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Abstract Multi-objective optimization often produces large sets of Pareto-optimal solutions, creating a 5

bottleneck for human experts who must select the best option. This difficulty is compounded 6

by the fact that expert preferences are often complex and hard to formalize. To address this, 7

we introduce LISTEN, a framework that leverages a Large Language Model as a zero-shot 8

preference oracle. Guided by a high-level description of an expert’s priorities in natural 9

language, LISTEN uses an iterative ranking algorithm to perform pairwise comparisons 10

on subsets of items. This approach contends with practical LLM limitations by using these 11

pairwise judgments to build a preference model, which guides the search and informs 12

the final selection. We evaluate our framework on a real-world final exam scheduling 13

problem. Preliminary results suggest this approach is promising, consistently identifying 14

high-quality solutions and showing encouraging fidelity to the stated preferences. This work 15

demonstrates a path toward steering complex multi-objective selection problem directly 16

with natural language, bypassing the need for mathematical utility functions to express 17

preferences. 18

1 Introduction 19

Multi-objective optimization (MOO) of time-consuming black-box functions (Gunantara, 2018; 20

Daulton et al., 2022) is central to automated machine learning (AutoML) (Hutter et al., 2019). For 21

example, when tuning the hyperparameters of a machine learning model or pipeline, one must 22

often trade off speed, memory, and test time accuracy. Moreover, machine learning models are 23

typically time-consuming to train and do not provide derivative information describing how their 24

performance characteristics vary with their hyperparameters. 25

Multi-objective Bayesian optimization (MOBO) and other algorithms for MOO (Knowles, 2006; 26

Daulton et al., 2022; Tu et al., 2022) can generate hundreds of Pareto-optimal solutions. This creates 27

a new bottleneck. How can an expert decision-maker efficiently sift through a vast set of viable 28

candidates to find the one that best reflects their nuanced, often unstated, priorities? This is also 29

a challenge when tuning hyperparameters in generative AI pipelines via preference learning with 30

Bayesian optimization (Christiano et al., 2017; Ouyang et al., 2022; Touvron et al., 2023). 31

Traditional solutions are often inadequate. Manually comparing all options is time-consuming 32

and prone to error. Pairwise preferences (Obayashi et al., 2007; Wang et al., 2022) or faceted search 33

(Ozaki et al., 2024) can help, but still require significant human effort. The core difficulty is that 34

human experts lack a time-efficient way to accurately articulate their preferences. 35

Large Language Models (LLMs) offer a new paradigm for tackling this challenge. With their 36

profound ability to interpret nuanced, hierarchical text, LLMs present an opportunity for zero-shot 37

preference modeling, where a decision-maker’s goals can be understood directly from a verbal 38

description. This bypasses the need for rigid, numerical utility functions. While recent research has 39

begun integrating LLMs into preference learning, they are typically used as components within 40

larger systems—for instance, to guide questioning (Lawless et al., 2023; Austin et al., 2024), extract 41

preferences from reviews (Bang and Song, 2025), or simulate user behavior (Okeukwu-Ogbonnaya 42

et al., 2025; Zhang et al., 2025). However, it remains an open question whether an LLM can, on its 43
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own, effectively navigate the complex trade-offs inherent in a Pareto frontier using only high-level, 44

natural language instructions. 45

To address this gap, we introduce LISTEN: LLM-based Iterative Selection with Trade-off 46

Evaluation from Natural-language, a framework that uses an LLM as a preference oracle for 47

selection of a human expert’s most preferred item from a list that is too long for the human to 48

examine directly. In our framework, a human expert first describes their potentially complex 49

priorities in natural language. An iterative search algorithm then uses this utterance in repeated 50

LLM calls to compare subsets of items, summarizing the LLM’s responses via a classical utility 51

surrogate. Ultimately, the algorithm selects its estimate of the best item. Our approach must 52

contend with limits on the LLM’s context window and the LLM’s ability to reason directly over 53

large item lists, which prevent the LLM from directly selecting the best item in a single call. Our 54

approach must also limit the number of calls to the LLM to save computational and financial cost. 55

