
KB-Plugin: A Plug-and-play Framework for Large Language Models to
Induce Programs over Low-resourced Knowledge Bases

Anonymous ACL submission

Abstract

Program induction (PI) has become a promis-001
ing paradigm for using knowledge bases (KBs)002
to help large language models (LLMs) an-003
swer complex knowledge-intensive questions.004
Nonetheless, PI typically relies on a large num-005
ber of parallel question-program pairs to make006
the LLM aware of the schema of a given KB,007
and is thus challenging for many low-resourced008
KBs that lack annotated data. To this end, we009
propose KB-Plugin, a plug-and-play frame-010
work that enables LLMs to induce programs011
over any low-resourced KB. Firstly, KB-Plugin012
adopts self-supervised learning to encode the013
detailed schema information of a given KB014
into a pluggable module, namely schema plu-015
gin. Secondly, KB-Plugin utilizes abundant016
annotated data from a rich-resourced KB to017
train another pluggable module, namely PI plu-018
gin, which can help the LLM extract question-019
relevant schema information from the schema020
plugin of any KB and utilize the information021
to induce programs over this KB. Experiments022
show that KB-Plugin outperforms SoTA low-023
resourced PI methods with 25× smaller back-024
bone LLM on both large-scale and domain-025
specific KBs, and even approaches the perfor-026
mance of supervised methods.027

1 Introduction028

Recently, the usage of knowledge bases (KBs) as029

external resources to assist large language models030

(LLMs) (Brown et al., 2020; Zhao et al., 2023) in031

answering complex knowledge-intensive questions032

has gained increasing study (Pan et al., 2023; Li033

et al., 2023b; Jiang et al., 2023). Among various034

methods, program induction (PI) has emerged as a035

promising paradigm due to its good interpretability036

and capacity to support complex reasoning opera-037

tions (Cao et al., 2022a; Gu et al., 2023; Li et al.,038

2023b). Given a KB, PI methods employ LLMs to039

convert a question into a multi-step program (e.g.,040

LLM𝑚
!"

Q: Semaphore
railway line is on
the rail network
named what?

Program: Find (Semaphore
railway line) Relate(part of
network) FilterConcept(rail
network)
Answer: TransAdelaide

𝑚#$
%Q: Who is taller,

LeBron James
Jr. or his father?

Q: Citation
count of Yuta
Saito at Cornell
University

Program: Find(Cornell
University)
ReverseRelate(organization)
Find(Yuta Saito) And()
Relate(citation count)
Answer: 464

Program: Find (LeBron
James Jr.) Find (LeBron
James Jr.) Relate (father)
Or() Argmax(height)
Answer: LeBron James

Schema Plugin

Program Induction
Plugin

𝑚#$
& 𝑚#$

'

𝑚#$
(

𝑚!"

Figure 1: Illustration of KB-Plugin. By simply plugging
the schema plugin of a KB and the PI plugin, the LLM
is injected with the schema information of this KB and
the ability to induce programs over it.

