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ABSTRACT

Long-context models (LCMs) have demonstrated great potential in processing
long sequences, facilitating many real-world applications. The success of LCMs
can be attributed to their ability to locate implicit critical information within the
context for further prediction. However, recent research reveals that LCMs are of-
ten susceptible to contextual noise, i.e., irrelevant tokens, that can mislead model
attention. In this paper, we conduct a fine-grained analysis of the context noise
and propose an effective metric, the Integrated Gradient (IG) score, to detect and
quantify the noise information within the context. Our findings reveal that even
simple mitigation of detected context noise can substantially boost the model’s
attention on critical tokens and benefit subsequent predictions. Building on this
insight, we propose Context Denoising Training (CDT), a straightforward yet ef-
fective training strategy that improves attention on critical tokens while reinforc-
ing their influence on model predictions. Extensive experiments across four tasks,
under both context window scaling and long-context alignment settings, demon-
strate the superiority of CDT. Notably, when trained with CDT, an open-source
8B model can achieve performance (50.92) comparable to GPT-4o (51.00).

1 INTRODUCTION

More Efficient

Figure 1: Comparative overview of model perfor-
mance on real-world long-context tasks and per-
formance gain per billion tokens among different
training methods. The bubble size indicates the
relative training data volume.

The ability to handle long input sequences has
become a fundamental requirement for large
language models (LLMs), with cutting-edge
models capable of processing context lengths
exceeding millions of tokens (Team et al., 2024;
MiniMax et al., 2025; Meta, 2025; Qiu et al.,
2025b). This advancement eliminates the need
for complex toolchains and intricate workflows,
e.g., RAG (Yu et al., 2024), and significantly
enhances real-world applications, such as LLM
agent (Luo et al., 2025; Xi et al., 2025) and
project code analysis (Fang et al., 2024a).

Recent studies indicate that LCMs frequently
fail when processing long-context tasks (Hsieh
et al., 2024; Kuratov et al., 2024; Tang et al.,
2024b; Bai et al., 2024c), and the open-source
community mitigates such an issue mainly by
using sufficient high-quality synthetic long-
context data to post-train the model (Fu et al.,
2024a; Chen et al., 2024b; Gao et al., 2024a). However, these approaches are proven to be either
inefficient or ineffective under limited resources. A controlled study in Appendix A shows that,
when trained on 2B tokens using the Llama3-8B backbone, Prolong-64K-Base (Gao et al., 2024b)
improves its average score on 12 real-world tasks from 25.5 to 29.13-equivalent to a gain of 1.8
points per additional 1B tokens—whereas LongCE (Fang et al., 2024b) achieves 32.91 points, cor-
responding to a gain of 3.7 points per 1B tokens. As illustrated in Figure 1, the training efficiency
decreases as the training context length increases to 128K, e.g., Prolong-128K.
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One of the possible reasons is that existing works overlook the fact that LCMs process long input in
an implicit retrieval-then-generation manner, i.e., first identifying key information within the con-
text and then further generating with the “retrieved-context” (Liu et al., 2024b; Wu et al., 2024;
Li et al., 2024a; Qiu et al., 2025a). However, the critical tokens in the “retrieved-context” might
be overwhelmed by excessive irrelevant tokens (Ye et al., 2024). Thus, the key to achieving better
long-context modeling is effectively detecting the critical tokens, diminishing the effect of irrele-
vant tokens (context noise), and strengthening the connection between model prediction and critical
tokens. Conventional language modeling training strategy, which relies on uniform token-wise su-
pervision through cross-entropy loss, is fundamentally inefficient for long-context modeling because
it cannot distinguish critical tokens from irrelevant tokens in lengthy inputs.

In this work, we first investigate the impact of context noise on long-context modeling. Specifically,
we propose a novel critical token detection metric, the Integrated Gradient (IG) score, based on the
concept of information flow (Wang et al., 2023). Our approach achieves a remarkable accuracy
improvement in the critical token detection task compared to the traditional attention-based method.
Then, we leverage the IG score to manually reduce the context noise by subtracting the gradient
values associated with irrelevant tokens from the token embeddings. We find that simply suppressing
context noise at the model input allows LCMs to focus more effectively on critical tokens.

Built upon the above analysis, we further propose a simple yet effective Context Denoising Train-
ing (CDT) strategy, which performs denoising at the model input, allowing the model to focus more
effectively on critical tokens to better establish the connection between critical tokens and genera-
tion. To adapt CDT to long-sequence training and further improve training efficiency while reducing
peak memory consumption, we theoretically derive a method that leverages gradients with respect to
token embeddings (Appendix C)—rather than directly using IG scores mentioned above—as identi-
fiers to detect noisy tokens. Notably, our CDT approach is analogous to the Signal Denoising in the
digital signal processing field (Kopsinis & McLaughlin, 2009), where noise reduction in the input
sequence can enhance the model’s attention to essential parts within the context. Experiments on two
essential long-context training scenarios, i.e., context window scaling and long-context alignments,
across 4 different types of long-context tasks (real-world tasks, language modeling task, synthetic
tasks, and long-form reasoning tasks) exhibit the superiority of our method. Our CDT can consis-
tently surpass the other methods with an average gain of 2 points on 12 real-world long-context tasks
in LongBench-E Bai et al. (2024b) and 13 long synthetic tasks in RULER (Hsieh et al., 2024). Ad-
ditionally, with CDT, an open-source Llama3.1-8B-Instruct model can achieve comparable results
with GPT4o on real-world tasks (50.92 points v.s. 51.00 points on LongBench-E testing set).

2 RELATED WORK

2.1 RETRIEVAL-THEN-GENERATION MECHANISM OF LONG-CONTEXT MODELS

Existing research has demonstrated that LCMs handle long-context in a “retrieval-then-generation”
manner, where LCMs first retrieve salient information within the context and utilize this information
for further prediction (Wu et al., 2024; Tang et al., 2024b; Zhao et al., 2024b; Qiu et al., 2025a).
However, Liu et al. (2024b) observes the “lost-in-the-middle” phenomenon of LCMs, which high-
lights that LCMs exhibit a positional bias toward locating key information. Furthermore, Ye et al.
(2024) and Fang et al. (2024b) discover that excessive irrelevant long-context can overwhelm criti-
cal information, thereby impairing the performance of the model. To mitigate the above issue, some
works have explored solutions from various perspectives, including model architecture improve-
ments (Ye et al., 2024; Xiao et al., 2024a), enhancements in information extraction mechanisms (Li
et al., 2024a; Zhang et al., 2024a), and optimization of training objective (Fang et al., 2024b; Bai
et al., 2024a). In this paper, we revisit critical information location from the context denoising as-
pect, helping the model establish better connections between detected salient tokens and predictions.

2.2 LONG-CONTEXT POST-TRAINING

Generally, the purposes of long-context post-training can be categorized into two types: context win-
dow scaling and long-context alignment. For context window scaling, prior studies have managed to
extend the context length of LLMs with limited computational cost compared to pretraining. It can
be further categorized into two approaches: positional extrapolation(Chen et al., 2023a; Peng et al.,
2023; Ding et al., 2024; Liu et al., 2024a; Zhao et al., 2024a; Zhang et al., 2024c; Fu et al., 2024b;
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Fact 1: Daniel journeyed to the bathroom.
Fact 2: Daniel picked up the apple.
Fact 3: Daniel went to the garden.

Fact 4: Mary journeyed to the garden.
Fact 5: John went back to the bedroom.
Fact 6: Daniel took the milk.

"matata", "safari", "asante",
"fjörður", "ég", "við", "þetta"
! " # $ % & ' ( )

Supporting Facts Interference Facts Low-frequency Words

Where was the apple
before the garden?

Question

The apple was in
the bathroom.