In our experiments, we adopt the real-world multi-objective problem of final exam scheduling, 56

leveraging a large-scale codebase used to schedule final exams at a major university (Ye et al., 57

2024). This shares the characteristics of MOO in AutoML: evaluating the characteristics resulting 58

from a particular decision requires a time-consuming black box optimization step using many 59

hours of server time; and decision-makers (university registrars) must juggle competing priorities 60

(faculty want to avoid writing make-up exams, students need adequate study time between tests, 61

and administrators aim to clear facilities efficiently). 62

Our approach combines principles from preference-based optimization (Chu and Ghahramani, 63

2005; Brochu et al., 2010) and active ranking (Jamieson and Nowak, 2011; Yue et al., 2012), situating 64

these classical methods within the emerging field of LLMs for decision-making (Hao et al., 2023; Xi 65

et al., 2025). While prior work uses LLMs to assist in planning or preference elicitation (Valmeekam 66

et al., 2022; Zhang et al., 2023; Lawless et al., 2023, 2025), we specifically investigate if an LLM can 67

serve as the primary, zero-shot oracle for selecting from a pre-computed Pareto frontier, guided 68

only by high-level natural language goals. 69

This paper’s primary contribution is the exploration of a framework, LISTEN, that uses an LLM 70

as a preference oracle for multi-objective decision-making. Our preliminary evaluation on a real- 71

world final exam scheduling dataset suggests this approach is promising, identifying higher-quality 72

solutions than baselines and showing encouraging fidelity to the stated preferences. We present 73

these initial findings as part of our ongoing work to understand the potential and limitations of 74

using LLMs for multi-objective decision-making. 75

2 Problem Description 76

We are given a collection of items S = {𝑠1, 𝑠2, . . . , 𝑠𝑁 }. Each item 𝑠𝑖 is a 𝑑-dimensional vector 77

giving the values for each of 𝑑 attributes. We are focused on settings where 𝑁 > 1000 is too large 78

for the user to directly examine all items. Such collections are often produced in MOO when a 79

MOO algorithm identifies a large collection of items on the Pareto frontier. We are also given a 80

natural language utterance describing a human decision-maker’s preferences, the name of each 81

attribute, and a pre-trained LLM. An example utterance and items are given in the appendix. In our 82

experiments, items are final exam schedules considered by a university registrar. Our goal is to use 83

a limited number of calls to the LLM to select the item that the human decision maker most prefers. 84

3 Methodology 85

To address the selection problem, we propose LLM-based Iterative Selection with Trade-off Evaluation 86

from Natural-language (LISTEN), a framework that uses a Large Language Model (LLM) as a zero- 87

shot preference oracle within an iterative ranking procedure. 88

The LLM as a Zero-Shot Preference Oracle. We leverage an LLM as a surrogate for the human 89

decision-maker. An advantage of our approach is its zero-shot nature; the LLM is not fine-tuned on 90
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any preference data. Instead, we provide it with a carefully crafted natural language prompt that 91

establishes a persona, outlines a hierarchical set of preferences, and presents two or more candidate 92

solutions for evaluation, each represented by its vector of objective values. The LLM’s task is to 93

choose the superior solution in the prompt based only on the provided context. 94

One naive approach for using the LLM to select the item’s most preferred item is to directly 95

compare all items in the list in a single prompt. Unfortunately, when 𝑁 is large, the prompt may 96

not fit in the LLM’s context window. We have also found in our experiments that the LLMs we 97

evaluate have a strong bias against items in the middle of the list presented in the prompt, making 98

the preference oracle unreliable for long lists. Another naive approach is to compare pairs of items 99

against each other using the preference oracle and remove those that the LLM judges to be less 100

preferred, only keeping the winner in each comparison. Evaluating all items, however, requires 101

𝑁 − 1 calls to the LLM, which may be prohibitively expensive when 𝑁 is large. 102

