade-offs between their metrics. Conclude with your final choice
formatted exactly in curly braces, e.g. {A} or {B}. Do not output just ‘A’ or ‘B’; include the reasoning
and marker. Make sure to end with your choice either {A} or {B}

Figure 2: An example of the prompt for the LISTEN-NoPref ablation, which omits the explicit prefer-
ence hierarchy.

You are an experienced University Registrar. Your absolute top priority is to ensure that no student
has a simultaneous conflict. After that, your next most critical goal is to minimize the number of
students facing three exams in a 24-hour period, as this causes the most stress. Finally, use the
number of back-to-back exams as a tie-breaker to choose between otherwise equal schedules. Your
goal is to find the schedule that best reflects these priorities. Here are the two schedules:

Schedule A: conflicts=0.0, quints=1.0, quads=3.0, four in five slots=3.0, triple in 24h (no gaps)=46.0,
triple in same day (no gaps)=29.0, three in four slots=318.0, evening/morning b2b=420.0, other
b2b=1230.0, two in three slots=3086.0

Schedule B: conflicts=1.0, quints=0.0, quads=4.0, four in five slots=7.0, triple in 24h (no gaps)=56.0,
triple in same day (no gaps)=34.0, three in four slots=333.0, evening/morning b2b=600.0, other
b2b=1198.0, two in three slots=3269.0

Which schedule do you choose?

Figure 3: An example of the Preference-Guided Prompt Component, which provides the explicit
hierarchical utility information.
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[YOUR PREVIOUS REASONING HISTORY]
Here are your previous decisions and reasoning:
Iteration 1:

Schedule A: conflicts: 0, quints: 1.0, quads: 3.0, four in five slots: 4.0, triple in 24h (no gaps): 62.0,
triple in same day (no gaps): 20.0, three in four slots: 372.0, evening/morning b2b: 482.0, other b2b:
1106.0, two in three slots: 3481.0

Schedule B: conflicts: 1, quints: 0.0, quads: 5.0, four in five slots: 3.0, triple in 24h (no gaps): 53.0,
triple in same day (no gaps): 31.0, three in four slots: 441.0, evening/morning b2b: 586.0, other b2b:
1303.0, two in three slots: 3100.0

Your choice: {B}

Your reasoning: Both schedules are conflict-free or nearly so (A: 0, B: 1), and neither has runaway
quints or quads, so attention falls squarely on “two in three slots” Here, Schedule B posts 3100,
which is 381 fewer instances than Schedule A’s 3481—an 11% improvement on the single metric
that matters. Schedule B does incur small increases in four-of-five (3 vs 4), three-in-four (441 vs
372), evening/morning back-to-back (586 vs 482) and other back-to-back exams (1303 vs 1106), but
these are secondary. The decisive reduction in two-in-three slots outweighs those trade-offs under
the specified priority.

Figure 4: An example of the Conversational History Component, which is prepended to the prompt
to enable in-context learning based on previous comparisons.
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