Prediction

random injection among Irreverent Documents

Long Context

Fact 1 Fact 2 Fact 3Fact 4
Fact 5 Fact 6"% "ég" "við" …

What affects the model prediction? Integrated Gradient (IG) score & Fact Retrieval (FR) score

Figure 2: Task format of our preliminary study, which requires models to predict the final an-
swer by reasoning through multi-hop Supporting Facts and distinguishing from the Interference
Facts. Simultaneously, the model should also resist the influence of Irreverent Documents and Low-
Frequency Words. More details are shown in Appendix B.

Lu et al., 2024; Wang et al., 2025b; Ge et al., 2025; Xiong et al., 2024; Chen et al., 2024a; Liu et al.,
2024c) and model architecture modification(Chevalier et al., 2023; Chen et al., 2023b; Xiao et al.,
2024b; Bertsch et al., 2024; Yuan et al., 2025; Lu et al., 2025). Another line of work focuses on im-
proving models that already support long-context windows, aiming to enhance the model’s ability
to capture critical information from lengthy contexts (Liu et al., 2024b; An et al., 2024b; Gao et al.,
2024c; An et al., 2024a) and to address alignment challenges such as hallucination (Zhang et al.,
2024b; Tang et al., 2024a; Li et al., 2024b). However, to date, no existing work has simultaneously
considered both training efficiency and effectiveness under the two aforementioned settings. Only a
few preliminary studies (Lin et al., 2024; Fang et al., 2024b; Helm et al., 2025; Wang et al., 2025a)
have explored token re-weighting as a trivial method to achieve a limited trade-off.

3 PRELIMINARY STUDY

In this section, we analyze the influence of context noise, i.e., irrelevant tokens, on long-context
modeling. More concretely, we first design critical token detection metrics in §3.1 and study the
impact of context noise restraint on long-context modeling in §3.2. For evaluation, we construct a
synthetic long-form reasoning task as a controlled proxy to enable precise assessment, due to the lack
of real-world testing data with explicitly labeled critical token positions. We conduct experiments
with the Llama3.1-8B-Instruct (Meta, 2024) model, which owns a 128K context window size.

Synthetic Task Format As shown in Figure 2, there are four types of tokens in the context: sup-
porting facts, interference facts, low-frequency words, and irrelevant documents. The model’s task
is to predict the correct answer (e.g., “bathroom”) by reasoning over supporting facts. The interfer-
ence facts are seemingly related to the answers and are randomly inserted into the context, aiming to
distract the models from providing the correct response. We treat both supporting facts and interfer-
ence facts as critical tokens, as they are both highly correlated with the answer. The key distinction
lies in semantic validity: LCMs must discern which tokens are genuinely supportive — and which
are misleading — to predict accurately. Besides, models should also prevent critical tokens from be-
ing overwhelmed by irrelevant tokens, including excessive irrelevant documents and low-frequency
words. The total context length of each sample ranges from 0K to 64K.

3.1 CRITICAL TOKENS DETECTION

Given the model input X = {xi}ni=1 which contains n tokens and the ground truth Y = {yj}mj=1
which contains m tokens, we design two metrics to reflect the influence of context noise: Fact
Retrieval (FR) score and Integrated Gradient (IG) score.

Attention Distribution Metric: FR score Existing works primarily identify critical tokens based
on the attention distribution (Wu et al., 2024; Gema et al., 2024; Xiao et al., 2024a). Similarly,
we design the Fact Retrieval (FR) score for our synthetic task based on the attention distribution to
quantify the model’s attention allocated to different types of tokens. At each step of model prediction
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Critical Tokens

Irrelevant Tokens

(a) Attention distribution reflected by FR score.

Critical Tokens

Irrelevant Tokens

(b) Information flow reflected by average IG score.

Figure 3: Comparison between attention distribution and information flow on the critical token loca-
tion task. A significant difference in the distributions of critical and irrelevant contexts is revealed.
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Figure 4: Attention distributions before and after
manual context denoising. After context denois-
ing, attention scores on critical tokens boost ×10
times, and show a reduction on irrelevant tokens.
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Figure 5: Relationship between attention IG
score and L2-normalized embedding gradients
on different types of tokens. It shows a propor-
tional correlation.

yj , if the attention score of xi ranks within the top-k across the entire sequence, we define xi as
being attended by an attention head h in the l-th model layer. Let sj be the set of tokens attended
by an attention head h at the generation step j, and Tr refers to the context token set of type r ∈
{sup, inter, irr, low}, e.g., Tsup denotes tokens of the supporting facts. The FR score FR

(r)
h,l of the

h-th attention head in the l-th model layer can be written as:

FR
(r)
h,l =

| sj ∩ Tr |
| Tr |

.

We average FR scores from all heads to reflect the attention distribution of tokens in Tr.

Information Flow Metric: IG score To discover the attention interaction among tokens, i.e.,
information flow (Simonyan et al., 2013), we employ the Integrated Gradient (IG) technique (Wang
et al., 2023). We define the IG score of h-th head in model’s l-th layer on segment Tr below:

IGh,l = AT
h,l⊙ | ∂Lθ(Y |X)

∂Ah,l
|, IG

(r)
h,l =

1

|Tr|
∑

xi∈Tr

∑
yj∈Y

IGh,l[i, j], (1)

where Lθ(Y |X) is the model’s prediction loss on Y , and Ah,l denotes the attention matrix of the
h-th head in the l-th layer. The resulting IG score is a matrix, where each entry IGh,l[i, j] represents
the estimated bidirectional information flow between token xi and token yj . To assess the overall
impact of Tr to Y , we compute the total contribution of tokens in Tr to the final prediction Y , i.e.,
IG

(r)
h,l and average across all attention heads and layers as the final score, i.e., IG(r). A higher IG

score IG(r) indicates a larger contribution from Tr to Y . Details are shown in Appendix B.2.

Observation For a clear comparison, we normalize the computed FR and IG scores, and plot
them in Figure 3. We find that the IG score detects significantly less noise (irrelevant documents
and low-frequency tokens) compared to the FR score on critical token detection. Specifically, as
shown in Figure 3a, attention-based metrics reflect the distribution of tokens that the model focuses

4
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Figure 6: Our proposed CDT (context denoising training) method. It consists of two steps: (1) de-
tecting critical tokens within the long context, and (2) utilizing the denoised context for further em-
phasizing training. Notably, CDT can be understood as an Expectation Maximization (EM) process,
where the model detects noise based on information flow and improves the training by diminishing
the noise, thereby enhancing the information flow.

on during the generation process. When the model generates correct responses, its attention focuses
more on supporting facts; when the model generates wrong responses, its attention focuses more on
interference tokens. Yet, in both cases, the FR score indicates that the model significantly focuses
on irrelevant tokens. As for the IG score shown in Figure 3b, regardless of whether the response is
correct or not, the IG score for critical tokens is significantly higher than that for irrelevant tokens.

3.2 EFFECT OF MANUAL CONTEXT NOISE RESTRAINT

Considering that directly suppressing context noise in attention is very challenging, we aim to re-
strain the noise from the input perspective. We first identify irrelevant tokens by computing the IG
score on each token and treating the token with the IG score lower than a threshold as the noisy
token. Then, we manually suppressed their influence by subtracting the corresponding gradients
from their input embeddings. This is motivated by the fact that the model has largely converged on
these noisy tokens, resulting in their gradients exhibiting low sensitivity. As shown in Figure 4, we
observe that after manual context denoising, the attention scores on critical tokens increase nearly
×10 times, while the attention scores on irrelevant contextual tokens exhibit a slight decrease. It
is worth noting that this operation can be roughly analogized to denoising in the digital signal pro-
cessing field (Kopsinis & McLaughlin, 2009), as it reduces noise in the input sequence, allowing the
model to focus more effectively on the under-fitting critical tokens.

4 CONTEXT DENOISING TRAINING

Based on the above observation, we propose a simple yet effective Context Denoising Train-
ing (CDT) strategy. Building upon the conventional language modeling objective, i.e., cross-entropy
loss, CDT explicitly suppresses context noise during training to strengthen the model’s attention on
critical tokens and help establish a better connection between critical tokens and the final prediction.
It involves two key steps: (1) Critical Token Detection and (2) Emphasizing Training.