Iterative Ranking via Pairwise Comparisons. Our framework uses an iterative process to efficiently 103

explore the solution pool, as detailed in Algorithm 1 in the appendix. The process begins by querying 104

the LLM on a small number of randomly selected item pairs to gather an initial set of preferences. 105

Then, in each iteration, a flexible selection strategy is used to choose a new batch of pairs for 106

the LLM to evaluate. This strategy is a modular component of our framework. For instance, an 107

active learning strategy can be employed, where a probabilistic surrogate model (e.g., a Gaussian 108

Process) is fit to the collected preferences, and an acquisition function (e.g., Expected Improvement) 109

is used to select the most informative pairs (Chu and Ghahramani, 2005; Astudillo and Frazier, 110

2020). Alternatively, a simpler strategy like uniform random sampling can be used. In either case, 111

the LLM’s choice for each pair provides a new preference label, which is used to inform subsequent 112

selections. 113

When we prompt the preference oracle, we include the result of previous comparisons in the 114

prompt. We find that this in-context learning mechanism helps the model establish a more stable 115

internal representation of the trade-offs. 116

4 Experiments 117

To evaluate the LISTEN framework, we apply it to the real-world problem of final exam scheduling. 118

The Final Exam Scheduling Problem. We conduct our experiments using a MOO benchmark 119

introduced in Ye et al. (2024). This benchmark focuses on final exam scheduling using mixed integer 120

programming (MIP). The MIP solver and formulation have hyperparemeters and decision-makers 121

care about a variety of solution attributes (see the appendix for full list). For each attribute, smaller 122

is better. Using ParEGO (Knowles, 2006), we generate a diverse set S of 5,000 unique candidate 123

solutions on the Pareto frontier. 124

Experimental Setup and Results. To measure performance, we simulate a decision-maker with a 125

known ground-truth utility function. For each experimental run, we define a ground-truth utility as 126

a weighted linear combination of the scheduling conflict metrics. The weights are hidden from all 127

algorithms. The primary evaluation metric is the value of the hidden ground-truth utility function 128

for the final schedule selected by an algorithm. The default LLM is Gemini 2.5 Flash’s Reasoning 129

model (Comanici et al., 2025). We run 10 replicates for each algorithm and report the average 130

performance +/- two times the standard error. 131

We explore several variants of LISTEN. Our main algorithm, LISTEN, uses the complete prompt 132

with persona, hierarchical preferences, and conversational history. We test two ablations: LISTEN- 133

NoPref, which removes the explicit natural language preferences to test reasoning from context 134

alone, and LISTEN-NoHist, which omits the history of previous comparisons to test the impact of 135

in-context learning by making each comparison independent. 136
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To benchmark performance, we use a Perfect Oracle as a practical upper bound, which replaces 137

the LLM and makes pairwise comparisons using the true hidden utility function. To isolate the 138

LLM’s contribution, a Random Oracle baseline uses active search, but the winner of each pair is 139

determined by a coin flip. Finally, as a non-Bayesian alternative, we use a Tournament Selection 140

approach, where the LLM selects the best schedule from 50 random batches of 100, and then selects 141

the top 5 from the resulting 50 winners. 142

Figure 1 compares our approach against baselines and ablations across two ground-truth utility 143

functions. The first setting (Fig. 1a) involves a simple utility over back-to-back conflicts, where 144

we employ an active learning selection strategy using a GP surrogate and the EI-UU acquisition 145

function. The second setting (Fig. 1b) uses a complex, lexicographical utility function that prioritizes 146

simultaneous conflicts, then three-in-a-row, and finally back-to-back conflicts (see appendix for 147

weights); in this more complex case, we use a uniform random search selection strategy. 148

These results suggest that LISTEN can identify high-quality solutions within a limited budget 149

of LLM calls. Compared to the baselines, LISTEN consistently found higher-utility solutions. It 150

significantly outperformed Random Selection, which confirms that the LLM’s reasoning is superior 151

to chance. It also surpassed the non-Bayesian Tournament Selection, highlighting the benefit of 152

iterative surrogate modeling. We observed that providing the utility-driven prompt significantly 153

improved performance over the baseline prompt. Furthermore, including conversational history as 154

context consistently accelerated convergence, suggesting that in-context learning provides value. 155

(a) Avg. # of Back-to-backs vs. Iterations (b) Avg. Utility vs. Iterations

Figure 1: Comparison of our proposed LISTEN approach against benchmarks and ablations on two
example settings: minimizing the number of back-to-back exams (left) and prioritizing a
more complex hierarchical goal (right).