KoPL (Cao et al., 2022a) and S-expression (Su 041

et al., 2016)), whose execution against the KB pro- 042

duces the answer. Despite strong capacity, most PI 043

methods rely on individual training for each KB us- 044

ing a large number of manually annotated question- 045

program pairs (Xie et al., 2022; Li et al., 2023b; 046

Luo et al., 2023). As for many low-resourced KBs 047

that lack program annotations, how to enable LLMs 048

to utilize their knowledge via PI remains a challeng- 049

ing problem. 050

Recent studies (Cao et al., 2022b; Li et al., 051

2023a) have indicated that the mapping from ques- 052

tions to program sketches (i.e., composed func- 053

tions without arguments, such as Find→ Relate→ 054

FilterConcept) primarily correlates with lan- 055

guage compositional structures and is thus transfer- 056

able across KBs. Hence the main challenge for PI 057

over low-resourced KBs is to determine the argu- 058

ment for each function (Gu and Su, 2022), which re- 059

quires LLMs to link natural language in a question 060

to corresponding schema items (i.e., pre-defined 061

relations and concepts) in the KB (e.g., in Fig 1, 062

the relation “part of network” and the concept 063

“rail network” are arguments of function Relate 064

and FilterConcept, respectively), so it is impor- 065

1

tant to provide LLMs adequate information of each066

schema item. A straightforward approach is to di-067

rectly feed all the schema information to the LLM068

via a prompt. However, the broad schema of KBs069

and limited context windows of LLMs make this070

infeasible (Li et al., 2023a).071

Regarding the above challenges, we are inspired072

by recent studies that claim the parameters of073

LLMs can encode task-specific knowledge (Sax-074

ena et al., 2022; Moiseev et al., 2022; Wang et al.,075

2022). Our basic idea is to encode detailed schema076

information of a KB into the parameters of a077

pluggable module (e.g., LoRA (Hu et al., 2022)),078

namely schema plugin, so as not to be hampered079

by limited context windows like the prompt-based080

approach. Then we use another pluggable mod-081

ule, namely PI plugin, to help the LLM capture082

question-relevant schema information from the083

schema plugin and utilize this information to in-084

duce programs. As illustrated in Fig. 1, by sim-085

ply plugging the schema plugin of a KB and the086

PI plugin, the LLM is injected with the schema087

information of this KB and the ability to induce088

programs over it. We name this framework KB-089

Plugin. To implement KB-Plugin, there remain090

two key problems: (1) By what task can sufficient091

information about each schema item in a KB be092

encoded into its schema plugin? (2) Without an-093

notated data from the low-resource KBs, how can094

the PI plugin learn to extract and utilize question-095

relevant schema information from their schema096

plugins to induce programs over these KBs?097

To solve the above problems, we propose a novel098

plugin learning and transfer framework. First, in-099

spired by prior studies (Bordes et al., 2013; Lin100

et al., 2015) which show that schema items in a101

KB can be well represented by fact triples involv-102

ing them, we propose to learn schema plugins via103

a self-supervised triple completion task. Specifi-104

cally, given a KB, we plug a schema plugin into105

the LLM and tune the plugin to enable the LLM106

to complete relevant triples for each schema item107

in the KB. In this way, the detailed schema infor-108

mation can be encoded into this schema plugin.109

As for PI plugin learning, inspired by Cao et al.110

(2022b), we utilize abundant program annotations111

from a rich-resourced KB. Specifically, we use112

this KB to generate multiple KBs with different113

schemas via alias replacement and train a schema114

plugin for each of them. Given a training ques-115

tion, we plug these schema plugins alone with the116

PI plugin into the LLM in turn and train the PI117

plugin to make the LLM generate the correct pro- 118

gram whose arguments conform to the currently 119

plugged schema plugin. In this way, the PI plugin 120

is forced to learn the skills of extracting and utiliz- 121

ing question-relevant schema information from the 122

plugged schema plugin for PI over the correspond- 123

ing KB. Besides, since the PI plugin is trained to be 124

compatible with different schema plugins, it can be 125

directly transferred to other low-resourced KBs and 126

generalize well with their schema plugins, even if 127

most schema items in these KBs are unseen during 128

its training. 129

In experiments, we take Wikidata-based KQA 130

Pro as the rich-resourced KB to train the PI plu- 131

gin, and evaluate our framework on three large- 132

scale Freebase-based datasets (WebQSP, GraphQ, 133

and GrailQA) and two domain-specific datasets 134

(MetaQA for movie domain and SoAyBench for 135

academic domain). The results show that KB- 136

Plugin outperforms SoTA low-resourced PI meth- 137

ods with 25× smaller backbone LLM, demonstrat- 138

ing its scalability to extremely complex schemas 139

and adaptability to various domains. On GraphQ, 140

GrailQA, and MetaQA, KB-Plugin even surpasses 141

the performance of several supervised methods. 142

Our contributions include: (1) proposing KB- 143

Plugin, a novel plug-and-play framework that en- 144

ables LLMs to induce programs over any low- 145

resourced KB; (2) empirically validating the effi- 146

cacy of KB-Plugin for both large-scale and domain- 147

specific KBs through extensive experiments. 148

2 Related Work 149

Low-resourced Program Induction. Recently, 150

there have emerged three types of PI methods for 151

low-resourced KBs that lack program annotations, 152

but each of them has limitations: (1) Few-shot pro- 153

gram generation methods (Gu et al., 2023; Li et al., 154

2023a) utilize in-context learning ability of LLMs 155

to induce programs with a handful of demonstra- 156

tions. However, they can only determine function 157

arguments based on the schema item names due to 158

limited context windows, so they face challenges 159

in distinguishing similar schema items. They also 160

suffer from long inference time due to excessive 161

LLM calls or executing a vast number of poten- 162

tial programs; (2) Few-shot data generation meth- 163

ods (Li et al., 2023c) also employ in-context learn- 164

ing with LLMs to convert automatically sampled 165

programs into questions, and train a smaller PI 166

model using the generated question-program pairs. 167

2

Nonetheless, the generated questions may not align168

with programs and often lack diversity due to the169

limited number of program templates; (3) Simi-170

lar to us, program transfer methods (Cao et al.,171

2022b) also leverage program annotations from a172

rich-resourced KB to aid PI for low-resourced KBs.173

However, they mainly focus on program sketch174

transfer and perform poorly without fine-tuning175

using annotated question-answer pairs from low-176

resourced KBs to adapt to their schemas. While177

KB-plugin obviates the reliance on any annotated178

data from low-resourced KBs, thereby enabling179

LLMs to easily utilize their knowledge.180

Plug-and-Play Modules for LLMs. In recent181

years, various parameter-efficient modules have182

been proposed to adapt LLMs to different down-183

stream tasks (Lester et al., 2021; Hu et al., 2022;184

Li and Liang, 2021; Pfeiffer et al., 2021) . These185

modules show plug-and-play characteristics and186

can inject task-specific knowledge and skills into187

LLMs (Xiao et al., 2023; Zhang et al., 2023). Some188

researchers also found that pluggable modules for189

similar tasks encode knowledge and skills into the190

parametric space in similar ways (Qin et al., 2021;191

Su et al., 2022), providing basic rationality for the192

transferability of our PI plugin.193

3 Problem Formulation194

In this section, we first provide some necessary195

definitions and then formulate our task.196

Knowledge Base. A knowledge base (KB) can197

be formalized as KB = {C, E ,R, T }, where C, E ,198

R and T represent the sets of concepts, entities,199

relations and fact triples, respectively. Specifically,200

R = {re, rc} ∪ Rl, where re is “instance of”, rc201

is “subclass of”, and Rl is the set of other gen-202

eral relations. Correspondingly, T can be divided203

into there disjoint subsets: (1) “instance of” triples204

Te = {(e, re, c)|e ∈ E , c ∈ C}; (2) “subclass of”205

triples Tc = {(ci, rc, cj)|ci, cj ∈ C}; (3) relational206

triples Tl = {(ei, r, ej)|ei, ej ∈ E , r ∈ Rl}. Ele-207

ments in C and R are also called the schema items208

of KB.209

Program Induction. Given a KB KB and a nat-210

ural language question x =
〈
w1, w2, · · · , w|x|

〉
,211

program induction (PI) aims to convert x into a212

program y, which would return the correct an-213

swer when executed against KB. Formally, y214

is composed of functions that take a specific215

type of arguments, and can be serialized as y =216 〈
f1(arg1), · · · , ft(argt), · · · , f|y|(arg|y|)

〉
, ft ∈217

F , argt ∈ E ∪ C ∪ R ∪ {∅}. Here, F is a set of 218

pre-defined functions that cover basic reasoning op- 219

erations on KBs. In this work, we use KoPL (Cao 220

et al., 2022a) as our programming language. 221

Task Formulation. Suppose we have access 222

to (1) source KB KBS and source domain data 223

DS = {(xSi , ySi)}n
S

i=1, which are question-program 224

pairs for KBS ; (2) target KB KBT , which is low- 225

resourced and has no annotated data. The goal is to 226

learn a PI model MT
PI that can translate a question 227

xT for KBT into program yT , whose execution on 228

KBT produces the correct answer. 229

4 Methodology 230

As mentioned in the introduction, to enable a LLM 231

M to induce programs over low-resourced KBT , 232

KB-Plugin learns two types of pluggable modules 233

for M : (1) KB-specific schema plugin msc, which 234

stores information of schema items of a given 235

KB within its parameters; (2) KB-transferable PI 236

plugin mPI , which encodes the skill of inducing 237

programs over any KB by extracting and utiliz- 238

ing question-relevant schema information from the 239

schema plugin of this KB. It is trained with KBS 240

and DS but can be directly transferred to KBT . 241

The final PI model for KBT can be formulated as 242

MT
PI = plug(M, {mT

sc,mPI}), (1) 243

where mT
sc is the schema plugin of KBT and 244

plug(M, {·}) means plugging the plugins in {·} 245

into M . In the following, we will first introduce the 246

architecture of two types of plugins, then present 247

our plugin learning and transfer framework. 248

4.1 Plugin Architecture 249

A host of studies have demonstrated that knowl- 250

edge and skills can be encapsulated within the pa- 251

rameters of LLMs (Saxena et al., 2022; Moiseev 252

et al., 2022; Wang et al., 2022). Inspired by this, 253

we implement both schema plugin and PI plugin 254

with LoRA (Hu et al., 2022), a popular type of 255

pluggable module for LLMs with a few trainable 256

parameters. 257

Specifically, let LM be the set of weight matrices 258

in the self-attention modules and MLP modules of 259

a LLM M . For each Wi ∈ Rd×k in LM , LoRA 260

modifies its forward pass from h = Wix to h = 261

(Wi + AiBi)x, where Ai ∈ Rd×r and Bi ∈ Rr×k 262

are two matrices with rank r ≪ min(d, k). A 263

LoRA plugin mj is thus defined as 264

mj = {(Amj

i , B
mj

i)|Wi ∈ LM}, (2) 265

3

LLM

𝑚!"

L.A. Lakers || instance of

basketball team || contains instance

basketball team || subclass of

sports team || contains subclass

Lebron James | human || member of sports team | forward

L.A. Lakers | basketball team || member of sports team | backward

Lebron James | human || what relation || basketball team | L.A. Lakers

basketball team

L.A. Lakers

sports team

basketball team

basketball team | L.A. Lakers

human | Lebron James

member of sports team

L.A. Lakers

sports
team

Lebron James

human
member of
sports team

instance of

instance of

subclass of
basketball team

Program: Find(Lebron James)
Relate(member of sports team)
FilterConcept(basketball team)

𝐾𝐵#

LLM

𝑚$%

𝑚
!"# !

𝐾𝐵#

𝐾𝐵#"

𝐾𝐵##

𝐾𝐵#!

…

𝑚
!"# #

Q: Which basketball team
does Lebron James play for? Find(Lebron James) Relate(member of sports team)

FilterConcept(basketball team)

Find(Lebron James) Relate(plays for)
FilterConcept(basket club)

Find(Lebron James) Relate(player of)
FilterConcept(basketball team) 𝑚

!"# "

… …

𝐾𝐵&
LLM

𝑚$%

𝑚
!"&

Q: Semaphore railway line is on the
rail network named what?

Find(Semaphore railway line) Relate(part of
network) FilterConcept(rail network)

Constrained Decoding

L.A. Lakers

athletic team

Lebron James

person plays for

instance of

instance of

subclass of
basket club

Program: Find(Lebron James)
Relate(plays for)
FilterConcept(basket club)

𝐾𝐵##

(a) KB Generation and Data Augmentation (b) Learning of Schema Plugin via Schema-relevant Triple Completion

(c) Learning of PI Plugin (d) Plugin Transfer

Alias Replacement

Figure 2: Overview of our plugin learning and transfer framework: (a) Generate multiple source KBs with different
schemas and augmented source domain data via alias replacement; (b) Learn an individual schema plugin for each
source KB and the target KB via self-supervised schema-relevant triple completion task; (c) Train the PI plugin
by inducing program for each source KB when plugging it into the LLM along with the corresponding schema
plugin. (d) Transfer the PI plugin by plugging it into the LLM with the schema plugin of the target KB and inducing
programs over the target KB with constrained decoding.

