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ABSTRACT

In this work, we study the system identification problem for parameterized non-
linear systems using basis functions under adversarial attacks. Motivated by the
LASSO-type estimators, we analyze the exact recovery property of a nonsmooth es-
timator, which is generated by solving an embedded ¢; -loss minimization problem.
First, we derive necessary and sufficient conditions for the well-specifiedness of
the estimator and the uniqueness of global solutions to the underlying optimization
problem. Next, we provide exact recovery guarantees for the estimator under two
different scenarios of boundedness and Lipschitz continuity of the basis functions.
The non-asymptotic exact recovery is guaranteed with high probability, even when
there are more severely corrupted data than clean data. Finally, we numerically
illustrate the validity of our theory. This is the first study on the sample complexity
analysis of a nonsmooth estimator for the nonlinear system identification problem.

1 INTRODUCTION

Dynamical systems are the foundation for the areas of sequential decision-making, reinforcement
learning, control theory, and recurrent neural networks. They are imperative for modeling the
mechanics governing the system and for predicting the states of a system. However, it is cumbersome
to exactly model these systems due to the growing complexity of contemporary systems. Thus, the
learning of these system dynamics is essential for an accurate decision-making. The problem of
estimating the dynamics of a system using past information collected from the system is called the
system identification problem. This problem is ubiquitously studied in the control theory literature
for systems under relatively small independent and identically distributed (i.i.d.) noise due to
modeling, measurement, and sensor errors. Nevertheless, safety-critical applications, such as power
systems, autonomous vehicles, and unmanned aerial vehicles, require the robust estimation of the
system due to the possible presence of adversarial disturbance, such as natural disasters and data
manipulation through cyberattacks and system hacking. Although machine learning techniques have
been successful in addressing a wide range of problems, such as computer vision and language
processing, their application in safety-critical systems has been extremely limited due to the lack
of theoretical guarantees. This paper offers a strong result in this regard, which is concerned with
studying dynamical systems via machine learning techniques.

As a motivating example, we consider the dynamical system corresponding to a power system (e.g.,
the U.S. electrical grid or a regional interconnect of the grid), where the states capture various physical
parameters such as voltage magnitudes and frequencies in different parts of the system. With the
objective of increasing sustainability, resiliency and efficiency of energy systems, modern power
systems include a large volume of wind turbines, solar panels, and electric cars. The operation of
power systems is further complicated by the fact that people have started to play an active role by
observing electricity prices and taking strategic actions in response to the price signals. On the other
hand, sensors have been widely installed across the grid to collect data to enable data-driven grid
operation. This has raised a major concern since a small strategic data manipulation would cause
power suppliers to over-supply or under-supply power electricity, which could lead to a system-wide
blackout. This case can be modeled as a nonlinear dynamical system where the input of the system is
subject to stealth attacks at various locations leading to injecting wrong values of electricity into the
system. Given the presence of a large set of new devices in the system coupled by strategic human
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behavior, the power operators do not have a complete model of the dynamical system. Therefore,
they may need to learn the system and any possible adversarial attack simultaneously to be able to
nullify the attack and restore the system’s operation. When an attack to the input is not controlled, it
will affect the transient behavior and make the signals unstable , which leads to a cascading failure
across the grid.

