

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REVISITING LONG-CONTEXT MODELING FROM CON- TEXT DENOISING PERSPECTIVE

Anonymous authors

Paper under double-blind review

ABSTRACT

Long-context models (LCMs) have demonstrated great potential in processing long sequences, facilitating many real-world applications. The success of LCMs can be attributed to their ability to locate implicit critical information within the context for further prediction. However, recent research reveals that LCMs are often susceptible to contextual noise, i.e., irrelevant tokens, that can mislead model attention. In this paper, we conduct a fine-grained analysis of the context noise and propose an effective metric, the Integrated Gradient (IG) score, to detect and quantify the noise information within the context. Our findings reveal that even simple mitigation of detected context noise can substantially boost the model’s attention on critical tokens and benefit subsequent predictions. Building on this insight, we propose Context Denoising Training (CDT), a straightforward yet effective training strategy that improves attention on critical tokens while reinforcing their influence on model predictions. Extensive experiments across four tasks, under both context window scaling and long-context alignment settings, demonstrate the superiority of CDT. Notably, when trained with CDT, an open-source 8B model can achieve performance (50.92) comparable to GPT-4o (51.00).

1 INTRODUCTION

The ability to handle long input sequences has become a fundamental requirement for large language models (LLMs), with cutting-edge models capable of processing context lengths exceeding millions of tokens (Team et al., 2024; MiniMax et al., 2025; Meta, 2025; Qiu et al., 2025b). This advancement eliminates the need for complex toolchains and intricate workflows, e.g., RAG (Yu et al., 2024), and significantly enhances real-world applications, such as LLM agent (Luo et al., 2025; Xi et al., 2025) and project code analysis (Fang et al., 2024a).

Recent studies indicate that LCMs frequently fail when processing long-context tasks (Hsieh et al., 2024; Kuratov et al., 2024; Tang et al., 2024b; Bai et al., 2024c), and the open-source community mitigates such an issue mainly by using sufficient high-quality synthetic long-context data to post-train the model (Fu et al., 2024a; Chen et al., 2024b; Gao et al., 2024a). However, these approaches are proven to be either inefficient or ineffective under limited resources. A controlled study in Appendix A shows that, when trained on 2B tokens using the Llama3-8B backbone, Prolong-64K-Base (Gao et al., 2024b) improves its average score on 12 real-world tasks from 25.5 to 29.13-equivalent to a gain of 1.8 points per additional 1B tokens—whereas LongCE (Fang et al., 2024b) achieves 32.91 points, corresponding to a gain of 3.7 points per 1B tokens. As illustrated in Figure 1, the training efficiency decreases as the training context length increases to 128K, e.g., Prolong-128K.

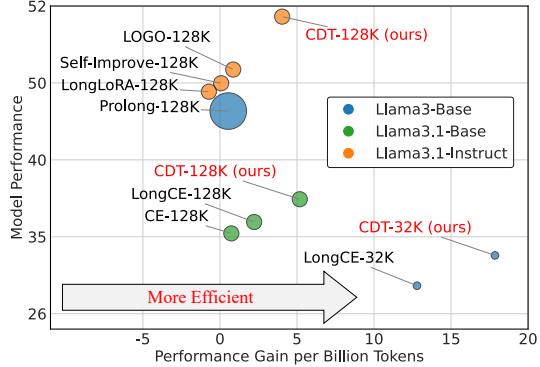


Figure 1: Comparative overview of *model performance* on real-world long-context tasks and *performance gain per billion tokens* among different training methods. The bubble size indicates the relative training data volume.

1

054 One of the possible reasons is that existing works overlook the fact that LCMs process long input in
 055 an implicit *retrieval-then-generation* manner, i.e., first identifying key information within the context
 056 and then further generating with the “retrieved-context” (Liu et al., 2024b; Wu et al., 2024;
 057 Li et al., 2024a; Qiu et al., 2025a). However, the critical tokens in the “retrieved-context” might
 058 be overwhelmed by excessive irrelevant tokens (Ye et al., 2024). Thus, the key to achieving better
 059 long-context modeling is *effectively detecting the critical tokens, diminishing the effect of irrele-*
 060 *vant tokens (context noise), and strengthening the connection between model prediction and critical*
 061 *tokens*. Conventional language modeling training strategy, which relies on uniform token-wise su-
 062 *pervision through cross-entropy loss, is fundamentally inefficient for long-context modeling because*
 063 *it cannot distinguish critical tokens from irrelevant tokens in lengthy inputs.*

064 In this work, we first investigate the impact of context noise on long-context modeling. Specifically,
 065 we propose a novel critical token detection metric, the Integrated Gradient (IG) score, based on the
 066 concept of information flow (Wang et al., 2023). Our approach achieves a remarkable accuracy
 067 improvement in the critical token detection task compared to the traditional attention-based method.
 068 Then, we leverage the IG score to manually reduce the context noise by subtracting the gradient
 069 values associated with irrelevant tokens from the token embeddings. We find that simply suppressing
 070 context noise at the model input allows LCMs to focus more effectively on critical tokens.

071 Built upon the above analysis, we further propose a simple yet effective Context Denoising Train-
 072 ing (CDT) strategy, which performs denoising at the model input, allowing the model to focus more
 073 effectively on critical tokens to better establish the connection between critical tokens and genera-
 074 *To adapt CDT to long-sequence training and further improve training efficiency while reducing*
 075 *peak memory consumption, we theoretically derive a method that leverages gradients with respect to*
 076 *token embeddings (Appendix C)—rather than directly using IG scores mentioned above—as identi-*
 077 *fiers to detect noisy tokens.* Notably, our CDT approach is analogous to the *Signal Denoising* in the
 078 digital signal processing field (Kopsinis & McLaughlin, 2009), where noise reduction in the input
 079 sequence can enhance the model’s attention to essential parts within the context. Experiments on two
 080 essential long-context training scenarios, i.e., context window scaling and long-context alignments,
 081 across 4 different types of long-context tasks (real-world tasks, language modeling task, synthetic
 082 tasks, and long-form reasoning tasks) exhibit the superiority of our method. Our CDT can consis-
 083 tently surpass the other methods with an average gain of 2 points on 12 real-world long-context tasks
 084 in LongBench-E Bai et al. (2024b) and 13 long synthetic tasks in RULER (Hsieh et al., 2024). Ad-
 085 ditionally, with CDT, an open-source Llama3.1-8B-Instruct model can achieve comparable results
 086 with GPT4o on real-world tasks (50.92 points v.s. 51.00 points on LongBench-E testing set).

086 2 RELATED WORK

088 2.1 RETRIEVAL-THEN-GENERATION MECHANISM OF LONG-CONTEXT MODELS

089 Existing research has demonstrated that LCMs handle long-context in a “retrieval-then-generation”
 090 manner, where *LCMs first retrieve salient information within the context and utilize this information*
 091 *for further prediction* (Wu et al., 2024; Tang et al., 2024b; Zhao et al., 2024b; Qiu et al., 2025a).
 092 However, Liu et al. (2024b) observes the “lost-in-the-middle” phenomenon of LCMs, which high-
 093 lights that LCMs exhibit a positional bias toward locating key information. Furthermore, Ye et al.
 094 (2024) and Fang et al. (2024b) discover that excessive irrelevant long-context can overwhelm criti-
 095 cal information, thereby impairing the performance of the model. To mitigate the above issue, some
 096 works have explored solutions from various perspectives, including model architecture improve-
 097 ments (Ye et al., 2024; Xiao et al., 2024a), enhancements in information extraction mechanisms (Li
 098 et al., 2024a; Zhang et al., 2024a), and optimization of training objective (Fang et al., 2024b; Bai
 099 et al., 2024a). In this paper, we revisit critical information location from the context denoising
 100 aspect, helping the model establish better connections between detected salient tokens and predictions.