and plug(M, {m1, . . . ,mN}) means re-266

placing all Wi ∈ LM with Wi +267 ∑N
j=1A

mj

i B
mj

i . If we train M ′ =268

plug(fz(M), {fz(m1), . . . , fz(mN−1),mN})269

on a certain task, where fz(·) represents parameter270

freezing, knowledge and skills related to this271

task will be encoded within mN . Although other272

parameter-efficient pluggable modules such as273

prefix-tuning (Li and Liang, 2021) can also serve274

as our plugin modules, the advantages of LoRA are275

that it does not increase input length or inference276

latency.277

4.2 Plugin Learning and Transfer Framework278

There are two primary challenges for learning279

schema plugins and the PI plugin: (1) How to en-280

code sufficient information about each schema item281

of a KB into a schema plugin? (2) How to ensure282

that the PI plugin can extract and utilize useful283

schema information for program induction from284

schema plugins of different KBs, instead of ignor-285

ing the schema plugin entirely, directly learning to286

induce program over source KB during training,287

and consequently losing transferability?288

To handle these challenges, we propose a289

novel plugin learning and transfer framework,290

which is illustrated in Fig. 2 and contains291

four steps: (1) Generate multiple source KBs292

KBS1 , . . . ,KBSN with different schemas and aug-293

mented data DS
a = {(xSj , y

S1
j , . . . , ySN

j)}nS

j=1 294

based on KBS and DS via alias replacement, 295

where ySi
j is the golden program for question 296

xSj on KBSi ; (2) Learn individual schema plugin 297

mSi
sc for each KBSi via self-supervised schema- 298

relevant triple-completion task; (3) Train PI plu- 299

gin mPI by requiring MS1
PI , . . . ,M

SN
PI to gener- 300

ate yS1
j , . . . , ySN

j given xSj , respectively, where 301

MSi
PI = Plug(fz(M), {fz(mSi

sc),mPI}), so that 302

mPI is forced to extract and utilize schema infor- 303

mation from each mSi
sc ; (4) Learn schema plugin 304

mT
sc for KBT using the same method in (2) and 305

take MT
PI = plug(M, {mT

sc,mPI}) as the final PI 306

model for KBT . We will introduce each step in 307

detail in the following. 308

4.2.1 KB Generation and Data Augmentation 309

We utilize the aliases of each schema item to gener- 310

ate multiple KBs with different schemas based on 311

KBS = {CS , ES ,RS , T S}. As shown in Fig. 2(a), 312

for each schema item v ∈ CS ∪RS , we replace v 313

with vi, a randomly chosen alias of v, and record 314

ai(v) = vi. For example, the concept “basketball 315

team” can be replaced with “basket club” and the 316

relation “member of sports team” can be replaced 317

with “plays for”. Relevant triples in T S are also 318

modified with the same alias. In this way, KBSi 319

that has a different schema than KBS is created. In 320

practice, we let KBS1 = KBS and repeat above 321

4

process N −1 times to generate KBS2 , . . . ,KBSN .322

Similarly, for each question-program323

pair (xSj , y
S
j) ∈ DS , suppose ySj =324 〈

f1(arg1), · · · , ft(argt), · · · , f|ySj |(arg|ySj |)
〉

,325

we replace every argt ∈ CS ∪ RS with ai(argt)326

to obtain ySi
j , which is the correct program for327

xSj executable on KBSi . We repeat the process328

for KBS1 , . . . ,KBSN to obtain augmented data329

DS
a = {(xSj , y

S1
j , . . . , ySN

j)}nS

j=1.330

4.2.2 Learning of Schema Plugin331

Many studies about knowledge graph embedding332

show that the information of schema items in a KB333

can be represented by not only their names but also334

triples containing them (Bordes et al., 2013; Lv335

et al., 2018). Inspired by this, we propose to en-336

code schema information into schema plugins via337

a self-supervised triple completion task. As illus-338

trated in Fig. 2(b), to learn the schema plugin msc339

for a given KB KB = {C, E ,R, T }, where T =340

Te ∪ Tc ∪ Tl, we train Msc = Plug(fz(M),msc)341

to complete relevant triples for each concept and342

relation in KB in sequence-to-sequence form as343

follows.344

First, for each concept c ∈ C, we require345

Msc to complete relevant “instance of” triples346

to aggregate the semantic features of entities be-347

longing to c. Specifically, we sample K triples348

(ek, instance of, c) from Te (see Appendix B for de-349

tailed sampling strategy), and use each sampled350

triple to construct two pairs of verbalized queries351

and answer as the inputs and expected outputs for352

Msc:353

• “⟨ek⟩ || instance of ” → “⟨c⟩”;354

• “⟨c⟩ || contains instance” → “⟨ek⟩”.355

Here, ⟨ek⟩ and ⟨c⟩ means filling in the names of ek356

and c, respectively.357

Besides, the information of a concept is also358

related to its sub- and super-concepts. Therefore,359

for each triple (ci, subclass of, cj) ∈ Tc, we also360

construct two queries with answers for Msc:361

• “⟨ci⟩ || subclass of ” → “⟨cj⟩”;362

• “⟨cj⟩ || contains subclass” → “⟨ci⟩”.363

Finally, the information of a relation can be364

learned from its name and the elements connected365

by it. Therefore, for each r ∈ Rl, we sample K366

triples (ei, r, ej) from Tl, choose ci, cj such that367

(ei, instance_of, ci), (ej , instance_of, cj) ∈ Te,368

and use each (ei, ci, r, ej , cj) to construct three369

queries with answers:370

• “⟨ei⟩ | ⟨ci⟩ || ⟨r⟩ | forward” → “⟨cj⟩ | ⟨ej⟩”; 371

• “⟨ej⟩ | ⟨cj⟩ || ⟨r⟩ | backward” → “⟨ci⟩ | ⟨ei⟩”; 372

• “⟨ei⟩ | ⟨ci⟩ || what relation || ⟨cj⟩ | ⟨ej⟩” → 373

“⟨r⟩”. 374

We empirically find that including ci, cj benefits 375

the information encoding for both concepts and 376

relations. 377

Let the set of all generated queries and answers 378

be Dsc = {(qi, ai)}li=1, then msc is trained to min- 379

imize 380

Lsc = −
∑

(qi,ai)∈Dsc

logP (ai|qi), (3) 381

where P (ai|qi) is the likelihood of Msc generating 382

ai given qi, defined by token-level cross entropy. 383

Note that the learning of msc does not rely on any 384

additional data except the KB itself, so we can train 385

a schema plugin for any KB. 386

4.2.3 Learning of PI Plugin 387

As illustrated in Fig. 2(c), to learn the PI plu- 388

gin mPI , we first train individual schema plu- 389

gin mSi
sc for each KBSi . After that, given 390

(xSj , y
S1
j , . . . , ySN

j) ∈ DS
a , where xSi is a ques- 391

tion and ySi
j is the golden program for xSj 392

on KBSi , we train mPI by feeding xSi to 393

MS1
PI , . . . ,M

SN
PI and requiring them to gener- 394

ate yS1
j , . . . , ySN

j , respectively. Here, MSi
PI = 395

Plug(fz(M), {fz(mSi
sc),mPI}). The overall objec- 396

tive can be formulated as: 397

LPI = −
∑

(xS
j ,y

S1
j ,...,y

SN
j)∈DS

a

N∑
i=1

logPi(y
Si
j |xSj),

(4) 398

where Pi(y
Si
j |xSj) is the likelihood of MSi

PI gener- 399

ating ySi
j given xSj , defined by token-level cross 400

entropy. To generate programs conforming to dif- 401

ferent schemas given the same question, mPI must 402

learn to (1) choose correct functions according to 403

the compositional structure of the question; (2) 404

extract and utilize question-relevant schema infor- 405

mation for argument determination from the cor- 406

responding schema plugin, because it is the only 407

difference among MS1
PI , . . . ,M

SN
PI . 408

4.2.4 Plugin Transfer 409

Once the PI plugin mPI is trained, we directly 410

transfer it to KBT as in Fig 2 (d), and let MT
PI = 411

plug(M, {mT
sc,mPI}) be the PI model for KBT . 412

Here, mT
sc is the trained schema plugin for KBT 413

5

using the method in Sec. 4.2.2. Since mT
sc and mSi

sc414

are trained with the same tasks, we expect that they415

encode schema information into their parameters in416

similar ways (Qin et al., 2021; Su et al., 2022), so417

mPI can also extract schema information from mT
sc418

to help PI over KBT . Besides, to guarantee MT
PI419

generating valid programs which do not cause exe-420

cution error or return an empty answer, we adopt421

constrained decoding, i.e., after MT
PI generates422

f1(arg1), . . . , ft(argt), we enumerate all the valid423

ft+1(argt+1) following the method of Gu et al.424

(2023) and restrict MT
PI to only generate one of425

them. More details are in Appendix C. We also426

use beam search to retain top-k programs during427

decoding to provide MT
PI with a more global view.428

5 Experiments429

5.1 Datasets430

Source Domain. We use KQA Pro (Cao et al.,431

2022a) as the source domain dataset. It provides432

117,970 question-program pairs with diverse com-433

positional structures based on a small subset of434

Wikidata (Vrandecic and Krötzsch, 2014).435

Target Domain. We use WebQSP (Yih et al.,436

2016), GraphQ (Su et al., 2016), GrailQA (Gu437

et al., 2021), MetaQA (Zhang et al., 2018) and438

SoAyBench (Wang et al., 2024) as the target do-439

main datasets. Among them, WebQSP, GraphQ,440

and GrailQA are based on Freebase (Bollacker441

et al., 2008). Their KBs contain a large number442

of schema items and cover various domains, thus443

can evaluate the effectiveness of KB-Plugin for444

large-scale KBs. MetaQA and SoAyBench are two445

datasets in movie and academic domains, respec-446

tively, and can evaluate the adaptability to specific447

domains in detail. For MetaQA, since most of the448

relations in its KB have been covered by KQA Pro,449

we remove these relations and relevant question-450

program pairs from KQA Pro to avoid data leakage.451

For SoAyBench which is originally a tool-using452

dataset based on Aminer (Tang et al., 2008) APIs,453

we construct its KB by collecting relevant data454

from these APIs. Table 1 shows the statistics of455

these datasets and their overlap with source KBs456

generated from KQA Pro. Most schema items in457

the target KBs are unseen in source KBs and most458

test cases also involve unseen schema items.459

5.2 Baselines460

For WebQSP, GraphQ, GrailQA, and MetaQA, we461

mainly compare KB-Plugin with low-resourced PI462

Dataset |DM| |R| |Ru| |C| |Cu| |Dtest| |Dtest
u |

KQA Pro - 1209 - 794 - - -
WebQSP 56 412 296 446 363 1639 1083
GraphQ 70 9569 8931 7298 7004 2395 2340
GrailQA(dev) 86 3938 3524 2018 1868 6763 6578
GrailQA(test) 86 3938 3524 2018 1868 13231 -
MetaQA 1 9 9 9 3 39093 39093
SoAyBench 1 17 11 5 3 792 756

Table 1: Statistics for source and target domain datasets
and their overlaps with 16 source KBs generated from
KQA Pro. |DM| / |R| / |C| denotes the number of
domains / relations / concepts in their KBs. |Ru| / |Cu|
denotes the number of relations / concepts unseen in
the source KBs. |Dtest| and |Dtest

u | denotes the numbers
of test cases and test cases that involve unseen schema
items, respectively.