The prior system identification literature has mainly focused on attacks on measurements, where the
goal is to extract knowledge from noisy and corrupted measurements (such as the matrix sensing
problem in machine learning). However, this paper considers an emerging and overlooked type of
attack for safety-critical systems, where the attack on input data or actuators leads to injecting a
wrong input signal into the system which affects the states of the system and makes them unstable.
More relevant literature focused on the asymptotic properties of the least-squares estimator (LSE)
Chen & Guo|(2012);|Ljung et al.|(1999); Ljung & Wahlberg|(1992)); Bauer et al.|(1999), and with
the emergence of statistical learning theory, this area evolved into studying the necessary number of
samples for a specific error threshold to be met|T'siamis et al.|(2023). While early non-asymptotic
analyses centered on linear-time invariant (LTI) systems with i.i.d. noise using mixing arguments
Kuznetsov & Mohri|(2017); Rostamizadeh & Mohri| (2007), recent research employs martingale and
small-ball techniques to provide sample complexity guarantees for LTI systems Simchowitz et al.
(2018)); Faradonbeh et al.| (2018)); Tsiamis & Pappas|(2019). For nonlinear systems, recent studies
investigated parameterized models [No€l & Kerschen| (2017); Nowak] (2002); [Foster et al.| (2020);
Sattar & Oymak| (2022); [Ziemann et al.| (2022), showing convergence of recursive and gradient
algorithms to true parameters with a rate of 7~/ using martingale techniques and mixing time
arguments. Furthermore, efforts towards nonsmooth estimators for both linear and nonlinear systems
Feng & Lavaei| (2021)); Feng et al.[(2023); [Yalcin et al.|(2023), particularly in handling dependent and
adversarial noise vectors, are limited. Robust regression techniques utilizing regularizers have been
developed Xu et al.|(2009)); Bertsimas & Copenhaver (2018)); [Huang et al.| (2016), yet non-asymptotic
analysis on sample complexity remains sparse, especially for dynamical systems due to sample
auto-correlation. A more detailed literature review is provided in Appendix.

This paper paves the way for the area of online optimal control in presence of adversaries and the
first step is to learn the dynamics of the system, known as the system identification problem. More
specifically, we study the system identification problem for parameterized nonlinear systems in the
presence of adversarial attacks. We model the unknown nonlinear functions describing the system
via a linear combination of some given basis functions, by taking advantage of their representation
properties. Our goal is to learn the parameters of these basis functions that govern the updates of the
dynamical system. Mathematically, we consider the following autonomous dynamical system:

9 =0p, o441 = Af(l‘t) + CZt, vVt € {0, T = 1}, (1)

where f : R™ — R™ is a combination of m known basis functions and A € R™*"™ is the unknown
matrix of parameters. In addition, the system trajectory is attacked by the adversarial noise or
disturbance d; € R", which is unknown to the system operator. At any time instance that the system
is not attacked, we have d; = 0. In other words, the noise only stems from adversarial attacks. The
goal of the system identification problem is to recover the ground truth matrix A using observations
from the states of the system, i.e., {xo,...,zr}. The adversarial noise d;’s are designed by an
attacker to maximize the impact as much as possible and yet keep the attacks undetectable to the
system operator. The underlying assumptions about the noise model will be given later.

One of the main challenges of this estimation problem is the time dependence of the collected samples.
As opposed to the empirical risk minimization problem, there exists auto-correlation among the
samples {x, ..., 27 }. As aresult, the common assumption that the samples are i.i.d. instances of
the data generation distribution is violated. The existence of the auto-correlation imposes significant
challenges on the theoretical analysis, and we address it in this work by proposing a novel and non-
trivial extension of the area of exact recovery guarantees to the system identification problem. Since
the adversarial attacks d; are unknown to the system operator, it is necessary to utilize estimators
to the ground truth A that are robust to the noise d; and converge to A when the sample size T is
large enough. Our work is inspired by Yalcin et al.|(2023)) that studies the above problem for linear
systems. The linear case is noticeably simpler than the nonlinear system identification problem since
each observation x; becomes a linear function of previous disturbances. In the nonlinear case, the
relationship between the measurements and the disturbances are highly sophisticated, which requires
significant technical developments compared to the linear case in|Yalcin et al.| (2023)).
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Motivated by the exact recovery property of nonsmooth loss functions (e.g., the ¢;-norm and the
nuclear norm), we consider the following estimator:

T-1
A€ arg L loin ; |41 — Af(@e)l]2- 2

We note that the optimization problem on the right hand-side is convex in A (while having a
nonsmooth objective) and, therefore, it can be solved efficiently by various existing optimization
solvers. The estimator equation [2]is closely related to the LASSO estimator in the sense that the loss
function in equation [2]can be viewed as a generalization of the ¢;-loss function. More specifically, in
the case when n = 1, the estimator equation E]reduces to

T-1

Ae i —A ,
o i Yl A1 (e

which is the auto-correlated linear regression estimator with the ¢/;-loss function.