5 Discussion & Future Work 156

Our initial experiments suggest that LLMs can interpret structured, hierarchical preferences in a 157

zero-shot prompt to make consistent lexicographic choices. This points toward a promising new 158

avenue for preference elicitation that could avoid explicit utility function design. 159

This capability, however, is not without its limitations. A core challenge is evaluation: without 160

a ground-truth utility function, assessing the “correctness" of the LLM’s choices remains an open 161

question. The current framework serves as a snapshot interaction, and future work must explore 162

how to manage evolving preferences and learn from feedback over repeated interactions with a 163

human decision-maker. Moreover, it is worthwhile to explore more sophisticated selection strategies 164

within the iterative ranking procedure for better exploration-exploitation trade-off. 165
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A Algorithm Pseudocode 245

Algorithm 1 LISTEN: LLM-based Iterative Selection w/ Trade-off Evaluation from Natural-language
1: Input: Solution pool S , selection strategy 𝜋 , number of iterations𝑇 , batch size 𝐾 , initial sample

size 𝑁𝑖𝑛𝑖𝑡 .
2: Select 𝑁𝑖𝑛𝑖𝑡 random pairs from S ; let S𝑒𝑣𝑎𝑙 be the set of these solutions.
3: Let D be the set of preferences obtained by querying the LLM on the initial pairs.
4: for 𝑡 = 1, . . . ,𝑇 do
5: Use selection strategy 𝜋 and preferences D to select a new batch of 𝐾 pairs from S \ S𝑒𝑣𝑎𝑙 .
6: for each new pair (𝑠𝑖 , 𝑠 𝑗 ) in the batch do
7: Construct prompt 𝑃 with persona and solution data.
8: Query LLM with prompt 𝑃 to get preferred solution 𝑠𝑝𝑟𝑒 𝑓 .
9: Add the preference (𝑠𝑝𝑟𝑒 𝑓 ≻ 𝑠𝑜𝑡ℎ𝑒𝑟 ) to D.
10: Add 𝑠𝑖 and 𝑠 𝑗 to S𝑒𝑣𝑎𝑙 .
11: end for
12: end for
13: Determine the best solution 𝑠∗ from S𝑒𝑣𝑎𝑙 based on the final preferences in D.
14: Return: 𝑠∗.
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B Metrics Used in Final Exam Scheduling 246

Table 1 provides a comprehensive documentation of the metrics used in the final exam scheduling 247

problem. 248

Table 1: Final Exam Scheduling Conflict Metrics

Metric Description
Conflicts Instances of a student having two or more exams in the

same time slot.
Quints Instances of a student having five exams in consecutive time

slots.
Quads Instances of a student having four exams in consecutive

time slots.
Four in Five Slots Instances of a student having four exams within five con-

secutive time slots.
Triple in 24h (no gaps) Instances of a student having three back-to-back exams in

a 24-hour period.
Triple in Same Day (no gaps) Instances of a student having three back-to-back exams on

the same day.
Three in Four Slots Instances of a student having three exams within four con-

secutive time slots.
Evening/Morning B2Bs Instances of a student having an exam in the last slot of one

day and the first slot of the next day.
Other B2Bs All other instances of a student having exams in adjacent

time slots.
Two in Three Slots Instances of a student having two exams within three con-

secutive time slots.
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C Weights for the Complex Utility Function 249