methods including (1) few-shot program genera- 463

tion methods Pangu (Gu et al., 2023) and KB- 464

BINDER (Li et al., 2023a); (2) few-shot data gen- 465

eration method APS (Li et al., 2023c); (3) program 466

transfer method ProgramTrans (Cao et al., 2022b), 467

where we adopt its results without fine-tuning on 468

target KBs for fair comparison. In addition, we 469

also provide the results of several representative 470

supervised models for comparison. 471

For SoAyBench, we choose tool-using methods 472

that were evaluated on it as baselines, including 473

DFSDT (Qin et al., 2023) and SoAy (Wang et al., 474

2024). These methods solve questions by prompt- 475

ing LLMs to call Aminer APIs in specific orders via 476

in-context learning. Their processes of determining 477

the composition of APIs and filling in arguments 478

for each API can also be viewed as program induc- 479

tion. 480

We provide detailed descriptions of all the base- 481

lines and our evaluation metrics in Appendix D.1. 482

5.3 Implementation Details 483

In experiments, we use Llama2-7B (Touvron et al., 484

2023) as the backbone LLM of KB-Plugin and set 485

the rank r of LoRA to 16. The number of parame- 486

ters of each plugin is consequently 40M, which is 487

extremely lightweight. The aliases of schema items 488

in KQA Pro are directly obtained from Wikidata. 489

The number of generated source KBs is set to 16 to 490

balance performance and training efficiency. The 491

sampling number K in schema plugin learning is 492

set to be 500, 500, 50, 100, 3000, and 1000 for 493

KQA Pro, WebQSP, GraphQ, GrailQA, MetaQA, 494

and SoAyBench, respectively, to limit the size of 495

the constructed data for schema plugin learning. 496

We use beam size 5 for all experiments. More 497

details can be found in Appendix D.2. 498

6

Method WebQSP GraphQ GrailQA
Test Dev

Supervised

QGG 74.0 - 36.7 -
BERT+Ranking - 25.0 58.0 -
ArcaneQA 75.6 31.8 73.7 76.8
RnG-KBQA 75.6 - 74.4 76.9

Low-resourced

ProgramTrans 53.8∗ - - -
APS 51.1 - 57.7 62.1
KB-BINDER 53.2 39.5 56.0 -
Pangu 54.5 43.3 62.7 -
KB-Plugin 57.2 / 61.1∗ 49.5 62.7 65.0
w/o schema plugin 41.0 42.8 - 57.5
w/ mS0

sc 48.0 37.9 - 51.0

Table 2: F1 results on WebQSP, GraphQ, and GrailQA.
∗ means using oracle topic entities.

Method 1-hop 2-hop 3-hop

Supervised

KV-Mem 96.2 82.7 48.9
PullNet 97.0 99.9 91.4
EmbedKGQA 97.5 98.8 94.8
TransferNet 97.5 100.0 100.0

Low-resourced

KB-BINDER 93.5 99.6 96.4
KB-Plugin 97.1 100.0 99.3

w/o schema plugin 92.6 99.0 98.9
w/ mS0

sc 90.4 93.6 88.6

Table 3: Hit@1 results on MetaQA.

5.4 Main Results499

The results are presented in Table 2, 3 and 4. Com-500

pared with Pangu, the SoTA PI method for low-501

resourced KBs, KB-Plugin improves the F1 score502

by 2.7% and 6.2% on WebQSP and GraphQ, re-503

spectively, and achieves comparable performance504

on GrailQA, despite Pangu using 25× larger model505

(175B Codex) and 100 annotated examples from506

each dataset. Moreover, Pangu needs to call Codex507

hundreds of times for a question to score each can-508

didate program, while our model selects the op-509

timal program via beam search, which is signifi-510

cantly faster and less costly. Besides, since Pro-511

gramTrans, KB-BINDER, and Pangu all link ques-512

tions to schema items according to their names only,513

the superiority of KB-Plugin also demonstrates the514

benefits of aggregating additional schema informa-515

tion from relevant triples via schema plugin learn-516

ing. KB-Plugin even surpasses several supervised517

models on GraphQ and GrailQA, which demand518

training using thousands of annotated samples from519

Method Acc

DFSDT (gpt-3.5-turbo) 45.7
DFSDT (gpt-4) 59.7
SoAy (gpt-3.5-turbo) 67.7
SoAy (gpt-4) 88.7
KB-Plugin 90.8

w/o schema plugin 70.8
w/ mS0

sc 64.0

Table 4: Accuracy results on SoAyBench.

Dataset Method Dtest
seen Dtest

unseen

WebQSP
KB-Plugin 64.9 53.3
w/o schema plugin 47.6 37.6
Gain +17.4 +15.7

GraphQ
KB-Plugin 40.0∗ 49.7
w/o schema plugin 70.9∗ 42.2
Gain -30.9∗ +7.5

GrailQA-dev
KB-Plugin 69.0 64.8
w/o schema plugin 64.9 57.3
Gain +4.1 +7.5

Table 5: F1 Results of KB-Plugin with and without
schema plugin. Dtest

unseen and Dtest
seen denote the sets of

test cases that involve and do not involve schema items
unseen in the source KBs, respectively. ∗ means the
results may not be indicative since there are only 55
cases in Dtest

seen of GraphQ.

target KBs, showing the effectiveness of transfer- 520

ring prior knowledge from rich-resourced KBs. 521

On MetaQA and SoAyBench, KB-Plugin outper- 522

forms all the low-resourced baselines even though 523

they use more powerful LLMs (i.e., Codex, gpt-3.5- 524

turbo, and gpt-4), indicating that our framework 525

also performs well for domain-specific KBs. In 526

particular, KB-Plugin achieves strong performance 527

on par with supervised SoTAs on MetaQA even if 528

it does not see any target relations from the source 529

domain. 530

5.5 Ablation Study 531

To demonstrate the effect of schema plugins, we 532

remove them from our framework, i.e., we di- 533

rectly train a PI plugin using the source domain 534

data and transfer it to the target KBs without train- 535

ing any schema plugins. According to Table 2, 3, 536

4, and 5, the performance of KB-Plugin without 537

schema plugins is severely degraded, especially on 538

the test cases that involve schema items unseen in 539

the source KBs. The experimental results illustrate 540

that (1) direct PI transfer is difficult due to the sub- 541

stantial difference between the schemas of source 542

and target KBs; (2) schema plugins of target KBs 543

effectively encode adequate schema information 544

7

Question I Which airport to fly into Rome?

Pangu Find(Rome) Relate(tourist attractions) (%)
KB-Plugin w/o schema plugin Find(Rome) Relate(country) FilterConcept(sovereign state) (%)

KB-Plugin Find(Rome) Relate(transport terminus) FilterConcept(airport) (!)

Relevant Triples
(London, transport terminus, Luton airport), (London, instance of, citytown),

(Luton airport, instance of, airport)

Question II What role did Paul Mccartney play in the Beatles?

Pangu Find(Paul Mccartney) Relate(instruments played) (%)
KB-Plugin Find(Beatles) Relate(member) Find(Paul Mccartney) ReverseRelate(member) And() Relate(role) (!)

Source Domain Data Pair
What is Jane Lynch’s role in Glee?

Find(Glee) Relate(starring) Find(Jane Lynch) ReverseRelate(starring) And() Relate(character role)

Table 6: Two typical questions from the test set of WebQSP that KB-Plugin succeeds while Pangu fails. The
incorrect functions and arguments are marked as red, while the correct ones are marked as green.

40.6

47.2 48.2
51

57.2

36.7

45 46.8 46.4

49.5
54.9

60.7
63.7 64.2 65

30
35
40
45
50
55
60
65
70

0 2 4 6 8 10 12 14 16

F1

Number of Generated Source KBs

WebQSP GraphQ GrailQA-dev

Figure 3: KB-Plugin performance with different num-
bers of generated source KBs.