In this work, the goal is to prove the efficacy of the above estimator by obtaining mild conditions under
which the ground truth A can be exactly recovered by the estimator equation [2} More specifically, we
focus on the following questions:

i) What are the necessary and sufficient conditions such that A is an optimal solution to the
optimization problem in equation [2|or the unique solution?

ii) What is the required number of samples such that the above necessary and sufficient
conditions are satisfied with high probability under certain assumptions?

In this work, we provide answers to the above questions. In Section[2] we first analyze the necessary
and sufficient conditions for the global optimality of A for the problem in equation Then, in Section
we establish the necessary and sufficient conditions such that A is the unique solution. The results
in these two sections provide an answer to question (i). Finally, in Sections[d]and[5] we derive lower
bounds on the number of samples 7" such that A is the unique solution with high probability in the
case when the basis function f is bounded or Lipschitz continuous, respectively. These results serve
as an answer to question (ii). We provide numerical experiments that support the theoretical results
throughout the paper in Section[6] This work provides the first non-asymptotic sample complexity
analysis to the exact recovery of the nonlinear system identification problem.

Notation. For a positive integer n, we use 0,, and I, to denote the n-dimensional vector with all
entries being 0 and the n-by-n identity matrix. For a matrix Z, || Z|| r denotes its Frobenius norm
and S is the unit sphere of matrices with Frobenius norm || Z||r = 1. For two matrices Z; and Zs,
we use (Z1, Zy) = Tr(Z{ Z5) to denote the inner-product. For a vector z, ||z||2 and ||z||o denote
its /- and £,-norms, respectively. Moreover, S"~! is the unit ball {2z € R"|||z|]2 = 1}. Given two
functions f and g, the notation f(z) = ©[g(x)] means that there exist universal positive constants
¢ and ¢y such that ¢1g(x) < f(x) < cog(z). The relation f(z) < g(x) holds if there exists a
universal positive constant cg such that f(z) < csg(«) holds with high probability when 7" is large.
The relation f(z) 2 g(x) holds if g(x) < f(x). | S| shows the cardinality of a given set S. P(-) and
E(-) denote the probability of an event and the expectation of a random variable. A Gaussian random
vector X with mean p and covariance matrix X is written as X ~ N (p, X2).

2 GLOBAL OPTIMALITY OF GROUND TRUTH

In this section, we derive conditions under which the ground truth Aisa global minimizer to the
optimization problem in equation 2] By the system dynamics, the optimization problem is equivalent
to

T-1
min Y [(A— A)f(@e) + dll2, 3)
AR 20
where zg, ..., x7 are generated according to the unknown system under adversaries. We define the

set of attack times as K := {¢ | d; # 0} and the normalized attacks as
Cit = Jt/”Jt”Qa vt € K.
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The following theorem provides a necessary and sufficient condition for the global optimality of
ground truth matrix A in problem equation

Theorem 1 (Necessary and sufficient condition for optimality). The ground truth matrix A is a
global solution to problem equation3)if and only if

STdl Zf(x) < NZf (@2, VZ € R, “

tekl teke

where K¢ :={0,...,T — 1}\K.

Theorem [T] provides a necessary and sufficient condition for the well-specifiedness of optimization
problem equation 3] Intuitively, we can view the left-hand side as the impact of noisy attacks and
the right-hand side as the normal dynamics. If the impact from noise does not override the correct
system dynamics, then the predictor is able to recover the ground truth system dynamics. The
condition equation []is established by applying the generalized Farkas’ lemma, which avoids the
inner approximation of the ¢5-ball by an ¢, -ball in|Yalcin et al.[(2023). As a result, the sample
complexity bounds to be obtained in this work are stronger than those in|Yalcin et al.| (2023)) when
specialized to the setting of linear systems; see Sections 4 and 5] for more details.