4.1 CRITICAL TOKEN DETECTION

Intuitively, we can first apply IG score to detect the critical tokens for the subsequent training.
However, computing the IG score in long-context scenario is highly GPU memory-intensive, as it
requires storing full attention gradients and weights from every model layer across the entire se-
quence. Even with 8×92GB GPUs (H20), the maximum computable sequence length for the
IG score is limited to 12K, making it infeasible to generalize to a longer sequence. Therefore, we
designed a simple alternative implementation, which approximates the IG score with token embed-
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ding gradients1. We derive a proportional relationship between the token embedding gradient and
the IG score, and visualize the results in Figure 5. A detailed derivation is provided in Appendix C.

As shown in Figure 6, given the input sequence X = {xi}ni=1, label Y , and the model fθ, we first
freeze the model parameters, keeping only the gradients of the input token embeddings Eϕ(X),
where ϕ ⊂ θ. We then obtain the gradient of each token embedding through the computation of
the cross-entropy (CE) loss followed by a loss back-propagation. To identify the critical tokens,
we employ an identifier I(·) to detect tokens with large gradients, i.e., critical tokens, in the se-
quence. Specifically, we define the calculation of the significance of each token as comparing its
L2-normalized embedding gradient against the average of the computed gradients of all tokens,
which can be written as:

I(xi) =

{
1, if ||∇Eϕ(xi)LCE(xi)||2 < t

0, if ||∇Eϕ(xi)LCE(xi)||2 ≥ t
, t =

1

n

n∑
i=1

||∇Eϕ(xi)LCE(xi)||2, (2)

where I(xi) = 1 means xi is the irrelevant token (noise); otherwise, it is critical token.

4.2 EMPHASIZING TRAINING

To suppress the context noise, we leverage the computed gradients to manipulate the irrelevant token
embeddings, leaving critical tokens unchanged. The denoised token embedding can be denoised as:

Eϕ(xi)
′ = Eϕ(xi)− I(xi)∇Eϕ(xi) × lr × β, (3)

where lr is the learning rate and β is the hyper-parameter controlling the denoising level. Then, we
unfreeze the model and use the denoised token embeddings as the model input for further training,
which we refer to as Emphasizing Training. The loss function can be formulated as:

LCDT (X,Y ) = LCE (fθ (Eϕ(X)′) , Y ) . (4)

Remark Notably, the above process is conducted online during training rather than pre-computed
offline. As shown in Figure 6, although this introduces additional computational overhead, CDT
bootstraps the model’s long-context capabilities in an Expectation-Maximization (EM) manner: the
model first identifies the critical tokens based on information flow and improves the training by
diminishing the noise, thereby ultimately enhancing the information flow. In § 6.3, we will demon-
strate that, by training with CDT, the model can continuously enhance its performance compared to
conventional training objectives during the post-training stage.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Evaluation We evaluate models on 4 different types of long-context tasks, including real-world
tasks (LongBench-E (Bai et al., 2024b), language modeling task (LongPPL (Fang et al., 2024b)),
long-form reasoning task (BABILong (Kuratov et al., 2024)), and synthetic tasks (RULER (Hsieh
et al., 2024)). We compare CDT against existing widely-used methods on two types of models: (1)
short-context models (SCMs) that require context window scaling; (2) long-context models (LCMs)
that require long-context alignment. In our main experiments, we select Llama-3-8B-Base model
as the SCM, of which context window size is scaled ×8 times (64K). For LCMs, we select Llama-
3.1-8B-Base and Llama-3.1-8B-Instruct models. We provide more evaluation and baseline details
in Appendix D, and show more evaluation results, such as generalizing CDT to more models,e.g.,
Qwen-series (Yang et al., 2024; 2025)), in Appendix E. We evaluate against current strong LCMs,
as well as diverse long-context enhancement methods across training and inference paradigms —
including token-wise reweighting (LongCE (Fang et al., 2024b)), KV-cache prefilling (Lai et al.,
2025), SFT (Chen et al., 2024b), and RL-based optimization (Tang et al., 2024a).

1We choose token embeddings for 3 reasons: (1) they are easily accessible, (2) the embedding gradients are
directly associated with tokens, and (3) they require much less GPU memory compared to attention gradients.
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Table 1: Evaluation results on LongBench-E benchmark. To ensure fairness, we place existing
works that do not use the same training data with us in the top group. Our method is implemeted
under three settings: context-window scaling (CWS), language modeling (LM), and SFT.

Models Type S-Doc QA M-Doc QA Summ Few-shot Code Avg.
ProLong-512K-Instruct (Gao et al., 2024b) SFT 40.07 41.24 28.27 64.21 63.08 47.37
NExtLong-512K-Instruct (Gao et al., 2025) SFT 43.47 43.21 29.88 60.87 44.35 44.35
Llama-3.1-8B-SEALONG (Li et al., 2024b) DPO 49.45 44.69 30.96 61.54 57.85 48.90
GPT-4o (version: 2024-11-20) - 51.43 60.89 14.78 66.37 61.25 51.00
Results on Short-context Model (all SCMs share the same training data, 8× context window scaling.)

Llama-3-8B-Base (8K) - 25.20 21.52 20.18 32.67 27.92 25.50
+ YaRN (Peng et al., 2023) - 24.37 19.86 24.32 29.99 31.67 26.04
+ CE CWS 25.29 21.49 20.36 32.69 27.76 34.62
+ LongCE (Fang et al., 2024b) CWS 17.13 9.59 25.00 59.57 61.83 34.62
+ CDT (ours) CWS 17.03 24.87 26.61 61.89 66.14 39.31

Results on Long-context Base Model (all LCMs share the same training data.)

Llama-3.1-8B-Base - 18.20 13.19 21.13 63.80 69.32 37.13
+ CE LM 17.10 10.82 26.38 62.85 70.62 37.55
+ LongCE (Fang et al., 2024b) LM 19.14 10.87 28.63 59.63 66.24 36.90
+ CDT (ours) LM 19.15 13.01 29.23 63.63 69.44 38.89

Results on Long-context Instruct Model (all LCMs use same source data with different formats.)

Llama-3.1-8B-Instruct - 48.58 45.19 30.30 61.73 57.26 48.61
+ Contriever (Izacard et al., 2021) RAG 42.63 45.55 32.48 62.15 41.85 44.93
+ FlexPrefill (Lai et al., 2025) KV-Prefill 47.02 45.55 27.37 60.97 55.97 47.38
+ X-Attention (Xu et al., 2025) KV-Prefill 48.32 45.60 26.93 61.83 56.39 47.81
+ SFT SFT 49.23 44.86 30.39 61.96 57.14 48.72
+ LOGO (Tang et al., 2024a) DPO 49.63 45.39 30.44 62.39 57.19 49.01
+ CDT (ours) SFT 50.11 46.04 30.34 62.49 65.64 50.92

Training and Datasets For context window scaling training on SCM and post-training on LCM-
Base, we apply PG-19 (Rae et al., 2019) as the training data. For each training sample, we organize it
into 64K tokens and collect 10,000 training samples. For long-context alignment on LCM-Instruct,
we utilize data sampled from LongMiT (Chen et al., 2024b) and LongAlpaca (Chen et al., 2023c),
covering 8,000 samples with context lengths ranging from 16K to 128K. Based on the analysis
experiment (Section 6.2), we set β = 5 in Equation 3 for Llama-3.1 and Llama-3 models in the
main experiments. More dataset processing and implementation details are shown in Appendix D

5.2 RESULTS

Real-world Long-context Understanding Tasks LongBench-E is a comprehensive benchmark
suite encompassing 12 real-world datasets and various context lengths spread across 5 categories.
As shown in table 1, we observe that: (1) CDT achieves the best performance among all the sub-
tasks. For SCMs, with the same training data, CDT achieved the best performance, outperforming a
competitive counterpart (LongCE) by nearly 4.7 points on average. (2) For LCM-Base models, we
find when post-training on the base model with language modeling training objective, CDT is the
only method that ensures no significant performance drop across all subtasks, and it even achieves
some improvements. In contrast, using standard CE or LongCE objective leads to significant per-
formance drops on some sub-tasks. For example, LongCE results in a nearly 4-point drop compared
to the backbone model on the Few-shot subtask. (3) As for the LCM-Instruct models (the bottom
group), we find that, due to its remarkable performance, existing post-training methods do not bring
significant improvements. For instance, Llama-3.1-8B-SEALONG (48.90) achieves only around
slight 0.3-point average improvement compared to Llama-3.1-8B-Instruct (49.61). However, our
CDT achieves an average improvement of more than 2 points compared to that of the backbone
model across all tasks. We provide more analysis of results in Appendix E.2.