via the triple completion task, and the PI plugin545

can extract and utilize question-relevant schema in-546

formation from these schema plugins even though547

it is never trained with them. In addition, if we548

adopt the schema plugin of a source KB, e.g., mS0
sc ,549

for the target KBs, the performance of KB-Plugin550

also drops heavily, showing the necessity of using551

matched schema plugin.552

To show the rationality of our PI plugin learning553

method, we evaluate the performance of PI plu-554

gins trained with different numbers of generated555

source KBs on WebQSP, GraphQ, and GrailQA,556

and present the results in Fig. 3. The PI plugin557

trained with only one source KB performs poorly,558

implying that it ignores the schema plugin entirely559

and directly learns PI over this source KB. Once560

there emerges a new source KB with a different561

schema, the performance of the trained PI plugin562

increases substantially, and there is an apparent563

trend that the performance will increase with more564

generated source KBs. These results prove that565

training the PI plugin over multiple source KBs566

succeeds in forcing the PI plugin to learn to ex-567

tract and utilize schema information from different568

schema plugins, and the learned skill can be trans-569

ferred to target KBs.570

5.6 Case Study 571

To better showcase the advantages of KB-Plugin 572

over in-context learning PI methods, we present 573

a case comparison between KB-Plugin and Pangu 574

in Table 6. Question I shows the effect of schema 575

plugin learning and utilization. Both Pangu and 576

KB-Plugin without schema plugin struggle to pre- 577

dict the correct relation “transport terminus” be- 578

cause it is unseen in the demo examples or source 579

KBs. The complete KB-Plugin, however, effec- 580

tively encodes the information that “transport ter- 581

minus” is a possible relation between “citytown” 582

and “airport” into the schema plugin via complet- 583

ing relevant triples, and succeeds in predicting this 584

relation by utilizing above information. Question 585

II demonstrates the benefits of harnessing abun- 586

dant program annotations from the source domain, 587

where Pangu produces a program with incorrect 588

function composition because none of its demo ex- 589

amples has a similar compositional structure, while 590

KB-Plugin induces the correct program by utilizing 591

prior knowledge learned from the source domain. 592

Further analysis can be found in Appendix E and F. 593

6 Conclusion 594

We propose KB-Plugin, a plug-and-play framework 595

that enables LLMs to induce programs over any 596

low-resourced KBs by learning two types of plug- 597

gable modules: KB-specific schema plugin and 598

KB-transferable PI plugin. KB-Plugin achieves 599

better or comparable performance on five hetero- 600

geneous KBQA datasets with much smaller back- 601

bone LLMs compared to SoTA PI methods for low- 602

resourced KBs, demonstrating its effectiveness for 603

both large-scale and domain-specific KBs. Abla- 604

tion study and case study also prove the rationality 605

and further showcase the advantage of KB-plugin. 606

8

7 Limitations607

We discuss several limitations of KB-Plugin in this608

section: (1) In the experiments, we only adopt609

Llama2-7B as our backbone model due to lim-610

ited computing resources. Actually, KB-Plugin611

is model-agnostic and can also be applied to more612

language models with various sizes and architec-613

tures. (2) KB-Plugin requires that the source do-614

main dataset covers questions with diverse vari-615

ous compositional structures, and performs rela-616

tively poorly for questions whose compositional617

structures are unseen in the source domain dataset618

though they are rare (see Appendix E for details).619

Future research can focus on improving the trans-620

ferability of KB-Plugin across compositional struc-621

tures. In practice, we can also continue to train the622

PI plugin using some self-training methods such as623

EGST (Li et al., 2023c) to adapt to these questions.624

(3) In this work, since both training and evaluation625

of KB-Plugin require annotated KBQA datasets,626

we can only take a single dataset KQA Pro as the627

source dataset and take other datasets as the tar-628

get datasets, which may limit the upper bounds of629

KB-Plugin. In the realistic scenario where we need630

to apply KB-Plugin for a new KB, we can take all631

these KBQA datasets as the source domain datasets632

so that the trained source schema plugins would be633

more diverse and the trained PI plugin would also634

have stronger transferability and generalizability.635

8 Ethical Considerations636

Though our framework (as well as other PI meth-637

ods) can effectively reduce the probability of LLMs638

generating inaccurate answers when faced with639

questions involving uncommon knowledge, it may640

still make mistakes if the induced programs are in-641

correct. In addition, there is a risk of being hacked642

through targeted means such as injecting harmful643

or nonfactual knowledge into the KBs. Hence ad-644

ditional care and protective measures should be645

taken if our framework is deployed in user-facing646

applications.647

All the datasets and encyclopedias used in this648

work are publicly published with permissible li-649

censes.650

References651

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,652
Tim Sturge, and Jamie Taylor. 2008. Freebase: a653
collaboratively created graph database for structuring654

human knowledge. In Proceedings of the ACM SIG- 655
MOD International Conference on Management of 656
Data, SIGMOD 2008, Vancouver, BC, Canada, June 657
10-12, 2008, pages 1247–1250. ACM. 658

Antoine Bordes, Nicolas Usunier, Alberto García- 659
Durán, Jason Weston, and Oksana Yakhnenko. 660
2013. Translating embeddings for modeling multi- 661
relational data. In Advances in Neural Information 662
Processing Systems 26: 27th Annual Conference on 663
Neural Information Processing Systems 2013. Pro- 664
ceedings of a meeting held December 5-8, 2013, Lake 665
Tahoe, Nevada, United States, pages 2787–2795. 666

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 667
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 668
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 669
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 670
Gretchen Krueger, Tom Henighan, Rewon Child, 671
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 672
Clemens Winter, Christopher Hesse, Mark Chen, Eric 673
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 674
Jack Clark, Christopher Berner, Sam McCandlish, 675
Alec Radford, Ilya Sutskever, and Dario Amodei. 676
2020. Language models are few-shot learners. In Ad- 677
vances in Neural Information Processing Systems 33: 678
Annual Conference on Neural Information Process- 679
ing Systems 2020, NeurIPS 2020, December 6-12, 680
2020, virtual. 681

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie, 682
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han- 683
wang Zhang. 2022a. KQA pro: A dataset with ex- 684
plicit compositional programs for complex question 685
answering over knowledge base. In Proceedings of 686
the 60th Annual Meeting of the Association for Com- 687
putational Linguistics (Volume 1: Long Papers), ACL 688
2022, Dublin, Ireland, May 22-27, 2022, pages 6101– 689
6119. Association for Computational Linguistics. 690

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu, 691
Lei Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao. 692
2022b. Program transfer for answering complex 693
questions over knowledge bases. In Proceedings 694
of the 60th Annual Meeting of the Association for 695
Computational Linguistics (Volume 1: Long Papers), 696
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 697
8128–8140. Association for Computational Linguis- 698
tics. 699

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 700
Henrique Pondé de Oliveira Pinto, Jared Kaplan, 701
Harrison Edwards, Yuri Burda, Nicholas Joseph, 702
Greg Brockman, Alex Ray, Raul Puri, Gretchen 703
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 704
try, Pamela Mishkin, Brooke Chan, Scott Gray, 705
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 706
Kaiser, Mohammad Bavarian, Clemens Winter, 707
Philippe Tillet, Felipe Petroski Such, Dave Cum- 708
mings, Matthias Plappert, Fotios Chantzis, Eliza- 709
beth Barnes, Ariel Herbert-Voss, William Hebgen 710
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 711
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 712
William Saunders, Christopher Hesse, Andrew N. 713
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 714

9

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/2022.ACL-LONG.422
https://doi.org/10.18653/V1/2022.ACL-LONG.422
https://doi.org/10.18653/V1/2022.ACL-LONG.422
https://doi.org/10.18653/V1/2022.ACL-LONG.422
https://doi.org/10.18653/V1/2022.ACL-LONG.422
https://doi.org/10.18653/V1/2022.ACL-LONG.559
https://doi.org/10.18653/V1/2022.ACL-LONG.559
https://doi.org/10.18653/V1/2022.ACL-LONG.559

Morikawa, Alec Radford, Matthew Knight, Miles715
Brundage, Mira Murati, Katie Mayer, Peter Welinder,716
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya717
Sutskever, and Wojciech Zaremba. 2021. Evaluat-718
ing large language models trained on code. CoRR,719
abs/2107.03374.720

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t gener-721
ate, discriminate: A proposal for grounding language722
models to real-world environments. In Proceedings723
of the 61st Annual Meeting of the Association for724
Computational Linguistics (Volume 1: Long Papers),725
ACL 2023, Toronto, Canada, July 9-14, 2023, pages726
4928–4949. Association for Computational Linguis-727
tics.728

Yu Gu, Sue Kase, Michelle Vanni, Brian M. Sadler,729
Percy Liang, Xifeng Yan, and Yu Su. 2021. Beyond730
I.I.D.: three levels of generalization for question an-731
swering on knowledge bases. In WWW ’21: The Web732
Conference 2021, Virtual Event / Ljubljana, Slovenia,733
April 19-23, 2021, pages 3477–3488. ACM / IW3C2.734

Yu Gu and Yu Su. 2022. Arcaneqa: Dynamic program735
induction and contextualized encoding for knowledge736
base question answering. In Proceedings of the 29th737
International Conference on Computational Linguis-738
tics, COLING 2022, Gyeongju, Republic of Korea,739
October 12-17, 2022, pages 1718–1731. International740
Committee on Computational Linguistics.741

Matthew Honnibal, Ines Montani, Sofie Van Lan-742
deghem, and Adriane Boyd. 2020. spacy: Industrial-743
strength natural language processing in python.744

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan745
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and746
Weizhu Chen. 2022. Lora: Low-rank adaptation of747
large language models. In The Tenth International748
Conference on Learning Representations, ICLR 2022,749
Virtual Event, April 25-29, 2022. OpenReview.net.750

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin751
Zhao, and Ji-Rong Wen. 2023. Structgpt: A general752
framework for large language model to reason over753
structured data. In Proceedings of the 2023 Confer-754
ence on Empirical Methods in Natural Language Pro-755
cessing, EMNLP 2023, Singapore, December 6-10,756
2023, pages 9237–9251. Association for Computa-757
tional Linguistics.758

Yunshi Lan and Jing Jiang. 2020. Query graph genera-759
tion for answering multi-hop complex questions from760
knowledge bases. In Proceedings of the 58th Annual761
Meeting of the Association for Computational Lin-762
guistics, ACL 2020, Online, July 5-10, 2020, pages763
969–974. Association for Computational Linguistics.764

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.765
The power of scale for parameter-efficient prompt766
tuning. In Proceedings of the 2021 Conference on767
Empirical Methods in Natural Language Processing,768
EMNLP 2021, Virtual Event / Punta Cana, Domini-769
can Republic, 7-11 November, 2021, pages 3045–770
3059. Association for Computational Linguistics.771

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, 772
and Wenhu Chen. 2023a. Few-shot in-context learn- 773
ing for knowledge base question answering. CoRR, 774
abs/2305.01750. 775

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 776
Optimizing continuous prompts for generation. In 777
Proceedings of the 59th Annual Meeting of the Asso- 778
ciation for Computational Linguistics and the 11th 779
International Joint Conference on Natural Language 780
Processing, ACL/IJCNLP 2021, (Volume 1: Long 781
Papers), Virtual Event, August 1-6, 2021, pages 4582– 782
4597. Association for Computational Linguistics. 783