Using the condition in Theorem [I] we can derive the necessary conditions and sufficient conditions
for the optimality of A.

Corollary 1 (Sufficient condition for optimality). If it holds that

DNZf@lle < Y N2 f(@o)llze VZ € R, Q)

tekC tekCe

then the ground truth matrix A is a global solution to problem equation

Corollary 2 (Necessary condition for optimality). If the ground truth matrix A is a global solution
to problem equation|3| then it holds that

> flan)d!

tek

<3 @) ©6)

F teke

In the case when m = 1, condition equation|[6]is necessary and sufficient.
The proof of Corollaries|l|and |2|is provided in the appendix. The above conditions are more general
than many existing results in literature; see the following two examples.

Example 1 (First-order systems). In the special case when n = m = 1 and the basis function is
f(x) = =, condition equation|6| reduces to

Z dAtxt

tell

< Z |‘Tt|7

teke
which is the same as Theorem I in|Feng & Lavaei|(2021)).

Example 2 (Linear systems). We consider the case when m = n and the basis function is f(z) = x.
We also assume the A-spaced attack model; see the definition in|Yalcin et al.|(2023). By considering
the attack period starting at the time step t1, a sufficient condition to guarantee condition equation
is given by

VZ € R, 7

A—2
iTzA51d, < 3 (|24, |,
t=0

where we denote d ;= dAtl for simplicity. Let D e R™=1) be the matrix of orthonormal bases of
the orthogonal complementary space of f, namely, D'd =0, DD =1I,,_1,and DD = I,, —dd".
Then, we can calculate that

|zAtd,, |2 > (zAtd,)" dd" (zAtd,,)
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where the equality holds when ﬁTZfltJtl = 0, i.e., ZAd, is parallel with d. Therefore, for
condition equation@ to hold, it is equivalent to consider Z with the form Z = dz" for some vector
z € R"™. In this case, condition equation[?] reduces to
A-2
2T AR, < Z |2TAldy, |, VzeR™ )
t=0
Condition equation [§] leads to a better sufficient condition than that in|Yalcin et al(2023). To
illustrate the improvement, we consider the special case when the ground truth matrix is A = \I,,
for some \ € R. Then, condition equation[8|becomes
A-2 1 A A—-1
A2 < Z I\F = 1= AP , which is further equivalent to |\| + |\[' 72 < 2,
t=0 1= A
which is a stronger condition than that in|Yalcin et al.|(2023). When the attack period A is large, we

approximately have |\| < 2 — 21=2 which is a better condition than that in Figure 1 of \Yalcin et al.
(2023).

3 UNIQUENESS OF GLOBAL SOLUTIONS

In this section, we derive conditions under which the ground truth solution A is the unique solution
to problem equation [3] We obtain the following necessary and sufficient condition on the uniqueness
of global solutions, which is an extension of Theorem I}

Theorem 2 (Necessary and sufficient condition for uniqueness). Suppose that condition equation
holds. The ground truth A is the unique global solution to problem equation if and only if for every
nonzero Z € R™ ™ it holds that

S A 2f () = Y 12f @)l = S |d7 25| < 3125 @0)la. ©)
tex tee tex tex

meaning that whenever the left-hand side equality holds, the right-hand side inequality should be
implied.

Based on the above theorem, the following corollary provides a sufficient condition for the uniqueness
of A, which is easier to verify in practice compared to equation @ Note that the corollary also
generalizes the sufficiency part of Corollary [2|to the multi-dimensional case.

Corollary 3 (Sufficient condition for uniqueness). Suppose that condition equation 4| holds. If it
holds that

S dl Zf(w) < > N Zf(o)lla, VZ ER™™ st Z #0, (10)
tek teKe

then the ground truth matrix A is the unique global solution to problem equation El

Proof. Under condition equation [T0} the condition on the left hand-side of equation [9]cannot hold
and thus, Theoremimplies the uniqueness of A as a global solution. O

Similar to the optimality conditions in Section [2] Theorem [2]improves and generalizes the results for
first-order systems, namely, Theorem 1 in|Feng & Lavaei| (2021).