102 2.2 LONG-CONTEXT POST-TRAINING

104 Generally, the purposes of long-context post-training can be categorized into two types: *context win-*
 105 *dow scaling and long-context alignment.* For context window scaling, prior studies have managed to
 106 extend the context length of LLMs with limited computational cost compared to pretraining. *It can*
 107 *be further categorized into two approaches: positional extrapolation*(Chen et al., 2023a; Peng et al.,
 2023; Ding et al., 2024; Liu et al., 2024a; Zhao et al., 2024c; Fu et al., 2024b;

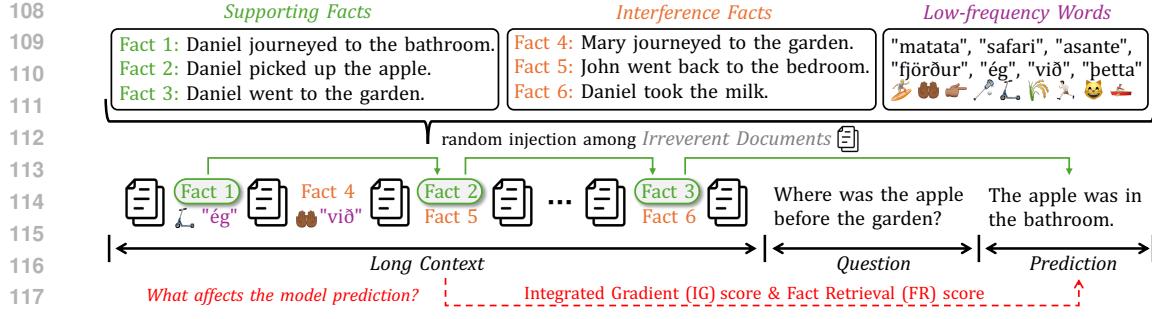


Figure 2: Task format of our preliminary study, which requires models to predict the final answer by reasoning through multi-hop Supporting Facts and distinguishing from the Interference Facts. Simultaneously, the model should also resist the influence of Irreverent Documents and Low-Frequency Words. More details are shown in Appendix B.

Lu et al., 2024; Wang et al., 2025b; Ge et al., 2025; Xiong et al., 2024; Chen et al., 2024a; Liu et al., 2024c) and model architecture modification(Chevalier et al., 2023; Chen et al., 2023b; Xiao et al., 2024b; Bertsch et al., 2024; Yuan et al., 2025; Lu et al., 2025). Another line of work focuses on improving models that already support long-context windows, aiming to enhance the model’s ability to capture critical information from lengthy contexts (Liu et al., 2024b; An et al., 2024b; Gao et al., 2024c; An et al., 2024a) and to address alignment challenges such as hallucination (Zhang et al., 2024b; Tang et al., 2024a; Li et al., 2024b). However, to date, no existing work has simultaneously considered both training efficiency and effectiveness under the two aforementioned settings. Only a few preliminary studies (Lin et al., 2024; Fang et al., 2024b; Helm et al., 2025; Wang et al., 2025a) have explored token re-weighting as a trivial method to achieve a limited trade-off.

3 PRELIMINARY STUDY

In this section, we analyze the influence of context noise, i.e., irrelevant tokens, on long-context modeling. More concretely, we first design critical token detection metrics in §3.1 and study the impact of context noise restraint on long-context modeling in §3.2. For evaluation, we construct a synthetic long-form reasoning task as a controlled proxy to enable precise assessment, due to the lack of real-world testing data with explicitly labeled critical token positions. We conduct experiments with the Llama3.1-8B-Instruct (Meta, 2024) model, which owns a 128K context window size.

Synthetic Task Format As shown in Figure 2, there are four types of tokens in the context: supporting facts, interference facts, low-frequency words, and irrelevant documents. The model’s task is to predict the correct answer (e.g., “bathroom”) by reasoning over **supporting facts**. The **interference facts** are seemingly related to the answers and are randomly inserted into the context, aiming to distract the models from providing the correct response. We treat both supporting facts and interference facts as *critical tokens*, as they are both highly correlated with the answer. The key distinction lies in semantic validity: LCMs must discern which tokens are genuinely supportive — and which are misleading — to predict accurately. Besides, models should also prevent critical tokens from being overwhelmed by *irrelevant tokens*, including excessive irrelevant documents and **low-frequency words**. The total context length of each sample ranges from 0K to 64K.

3.1 CRITICAL TOKENS DETECTION

Given the model input $X = \{x_i\}_{i=1}^n$ which contains n tokens and the ground truth $Y = \{y_j\}_{j=1}^m$ which contains m tokens, we design two metrics to reflect the influence of context noise: Fact Retrieval (FR) score and Integrated Gradient (IG) score.

Attention Distribution Metric: FR score Existing works primarily identify critical tokens based on the attention distribution (Wu et al., 2024; Gema et al., 2024; Xiao et al., 2024a). Similarly, we design the Fact Retrieval (FR) score for our synthetic task based on the attention distribution to quantify the model’s attention allocated to different types of tokens. At each step of model prediction

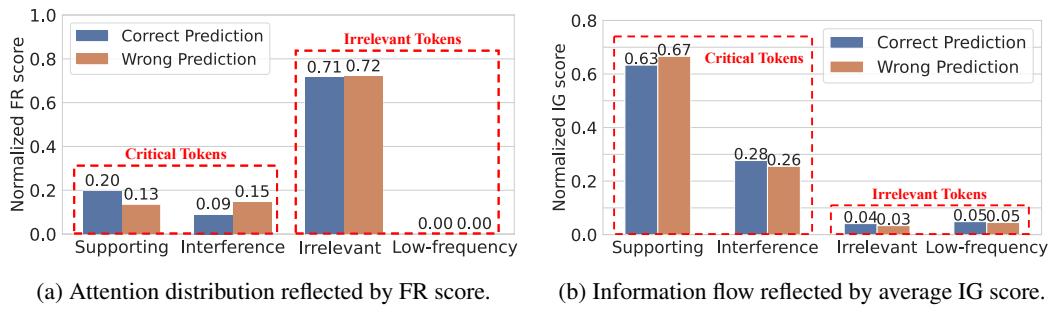


Figure 3: Comparison between attention distribution and information flow on the critical token location task. A significant difference in the distributions of critical and irrelevant contexts is revealed.

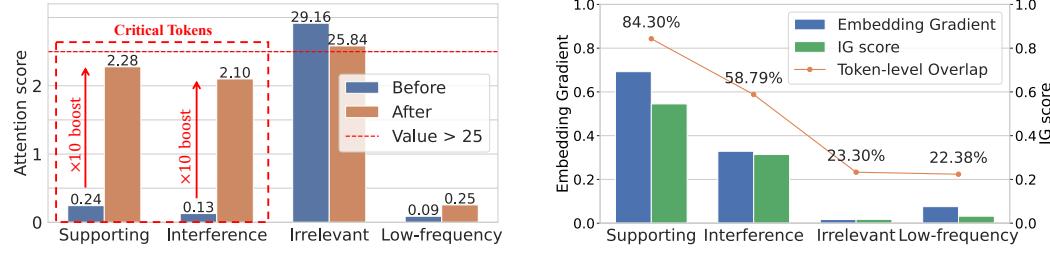


Figure 4: Attention distributions before and after manual context denoising. After context denoising, attention scores on critical tokens boost $\times 10$ times, and show a reduction on irrelevant tokens.