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng 784
Ding, Lidong Bing, Shafiq R. Joty, and Soujanya 785
Poria. 2023b. Chain of knowledge: A framework 786
for grounding large language models with structured 787
knowledge bases. CoRR, abs/2305.13269. 788

Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao 789
Duan, Bowen Dong, Ning Liu, and Jianyong Wang. 790
2023c. Flexkbqa: A flexible llm-powered frame- 791
work for few-shot knowledge base question answer- 792
ing. CoRR, abs/2308.12060. 793

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and 794
Xuan Zhu. 2015. Learning entity and relation em- 795
beddings for knowledge graph completion. In Pro- 796
ceedings of the Twenty-Ninth AAAI Conference on 797
Artificial Intelligence, January 25-30, 2015, Austin, 798
Texas, USA, pages 2181–2187. AAAI Press. 799

Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng, 800
Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting 801
Dong, Meina Song, and Wei Lin. 2023. Chatkbqa: A 802
generate-then-retrieve framework for knowledge base 803
question answering with fine-tuned large language 804
models. CoRR, abs/2310.08975. 805

Xin Lv, Lei Hou, Juanzi Li, and Zhiyuan Liu. 2018. 806
Differentiating concepts and instances for knowledge 807
graph embedding. In Proceedings of the 2018 Con- 808
ference on Empirical Methods in Natural Language 809
Processing, Brussels, Belgium, October 31 - Novem- 810
ber 4, 2018, pages 1971–1979. Association for Com- 811
putational Linguistics. 812

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir- 813
Hossein Karimi, Antoine Bordes, and Jason Weston. 814
2016. Key-value memory networks for directly read- 815
ing documents. In Proceedings of the 2016 Confer- 816
ence on Empirical Methods in Natural Language Pro- 817
cessing, EMNLP 2016, Austin, Texas, USA, Novem- 818
ber 1-4, 2016, pages 1400–1409. The Association for 819
Computational Linguistics. 820

Fedor Moiseev, Zhe Dong, Enrique Alfonseca, and Mar- 821
tin Jaggi. 2022. SKILL: structured knowledge infu- 822
sion for large language models. In Proceedings of the 823
2022 Conference of the North American Chapter of 824
the Association for Computational Linguistics: Hu- 825
man Language Technologies, NAACL 2022, Seattle, 826
WA, United States, July 10-15, 2022, pages 1581– 827
1588. Association for Computational Linguistics. 828

10

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.18653/V1/2023.ACL-LONG.270
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
https://doi.org/10.18653/V1/2020.ACL-MAIN.91
https://doi.org/10.18653/V1/2020.ACL-MAIN.91
https://doi.org/10.18653/V1/2020.ACL-MAIN.91
https://doi.org/10.18653/V1/2020.ACL-MAIN.91
https://doi.org/10.18653/V1/2020.ACL-MAIN.91
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.48550/ARXIV.2305.01750
https://doi.org/10.48550/ARXIV.2305.01750
https://doi.org/10.48550/ARXIV.2305.01750
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.48550/ARXIV.2305.13269
https://doi.org/10.48550/ARXIV.2305.13269
https://doi.org/10.48550/ARXIV.2305.13269
https://doi.org/10.48550/ARXIV.2305.13269
https://doi.org/10.48550/ARXIV.2305.13269
https://doi.org/10.48550/ARXIV.2308.12060
https://doi.org/10.48550/ARXIV.2308.12060
https://doi.org/10.48550/ARXIV.2308.12060
https://doi.org/10.48550/ARXIV.2308.12060
https://doi.org/10.48550/ARXIV.2308.12060
https://doi.org/10.1609/AAAI.V29I1.9491
https://doi.org/10.1609/AAAI.V29I1.9491
https://doi.org/10.1609/AAAI.V29I1.9491
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.48550/ARXIV.2310.08975
https://doi.org/10.18653/V1/D18-1222
https://doi.org/10.18653/V1/D18-1222
https://doi.org/10.18653/V1/D18-1222
https://doi.org/10.18653/V1/D16-1147
https://doi.org/10.18653/V1/D16-1147
https://doi.org/10.18653/V1/D16-1147
https://doi.org/10.18653/V1/2022.NAACL-MAIN.113
https://doi.org/10.18653/V1/2022.NAACL-MAIN.113
https://doi.org/10.18653/V1/2022.NAACL-MAIN.113

Lunyiu Nie, Shulin Cao, Jiaxin Shi, Jiuding Sun,829
Qi Tian, Lei Hou, Juanzi Li, and Jidong Zhai. 2022.830
Graphq IR: unifying the semantic parsing of graph831
query languages with one intermediate representation.832
In Proceedings of the 2022 Conference on Empirical833
Methods in Natural Language Processing, EMNLP834
2022, Abu Dhabi, United Arab Emirates, December835
7-11, 2022, pages 5848–5865. Association for Com-836
putational Linguistics.837

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-838
apu Wang, and Xindong Wu. 2023. Unifying large839
language models and knowledge graphs: A roadmap.840
CoRR, abs/2306.08302.841

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,842
Kyunghyun Cho, and Iryna Gurevych. 2021.843
Adapterfusion: Non-destructive task composition for844
transfer learning. In Proceedings of the 16th Con-845
ference of the European Chapter of the Association846
for Computational Linguistics: Main Volume, EACL847
2021, Online, April 19 - 23, 2021, pages 487–503.848
Association for Computational Linguistics.849

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan850
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,851
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,852
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu,853
and Maosong Sun. 2023. Toolllm: Facilitating large854
language models to master 16000+ real-world apis.855
CoRR, abs/2307.16789.856

Yujia Qin, Xiaozhi Wang, YuSheng Su, Yankai Lin,857
Ning Ding, Zhiyuan Liu, Juanzi Li, Lei Hou, Peng858
Li, Maosong Sun, and Jie Zhou. 2021. Exploring859
low-dimensional intrinsic task subspace via prompt860
tuning. CoRR, abs/2110.07867.861

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.862
2022. Sequence-to-sequence knowledge graph com-863
pletion and question answering. In Proceedings of864
the 60th Annual Meeting of the Association for Com-865
putational Linguistics (Volume 1: Long Papers), ACL866
2022, Dublin, Ireland, May 22-27, 2022, pages 2814–867
2828. Association for Computational Linguistics.868

Apoorv Saxena, Aditay Tripathi, and Partha P. Taluk-869
dar. 2020. Improving multi-hop question answering870
over knowledge graphs using knowledge base embed-871
dings. In Proceedings of the 58th Annual Meeting of872
the Association for Computational Linguistics, ACL873
2020, Online, July 5-10, 2020, pages 4498–4507.874
Association for Computational Linguistics.875

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Han-876
wang Zhang. 2021. Transfernet: An effective and877
transparent framework for multi-hop question an-878
swering over relation graph. In Proceedings of the879
2021 Conference on Empirical Methods in Natural880
Language Processing, EMNLP 2021, Virtual Event881
/ Punta Cana, Dominican Republic, 7-11 November,882
2021, pages 4149–4158. Association for Computa-883
tional Linguistics.884

Yu Su, Huan Sun, Brian M. Sadler, Mudhakar Srivatsa,885
Izzeddin Gur, Zenghui Yan, and Xifeng Yan. 2016.886

On generating characteristic-rich question sets for 887
QA evaluation. In Proceedings of the 2016 Confer- 888
ence on Empirical Methods in Natural Language Pro- 889
cessing, EMNLP 2016, Austin, Texas, USA, Novem- 890
ber 1-4, 2016, pages 562–572. The Association for 891
Computational Linguistics. 892

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, 893
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan 894
Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and 895
Jie Zhou. 2022. On transferability of prompt tuning 896
for natural language processing. In Proceedings of 897
the 2022 Conference of the North American Chapter 898
of the Association for Computational Linguistics: Hu- 899
man Language Technologies, NAACL 2022, Seattle, 900
WA, United States, July 10-15, 2022, pages 3949– 901
3969. Association for Computational Linguistics. 902

Haitian Sun, Tania Bedrax-Weiss, and William W. Co- 903
hen. 2019. Pullnet: Open domain question answering 904
with iterative retrieval on knowledge bases and text. 905
In Proceedings of the 2019 Conference on Empiri- 906
cal Methods in Natural Language Processing and 907
the 9th International Joint Conference on Natural 908
Language Processing, EMNLP-IJCNLP 2019, Hong 909
Kong, China, November 3-7, 2019, pages 2380–2390. 910
Association for Computational Linguistics. 911

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, 912
and Zhong Su. 2008. Arnetminer: extraction and 913
mining of academic social networks. In Proceed- 914
ings of the 14th ACM SIGKDD International Con- 915
ference on Knowledge Discovery and Data Mining, 916
Las Vegas, Nevada, USA, August 24-27, 2008, pages 917
990–998. ACM. 918

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 919
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 920
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 921
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 922
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 923
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 924
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 925
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 926
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 927
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 928
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 929
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 930
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 931
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 932
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 933
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 934
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 935
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 936
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 937
Melanie Kambadur, Sharan Narang, Aurélien Ro- 938
driguez, Robert Stojnic, Sergey Edunov, and Thomas 939
Scialom. 2023. Llama 2: Open foundation and fine- 940
tuned chat models. CoRR, abs/2307.09288. 941