Example 3 (First-order linear systems). In the case when m = n = 1 and f(x) = x, our results
state that the uniqueness of global solutions is equivalent to

> diwy| < >l (11

tekl texe

As a comparison, the sufficient condition in Theorem 1 in|Feng & Lavaei|(2021)) is
Sl < 3 ol
tekl tekle

Since \cit| = 1forallt € K, our results equation as well as Theorem are more general and
stronger than that in|\Feng & Lavaei (2021)).
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4 BOUNDED BASIS FUNCTION

In the next two sections, we provide lower bounds on the sample complexity 7" such that the ground
truth A is the unique solution to problem equation |3} We focus on the following probabilistic attack
model:

Definition 1 (Probabilistic attack model). For each time instance t, the attack vector d; is nonzero
with probability p € (0, 1), which is also independent with other time instances.

Note that the attack vectors d;’s are allowed to be correlated over time and Definition [1] is only
about the times at which an attack happens. Recall that we define K := {¢ | d; # 0}. Then, with
probability at least 1 — exp[—©(pT')], it holds that || = ©(pT"). The probabilistic attack model can
be viewed as a measure of the sparseness of attacks in the time horizon, since the parameter p reflects
the probability that there exists an attack at a given time. Therefore, under the probabilistic attack
model, it is natural to utilize the nonsmooth £;-loss function to achieve the exact recovery of A. Our
model allows p to be close to 1, meaning that the system is under attack frequently and, thus, most of
the collected data is corrupted.

In this section, we consider the case when the basis function f is bounded.
Assumption 1 (Bounded basis function). The basis function f : R™ — R™ satisfies

[f(@)llec <B, VaeR",

where B > 0 is a constant.

Moreover, to avoid the bias in estimation, we assume the following stealthy condition on the attack.
Note that a similar condition is assumed in literature |Candes et al.| (2011);|Chen et al.| (2021). To
state the stealthy condition, we define the filtration F; := o {xo,z1, ..., 2¢}.

Assumption 2 (Stealthy condition). Conditional on the past information F; and the event that
dy # Oy, the attack direction d; = d;/||dy||2 is zero-mean.

If an attack is not stealth, the operator can quickly detect and nullify it. Therefore, the stealth
condition is necessary for making the system identification problem meaningful. Note that we do not
assume that the probability distribution or model generating the attack is known. Finally, to avoid
the degenerate case, we assume that the norm of basis function is lower bounded under conditional
expectation after an attack.

Assumption 3 (Non-degenerate condition). Conditional on the past information F; and the event
that dy # 0., the attack vector and the basis function satisfy

)\min [E [f(x + Jt)f(x + &t)T | -Ftﬂjt 7é On]] > /\27 Vo € an
where A\ in (F') is the minimal eigenvalue of matrix F and \ > 0 is a constant.

Intuitively, the non-degenerate assumption allows the exploration of the trajectory in the state space.
More specifically, it is necessary that the matrix

[f(x), t € K] € R™*(T=IKD (12)

is rank-m for the condition equation [I0]to hold; see the proof of Theorem @] for more details. The
non-degenerate assumption guarantees that the basis function f(x + d;) spans the whole state space
in expectation and thus, the matrix equation [I2]is full-rank with high probability when T" is large.

The following theorem proves that when the sample complexity is large enough, the estimator
equation exactly recovers the ground truth A with high probability.

Theorem 3 (Exact recovery for bounded basis function). Suppose that Assumptions|[I}3| hold and
define k := B/\ > 1. Forall § € (0, 1], if the sample complexity T satisfies

720 [t s (55) + 5 3) ] &

then A is the unique global solution to problem equation with probability at least 1 — §.
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The above theorem provides a non-asymptotic bound on the sample complexity for the exact recovery
with a specified probability 1 — §. The lower bound grows with m>n, which implies that the required
number of samples increases when the number of states n and the number of basis functions m is
larger. In addition, the sample complexity is larger when B is larger or A is smaller. This is also
consistent with the intuition that B reflects the size of the space spanned by the basis function and A
measures the “speed” of exploring the spanned space.