Long Synthetic Task and Language Modeling For the long synthetic task, we evaluate the
model’s performance under 32K, 64K, and 128K context lengths. We choose 13 sub-tasks from
the RULER benchmark and report the average results. For the language modeling task, we calculate
LongPPL (Fang et al., 2024b) on the GovReport dataset (Huang et al., 2021). Notably, LongPPL
can potentially reflect the model’s ability to locate salient tokens in the long context. More imple-
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Table 2: Evaluation results on long synthetic tasks (RULER), language modeling, and long-form
reasoning (BABILong). For RULER, we report the average scores across 13 sampled sub-tasks.
To calculate LongPPL, we apply the Llama3-8B-Base model as the evaluator. For BABILong, we
report the model reasoning capability from short context (4K) to long context (128K).

Models RULER Language
Modeling BABILong

32K 64K 128K LongPPL 4K 8K 16K 32K 64K 128K Avg.
ProLong-512K-Instruct 91.68 87.53 80.03 2.97 44.00 45.40 39.20 35.00 35.00 29.80 36.88
NExtLong-512K-Instruct 90.27 84.62 81.74 3.24 39.60 38.60 36.20 35.60 32.00 22.00 38.75
Llama-3.1-8B-SEALONG 91.32 85.97 77.33 3.09 50.20 50.80 42.00 40.80 39.00 31.00 40.72

Llama-3-8B-Base - - - > 100 33.40 26.60 4.80 0.00 0.20 - 13.00
+ YaRN 39.58 31.46 - 3.55 35.20 29.80 24.40 20.20 17.60 - 25.44
+ CE 36.01 13.82 - 3.90 36.60 34.80 26.60 28.20 21.60 - 29.56
+ LongCE 84.02 71.50 - 3.55 36.00 34.80 34.60 32.60 29.40 - 33.48
+ CDT (ours) 84.76 73.40 - 3.04 38.40 34.60 34.80 31.40 29.60 - 33.76

Llama-3.1-8B-Base 89.99 81.96 70.60 3.22 35.00 33.20 27.80 28.00 25.20 24.40 28.93
+ CE 86.59 80.87 70.44 3.28 39.20 31.60 31.40 26.60 26.80 19.40 29.17
+ LongCE 87.65 81.79 70.79 3.24 37.80 33.40 33.60 32.60 27.60 24.60 31.60
+ CDT (ours) 90.36 82.23 74.12 2.10 38.80 36.60 33.20 29.40 28.20 28.20 32.40

Llama-3.1-8B-Instruct 92.49 85.98 76.71 4.05 46.60 49.60 42.40 38.80 37.00 29.60 40.67
+ SFT 92.49 86.22 77.33 3.31 47.00 49.40 43.60 41.20 37.40 30.40 41.50
+ LOGO 92.54 86.93 77.68 4.11 48.20 50.00 42.60 42.20 37.40 31.60 42.00
+ CDT (ours) 93.08 88.01 78.72 2.36 51.40 51.20 41.60 44.00 38.60 33.00 43.30

mentation and calculation details are illustrated in Appendix D.2. We show the evaluation results
in Table 2,where our CDT method achieves the best model performance on the RULER benchmark
from 32K to 128K settings. Besides, in the language model task, CDT exhibits the lowest LongPPL,
indicating the great potential of CDT to locate salient tokens.

Short-context & Long-form Reasoning Tasks We evaluate the model’s long-form reasoning ca-
pabilities, as well as its short-context capability, on BABILong, a synthetic task that requires models
to reason through multiple supporting facts hidden in contexts of varying lengths (from 4K to 64K).
As shown in Table 2, our CDT achieves the highest overall score in each group. Besides, we observe
that our CDT does not compromise the model’s performance on short-context tasks. For instance,
in the 4K and 8K lengths, CDT achieves either the best or comparable results compared to other
methods and backbone models.

6 ABLATION STUDY

In this section, we compare the accuracy of salient token detection of CDT with other detection
methods in §6.1. Then, we show the impact of context denoising on the training process in §6.2.
Finally, we elaborate on the training budget of our CDT method in §6.3. Notably, to help better
understand the effectiveness of our CDT method, we also analyze the attention map patterns to
reveal how CDT influences the model’s attention distribution in Appendix F.

6.1 COMPARISON OF CRITICAL TOKEN DETECTION

We compare three different detection methods, including LongPPL, attention-based detection, and
our CDT, on our synthetic task (Figure 2). For attention-based and our CDT methods, we treat the
tokens with the top-30 highest attention scores and L2 normalized gradient of embedding as the
detected tokens. As shown in Figure 7, we can observe that the attention-based method can detect
a high proportion of supporting tokens and interference tokens, but it also detects a large number
of irrelevant tokens. On the other hand, while LongPPL can effectively suppress the detection of
irrelevant tokens, it struggles to locate supporting tokens. Our CDT method not only identifies the
largest number of critical tokens but also effectively suppresses the detection of irrelevant tokens.
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Figure 7: Comparison of critical token detection
capability among different methods on our syn-
thetic task. CDT achieves best performance.
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Figure 8: Impact of context denoising and com-
parison of the effect of learning rate on attention
scores assigned to critical tokens in CDT.
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Figure 9: The performance improvement and
training duration for every interval of 50 steps.
With only a modest cost in training time, CDT
significantly boosts the performance of LCM.
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Figure 10: Illustration of EM process of our
CDT method, where both the information flow
and attention distribution progressively improve
within the training steps.

6.2 IMPACT OF CONTEXT DENOISING STRENGTH

We visualize the changes in attention scores allocated to critical tokens during the CDT training
process under different learning rates and the same β = 1 settings. As shown in Figure 8, we ob-
serve that the attention scores on critical tokens have already increased significantly after the context
denoising step. Furthermore, after the Emphasizing Training stage, there is an additional improve-
ment. Additionally, we observe that a larger learning rate results in more pronounced improvements,
further enhancing context denoising. However, a saturation point exists (e.g., at 8e-5), beyond which
the benefits plateau. Based on this observation, we adopt a learning rate lr of 1e-5 and set β = 5
in our main experiments, where lr × β = 5e − 5. We also recommend viewing the attention map
provided in Appendix F, which shows that CDT enables the model to focus more on key information
within long context, without substantially changing the original attention distribution.

6.3 TRAINING BUDGETS AND EM PROCESS

Compared to conventional long-context training, which performs one forward and one backward
pass to update all parameters, CDT introduces an additional noise detection step. Critically, in long-
context training, backward passes are typically 2–3× slower than forward passes due to activation
recomputation (Shoeybi et al., 2019). Yet CDT adds merely one lightweight backward (where the
vast majority of model parameters are frozen) and one extra forward, resulting in minimal wall-clock
overhead relative to standard training. We compare CDT with SFT (single Forward-Backward)
and DPO (one batch contains pairwise samples) methods. As shown in Figure 9, we observe that
although CDT brings additional cost, i.e., approximately 0.5 hours in 8×A100 GPUs for every 50
steps compared with SFT, it consistently and largely improves the model performance within the 250

9
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training steps. With the same training steps, DPO only yields marginal improvements, while SFT
even demonstrates a decline in performance. We provide the total training duration in Appendix D.
Such a great improvement can be largely attributed to the EM process shown in Figure 10. Notably,
our approach exhibits a convergence boundary after approximately 250 steps.