Denny Vrandecic and Markus Krötzsch. 2014. Wiki- 942
data: a free collaborative knowledgebase. Commun. 943
ACM, 57(10):78–85. 944

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, 945
Zhiyuan Liu, and Juanzi Li. 2022. Finding skill 946

11

https://doi.org/10.18653/V1/2022.EMNLP-MAIN.394
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.394
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.394
https://doi.org/10.48550/ARXIV.2306.08302
https://doi.org/10.48550/ARXIV.2306.08302
https://doi.org/10.48550/ARXIV.2306.08302
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://doi.org/10.48550/ARXIV.2307.16789
https://doi.org/10.48550/ARXIV.2307.16789
https://doi.org/10.48550/ARXIV.2307.16789
http://arxiv.org/abs/2110.07867
http://arxiv.org/abs/2110.07867
http://arxiv.org/abs/2110.07867
http://arxiv.org/abs/2110.07867
http://arxiv.org/abs/2110.07867
https://doi.org/10.18653/V1/2022.ACL-LONG.201
https://doi.org/10.18653/V1/2022.ACL-LONG.201
https://doi.org/10.18653/V1/2022.ACL-LONG.201
https://doi.org/10.18653/V1/2020.ACL-MAIN.412
https://doi.org/10.18653/V1/2020.ACL-MAIN.412
https://doi.org/10.18653/V1/2020.ACL-MAIN.412
https://doi.org/10.18653/V1/2020.ACL-MAIN.412
https://doi.org/10.18653/V1/2020.ACL-MAIN.412
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.341
https://doi.org/10.18653/V1/D16-1054
https://doi.org/10.18653/V1/D16-1054
https://doi.org/10.18653/V1/D16-1054
https://doi.org/10.18653/V1/2022.NAACL-MAIN.290
https://doi.org/10.18653/V1/2022.NAACL-MAIN.290
https://doi.org/10.18653/V1/2022.NAACL-MAIN.290
https://doi.org/10.18653/V1/D19-1242
https://doi.org/10.18653/V1/D19-1242
https://doi.org/10.18653/V1/D19-1242
https://doi.org/10.1145/1401890.1402008
https://doi.org/10.1145/1401890.1402008
https://doi.org/10.1145/1401890.1402008
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.765
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.765

neurons in pre-trained transformer-based language947
models. In Proceedings of the 2022 Conference on948
Empirical Methods in Natural Language Processing,949
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-950
cember 7-11, 2022, pages 11132–11152. Association951
for Computational Linguistics.952

Yuanchun Wang, Jifan Yu, Zijun Yao, Jing Zhang,953
Yuyang Xie, Shangqing Tu, Huihui Yuan, Jingyao954
Zhang, Bowen Huang, Yuanyao Li, Juanzi Li, and Jie955
Tang. 2024. Soay: A service-oriented apis applying956
framework of large language models.957

Chaojun Xiao, Zhengyan Zhang, Xu Han, Chi-Min958
Chan, Yankai Lin, Zhiyuan Liu, Xiangyang Li,959
Zhonghua Li, Zhao Cao, and Maosong Sun. 2023.960
Plug-and-play document modules for pre-trained961
models. In Proceedings of the 61st Annual Meeting962
of the Association for Computational Linguistics (Vol-963
ume 1: Long Papers), ACL 2023, Toronto, Canada,964
July 9-14, 2023, pages 15713–15729. Association for965
Computational Linguistics.966

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,967
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng968
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-969
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,970
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming971
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,972
Luke Zettlemoyer, and Tao Yu. 2022. Unifiedskg:973
Unifying and multi-tasking structured knowledge974
grounding with text-to-text language models. In Pro-975
ceedings of the 2022 Conference on Empirical Meth-976
ods in Natural Language Processing, EMNLP 2022,977
Abu Dhabi, United Arab Emirates, December 7-11,978
2022, pages 602–631. Association for Computational979
Linguistics.980

Xuchen Yao. 2015. Lean question answering over981
freebase from scratch. In NAACL HLT 2015, The982
2015 Conference of the North American Chapter of983
the Association for Computational Linguistics: Hu-984
man Language Technologies, Denver, Colorado, USA,985
May 31 - June 5, 2015, pages 66–70. The Association986
for Computational Linguistics.987

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,988
and Caiming Xiong. 2022. RNG-KBQA: generation989
augmented iterative ranking for knowledge base ques-990
tion answering. In Proceedings of the 60th Annual991
Meeting of the Association for Computational Lin-992
guistics (Volume 1: Long Papers), ACL 2022, Dublin,993
Ireland, May 22-27, 2022, pages 6032–6043. Associ-994
ation for Computational Linguistics.995

Wen-tau Yih, Matthew Richardson, Christopher Meek,996
Ming-Wei Chang, and Jina Suh. 2016. The value of997
semantic parse labeling for knowledge base question998
answering. In Proceedings of the 54th Annual Meet-999
ing of the Association for Computational Linguistics,1000
ACL 2016, August 7-12, 2016, Berlin, Germany, Vol-1001
ume 2: Short Papers. The Association for Computer1002
Linguistics.1003

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan- 1004
der J. Smola, and Le Song. 2018. Variational reason- 1005
ing for question answering with knowledge graph. In 1006
Proceedings of the Thirty-Second AAAI Conference 1007
on Artificial Intelligence, (AAAI-18), the 30th inno- 1008
vative Applications of Artificial Intelligence (IAAI- 1009
18), and the 8th AAAI Symposium on Educational 1010
Advances in Artificial Intelligence (EAAI-18), New 1011
Orleans, Louisiana, USA, February 2-7, 2018, pages 1012
6069–6076. AAAI Press. 1013

Zhengyan Zhang, Zhiyuan Zeng, Yankai Lin, Huadong 1014
Wang, Deming Ye, Chaojun Xiao, Xu Han, Zhiyuan 1015
Liu, Peng Li, Maosong Sun, and Jie Zhou. 2023. 1016
Plug-and-play knowledge injection for pre-trained 1017
language models. In Proceedings of the 61st Annual 1018
Meeting of the Association for Computational Lin- 1019
guistics (Volume 1: Long Papers), ACL 2023, Toronto, 1020
Canada, July 9-14, 2023, pages 10641–10658. Asso- 1021
ciation for Computational Linguistics. 1022

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 1023
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be- 1024
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, 1025
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao 1026
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang 1027
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 1028
2023. A survey of large language models. CoRR, 1029
abs/2303.18223. 1030

12

https://doi.org/10.18653/V1/2022.EMNLP-MAIN.765
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.765
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.765
https://github.com/RUCKBReasoning/SoAy
https://github.com/RUCKBReasoning/SoAy
https://github.com/RUCKBReasoning/SoAy
https://doi.org/10.18653/V1/2023.ACL-LONG.875
https://doi.org/10.18653/V1/2023.ACL-LONG.875
https://doi.org/10.18653/V1/2023.ACL-LONG.875
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.39
https://doi.org/10.3115/V1/N15-3014
https://doi.org/10.3115/V1/N15-3014
https://doi.org/10.3115/V1/N15-3014
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.18653/V1/P16-2033
https://doi.org/10.1609/AAAI.V32I1.12057
https://doi.org/10.1609/AAAI.V32I1.12057
https://doi.org/10.1609/AAAI.V32I1.12057
https://doi.org/10.18653/V1/2023.ACL-LONG.594
https://doi.org/10.18653/V1/2023.ACL-LONG.594
https://doi.org/10.18653/V1/2023.ACL-LONG.594
https://doi.org/10.48550/ARXIV.2303.18223

Function Input×Args → Output Description

Find E × ∅ → E find an entity from the KB
FindAll ∅ × ∅ → E′ return all entities in the KB
Relate (E ∪ E′)×R → E′ a single hop along a relation

ReverseRelate (E ∪ E′)×R → E′ a reverse hop along a relation
FilterConcept E′ × C → E′ return entities in a concept

And/Or (E′, E′)× ∅ → E′ intersection/union of two sets
Argmax/Argmin E′ ×R → E′ superlative aggregations
LT/LE/GT/GE E ×R → E′ < / ≤ / > / ≥

Count E′ × ∅ → N set cardinality

Table 7: KoPL functions used in this work. E: entity;
E′: a set of entities; R: relation; C: concept; N : integer.