For the dependence on attack probability p, we show in the next theorem that the dependence on
1/[p(1—p)] is inevitable under the probabilistic attack model. In addition, the theorem also establishes
a lower bound on the sample complexity that depends on m and log(1/4).

Theorem 4. Suppose that the sample complexity satisfies

2p(1 —p)’

Then, there exists a basis function f : R™ — R™ and an attack model such that Assumptions
hold and the global solutions to problem equation [3| are not unique with probability at least
max {1 — 2exp (—m/3),2[p(1 — p)|*/2}. Furthermore, given a constant § € (0,1], if

1o max { 219(;1— p)’ — log[p2(1 = p)] o (?) } ’

then the global solutions to problem equation [3| are not unique with probability at least
max {1 — 2exp (—m/3),6}.

Remark 1. The main goal of the paper is to show that exact recovery is possible when more than
half of the data are arbitrarily corrupted. We provide an upper bound on the required time horizon
in Theorem 5| This result has a major implication for real-world systems. On the other hand, the
lower bound in TheoremH|is mainly a theoretical result. Unlike machine learning problems where
the problem size is possibly on the order of tens of millions, the number of states for many real-world
systems is much lower and less than several thousands. For that reason, our upper bound is already
a practical number and improving the lower bound may have a marginal practical value, although
tightening the lower bound is a relevant and interesting theoretical problem.

T<

5 LiIPSCHITZ BASIS FUNCTION

In this section, we consider the case when the basis function f(x) is Lipschitz continuous in z. More
specifically, we make the following assumption.

Assumption 4 (Lipschitz basis function). The basis function f : R™ — R"™ satisfies

f(0n) =0m and |[f(x) = f(y)ll2 < Lllz —yl2, Va,y €R",

where L > 0 is the Lipschitz constant.

As a special case of Assumption E], the basis function of a linear system is f(x) = x, which is
Lipschitz continuous with Lipschitz constant 1.

Remark 2. Note that the assumptions of boundedness or Lipschitz continuity are always satisfied
for dynamical systems since the user has the choice to select appropriate basis functions to satisfy
them. More concretely, the user can select any arbitrary set of basis functions to approximate the
unknown function as a linear combination of the bases. This is different from classical machine
learning problems where a model is trained to learn the function and there is not control on the
Lipschitzness. On the other hand, if the user is not allowed to use unbounded basis functions or
functions with a high Lipschitz constant, then the number of basis functions used to approximate the
unknown function may be higher. However, many real-world dynamical systems, from robotics to
energy systems, are obtained from physical laws where the unknown dynamics is well behaved due to
the smoothness of laws of physics, such as Newtonian laws and Kirchhoffs laws of electrical circuits.
This is different from various machine learning problems for which the targeted optimal policy could
be inevitably nonsmooth and highly complicated.

In addition, we assume that the spectral norm of A is bounded.
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Assumption 5 (System stability). The ground truth A satisfies

- 1
pi=|A], < 1.

We note that Assumption [3]is related to the asymptotic stability of the dynamic system and is sufficient
to avoid the finite-time explosion of the dynamics. We show in Theorem [6] that Assumption [5|may be
necessary for exact recovery. Finally, we make the assumption that the attack is sub-Gaussian.
Assumption 6 (Sub-Gaussian attacks). Conditional on the filtration F; and the event that d; % Op,
the attack vector d is defined by the product {, dy, where

1. Jt € R" and ¢; € R are independent conditional on F; and dy # 0y
2. d, is a zero-mean unit vector, namely, IE(dAt | Fi,di #0,,) = 0,, and HcftHg =1;
3. Ly is zero-mean and sub-Gaussian with parameter o.