7 CONCLUSION

Prior studies suggest that long-context models typically follow a retrieval-then-generation
paradigm, where the “retrieval context” may be overwhelmed by excessive irrelevant tokens. To
address this issue, we present a fine-grained analysis of contextual noise in long-context inputs. We
introduce a novel metric, the IG score, to effectively identify critical tokens, and observe that reduc-
ing contextual noise enables models to focus more precisely on critical tokens. Building on these
insights, we propose Context Denoising Training (CDT), a training strategy designed to both en-
hance the model’s attention to critical tokens and strengthen the association between salient tokens
and the model prediction. Experiments across 4 task types (including both short and long context
length) and different models demonstrate the superiority of our method. With CDT, an open-source
8B model can even achieve comparable performance with GPT-4o on real-world long-context tasks.

ETHICS STATEMENT

We confirm that this work adheres to ethical research practices. All data and LLMs used are publicly
available (including API format) and properly cited. No human subjects were involved. The Use of
LLM statement is illustrated in Appendix H.

REPRODUCIBILITY STATEMENT

All experimental settings, hyperparameters, and evaluation protocols are detailed in Section 5.1 and
Appendix D. Code, model checkpoints, and preliminary synthesis testing data will be released upon
publication. Experiments are conducted on 8×A100 GPUs with PyTorch, HuggingFace Transform-
ers (Wolf et al., 2020), Deepspeed (Rajbhandari et al., 2020) and LOOM-Scope (Tang et al., 2025).
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A ILLUSTRATION OF TRAINING EFFICIENCY OF CURRENT METHODS

Training efficiency comparisons across current long-context methods are inherently challenging:
performance gains typically exhibit diminishing returns with increased token budgets under long-
context training setting, and reported results often stem from divergent training setups — includ-
ing data composition, optimization hyper-parameters, and hardware configurations. These factors
render direct “gain-per-token” comparisons unreliable when conditions are unmatched. To fairly
compare training efficiency across methods — despite differing hyper-parameters and convergence
behaviors — we adopt a controlled proxy: average task gain per 1B tokens, measured under identical
data, optimizer, batch size, learning rate, and hardware (8 × A100 GPUs). Specifically, we compare
ProLong (Gao et al., 2024b) - one long-context SFT method, and LongCE (Fang et al., 2024b) -
one token-level re-weighting training method, on the Llama3-8B-Base model. As shown in Table 3,
we evaluate model performance on LongBench-E (12 real-world tasks) per 50 training steps (0.41B
tokens per 50 steps), and find that LongCE achieves a 3.7-point gain per 1B tokens versus ProLong’s
1.8-point gain per 1B tokens.

Table 3: Performance comparison between ProLong (SFT) and LongCE across training steps, where
each step contains the same training setting.

Method Step 0 Step 50 Step 100 Step 150 Step 200

ProLong (SFT) 25.50 27.32 28.15 28.44 29.13
LongCE (same data) 25.50 28.30 29.72 31.01 32.91

B PRELIMINARY STUDY DETAILS

B.1 PRELIMINARY TASK CONSTRUCTION

Task Selection We select 3-hop and 4-hop tasks based on qa3 tasks in the BABILong Benchmark
to build our datasets, as these tasks generally pose significant challenges for LLMs. However, it is
worth noting that the original BABILong qa4 samples do not truly require 4-hop reasoning to pro-
duce correct outputs. For example, a sample from this subset with 0k context is shown in Figure 11.
In this case, the task only requires attention to a single fact, “The bedroom is west of the bathroom”
to answer the question, while the first sentence serves as an interference fact. Even in terms of
keywords, the model only needs to focus on three keywords: “bathroom”, “west”, and “bedroom”
from the second sentence. Thus, we design our 4-hop dataset based on the BABILong qa3 source
data, with one sample shown in Figure 12. By carefully arranging the order of facts and reducing
the conditions of questions in the long context, we ensure that the model is required to search for all
four supporting facts in sequence to produce the correct output.

Table 4: Variable settings, where R. denotes random.

Hops Samples Permute Lengths
2 100 5 8K

3/4 R. R. 0k - 64k

Controlled Evaluation Data Synthesis We use the 4-hop task with non-zero context as an exam-
ple here. As shown in Table 4, all variables used for building data include the facts sample, the facts
permutation, and the context length. Firstly, we select source samples from the BABILong official
file “qa3_three-supporting-facts” as our base data. Then, we modify the original BABILong qa3
supporting facts following the pattern shown in Figure 13. Afterward, we add interference to these
four original facts while maintaining the relative order of the supporting facts. The process begins
by selecting a noise context of the appropriate length and inserting the facts into it. Specifically, we
divide the noise context into 10 equal-length chunks, leaving 10 candidate positions for the insertion
of the 4 supporting facts (excluding the tail). Next, we randomly select five permutations from the
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Table 5: Performance statistics of using different numbers of attention heads on our preliminary
synthetic task. Notably, we find that selecting the top-30 heads yields results that are nearly identical
to those obtained when using all attention heads.

Head Number Supporting Interference Irrelevant Low-frequency
Correct Wrong Correct Wrong Correct Wrong Correct Wrong

Top-30 0.21 0.11 0.07 0.17 0.72 0.72 0.00 0.00

All 0.20 0.13 0.09 0.15 0.71 0.72 0.00 0.00

full set of C4
10 candidate position permutations. After injecting noise, we randomly insert interfer-

ence facts, i.e., facts that are similar to the supporting facts but irrelevant, among all sentences. We
ensure that at least one interference fact is placed after the last supporting fact to test the model’s
robustness. To ensure the correctness of the samples, we make sure that the objects appearing in the
interference facts do not overlap with those in the supporting facts. Additionally, we ensure that the
number of interference facts is between one and two times the number of supporting facts to avoid
making the samples either too easy or too difficult. Finally, for all samples with the same context
length, we use the same noise context to maintain consistency. In the end, we randomly insert a few
emojis into the constructed context to test the sensitivity of the model to low-frequency tokens. For
the 3-hop task, we directly use the original qa3 task format from BABILong as the base, and the
subsequent processing follows a similar approach to the one described above for the 4-hop task.

One BABILong qa4 sample with 0k context

Input :
The bedroom is west of the office.
The bathroom is west of the bedroom.

Question:
What is west of the office?

Supporting Facts:
The bedroom is west of the office.

Ground truth:
bedroom

Figure 11: A BABILong qa4 sample with 0k context

B.2 DESIGN OF IG SCORE

Prior work (Wu et al., 2024) has shown that not all attention heads behave uniformly, i.e., some are
specialized for retrieval-like behaviors, while others are not. However, it is important to note that
these findings are primarily derived from studies focused on copy-oriented tasks, such as NIAH. In
contrast, our task involves reasoning and inference, which fundamentally differs from the objectives
of retrieval heads. As a result, the mechanisms for attending to relevant context in our setting cannot
be directly aligned with those used in retrieval-focused tasks. To further analyze the appropriate
number of attention heads to select, we conduct experiments where we select the top-k attention
heads (k = 30) that retrieve the most relevant information based on the attention scores (Table 5).
We find that the performance using only a subset of attention heads was highly consistent with
the results obtained by averaging over all attention heads. Therefore, for simplicity and ease of
deployment, we adopt the latter approach, i.e., averaging IG scores across all attention heads.
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One of our 4-hop samples with 0k context

Input :
Mary journeyed to the office.
Mike went to the office.
Mary got the apple.
Daniel picked up the football.
Daniel went back to the bedroom.
Mary journeyed to the bathroom.
Mary dropped the apple.
Jonh went to the bathroom.

Question:
Where was the apple’s location prior to the place where the apple was discarded, left or dropped?