Figure 5: Relationship between attention IG score and L2-normalized embedding gradients on different types of tokens. It shows a proportional correlation.

y_j , if the attention score of x_i ranks within the top- k across the entire sequence, we define x_i as being attended by an attention head h in the l -th model layer. Let s_j be the set of tokens attended by an attention head h at the generation step j , and \mathcal{T}_r refers to the context token set of type $r \in \{\text{sup, inter, irr, low}\}$, e.g., \mathcal{T}_{sup} denotes tokens of the supporting facts. The FR score $\text{FR}_{h,l}^{(r)}$ of the h -th attention head in the l -th model layer can be written as:

$$\text{FR}_{h,l}^{(r)} = \frac{|s_j \cap \mathcal{T}_r|}{|\mathcal{T}_r|}.$$

We average FR scores from all heads to reflect the attention distribution of tokens in \mathcal{T}_r .

Information Flow Metric: IG score To discover the attention interaction among tokens, i.e., information flow (Simonyan et al., 2013), we employ the Integrated Gradient (IG) technique (Wang et al., 2023). We define the IG score of h -th head in model’s l -th layer on segment \mathcal{T}_r below:

$$\text{IG}_{h,l} = A_{h,l}^T \odot \left| \frac{\partial \mathcal{L}_\theta(Y|X)}{\partial A_{h,l}} \right|, \quad \text{IG}_{h,l}^{(r)} = \frac{1}{|\mathcal{T}_r|} \sum_{x_i \in \mathcal{T}_r} \sum_{y_j \in Y} \text{IG}_{h,l}[i, j], \quad (1)$$

where $\mathcal{L}_\theta(Y|X)$ is the model’s prediction loss on Y , and $A_{h,l}$ denotes the attention matrix of the h -th head in the l -th layer. The resulting IG score is a matrix, where each entry $\text{IG}_{h,l}[i, j]$ represents the estimated bidirectional information flow between token x_i and token y_j . To assess the overall impact of \mathcal{T}_r to Y , we compute the total contribution of tokens in \mathcal{T}_r to the final prediction Y , i.e., $\text{IG}_{h,l}^{(r)}$ and average across all attention heads and layers as the final score, i.e., $\text{IG}^{(r)}$. A higher IG score $\text{IG}^{(r)}$ indicates a larger contribution from \mathcal{T}_r to Y . Details are shown in Appendix B.2.

Observation For a clear comparison, we normalize the computed FR and IG scores, and plot them in Figure 3. We find that the IG score detects significantly less noise (irrelevant documents and low-frequency tokens) compared to the FR score on critical token detection. Specifically, as shown in Figure 3a, attention-based metrics reflect the distribution of tokens that the model focuses

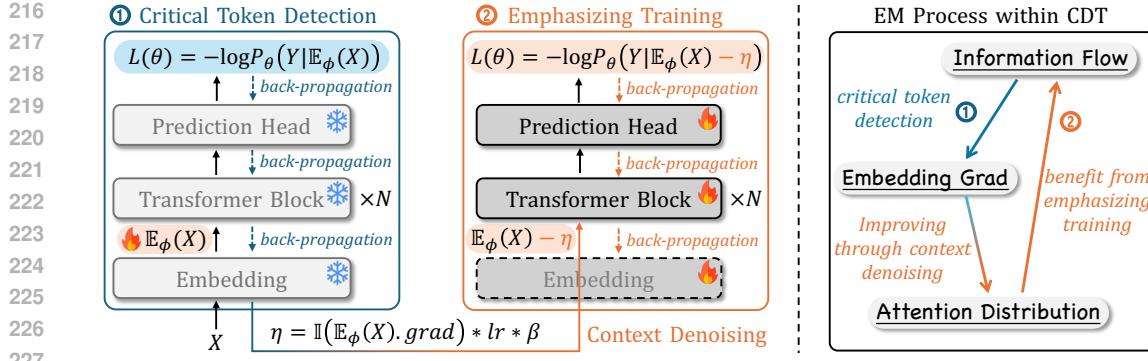


Figure 6: Our proposed CDT (context denoising training) method. It consists of two steps: (1) detecting critical tokens within the long context, and (2) utilizing the denoised context for further emphasizing training. Notably, CDT can be understood as an *Expectation Maximization (EM)* process, where the model detects noise based on information flow and improves the training by diminishing the noise, thereby enhancing the information flow.

on during the generation process. When the model generates correct responses, its attention focuses more on supporting facts; when the model generates wrong responses, its attention focuses more on interference tokens. *Yet, in both cases, the FR score indicates that the model significantly focuses on irrelevant tokens.* As for the IG score shown in Figure 3b, regardless of whether the response is correct or not, *the IG score for critical tokens is significantly higher than that for irrelevant tokens.*

3.2 EFFECT OF MANUAL CONTEXT NOISE RESTRAINT

Considering that directly suppressing context noise in attention is very challenging, we aim to restrain the noise from the input perspective. We first identify irrelevant tokens by computing the IG score on each token and treating the token with the IG score lower than a threshold as the noisy token. Then, we manually suppressed their influence by subtracting the corresponding gradients from their input embeddings. This is motivated by the fact that the model has largely converged on these noisy tokens, resulting in their gradients exhibiting low sensitivity. As shown in Figure 4, we observe that after manual context denoising, the attention scores on critical tokens increase nearly $\times 10$ times, while the attention scores on irrelevant contextual tokens exhibit a slight decrease. It is worth noting that this operation can be roughly analogized to *denoising in the digital signal processing field* (Kopsinis & McLaughlin, 2009), as it reduces noise in the input sequence, allowing the model to focus more effectively on the under-fitting critical tokens.

4 CONTEXT DENOISING TRAINING

Based on the above observation, we propose a simple yet effective Context Denoising Training (**CDT**) strategy. Building upon the conventional language modeling objective, i.e., cross-entropy loss, CDT explicitly suppresses context noise during training to strengthen the model’s attention on critical tokens and help establish a better connection between critical tokens and the final prediction. It involves two key steps: (1) Critical Token Detection and (2) Emphasizing Training.

4.1 CRITICAL TOKEN DETECTION

Intuitively, we can first apply IG score to detect the critical tokens for the subsequent training. However, computing the IG score in long-context scenario is highly GPU memory-intensive, as it requires storing full attention gradients and weights from every model layer across the entire sequence. **Even with 8×92GB GPUs (H20), the maximum computable sequence length for the IG score is limited to 12K**, making it infeasible to generalize to a longer sequence. Therefore, we designed a simple alternative implementation, which approximates the IG score with token embed-

270 ding gradients¹. We derive a proportional relationship between the token embedding gradient and
 271 the IG score, and visualize the results in Figure 5. A detailed derivation is provided in Appendix C.
 272

273 As shown in Figure 6, given the input sequence $X = \{x_i\}_{i=1}^n$, label Y , and the model f_θ , we first
 274 freeze the model parameters, keeping only the gradients of the input token embeddings $E_\phi(X)$,
 275 where $\phi \subset \theta$. We then obtain the gradient of each token embedding through the computation of
 276 the cross-entropy (CE) loss followed by a loss back-propagation. To identify the critical tokens,
 277 we employ an identifier $\mathbb{I}(\cdot)$ to detect tokens with large gradients, i.e., critical tokens, in the se-
 278 quence. Specifically, we define the calculation of the significance of each token as comparing its
 279 L2-normalized embedding gradient against the average of the computed gradients of all tokens,
 280 which can be written as:

$$281 \mathbb{I}(x_i) = \begin{cases} 1, & \text{if } \|\nabla_{E_\phi(x_i)} \mathcal{L}_{\text{CE}}(x_i)\|_2 < t \\ 282 0, & \text{if } \|\nabla_{E_\phi(x_i)} \mathcal{L}_{\text{CE}}(x_i)\|_2 \geq t \end{cases}, \quad t = \frac{1}{n} \sum_{i=1}^n \|\nabla_{E_\phi(x_i)} \mathcal{L}_{\text{CE}}(x_i)\|_2, \quad (2)$$