As a special case, the sub-Gaussian assumption is guaranteed to hold if there is an upper bound on
the magnitude of the attack. The bounded-attack case is common in practical applications since
real-world systems do not accept inputs that are arbitrarily large. For example, physical devices have

a clear limitation on the input size and the attacks cannot exceed that limit. In Assumption @ dy and
Z; play the roles of the direction and intensity (such as magnitude) of the attack, respectively. The

parameters /;’s could be correlated over time, while d; and ¢; are assumed to be zero-mean to make
the attack stealth.

Under the above assumptions, we can also guarantee the high-probability exact recovery when the
sample size T is sufficiently large.

Theorem 5 (Exact recovery for Lipschitz basis function). Suppose that Assumptions Bl hold and
define k. := oL/ > 1. If the sample complexity T satisfies

wos{ = e (o) e (5] ] |
(14)

T>06

then A is the unique global solution to problem equationwith probability at least 1 — §.

Theorem [5]provides a non-asymptotic sample complexity bound for the case when the basis function
is Lipschitz continuous. As a special case, when the basis function is f(z) = z and the attack vector
d; obeys the Gaussian distribution N'(0,,, O'QIn) conditional on F;, we have x = 1. Compared with
Theorem 3] the dependence on attack probability p is improved from 1/[p(1 — p)?] to 1/[p(1 — p)].
which is a result of the stability condition (Assumption [5). In addition, the dependence on the
dimension m is improved from m? to m. Intuitively, the improvement is achieved by improving the
upper bound on the norm || f(z;)||2. In the bounded basis function case, the norm is bounded by
v/mB; while in the Lipschitz basis function case, the norm is bounded by o L with high probability,
which is independent from the dimension m. Finally, the sample complexity bound grows with the
parameter k = o L/ \ and the gap 1 — pL, which is also consistent with the intuition.

On the other hand, we can construct counterexamples showing that when the stability condition
(Assumption [5) is violated, the exact recovery fails with probability at least p.

Theorem 6 (Failure of exact recovery for unstable systems). There exists a system such that Assump-
tions 4 and @are satisfied but for all T > 1, the ground truth A is not a global solution to problem
equation|3|with probability at least p[1 — (1 — p)T—1]

6 NUMERICAL EXPERIMENTS

In this section, we implement numerical experiments for the Lipschitz basis function cases to verify
the exact recovery guarantees in Section[5] Due to the page limitation, the descriptions of the basis
functions and the results for the bounded basis function case are provided in Appendix. More
specifically, we illustrate the convergence of estimator equation 2] with different values of the attack
probability p, problem dimension (n, m) and spectral norm p. In addition, we numerically verify the
necessary and sufficient condition in Section 3]
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Figure 1: Loss gap, solution gap and optimality certificate of the Lipschitz basis function case with
attack probability p = 0.7,0.8 and 0.85.
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Figure 2: Loss gap, solution gap and optimality certificate of the Lipschitz basis function case with
dimension (n, m) = (3,3),(5,5) and (7, 7).

Evaluation metrics. Given a trajectory {xo, ..., 21}, we compute the estimators

AT ¢ argAmin gr(A), vT'e{1,...,T},

ER" Xm

where we define the loss function g7 (A) := tT:'gl l|xs+1 — Af(x¢)||2- In our experiments, we
solve the convex optimization by the CVX solver |(Grant & Boyd (2014). Then, for each T”, we
evaluate the recovery quality by the following three metrics:

« The Loss Gap is defined as g7/ (A) — g7/ (Ap). The ground truth A is a global solution if
and only if the loss gap is 0.

« The Solution Gap is defined as | A — Az || z. The ground truth A is the unique solution
only if the solution gap is 0.

* The Optimality Certificate is defined as
min Y | Zf(xi)lla— Y df Zf(zi) st | Z]p <1,
e

ZEcRnxm
te tek

which is a convex optimization problem and can be solved by the CVX solver. The ground
truth is a global solution if and only if the optimality certificate is equal to 0.