The specific (normalized) weights used to define the complex, lexicographical utility function are 250

detailed in Table 2. 251

Table 2: Normalized Weights for the Complex Utility Function

Conflict Type Weight
Simultaneous Conflicts -3
All Triple Conflicts -2
All Back-to-Back Conflicts -1
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D Prompts 252

Schedule A: conflicts=1.0, quints=0.0, quads=5.0, four in five slots=3.0, triple in 24h (no gaps)=53.0,
triple in same day (no gaps)=31.0, three in four slots=441.0, evening/morning b2b=586.0, other
b2b=1303.0, two in three slots=3100.0

Schedule B: conflicts=18.0, quints=0.0, quads=5.0, four in five slots=15.0, triple in 24h (no gaps)=75.0,
triple in same day (no gaps)=46.0, three in four slots=456.0, evening/morning b2b=838.0, other
b2b=982.0, two in three slots=3163.0

You are an expert in final exam schedule optimization. All metrics represent student exam schedules,
they all should be minimized . When comparing Schedule A and Schedule B, provide a few sentence
analysis that highlights key trade-offs between their metrics. Conclude with your final choice
formatted exactly in curly braces, e.g. {A} or {B}. Do not output just ‘A’ or ‘B’; include the reasoning
and marker. Make sure to end with your choice either {A} or {B}

Figure 2: An example of the prompt for the LISTEN-NoPref ablation, which omits the explicit prefer-
ence hierarchy.

You are an experienced University Registrar. Your absolute top priority is to ensure that no student
has a simultaneous conflict. After that, your next most critical goal is to minimize the number of
students facing three exams in a 24-hour period, as this causes the most stress. Finally, use the
number of back-to-back exams as a tie-breaker to choose between otherwise equal schedules. Your
goal is to find the schedule that best reflects these priorities. Here are the two schedules:

Schedule A: conflicts=0.0, quints=1.0, quads=3.0, four in five slots=3.0, triple in 24h (no gaps)=46.0,
triple in same day (no gaps)=29.0, three in four slots=318.0, evening/morning b2b=420.0, other
b2b=1230.0, two in three slots=3086.0

Schedule B: conflicts=1.0, quints=0.0, quads=4.0, four in five slots=7.0, triple in 24h (no gaps)=56.0,
triple in same day (no gaps)=34.0, three in four slots=333.0, evening/morning b2b=600.0, other
b2b=1198.0, two in three slots=3269.0

Which schedule do you choose?

Figure 3: An example of the Preference-Guided Prompt Component, which provides the explicit
hierarchical utility information.
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[YOUR PREVIOUS REASONING HISTORY]

Here are your previous decisions and reasoning:

Iteration 1:

Schedule A: conflicts: 0, quints: 1.0, quads: 3.0, four in five slots: 4.0, triple in 24h (no gaps): 62.0,
triple in same day (no gaps): 20.0, three in four slots: 372.0, evening/morning b2b: 482.0, other b2b:
1106.0, two in three slots: 3481.0

Schedule B: conflicts: 1, quints: 0.0, quads: 5.0, four in five slots: 3.0, triple in 24h (no gaps): 53.0,
triple in same day (no gaps): 31.0, three in four slots: 441.0, evening/morning b2b: 586.0, other b2b:
1303.0, two in three slots: 3100.0

Your choice: {B}

Your reasoning: Both schedules are conflict-free or nearly so (A: 0, B: 1), and neither has runaway
quints or quads, so attention falls squarely on “two in three slots.” Here, Schedule B posts 3100,
which is 381 fewer instances than Schedule A’s 3481—an 11% improvement on the single metric
that matters. Schedule B does incur small increases in four-of-five (3 vs 4), three-in-four (441 vs
372), evening/morning back-to-back (586 vs 482) and other back-to-back exams (1303 vs 1106), but
these are secondary. The decisive reduction in two-in-three slots outweighs those trade-offs under
the specified priority.

Figure 4: An example of the Conversational History Component, which is prepended to the prompt
to enable in-context learning based on previous comparisons.
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