284 where $\mathbb{I}(x_i) = 1$ means x_i is the irrelevant token (noise); otherwise, it is critical token.
 285

286 4.2 EMPHASIZING TRAINING

288 To suppress the context noise, we leverage the computed gradients to manipulate the irrelevant token
 289 embeddings, leaving critical tokens unchanged. The denoised token embedding can be denoised as:

$$290 E_\phi(x_i)' = E_\phi(x_i) - \mathbb{I}(x_i) \nabla_{E_\phi(x_i)} \times lr \times \beta, \quad (3)$$

292 where lr is the learning rate and β is the hyper-parameter controlling the denoising level. Then, we
 293 unfreeze the model and use the denoised token embeddings as the model input for further training,
 294 which we refer to as Emphasizing Training. The loss function can be formulated as:

$$295 \mathcal{L}_{\text{CDT}}(X, Y) = \mathcal{L}_{\text{CE}}(f_\theta(E_\phi(X)'), Y). \quad (4)$$

298 **Remark** Notably, the above process is conducted online during training rather than pre-computed
 299 offline. As shown in Figure 6, although this introduces additional computational overhead, CDT
 300 bootstraps the model’s long-context capabilities in an *Expectation-Maximization (EM) manner*: the
 301 model first identifies the critical tokens based on information flow and improves the training by
 302 diminishing the noise, thereby ultimately enhancing the information flow. In § 6.3, we will demon-
 303 strate that, by training with CDT, the model can continuously enhance its performance compared to
 304 conventional training objectives during the post-training stage.

306 5 EXPERIMENT

308 5.1 EXPERIMENTAL SETUPS

310 **Evaluation** We evaluate models on 4 different types of long-context tasks, including real-world
 311 tasks (LongBench-E (Bai et al., 2024b), language modeling task (LongPPL (Fang et al., 2024b)),
 312 long-form reasoning task (BABILong (Kuratov et al., 2024)), and synthetic tasks (RULER (Hsieh
 313 et al., 2024)). We compare CDT against existing widely-used methods on two types of models: (1)
 314 short-context models (SCMs) that require context window scaling; (2) long-context models (LCMs)
 315 that require long-context alignment. In our main experiments, we select Llama-3-8B-Base model
 316 as the SCM, of which context window size is scaled $\times 8$ times (64K). For LCMs, we select Llama-
 317 3.1-8B-Base and Llama-3.1-8B-Instruct models. We provide more evaluation and baseline details
 318 in Appendix D, and show more evaluation results, such as generalizing CDT to more models, e.g.,
 319 Qwen-series (Yang et al., 2024; 2025)), in Appendix E. We evaluate against current strong LCMs,
 320 as well as diverse long-context enhancement methods across training and inference paradigms —
 321 including token-wise reweighting (LongCE (Fang et al., 2024b)), KV-cache prefilling (Lai et al.,
 322 2025), SFT (Chen et al., 2024b), and RL-based optimization (Tang et al., 2024a).

323 ¹We choose token embeddings for 3 reasons: (1) they are easily accessible, (2) the embedding gradients are
 324 directly associated with tokens, and (3) they require much less GPU memory compared to attention gradients.

324 Table 1: Evaluation results on LongBench-E benchmark. To ensure fairness, we place existing
 325 works that do not use the same training data with us in the top group. Our method is implemented
 326 under three settings: context-window scaling (CWS), language modeling (LM), and SFT.

328 Models	329 Type	330 S-Doc QA	331 M-Doc QA	332 Summ	333 Few-shot	334 Code	335 Avg.
329 ProLong-512K-Instruct (Gao et al., 2024b)	330 SFT	331 40.07	332 41.24	333 28.27	334 64.21	335 63.08	336 47.37
330 NExtLong-512K-Instruct (Gao et al., 2025)	331 SFT	332 43.47	333 43.21	334 29.88	335 60.87	336 44.35	337 44.35
331 Llama-3.1-8B-SEALONG (Li et al., 2024b)	332 DPO	333 49.45	334 44.69	335 30.96	336 61.54	337 57.85	338 48.90
332 GPT-4o (version: 2024-11-20)	333 -	334 51.43	335 60.89	336 14.78	337 66.37	338 61.25	339 51.00
Results on Short-context Model (all SCMs share the same training data, 8× context window scaling.)							
333 Llama-3-8B-Base (8K)	334 -	335 25.20	336 21.52	337 20.18	338 32.67	339 27.92	340 25.50
334 + YaRN (Peng et al., 2023)	335 -	336 24.37	337 19.86	338 24.32	339 29.99	340 31.67	341 26.04
335 + CE	336 CWS	337 25.29	338 21.49	339 20.36	340 32.69	341 27.76	342 34.62
336 + LongCE (Fang et al., 2024b)	337 CWS	338 17.13	339 9.59	340 25.00	341 59.57	342 61.83	343 34.62
337 + CDT (ours)	338 CWS	339 17.03	340 24.87	341 26.61	342 61.89	343 66.14	344 39.31
Results on Long-context Base Model (all LCMs share the same training data.)							
338 Llama-3.1-8B-Base	339 -	340 18.20	341 13.19	342 21.13	343 63.80	344 69.32	345 37.13
339 + CE	340 LM	341 17.10	342 10.82	343 26.38	344 62.85	345 70.62	346 37.55
340 + LongCE (Fang et al., 2024b)	341 LM	342 19.14	343 10.87	344 28.63	345 59.63	346 66.24	347 36.90
341 + CDT (ours)	342 LM	343 19.15	344 13.01	345 29.23	346 63.63	347 69.44	348 38.89
Results on Long-context Instruct Model (all LCMs use same source data with different formats.)							
342 Llama-3.1-8B-Instruct	343 -	344 48.58	345 45.19	346 30.30	347 61.73	348 57.26	349 48.61
343 + Contriever (Izacard et al., 2021)	344 RAG	345 42.63	346 45.55	347 32.48	348 62.15	349 41.85	350 44.93
344 + FlexPrefill (Lai et al., 2025)	345 KV-Prefill	346 47.02	347 45.55	348 27.37	349 60.97	350 55.97	351 47.38
345 + X-Attention (Xu et al., 2025)	346 KV-Prefill	347 48.32	348 45.60	349 26.93	350 61.83	351 56.39	352 47.81
346 + SFT	347 SFT	348 49.23	349 44.86	350 30.39	351 61.96	352 57.14	353 48.72
347 + LOGO (Tang et al., 2024a)	348 DPO	349 49.63	350 45.39	351 30.44	352 62.39	353 57.19	354 49.01
348 + CDT (ours)	349 SFT	350 50.11	351 46.04	352 30.34	353 62.49	354 65.64	355 50.92

348
 349 **Training and Datasets** For context window scaling training on SCM and post-training on LCM-
 350 Base, we apply PG-19 (Rae et al., 2019) as the training data. For each training sample, we organize it
 351 into 64K tokens and collect 10,000 training samples. For long-context alignment on LCM-Instruct,
 352 we utilize data sampled from LongMiT (Chen et al., 2024b) and LongAlpaca (Chen et al., 2023c),
 353 covering 8,000 samples with context lengths ranging from 16K to 128K. Based on the analysis
 354 experiment (Section 6.2), we set $\beta = 5$ in Equation 3 for Llama-3.1 and Llama-3 models in the
 355 main experiments. More dataset processing and implementation details are shown in Appendix D