We note that it is not possible to evaluate these metrics in practice, since we do not have access to the
ground truth A and the attack vector d;. We evaluate the metrics in our experiments to illustrate the
performance of the estimator equation[2]and the proposed optimality conditions. For each choice of
parameters, we independently generate 10 trajectories using the dynamics equation [T]and compute
the average of the three metrics.

Results. Since we need to solve estimator equation [2] many times (for different trajectories and
steps T"), we consider relatively small-scale problems. In practice, the estimator equation [2|is only
required for 77 = T and we only need to solve a single optimization problem. As a result, estimator
equation 2] can be solved for large-scale real-world systems since it is convex and should be solved
only once.

We first compare the performance of estimator equation [2] under different values of the attack
probability p. We choose T' = 500, n = 3 and p € {0.7,0.8,0.85}. Additionally, we set the upper
bound p to be 1, which guarantees the stability condition (Assumption [3). The results are plotted
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Figure 3: Loss gap, solution gap and optimality certificate of the Lipschitz basis function case with
spectral norm p = 0.5,0.95 and 1.5.

in Figure[l] It can be observed that both the loss gap and the solution gap converge to 0 when the
number of samples 7" is large, which implies that the estimator equation [2] exactly recovers the
ground truth A when there exists a sufficient number of samples. Moreover, the optimality certificate
converges to 0 at the same time as the solution gap, which verifies the validity of our necessary and
sufficient condition in Sections [2]and [3] Furthermore, the required number of samples increases with
probability p, which is consistent with the upper bound in Theorem 3

Next, we show the performance of estimator equationwith different dimensions (n,m). We choose
T =500,p =0.75, p = 1land n € {3,5,7}. The results are plotted in Figure[2] We can see that
when the problem dimension (n,m) is larger, more samples are required to guarantee the exact
recovery. This observation is also consistent with our bound in Theorem [3]

Finally, we illustrate the relation between the sample complexity and the spectral norm p. In this
experiment, we choose T' = 100, p = 0.75 and n = 3. To avoid the randomness in the spectral
norm || Al|2, we set singular values of Atobe o3 = --- = 0, = p € {0.5,0.95,1.5}. For the case
when p = 1.5, we terminate the simulation when ||z;||2 > 104, which indicates that the trajectory
diverges to infinity and this causes numerical issues for the CVX solver. The results are plotted in
Figure[3] We can see that the required sample complexity slightly grows when p increases from 0.5 to
0.95, which is consistent with Theorem [5] In addition, the system is not asymptotically stable when
p = 1.5 and Assumption [3]is violated. The explosion of the system (namely, [|z.||> — o0) leads
to numerical instabilities in computing the estimator equation[2] With that said, it is possible that
estimator equation [2]still achieves the exact recovery with large values of p, when a stable numerical
method is applied to compute the estimator equation 2] This does not contradict with our theory since
Theorem 5| only serves as a sufficient condition for the exact recovery.

7 CONCLUSION

This paper is concerned with the parameterized nonlinear system identification problem with ad-
versarial attacks. The nonsmooth estimator equation 2] is utilized to achieve the exact recovery
of the underlying parameter A. We first provide necessary and sufficient conditions for the well-
specifiedness of estimator equation [2] and the uniqueness of optimal solutions to the embedded
optimization problem equation [3] Moreover, we provide sample complexity bounds for the exact
recovery of A in the cases of bounded basis functions and Lipschitz basis functions using the proposed
sufficient conditions. For bounded basis functions, the sample complexity scales with m3n in terms
of the dimension of the problem and with p~1(1 — p)~2 in terms of the attack probability up to a
logarithm factor. As for Lipschitz basis functions, the sample complexity scales with mn in terms
of the dimension of the problem and with max{(1 — p)~2,p~!(1 — p)~!'} in terms of the attack
probability up to a logarithm factor. Furthermore, if the sample complexity has a smaller order than
p~1(1 — p)~L, the high-probability exact recovery is not attainable. Hence, the term p~—1(1 — p)~!
in our bounds is inevitable. Lastly, numerical experiments are implemented to corroborate our theory.
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