Supporting Facts:
Mary journeyed to the office.
Mary got the apple.
Mary journeyed to the bathroom.
Mary dropped the apple.

Ground truth:
office

Figure 12: One of our 4-hop samples with 0k context

The pattern of our 4-hop sample

Supporting fact1: {x} {m} the {y1}
Supporting fact2: {x} {p} the {o}
Supporting fact3: {x} {m} the {y2}
Supporting fact4: {x} {d} the {o}

Question:
Where was the {o}’s location prior to the place where the {o} was discarded, left or dropped?

Ground truth:
{y1}
Explanation:
{x} : a character name, selected from {Mary, Daniel, Mike, ...}
{m} : a predicate indicating movement, selected from {went to, journeyed to, travelled to, ...}
{y1}, {y2} : two different locations, selected from {office, bedroom, bathroom, ...}
{p} : a predicate indicating picking up, selected from {picked up, took, grabbed, ...}
{d} : a predicae indicating dropping, selected from {dropped, put down, discarded, ...}
{o} : an object name, selected from {apple, football, milk, ...}

Figure 13: The pattern of our 4-hop sample

C DERIVATION OF RELATION BETWEEN INFORMATION FLOW AND
EMBEDDING GRADIENTS

In transformer-based models, the Information Flow in attention is essentially the product of the
attention distribution and its corresponding gradient. Therefore, we can transform the derivation
into constructing the gradient relationship between the attention score distribution (A) and
the embedding (E(X)). This can be established via the chain rule and implemented through the
specific computation steps of the attention mechanism. Notably, in the following derivation, for
simplicity, we omit the activation layers in the model. Additionally, considering that transformer-
based models are composed of multiple identical network blocks stacked together, one can easily
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extend the conclusions from a single layer to multiple layers. Therefore, we focus on proving the
case with one embedding layer and one attention module.

Given the basic definition of the attention mechanism, we have:
Q = E(X)WQ, A = softmax

(
QKT

√
d

)
,

K = E(X)WK , O = A · V,
V = E(X)WV ,

where WQ,WK ,WV ∈ Rd×d are the model parameters, O is the attention output, E(X) ∈ Rn×d

is the input embedding matrix, n and d are sequence length and model dimension, respectively.

Let the loss function be L. By the chain rule, the gradient of the loss with respect to E(X) is:

∂L

∂E(X)
=

∂L

∂O

∂O

∂E(X)
=

∂L

∂A

∂A

∂E(X)

+
∂L

∂V

∂V

∂E(X)
. (5)

Since we have ∂V
∂E(X) = WT

V and ∂O
∂V = A, the gradient relationship between A and E(X) is:

∂L

∂E(X)
∝ ∂L

∂A

∂A

∂E(X)
(6)

To eliminate the influence of the Softmax(·) function, we can further decompose equation 6 into:
S =

QKT

√
d

,

∂L

∂E(X)
≈ ∂L

∂A
·
(
∂A

∂S
· ∂S

∂E(X)

)
,

(7)

where ∂A
∂S is the Jacobian of Softmax(·) function, with elements Aij (δik −Aik)

2.

For each element Sij =
QiK

T
j√

d
∈ S, the gradient with respect to E(X) can be written as:

∂Sij

∂E(X)
=

∂
(

(E(X)iWQ)(E(X)jWK)T√
d

)
∂E(X)

=
1√
d

(
WT

Q ·Kj · δik +WT
K ·Qi · δjk

)
.

(8)

Based on equation 7 and equation 8, we can summary that:

∂L

∂E(X)i
∝ ∂L

∂Aij︸ ︷︷ ︸
Sensitivity of L to A

× Aij(1−Aij)︸ ︷︷ ︸
Derivation from Softmax

× ∂Sij

∂E(X)︸ ︷︷ ︸
Linear Transformation

.

(9)

Based on equation 9, we can derive that when Aij increases, indicating higher attention between
token i and token j, the sensitivity of L to A ( ∂L

∂Aij
) also increases. This results in larger derivatives

2δik is the Kronecker delta function. If i equals to k, δik = 1, else δik = 0. We can also rewrite this
equation into Aij (1−Aij).
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Table 6: Configuration of context window scal-
ing training setting.

Context Window Scaling Training Setting

Backbone Llama-3-8B-base
Training Objective Language modeling
RoPE base 20,000,000
Context window size 8K → 64K
Data seq-length 64,000
Deepspeed Zero2
Global batch size 64
Epoch 2
Training Steps 160
Ring-attention size 4
Learning-rate 1e-5
LR-scheduler cosine_with_min_lr
Optimizer Adam (β1 = 0.9, β2 = 0.95)
GPUs A100 (80GB) × 8
Training time ≈8h / epoch
Training data PG19 (Rae et al., 2019)
Total consumed tokens 0.65B

Table 7: Configuration of language modeling
training setting.

Language Modeling Post-training Setting

Backbone Llama-3.1-8B-base
Training Objective Language modeling
RoPE base 500,000
Context window size 128K
Data seq-length 64,000
Deepspeed Zero2
Epoch 2
Global batch size 32
Training Steps 320
Ring-attention size 4
Learning-rate 1e-5
LR-scheduler cosine_with_min_lr
Optimizer Adam (β1 = 0.9, β2 = 0.95)
GPUs A100 (80GB) × 8
Training time ≈8.5h / epoch
Training data PG19 (Rae et al., 2019)
Total consumed tokens 0.65B

Table 8: Configuration of long-context SFT
training setting.

Long-context Alignment Training Setting

Backbone Llama-3.1-8B-Instruct
Training Objective Supervised fine-tuning
RoPE base 500,000
Context window size 128K
Data seq-length 4,000∼128,000
Deepspeed Zero2
Global batch size 32
Epoch 2
Training Steps 250
Ring-attention size 4
Learning-rate 1e-5
LR-scheduler cosine_with_min_lr
Optimizer Adam (β1 = 0.9, β2 = 0.95)
GPUs A100 (80GB) × 8
Training time ≈6.5h / epoch

Training data LongMIT (Chen et al., 2024b),
LongAlpaca (Chen et al., 2023c)

Total consumed tokens 0.53B

Table 9: Testing configuration of RULER

Evaluation Configuration of RULER

Question Answering qa_1, qa_2
Single NIAH niah_single_1,

niah_single_2,
niah_single_3

Multi-keys NIAH niah_multikey_1,
niah_multikey_2,
niah_multikey_3

Multi-values NIAH niah_multiquery
Multi-queries NIAH niah_multivalue
Others common words extraction (CWE),

frequent words extraction (FWE),
variable tracking (VT)

Length 32K, 64K
Num samples/task 50

on the embeddings. Additionally, if Aij becomes excessively large, approaching 1, the value of
Aij(1− Aij) might tend toward 0. However, this is often not an issue in long-context scenarios, as
the attention scores are unlikely to approach values near 0.5 due to the long context. Even if they
exceed 0.5 (possibly for some special tokens), the increase in the first term ( ∂L

∂Aij
) helps mitigate this

effect.

D IMPLEMENTATION DETAILS

D.1 TRAINING DETAILS

For all experiments, we utilize the open-source training framework OpenRLHF3 (Hu et al., 2024),
Ring-flash-attention4 (Liu et al., 2023) and DeepSpeed (Rajbhandari et al., 2020). For LongCE
training (Fang et al., 2024b), we set the sliding context window size as 8192 and employ the recom-
mended hyper-parameters in the official code 5.

3https://github.com/OpenRLHF/OpenRLHF.git
4https://github.com/zhuzilin/ring-flash-attention.git
5https://github.com/PKU-ML/LongPPL.git
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Table 10: Testing configuration of BABILong.

Metric QA1 QA2 QA3 QA7 QA8
Num 100 100 100 100 100
Supporting Fact 1 2 3 1∼10 1∼8
Interference Fact 1∼9 1∼66 1∼317 1∼42 1∼42

Table 11: Evaluation results on HELMET (Yen et al., 2025).