356 5.2 RESULTS

357 **Real-world Long-context Understanding Tasks** LongBench-E is a comprehensive benchmark
 358 suite encompassing 12 real-world datasets and various context lengths spread across 5 categories.
 359 As shown in table 1, we observe that: **(1)** *CDT achieves the best performance among all the sub-*
 360 *tasks.* For SCMs, with the same training data, CDT achieved the best performance, outperforming a
 361 competitive counterpart (LongCE) by nearly 4.7 points on average. **(2)** For LCM-Base models, we
 362 find when post-training on the base model with language modeling training objective, *CDT is the*
 363 *only method that ensures no significant performance drop across all subtasks*, and it even achieves
 364 some improvements. In contrast, using standard CE or LongCE objective leads to significant per-
 365 formance drops on some sub-tasks. For example, LongCE results in a nearly 4-point drop compared
 366 to the backbone model on the Few-shot subtask. **(3)** As for the LCM-Instruct models (the bottom
 367 group), we find that, due to its remarkable performance, *existing post-training methods do not bring*
 368 *significant improvements.* For instance, Llama-3.1-8B-SEALONG (48.90) achieves only around
 369 slight 0.3-point average improvement compared to Llama-3.1-8B-Instruct (49.61). However, our
 370 CDT achieves an average improvement of more than 2 points compared to that of the backbone
 371 model across all tasks. We provide more analysis of results in Appendix E.2.

372 **Long Synthetic Task and Language Modeling** For the long synthetic task, we evaluate the
 373 model’s performance under 32K, 64K, and 128K context lengths. We choose 13 sub-tasks from
 374 the RULER benchmark and report the average results. For the language modeling task, we calculate
 375 LongPPL (Fang et al., 2024b) on the GovReport dataset (Huang et al., 2021). Notably, LongPPL
 376 can potentially reflect the model’s ability to locate salient tokens in the long context. More imple-

Table 2: Evaluation results on long synthetic tasks (RULER), language modeling, and long-form reasoning (BABILong). For RULER, we report the average scores across 13 sampled sub-tasks. To calculate LongPPL, we apply the Llama3-8B-Base model as the evaluator. For BABILong, we report the model reasoning capability from short context (4K) to long context (128K).

Models	RULER			Language Modeling	BABILong							
	32K	64K	128K		LongPPL	4K	8K	16K	32K	64K	128K	Avg.
ProLong-512K-Instruct	91.68	87.53	80.03	2.97	44.00	45.40	39.20	35.00	35.00	29.80	36.88	
NExLong-512K-Instruct	90.27	84.62	81.74	3.24	39.60	38.60	36.20	35.60	32.00	22.00	38.75	
Llama-3.1-8B-SEALONG	91.32	85.97	77.33	3.09	50.20	50.80	42.00	40.80	39.00	31.00	40.72	
Llama-3-8B-Base	-	-	-	> 100	33.40	26.60	4.80	0.00	0.20	-	13.00	
+ YaRN	39.58	31.46	-	3.55	35.20	29.80	24.40	20.20	17.60	-	25.44	
+ CE	36.01	13.82	-	3.90	36.60	34.80	26.60	28.20	21.60	-	29.56	
+ LongCE	84.02	71.50	-	3.55	36.00	34.80	34.60	32.60	29.40	-	33.48	
+ CDT (ours)	84.76	73.40	-	3.04	38.40	34.60	34.80	31.40	29.60	-	33.76	
Llama-3.1-8B-Base	89.99	81.96	70.60	3.22	35.00	33.20	27.80	28.00	25.20	24.40	28.93	
+ CE	86.59	80.87	70.44	3.28	39.20	31.60	31.40	26.60	26.80	19.40	29.17	
+ LongCE	87.65	81.79	70.79	3.24	37.80	33.40	33.60	32.60	27.60	24.60	31.60	
+ CDT (ours)	90.36	82.23	74.12	2.10	38.80	36.60	33.20	29.40	28.20	28.20	32.40	
Llama-3.1-8B-Instruct	92.49	85.98	76.71	4.05	46.60	49.60	42.40	38.80	37.00	29.60	40.67	
+ SFT	92.49	86.22	77.33	3.31	47.00	49.40	43.60	41.20	37.40	30.40	41.50	
+ LOGO	92.54	86.93	77.68	4.11	48.20	50.00	42.60	42.20	37.40	31.60	42.00	
+ CDT (ours)	93.08	88.01	78.72	2.36	51.40	51.20	41.60	44.00	38.60	33.00	43.30	

mentation and calculation details are illustrated in Appendix D.2. We show the evaluation results in Table 2, where our CDT method achieves the best model performance on the RULER benchmark from 32K to 128K settings. Besides, in the language model task, CDT exhibits the lowest LongPPL, indicating the great potential of CDT to locate salient tokens.

Short-context & Long-form Reasoning Tasks We evaluate the model’s long-form reasoning capabilities, as well as its short-context capability, on BABILong, a synthetic task that requires models to reason through multiple supporting facts hidden in contexts of varying lengths (from 4K to 64K). As shown in Table 2, our CDT achieves the highest overall score in each group. Besides, we observe that our CDT does not compromise the model’s performance on short-context tasks. For instance, in the 4K and 8K lengths, CDT achieves either the best or comparable results compared to other methods and backbone models.

6 ABLATION STUDY

In this section, we compare the accuracy of salient token detection of CDT with other detection methods in §6.1. Then, we show the impact of context denoising on the training process in §6.2. Finally, we elaborate on the training budget of our CDT method in §6.3. Notably, to help better understand the effectiveness of our CDT method, we also analyze the attention map patterns to reveal how CDT influences the model’s attention distribution in Appendix F.

6.1 COMPARISON OF CRITICAL TOKEN DETECTION

We compare three different detection methods, including LongPPL, attention-based detection, and our CDT, on our synthetic task (Figure 2). For attention-based and our CDT methods, we treat the tokens with the top-30 highest attention scores and L2 normalized gradient of embedding as the detected tokens. As shown in Figure 7, we can observe that the attention-based method can detect a high proportion of supporting tokens and interference tokens, but it also detects a large number of irrelevant tokens. On the other hand, while LongPPL can effectively suppress the detection of irrelevant tokens, it struggles to locate supporting tokens. Our CDT method not only identifies the largest number of critical tokens but also effectively suppresses the detection of irrelevant tokens.

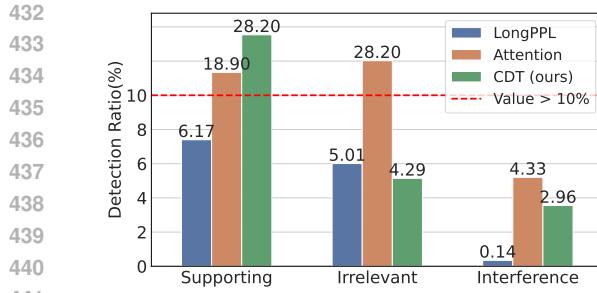


Figure 7: Comparison of critical token detection capability among different methods on our synthetic task. CDT achieves best performance.

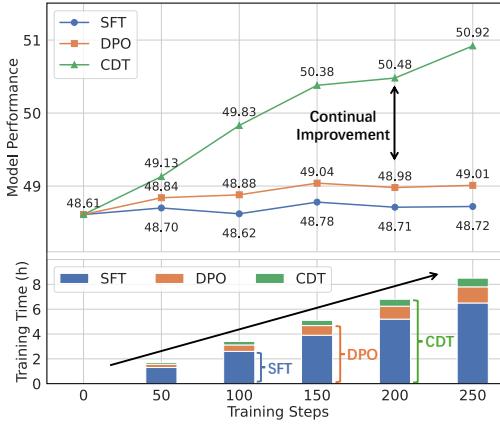


Figure 9: The performance improvement and training duration for every interval of 50 steps. With only a modest cost in training time, CDT significantly boosts the performance of LCM.