A Details of KoPL Functions1031

We list KoPL functions used in this work in Table 7.1032

We make some modifications to the original (Cao1033

et al., 2022a) for conciseness. Except Find taking1034

topic entities as the argument, other functions ei-1035

ther have no arguments or take schema items (i.e.,1036

concepts or relations) as their arguments.1037

B Triple Sampling Strategy1038

For WebQSP, GraphQ, and GrailQA, since their1039

KBs are large-scale and relatively sparse, we adopt1040

a popularity-based strategy to sample representa-1041

tive triples for each schema item. Specifically,1042

let the given KB be KB = {C, E ,R, T }, where1043

T = Te ∪ Tc ∪ Tl. For each e ∈ E , let cnt(e) be1044

its popularity (i.e., the number of its occurrences1045

in KB). When sampling “instance of” triples for1046

a concept c ∈ C, we hope the sampled triples con-1047

tain representative entities belonging to c, so we1048

sort all (ek, instance of, c) ∈ Te in descending or-1049

der of cnt(ek) and select the first K triples. When1050

sampling relational triples for a relation r ∈ Rl,1051

we take both representativeness and diversity into1052

account. Therefore, we sort all (ei, r, ej) ∈ Tl1053

in descending order of min(cnt(ei), cnt(ej)) and1054

select the first K triples.1055

On the other hand, the KBs of KQA Pro,1056

MetaQA, and SoAyBench are dense, so we just1057

randomly sample triples for their schema items.1058

C Details of Constrained Decoding1059

In constrained decoding, after MT
PI generates t1060

function chunks f1(arg1), . . . , ft(argt), we enu-1061

merate all admissible ft+1(argt+1) as the candi-1062

date set Pt+1 following the definition of KoPL1063

functions in Table 7, and constrain MT
PI to continue1064

generating one of these candidate or generating the1065

⟨EOS⟩ token to end the decoding process.1066

Specifically, let Etopic be the set of topic1067

entities in the question obtained using off-the-1068

shelf entity linkers 1. At t = 0, we enumerate 1069

Find(e) for each e ∈ Etopic as a candidate 1070

in P1. Specially, around 5% of questions in 1071

GraphQ and GrailQA do not have a topic entity 1072

(e.g., “Who is the heaviest film director?" from 1073

GrailQA, whose target program is FindAll() 1074

FilterConcept(director)SelectAmong(weight 1075

kg). For these questions, we follow Pangu (Gu 1076

et al., 2023) to start constrained decoding from 1077

FindAll()FilterConcept(c), where c is a topic 1078

concept provided by Gu and Su (2022). 1079

When t > 0, we execute the current program 1080

pt = ⟨f1(arg1), . . . , ft(argt)⟩ to get its denota- 1081

tion (i.e., a set of entities) and also the concepts, 1082

forward relations, and backward relations that are 1083

reachable from the denotation. For each concept 1084

c, we enumerate FilterConcept(c) as a candidate 1085

in Pt+1. For each forward relation r, we enumer- 1086

ate Relate(r) as a candidate. For each backward 1087

relation r, we enumerate ReverseRelate(r) as a 1088

candidate, and also include LT(r), LE(r), GT(r), and 1089

GE(r) in Pt+1 if the denotation of pt is a numeri- 1090

cal value such as a quantity or a date. In addition, 1091

candidates with superlatives can be enumerated as 1092

Argmax(r) and Argmin(r). Also, Count() can al- 1093

ways be included to Pt+1. If there are multiple 1094

topic entities, we enumerate Find(e′) as a candi- 1095

date to add a new branch, where e′ ∈ Etopic is a 1096

topic entity not in pt. When pt contains multiple 1097

branches, we enumerate Or() and And() as candi- 1098

dates to merge the last two branches. 1099

D Experimental Setup 1100

D.1 Details of Baselines and Evaluation 1101

Metrics 1102

The details of our baselines are as follows: 1103

Pangu (Gu et al., 2023) utilizes potent LLM 1104

Codex (Chen et al., 2021) to produce programs 1105

in a step-wise fashion via in-context learning. At 1106

each step, it first extends existing programs into 1107

new valid candidates by enumerating all possible 1108

next functions with arguments, then scores each 1109

candidate using Codex with several demonstrations 1110

and retains the top-k candidates. 1111

KB-BINDER (Li et al., 2023a) first lets Codex gen- 1112

erate several "draft" programs for a given question 1113

by imitating a few examples, then grounds the argu- 1114

ments in the drafts to the target KB using similarity 1115

1Entity linking is not a major challenge for PI, and exhaus-
tive fuzzy string matching (Yao, 2015) suffices to achieve a
reasonable performance.

13

search to produce hundreds of refined programs.1116

The final answer is decided by the majority vote1117

after executing all these refined programs.1118

Automatic Program Sampling (APS) (Li et al.,1119

2023c) utilizes gpt-3.5-turbo2 to translate auto-1120

matically sampled programs based on a handful1121

of templates into corresponding questions via in-1122

context learning, and subsequently fine-tune a RnG-1123

KBQA (Ye et al., 2022) PI model using the gener-1124

ated question-program pairs.1125

ProgramTrans (Cao et al., 2022b) is a program1126

transfer method that first uses a seq2seq sketch1127

parser to translate the question into a program1128

sketch, then uses an argument parser to search suit-1129

able argument from the KB for each function. We1130

adopt its results without fine-tuning on the target1131

KBs for fair comparison.1132

DFSDT (Qin et al., 2023) is the SoTA method for1133

general tool using. To solve a question, it employs1134

an LLM to call suitable tool APIs in depth-first1135

order. At each step, the LLM can either (1) call1136

the next API to proceed along a promising path or1137

(2) undo the current call and call another API to1138

expand a new path.1139

SoAy (Wang et al., 2024) is the SoTA method on1140

SoAyBench. Given a question, it employs LLM to1141

first select the most suitable plan (i.e., API combi-1142

nation) from a candidate pool, then write a Python1143

program with branching and looping structure fol-1144

lowing the plan to call APIs to get the answer.1145

Supervised Methods. For WebQSP, GraphQ,1146

GrailQA, and MetaQA, we also provide the fully1147

supervised results of several representative models1148

for comparison, including QGG (Lan and Jiang,1149

2020), BERT+Ranking (Gu et al., 2021), Arc-1150

naeQA (Gu and Su, 2022), RnG-KBQA (Ye et al.,1151

2022), KV-Mem(Miller et al., 2016), PullNet (Sun1152

et al., 2019), EmbedKGQA (Saxena et al., 2020)1153

and TransferNet Shi et al. (2021).1154

Evalution Metrics. Following these baselines, we1155

use F1 for WebQSP, GraphQ, and GrailQA, use1156

Hit@1 for MetaQA, and use Accuracy for SoAy-1157

Bench.1158

D.2 Implementation Details1159

We train the schema plugins of the source and target1160

KBs for 3 epochs and 1 epoch, respectively. The1161

batch size and learning rate are set to be 128 and 1e-1162

5, respectively. Besides, we train the PI plugin for 11163

epoch with batch size 16 and learning rate 1e-5. For1164

2https://platform.openai.com/docs/models/gpt-3-5

Dataset Seen Unseen
Num EM F1 Num EM F1

GraphQ 2148 71.0 52.8 247 15.4 20.4
GrailQA 6433 79.9 67.4 330 10.0 16.4

Table 8: Performance of KB-Plugin on test cases whose
compositional structures are seen and unseen in the
source dataset KQA Pro. EM means the exact match of
program sketch.

WebQSP, GraphQ, and GrailQA, we use the same 1165

off-the-shelf entity-linker as Pangu to find topic 1166

entities; For MetaQA, we follow our baselines to 1167

use oracle topic entities; For SoAyBench, we find 1168

topic entities using spaCy (Honnibal et al., 2020). 1169

E Analysis about Question Compositional 1170

Structures 1171

For GraphQ and GrailQA, we translate their 1172

SPARQL programs to KoPL programs using 1173

GraphQ Trans (Nie et al., 2022) and analyze 1174

the performance of KB-Plugin on the test cases 1175

whose question compositional structures (identi- 1176

fied by program sketches) are seen and unseen in 1177

the source domain dataset KQA Pro, respectively. 1178

From the results in Table 8 we can see that (1) KQA 1179

Pro covers most of question compositional struc- 1180

tures in the target dataset; (2) KB-Plugin correctly 1181

predicts the program sketches for over 70% ques- 1182

tions whose compositional structures are seen in 1183

the source domain dataset, implying that the map- 1184

ping from questions to program sketches is largely 1185

independent of KB schemas and transferable across 1186

KBs, which is consistent with the findings of Cao 1187

et al. (2022b) and Li et al. (2023a); (3) KB-Plugin 1188

performs poorly on the questions with unseen com- 1189

positional structures though they are relatively rare, 1190

indicating that more advanced transfer techniques 1191

across compositional structures remains to be ex- 1192

plored. 1193

F Error Analysis 1194

We analyze 100 incorrect predictions (i.e., F1<1) 1195

randomly sampled from the dev set of GrailQA. 1196

The major errors are predicting wrong schema 1197

items (36%). Specially, when facing several 1198

schema items with only subtle differences, e.g., 1199

“publisher”(reverse) v.s. “game version published”, 1200

KB-plugin tends to prefer to choose the shorter one 1201

due to the inherent defects of beam search. Be- 1202

sides, 21% errors are due to a wrong termination 1203

check where the model misses the last relation or 1204

14

predicts an additional function. There are also 5%1205

wrong function predictions. Apart from the above1206

errors caused by our model, 27% errors are caused1207

by unidentified or wrongly identified topic entities1208

during entity linking, 9% errors are due to ambigu-1209

ous or wrong annotations, and the remaining 2%1210

errors are due to the incompletion of KBs.1211

15

	Introduction
	Related Work
	Problem Formulation
	Methodology
	Plugin Architecture
	Plugin Learning and Transfer Framework
	KB Generation and Data Augmentation
	Learning of Schema Plugin
	Learning of PI Plugin
	Plugin Transfer

	Experiments
	Datasets
	Baselines
	Implementation Details
	Main Results
	Ablation Study
	Case Study

	Conclusion
	Limitations
	Ethical Considerations
	Details of KoPL Functions
	Triple Sampling Strategy
	Details of Constrained Decoding
	Experimental Setup
	Details of Baselines and Evaluation Metrics
	Implementation Details

	Analysis about Question Compositional Structures
	Error Analysis