Model Recall RAG ICL Re-rank QA Summ. Cite Avg.

Claude-3.5-Sonnet 94.7 38.1 61.0 7.2 12.6 36.6 18.7 38.4
Mistral-Nemo-12B 14.6 40.0 84.0 0.0 22.5 18.5 0.5 25.7
ProLong-512K-Instruct 98.8 63.2 86.5 22.5 43.9 29.2 1.4 49.4
Meta-Llama-3.1-8B 95.2 59.5 83.9 14.0 43.2 27.0 2.9 46.5

+ CDT 97.2 61.8 86.6 18.5 46.7 27.9 9.4 49.7

Context Window Scaling To scale the context window size of the Llama-3-8B-base model from
8K to 64K (8×), we adjust the RoPE base from 500,000 to 20,000,000 and directly train the model.
We provide training configurations in Table 6.

Data Post-processing Details For the context window scaling experiments, we employ the PG-
19 (Rae et al., 2019) dataset. For long-context SFT and CDT experiments, we construct our data
from publicly available long-context QA datasets, including LongMiT (Chen et al., 2024b) and
LongAlpaca (Chen et al., 2023c). The LongMiT dataset primarily consists of multi-hop QA tasks
that require reasoning over 2 to 6 evidence passages. To adapt it for our setting, we apply two
pre-processing steps: (i) Length distribution control — we constrain the sampled instances to fall
within 16K–128K tokens. This range balances the need for sufficiently long contexts with train-
ing efficiency, given our compute resources (8 × A800 GPUs). Excessively long sequences were
avoided as they considerably slow down training. (ii) Evidence balancing — we uniformly sample
across different numbers of supporting passages to obtain a more balanced distribution for multi-hop
reasoning. To complement this, we include data from LongAlpaca, which predominantly features
single-evidence QA with lengths around 16K tokens (under our model’s tokenizer). This addition
enriches the training distribution by covering shorter single-evidence scenarios, which are underrep-
resented in LongMiT. In total, our final training set comprises 7,000 samples from LongMiT and
1,000 samples from LongAlpaca, which are shuffled together before training.

Language Modeling Post-training and Long-context SFT The language modeling post-training
and long-context SFT are directly applied to the Llama3.1-8B-base and Llama3.1-8B-Instruct, re-
spectively, which already have 128K context window size. We provide the training configurations
in Table 7 and Table 8 respectively.

D.2 EVALUATION DETAILS

We conduct long-context evaluation mainly based on the long-context evaluation framework
LOOM-Scope6 (Tang et al., 2025).

HELMET HELMET (Yen et al., 2025) is a comprehensive long-context evaluation benchmark
containing 7 different subtasks, including recall, RAG, in-context learning (ICL), re-rank, QA, sum-
marization, and citation. The context length of test samples ranges from 0 to 128K tokens. For
inputs exceeding 128K, we truncate from the end to fit within the model’s maximum context win-
dow. We show the experimental results on HELMET in Table 11, where our CDT model achieves
the best performance.

6https://github.com/LCM-Lab/LOOM-Scope
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Table 12: Evaluation results of two more LLMs on real-world long-context tasks and long-form
reasoning tasks.

Models LongBench-E BABILong
Type S-Doc QA M-Doc QA Summ Few-shot Code Avg. Avg.

Qwen2.5-7B-Instruct - 44.54 46.29 28.15 56.03 16.52 38.30 43.32
+ CDT SFT 44.93 47.29 28.65 57.33 19.18 39.48 47.56

Qwen3-8B - 44.12 48.10 29.30 44.12 29.18 38.85 48.06
+ CDT SFT 45.33 49.13 31.89 46.24 32.98 41.11 52.88

Mistral-V0.3-Instruct - 44.89 40.76 20.52 67.11 47.04 44.06 22.36
+ CDT SFT 45.01 41.79 26.08 67.75 57.27 47.58 53.84

LongBench-E LongBench-E is a variant of LongBench (Bai et al., 2024b) designed specifically
for long-context real-world tasks. We chose LongBench-E because it shares the same test dataset
distribution as LongBench while covering a wider range of context lengths. For the Llama3-8B-base
model, we truncate the input to 8K tokens, whereas for other models, we truncate the input to 32K
tokens.

Language Modeling For the language modeling task, we calculate both LongPPL and PPL met-
rics on the GovReport dataset (Huang et al., 2021), which consists of long sequences from govern-
ment reports. We sample 50 documents from GovReport, each with a context length of up to 32K
tokens.

RULER RULER (Hsieh et al., 2024) is a comprehensive synthetic dataset that includes 6 different
testing categories to evaluate a model’s long-context understanding capabilities. We utilize all test
categories, with each category containing 50 test samples covering lengths of 32K and 64K. We post
the testing configuration of RULER in Table 9.

Long-form Reasoning We evaluate the long-form reasoning capability of models on selected
tasks from BABILong (Kuratov et al., 2024). Specifically, we select tasks that involve multiple
supporting facts, as well as QA1, as the testing dataset. The BABILong testing configurations are
shown in Table 10.

D.3 BASELINE ILLUSTRATION

Table 13: Model performance on language mod-
eling tasks.

Models LongPPL PPL
Llama-3-8B-Base > 100 > 100

+ YaRN 3.55 5.60
+ CE 3.90 6.46
+ LongCE 3.55 5.60
+ CDT (ours) 3.04 5.40

Llama-3.1-8B-Base 3.22 4.79
+ CE 3.28 4.86
+ LongCE 3.24 5.28
+ CDT (ours) 2.10 5.19

Llama-3.1-8B-Instruct 4.05 5.52
+ SFT 3.31 5.51
+ LOGO 4.11 5.54
+ CDT (ours) 2.36 5.64

We evaluate our method on three foundation
models, i.e., LLaMA-3-8B-Base, LLaMA-3.1-
8B-Base, and LLaMA-3.1-8B-Instruct—to en-
sure fair and consistent comparisons across all
baselines. The baselines include: YaRN, which
extends the context window using an improved
NTK-based positional scaling method; CE
(Cross Entropy), a standard language modeling
objective without any context-aware weight-
ing; LongCE, which builds upon the LongPPL
method by identifying key tokens via perplex-
ity during training and assigning them higher
loss weights; SFT, an instruction tuning setup
where input tokens are excluded from the loss
calculation; and LOGO, a DPO-based training
approach designed to mitigate misalignment
in long-context tasks. Additionally, we com-
pare against several strong open-source long-
context models: ProLong-512K-Instruct and
NExtLong-512K-Instruct, which apply long-
context scaling techniques on top of LLaMA-
3-8B-Instruct and LLaMA-3.1-8B-Instruct, re-
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Table 14: Statistical significance calculation on LongBench-E data with t-Test.

Models P-Value

Llama3-8B-Base V.S. Llama3-8B-Base-CDT 3.68e-15
Llama3.1-8B-Base V.S. Llama3.1-8B-Base-CDT 1.53e-2
Llama3.1-8B-Instruct V.S. Llama3.1-8B-Instruct-CDT 2.39e-3

spectively; and LLaMA-3.1-8B-SEALONG, a DPO-trained model specifically optimized for long-
context alignment.

E MORE EVALUATION RESULTS

E.1 ANALYSIS OF RESULTS ON REAL-WORLD LONG-CONTEXT TASKS

The strong performance of CDT on code-related tasks, as shown in Table 1, is particularly notable.
Code Completion requires models to accurately interpret local context and predict missing seg-
ments accordingly. CDT is especially well-suited for such tasks, as it enhances the model’s ability
to focus on local context information during generation, which likely contributes to the observed
performance improvements. Table 15 offers a more intuitive illustration through a specific Code
Completion example. In LongBench-E, this task is evaluated using the Edit Similarity (Edit Sim)
metric, which is highly sensitive to the number of tokens generated—especially under the official
64-token generation limit. In the provided example, LLaMA-3.1-8B-Instruct produces entirely in-
correct outputs, while GPT-4o generates overly lengthy responses that negatively affect the Edit Sim
score. In contrast, the CDT-enhanced model generates a concise and accurate response, resulting
in a significantly higher Edit Sim score. Furthermore, CDT leads to substantial improvements for
both LLaMA-3.1-8B-Instruct and LLaMA-3-8B-Base on the Code task. These improvements can
be attributed to two main factors. First, the training set includes code completion instances (e.g., 263
examples from LongMIT), which enable the model to learn relevant instruction-following patterns.
Second, the baseline model’s lower performance in this domain makes the gains from CDT more ap-
parent. By contrast, LLaMA-3.1-8B-Base already demonstrates strong performance on code-related
tasks—likely due to the composition of its pretraining data—resulting in smaller relative gains when
CDT is applied.