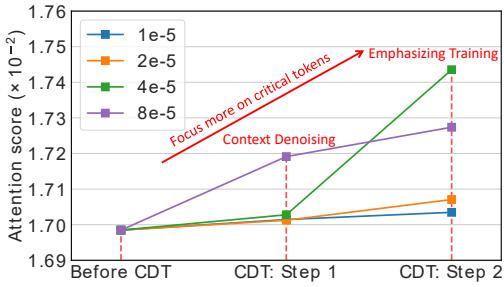


Figure 8: Impact of context denoising and comparison of the effect of learning rate on attention scores assigned to critical tokens in CDT.

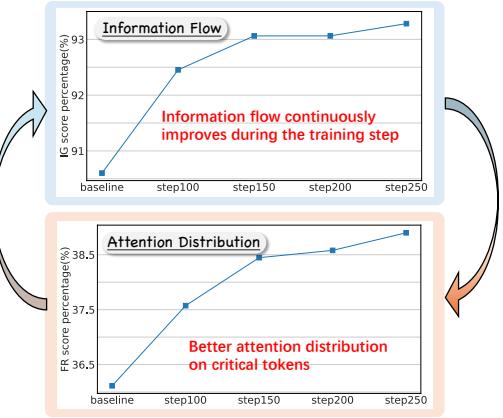


Figure 10: Illustration of *EM* process of our CDT method, where both the information flow and attention distribution progressively improve within the training steps.

6.2 IMPACT OF CONTEXT DENOISING STRENGTH

We visualize the changes in attention scores allocated to critical tokens during the CDT training process under different learning rates and the same $\beta = 1$ settings. As shown in Figure 8, we observe that the attention scores on critical tokens have already increased significantly after the context denoising step. Furthermore, after the Emphasizing Training stage, there is an additional improvement. Additionally, we observe that a larger learning rate results in more pronounced improvements, further enhancing context denoising. However, a saturation point exists (e.g., at $8e-5$), beyond which the benefits plateau. Based on this observation, we adopt a learning rate lr of $1e-5$ and set $\beta = 5$ in our main experiments, where $lr \times \beta = 5e-5$. We also recommend viewing the attention map provided in Appendix F, which shows that CDT enables the model to focus more on key information within long context, without substantially changing the original attention distribution.

6.3 TRAINING BUDGETS AND *EM* PROCESS

Compared to conventional long-context training, which performs one forward and one backward pass to update all parameters, CDT introduces an additional noise detection step. Critically, in long-context training, backward passes are typically $2\text{--}3\times$ slower than forward passes due to activation recomputation (Shoeybi et al., 2019). Yet CDT adds merely one lightweight backward (where the vast majority of model parameters are frozen) and one extra forward, resulting in minimal wall-clock overhead relative to standard training. We compare CDT with SFT (single Forward-Backward) and DPO (one batch contains pairwise samples) methods. As shown in Figure 9, we observe that although CDT brings additional cost, i.e., approximately 0.5 hours in $8\times$ A100 GPUs for every 50 steps compared with SFT, it consistently and largely improves the model performance within the 250

486 training steps. With the same training steps, DPO only yields marginal improvements, while SFT
 487 even demonstrates a decline in performance. We provide the total training duration in Appendix D.
 488 Such a great improvement can be largely attributed to the *EM* process shown in Figure 10. Notably,
 489 our approach exhibits a convergence boundary after approximately 250 steps.
 490

491 7 CONCLUSION

494 Prior studies suggest that long-context models typically follow a *retrieval-then-generation*
 495 paradigm, where the “retrieval context” may be overwhelmed by excessive irrelevant tokens. To
 496 address this issue, we present a fine-grained analysis of contextual noise in long-context inputs. We
 497 introduce a novel metric, the IG score, to effectively identify critical tokens, and observe that reduc-
 498 ing contextual noise enables models to focus more precisely on critical tokens. Building on these
 499 insights, we propose Context Denoising Training (CDT), a training strategy designed to both en-
 500 hance the model’s attention to critical tokens and strengthen the association between salient tokens
 501 and the model prediction. Experiments across 4 task types (including both short and long context
 502 length) and different models demonstrate the superiority of our method. With CDT, an open-source
 503 8B model can even achieve comparable performance with GPT-4o on real-world long-context tasks.
 504

505 ETHICS STATEMENT

506 We confirm that this work adheres to ethical research practices. All data and LLMs used are publicly
 507 available (including API format) and properly cited. No human subjects were involved. The Use of
 508 LLM statement is illustrated in Appendix H.
 509

510 511 REPRODUCIBILITY STATEMENT

513 All experimental settings, hyperparameters, and evaluation protocols are detailed in Section 5.1 and
 514 Appendix D. Code, model checkpoints, and preliminary synthesis testing data will be released upon
 515 publication. Experiments are conducted on 8×A100 GPUs with PyTorch, HuggingFace Transfor-
 516 mers (Wolf et al., 2020), Deepspeed (Rajbhandari et al., 2020) and LOOM-Scope (Tang et al., 2025).
 517

518 REFERENCES

520 Chenxin An, Jun Zhang, Ming Zhong, Lei Li, Shansan Gong, Yao Luo, Jingjing Xu, and Lingpeng
 521 Kong. Why does the effective context length of llms fall short? *arXiv preprint arXiv:2410.18745*,
 522 2024a.

523 Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, and Jian-Guang Lou. Make your llm fully
 524 utilize the context. *arXiv preprint arXiv:2404.16811*, 2024b.

525 526 Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, and Juanzi
 527 Li. LongAlign: A recipe for long context alignment of large language models. In *Findings of*
 528 *the Association for Computational Linguistics: EMNLP 2024*, pp. 1376–1395, Miami, Florida,
 529 USA, November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 530 *findings-emnlp.74*. URL <https://aclanthology.org/2024.findings-emnlp.74>.

531 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
 532 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
 533 multitask benchmark for long context understanding. In *Proceedings of the 62nd Annual Meet-
 534 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3119–3137,
 535 Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/
 536 v1/2024.acl-long.172. URL <https://aclanthology.org/2024.acl-long.172>.

537 Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
 538 Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench v2: Towards deeper understanding
 539 and reasoning on realistic long-context multitasks. *arXiv preprint arXiv:2412.15204*, 2024c.

540 Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew Gormley. Unlimiformer: Long-range
 541 transformers with unlimited length input. *Advances in Neural Information Processing Systems*,
 542 36, 2024.

543

544 Longze Chen, Ziqiang Liu, Wanwei He, Yinhe Zheng, Hao Sun, Yunshui Li, Run Luo, and Min
 545 Yang. Long context is not long at all: A prospector of long-dependency data for large language
 546 models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-*
 547 *guistics (Volume 1: Long Papers)*, pp. 8222–8234, 2024a.

548 Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
 549 of large language models via positional interpolation. *arXiv preprint arXiv:2306.15595*, 2023a.

550

551 Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
 552 Efficient fine-tuning of long-context large language models. *arXiv preprint arXiv:2309.12307*,
 553 2023b.

554 Yukang Chen, Shaozuo Yu, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and
 555 Jiaya Jia. Long alpaca: Long-context instruction-following models. <https://github.com/dvlab-research/LongLoRA>, 2023c.

556

557 Zhi Chen, Qiguang Chen, Libo Qin, Qipeng Guo, Haijun Lv, Yicheng Zou, Wanxiang Che, Hang
 558 Yan, Kai Chen, and Dahu Lin. What are the essential factors in crafting effective long context
 559 multi-hop instruction datasets? insights and best practices. *arXiv preprint arXiv:2409.01893*,
 560 2024b.

561

562 Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models
 563 to compress contexts. In *Proceedings of the 2023 Conference on Empirical Methods in Natural*
 564 *Language Processing*, pp. 3829–3846, 2023.

565

566 Yiran Ding, Li Lyra Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
 567 Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. *arXiv*
 568 *preprint arXiv:2402.13753*, 2024.

569

570 Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang, Ruijie Fang, Ryan Tsang,
 571 Najmeh Nazari, Han Wang, Houman Homayoun, et al. Large language models for code analysis:
 572 Do {LLMs} really do their job? In *33rd USENIX Security Symposium (USENIX Security 24)*, pp.
 573 829–846, 2024a.

574

575 Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin
 576 Ding, and Yisen Wang. What is wrong with perplexity for long-context language modeling?
 577 *arXiv preprint arXiv:2410.23771*, 2024b.

578

579 Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
 580 Data engineering for scaling language models to 128k context. In *Forty-first International Con-*
 581 *ference on Machine Learning*, 2024a.

582

583 Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
 584 Data engineering for scaling language models to 128k context. In *Forty-first International Con-*
 585 *ference on Machine Learning*, 2024b.

586

587 Chaochen Gao, Xing Wu, Qi Fu, and Songlin Hu. Quest: Query-centric data synthesis approach for
 588 long-context scaling of large language model. *arXiv preprint arXiv:2405.19846*, 2024a.

589

590 Chaochen Gao, Xing Wu, Zijia Lin, Debing Zhang, and Songlin Hu. Nextlong: Toward effective
 591 long-context training without long documents. *arXiv preprint arXiv:2501.12766*, 2025.

592

593 Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context language
 594 models (effectively). *arXiv preprint arXiv:2410.02660*, 2024b.

595

596 Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context language
 597 models (effectively). *arXiv preprint arXiv:2410.02660*, 2024c.

594 Hao Ge, Junda Feng, Qi Huang, Fangcheng Fu, Xiaonan Nie, Lei Zuo, Haibin Lin, Bin Cui, and
 595 Xin Liu. Bytescale: Efficient scaling of llm training with a 2048k context length on more than
 596 12,000 gpus. *arXiv preprint arXiv:2502.21231*, 2025.

597

598 Aryo Pradipta Gema, Chen Jin, Ahmed Abdulaal, Tom Diethe, Philip Teare, Beatrice Alex, Pasquale
 599 Minervini, and Amrutha Saseendran. Decore: decoding by contrasting retrieval heads to mitigate
 600 hallucinations. *arXiv preprint arXiv:2410.18860*, 2024.

601 Falko Helm, Nico Daheim, and Iryna Gurevych. Token weighting for long-range language model-
 602 ing. *arXiv preprint arXiv:2503.09202*, 2025.

603

604 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
 605 Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language
 606 models? *arXiv preprint arXiv:2404.06654*, 2024.

607

608 Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
 609 easy-to-use, scalable and high-performance rlhf framework. *arXiv preprint arXiv:2405.11143*,
 610 2024.

611

612 Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
 613 long document summarization. In *Proceedings of the 2021 Conference of the North American
 614 Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp.
 615 1419–1436, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/
 2021.naacl-main.112. URL <https://aclanthology.org/2021.naacl-main.112>.

616

617 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
 618 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning,
 619 2021. URL <https://arxiv.org/abs/2112.09118>.

620

621 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 622 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
 623 Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.

624

625 Yannis Kopsinis and Stephen McLaughlin. Development of emd-based denoising methods inspired
 626 by wavelet thresholding. *IEEE Transactions on signal Processing*, 57(4):1351–1362, 2009.

627

628 Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
 629 Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack.
 630 *arXiv preprint arXiv:2406.10149*, 2024.

631

632 Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
 633 attention mechanism for efficient long-sequence inference. In *The Thirteenth International Con-
 634 ference on Learning Representations*, 2025.

635

636 Huayang Li, Pat Verga, Priyanka Sen, Bowen Yang, Vijay Viswanathan, Patrick Lewis, Taro Watan-
 637 abe, and Yixuan Su. Alr²: A retrieve-then-reason framework for long-context question answering.
 638 *arXiv preprint arXiv:2410.03227*, 2024a.

639

640 Siheng Li, Cheng Yang, Zesen Cheng, Lemao Liu, Mo Yu, Yujiu Yang, and Wai Lam. Large
 641 language models can self-improve in long-context reasoning. *arXiv preprint arXiv:2411.08147*,
 642 2024b.

643

644 Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
 645 Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. *arXiv preprint
 646 arXiv:2404.07965*, 2024.

647

648 Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
 649 infinite context. *arXiv preprint arXiv:2310.01889*, 2023.

650

651 Jiaheng Liu, Zhiqi Bai, Yuanxing Zhang, Chenchen Zhang, Yu Zhang, Ge Zhang, Jiakai Wang,
 652 Haoran Que, Yukang Chen, Wenbo Su, et al. E²-llm: Efficient and extreme length extension of
 653 large language models. *arXiv preprint arXiv:2401.06951*, 2024a.

648 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 649 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the*
 650 *Association for Computational Linguistics*, 11:157–173, 2024b.

651

652 Xiaoran Liu, Kai Lv, Qipeng Guo, Hang Yan, Conghui He, Xipeng Qiu, and Dahua Lin. Longwan-
 653 juan: Towards systematic measurement for long text quality. In *Findings of the Association for*
 654 *Computational Linguistics: EMNLP 2024*, pp. 5709–5725, 2024c.

655 Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
 656 Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. *arXiv*
 657 *preprint arXiv:2502.13189*, 2025.

658

659 Yi Lu, Jing Nathan Yan, Songlin Yang, Justin T Chiu, Siyu Ren, Fei Yuan, Wenting Zhao, Zhiyong
 660 Wu, and Alexander M Rush. A controlled study on long context extension and generalization in
 661 llms. *arXiv preprint arXiv:2409.12181*, 2024.

662 Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi
 663 Chen, Ziyue Qiao, Qingqing Long, et al. Large language model agent: A survey on methodology,
 664 applications and challenges. *arXiv preprint arXiv:2503.21460*, 2025.

665 AI Meta. Introducing llama 3.1: Our most capable models to date. *Meta AI Blog*, 12, 2024.

666

667 AI Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation, april
 668 2025, 2025.

669

670 MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang,
 671 Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze
 672 Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie,
 673 Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lian-
 674 fei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi
 675 Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang
 676 Wang, Qin Wang, Qiuwei Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu,
 677 Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song,
 678 Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong,
 679 Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang,
 680 Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang
 681 Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang,
 682 and Zijia Wu. Minimax-01: Scaling foundation models with lightning attention, 2025. URL
 683 <https://arxiv.org/abs/2501.08313>.

684

685 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context win-
 686 dows extension of large language models. In *The Twelfth International Conference on Learning*
 687 *Representations*, 2023.

688

689 Yifu Qiu, Varun Embar, Yizhe Zhang, Navdeep Jaitly, Shay B Cohen, and Benjamin Han. Elic-
 690 iting in-context retrieval and reasoning for long-context large language models. *arXiv preprint*
 691 *arXiv:2501.08248*, 2025a.

692

693 Zihan Qiu, Zekun Wang, Bo Zheng, Zeyu Huang, Kaiyue Wen, Songlin Yang, Rui Men, Le Yu, Fei
 694 Huang, Suozhi Huang, et al. Gated attention for large language models: Non-linearity, sparsity,
 695 and attention-sink-free. *arXiv preprint arXiv:2505.06708*, 2025b.

696

697 Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
 698 Compressive transformers for long-range sequence modelling. *arXiv preprint*, 2019. URL
 699 <https://arxiv.org/abs/1911.05507>.

700

701 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 702 toward training trillion parameter models. In *SC20: International Conference for High Perfor-
 703 mance Computing, Networking, Storage and Analysis*, pp. 1–16. IEEE, 2020.