E.2 GENERALIZING CDT TO MORE MODELS

We apply our CDT method to more LLMs, including Qwen2.5-7B-Instruct (Yang et al., 2024) and
Mistral-V0.3-Instruct (Jiang et al., 2023). We evaluation the model performance on real-world long-
context tasks, long synthetic tasks, and long-form reasoning tasks. We report the model performance
in Table 12, where we can observe that our CDT can significantly improve the model performance
on different models. For instance, the Mistral-V0.3-Instruct model obtains more than 30 points on
the long-form reasoning task.

E.3 EVALUATION RESULTS ON LANGUAGE MODELING TASKS

Apart from evaluating with LongPPL on the language modeling task, we also calculate the PPL
scores, which are shown in Table 13.

E.4 EXPERIMENT STATISTICAL SIGNIFICANCE

We collect the prediction results of the original model and the CDT model on the LongBench-E
benchmark, and conduct a paired-samples t-test to assess the statistical significance of the mean
difference before and after the improvement, shown in Table 14. The results show that our method
significantly outperforms the baseline model at the 5% significance level, indicating that our method
achieves statistically significant improvements.
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Before CDT, LCM is easily
misled by context noise,
and find no critical token

(a) Attention map of 24th layer before CDT.

After CDT, LCM
begin to focus on
critical tokens

(b) Attention map of 24th layer after CDT.

Figure 14: Comparison between Attention Maps Before and After CDT. In each figure, a deeper
(red) color indicates larger model attention to the corresponding context chunk. The final row of
each map represents how the question attends to the entire input sequence, including both the context
and the question itself. For clearer visualization, we recommend zoom in on this figure.

F ANALYSIS OF ATTENTION MAP BEFORE AND AFTER CDT

In this section, we present a visualization of the model’s attention patterns before and after applying
the CDT training strategy. Given the long input length (12,000 tokens) used in our evaluation, we
evenly partition the input sequence into 46 chunks and calculate the total attention score for each
chunk individually. For each chunk, a higher total attention score indicates that the model places
greater focus on this chunk. We visualize the attention maps of the 24th layer of the model, as this
layer provides the clearest representation of CDT’s impact. As shown in Figure 14, we can observe
that, before applying CDT, the model’s attention is predominantly concentrated on the question
itself (the rightmost portion of the final row in Figure 14a), while key information within the context
is largely overwhelmed by noise. In contrast, after CDT training, the model not only attends to
the question but also shows significantly increased attention to relevant contextual information, as
highlighted by the red circles in the final row of Figure 14b. It is noteworthy that the attention
map shows no significant changes before and after CDT training, indicating that CDT training
does not compromise the original characteristics of the LCM. Instead, it enhances the ability
of LCM to capture critical information.

G LIMITATION AND FUTURE WORK

Due to the expectation maximization (EM) nature of CDT, it includes an additional context noise
detection process, which introduces extra computational costs during the training phase. Although
we have demonstrated in Section 6.3 that these additional costs are negligible compared to the per-
formance gains, theoretically, the noise detection cost will increase as the model size grows since it
involves a complete forward-backward propagation process. We leave this for future work, aiming
to explore a simpler method for identifying the context noise or to develop more efficient model
architectures. For example, designing specific network modules to handle noise, as proposed in Ye
et al. (2024), could be a promising direction. Additionally, we observe that the improvement brought
by our method on complex reasoning tasks is not as significant as that on other tasks, and we are yet
to understand the relationship between this and the training data or the training objective function.
In the future, we aim to further investigate the impact of context noise on the model’s long-form
reasoning abilities, as well as the relationship between the CDT strategy and the enhancement of the
model’s reasoning capabilities.
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H USE OF LLMS

During the writing of this paper, we leveraged large language models (LLMs) to refine the clarity and
fluency of our writing, particularly in the Abstract and Introduction sections. Specifically, we used
the Qwen web interface 7 to access the Qwen series of models (e.g., Qwen-Max), inputting early
drafts of these sections and requesting stylistic improvements while preserving technical accuracy
and original intent. The model’s suggestions helped enhance sentence structure, academic tone, and
overall readability. All final content was carefully reviewed, validated, and edited by the authors to
ensure fidelity to our research and adherence to scholarly standards.

I ERROR ANALYSIS

In this section, we analyze the error pattern of partial model predictions on real-world long-context
tasks. As shown in Table 15, we use colored text to highlight the correct and incorrect parts of the
model’s predictions.

7https://chat.qwen.ai
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Table 15: Generation samples of Llama3.1-8B-Instruct, Llama3.1-8B-Instruct-CD (ours), and
GPT4o on real-world long-context tasks.

Code Completion Task

Question: Completing the
code based on the context:
[ · · · ]\n self.interface =
self.interface.replace(’ ’,
”).lower() \n self.param_type
= None \n self.if_type = None
\n # state \n self.results
= dict() \n [ Completion ]
self.result = dict() \n
def check_params(self): \n
"""Check all input params"""
\n if not self.interface: \n
self.module.fail_json(msg=’Error:
Interface name cannot be
empty.’)[ · · · ]

Llama3.1-8B-Instruct: for (int i
= 0; i < s.length(); i++) {if
(!Character.isDigit(s.charAt(i))
&& s.charAt(i) != ’,’) }
Llama3.1-8B-CD (ours): if
self.interface == ’all’:\n
self.param_type = INTERFACE_ALL\n
GPT4o: if self.interface.lower()
== ’all’:\n self.param_type
= INTERFACE_ALL\n elif
’/’ in self.interface or
self.interface.isdigit():\n
self.param_type =
INTERFACE_FULL_NAME\n
else:\n self.if_type =
get_interface_type(self.interface)\n
Golden Answer : if self.interface ==
’all’:\n

Long-context Multi-hop Reasoning Task

Question: What did M. King
Hubbert’s employer announce
it was in the process of doing
in April 2010? [ · · · ] In April
2010 Shell announced that the
corporation is in process of
trying to find a potential
buyer for all of its operations
in Finland and is doing similar
market research concerning
Swedish operations. [ · · · ]

Llama3.1-8B-Instruct: Shell announced
the sale of some of its assets,
including its liquefied petroleum
gas (LPG) business, to meet the
cost of a planned $28
Llama3.1-8B-CD (ours): trying to find
a potential buyer for all of
its operations in Finland and
is doing similar market research
concerning Swedish operations.
GPT4o: MV Miralda’s owner
announced it was in the process
of trying to find a potential
buyer for all of its operations
in Finland and in doing similar
market research concerning.
Golden Answer : trying to find a
potential buyer for all of its
operations in Finland

Single-QA Long-context Task

Question: What metrics are used
in evaluation? [ · · · ] Figure
FIGREF22 shows the results
of these experiments wherein
we are able to maintain the
precision on the subset of the
training set used for testing
while reducing its recall and
thus generalising the model.
The fact that the model is
generalizing on a dissimilar
dataset is confirmed by the
increase in the development
set. F1 score. [ · · · ]

Llama3.1-8B-Instruct:
Macro-averaged F-score.
Llama3.1-8B-CD (ours):
macro-averaged F-score,
precision, recall, F1 score.
GPT4o:
Macro-averaged F-score.
Golden Answer :
precision, recall , F1 score
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