704

705 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 706 Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
 707 allelism. *arXiv preprint arXiv:1909.08053*, 2019.

702 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
 703 sualising image classification models and saliency maps. *arXiv preprint arXiv:1312.6034*, 2013.
 704

705 Zecheng Tang, Zechen Sun, Juntao Li, Qiaoming Zhu, and Min Zhang. Logo-long context align-
 706 ment via efficient preference optimization. *arXiv preprint arXiv:2410.18533*, 2024a.
 707

708 Zecheng Tang, Keyan Zhou, Juntao Li, Baibei Ji, Jianye Hou, and Min Zhang. L-citeeval: Do
 709 long-context models truly leverage context for responding? *arXiv preprint arXiv:2410.02115*,
 710 2024b.
 711

712 Zecheng Tang, Haitian Wang, Quantong Qiu, Baibei Ji, Ruoxi Sun, Keyan Zhou, Juntao Li, and Min
 713 Zhang. Loom-scope: a comprehensive and efficient long-context model evaluation framework.
 714 *arXiv preprint arXiv:2507.04723*, 2025.
 715

716 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 717 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 718 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
 719

720 Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
 721 words are anchors: An information flow perspective for understanding in-context learning. In
 722 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp.
 723 9840–9855, 2023.
 724

725 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 726 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 727 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025a.
 728

729 Zhenghua Wang, Yiran Ding, Changze Lv, Zhibo Xu, Tianlong Li, Tianyuan Shi, Xiaoqing Zheng,
 730 and Xuanjing Huang. Layer-specific scaling of positional encodings for superior long-context
 731 modeling. *arXiv preprint arXiv:2503.04355*, 2025b.
 732

733 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 734 Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 735 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
 736 ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
 737 natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in
 738 Natural Language Processing: System Demonstrations*, pp. 38–45, Online, October 2020. As-
 739 sociation for Computational Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.
 740

741 Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanisti-
 742 cally explains long-context factuality. *arXiv preprint arXiv:2404.15574*, 2024.
 743

744 Zhiheng Xi, Jixuan Huang, Chenyang Liao, Baodai Huang, Honglin Guo, Jiaqi Liu, Rui Zheng, Jun-
 745 jie Ye, Jiazheng Zhang, Wenxiang Chen, et al. Agentgym-rl: Training llm agents for long-horizon
 746 decision making through multi-turn reinforcement learning. *arXiv preprint arXiv:2509.08755*,
 747 2025.
 748

749 Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
 750 and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
 751 heads. *arXiv preprint arXiv:2410.10819*, 2024a.
 752

753 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 754 language models with attention sinks. In *The Twelfth International Conference on Learning Rep-
 755 resentations*, 2024b.
 756

757 Wenhao Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
 758 Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling
 759 of foundation models. In *Proceedings of the 2024 Conference of the North American Chapter of
 760 the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 761 Papers)*, pp. 4643–4663, 2024.
 762

763 Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
 764 attention with antidiagonal scoring. *arXiv preprint arXiv:2503.16428*, 2025.
 765

756 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 757 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 758 *arXiv:2412.15115*, 2024.

759 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 760 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 761 *arXiv:2505.09388*, 2025.

762 Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential
 763 transformer. *arXiv preprint arXiv:2410.05258*, 2024.

764 Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
 765 and Danqi Chen. Helmet: How to evaluate long-context models effectively and thoroughly. In
 766 *The Thirteenth International Conference on Learning Representations*, 2025.

767 Tan Yu, Anbang Xu, and Rama Akkiraju. In defense of rag in the era of long-context language
 768 models. *arXiv preprint arXiv:2409.01666*, 2024.

769 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
 770 YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
 771 trainable sparse attention. *arXiv preprint arXiv:2502.11089*, 2025.

772 Jiajie Zhang, Yushi Bai, Xin Lv, Wanjun Gu, Danqing Liu, Minhao Zou, Shulin Cao, Lei Hou,
 773 Yuxiao Dong, Ling Feng, et al. Longcite: Enabling llms to generate fine-grained citations in
 774 long-context qa. *arXiv preprint arXiv:2409.02897*, 2024a.

775 Jiajie Zhang, Zhongni Hou, Xin Lv, Shulin Cao, Zhenyu Hou, Yilin Niu, Lei Hou, Yuxiao Dong,
 776 Ling Feng, and Juanzi Li. Longreward: Improving long-context large language models with ai
 777 feedback. *arXiv preprint arXiv:2410.21252*, 2024b.

778 Yikai Zhang, Junlong Li, and Pengfei Liu. Extending llms' context window with 100 samples. *arXiv*
 779 *preprint arXiv:2401.07004*, 2024c.

780 Liang Zhao, Tianwen Wei, Liang Zeng, Cheng Cheng, Liu Yang, Peng Cheng, Lijie Wang, Chenxia
 781 Li, Xuejie Wu, Bo Zhu, et al. Longskywork: A training recipe for efficiently extending context
 782 length in large language models. *arXiv preprint arXiv:2406.00605*, 2024a.

783 Xinyu Zhao, Fangcong Yin, and Greg Durrett. Understanding synthetic context extension via re-
 784 trieval heads. *arXiv preprint arXiv:2410.22316*, 2024b.

785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 A ILLUSTRATION OF TRAINING EFFICIENCY OF CURRENT METHODS
811

812 Training efficiency comparisons across current long-context methods are inherently challenging:
 813 **performance gains typically exhibit diminishing returns with increased token budgets under long-**
 814 **context training setting**, and reported results often stem from divergent training setups — includ-
 815 ing data composition, optimization hyper-parameters, and hardware configurations. These factors
 816 render direct “gain-per-token” comparisons unreliable when conditions are unmatched. To fairly
 817 compare training efficiency across methods — despite differing hyper-parameters and convergence
 818 behaviors — we adopt a controlled proxy: average task gain per 1B tokens, measured under identical
 819 data, optimizer, batch size, learning rate, and hardware ($8 \times$ A100 GPUs). Specifically, we compare
 820 ProLong (Gao et al., 2024b) - one long-context SFT method, and LongCE (Fang et al., 2024b) -
 821 one token-level re-weighting training method, on the Llama3-8B-Base model. As shown in Table 3,
 822 we evaluate model performance on LongBench-E (12 real-world tasks) per 50 training steps (0.41B
 823 tokens per 50 steps), and find that **LongCE achieves a 3.7-point gain per 1B tokens versus ProLong’s**
 824 **1.8-point gain per 1B tokens**.

825 Table 3: Performance comparison between ProLong (SFT) and LongCE across training steps, where
 826 each step contains the same training setting.

Method	Step 0	Step 50	Step 100	Step 150	Step 200
ProLong (SFT)	25.50	27.32	28.15	28.44	29.13
LongCE (same data)	25.50	28.30	29.72	31.01	32.91

833 B PRELIMINARY STUDY DETAILS
834

835 B.1 PRELIMINARY TASK CONSTRUCTION

836 **Task Selection** We select 3-hop and 4-hop tasks based on qa3 tasks in the BABILong Benchmark
 837 to build our datasets, as these tasks generally pose significant challenges for LLMs. However, it is
 838 worth noting that the original BABILong qa4 samples do not truly require 4-hop reasoning to pro-
 839 duce correct outputs. For example, a sample from this subset with 0k context is shown in Figure 11.
 840 In this case, the task only requires attention to a single fact, “The bedroom is west of the bathroom”
 841 to answer the question, while the first sentence serves as an interference fact. Even in terms of
 842 keywords, the model only needs to focus on three keywords: “bathroom”, “west”, and “bedroom”
 843 from the second sentence. Thus, we design our 4-hop dataset based on the BABILong qa3 source
 844 data, with one sample shown in Figure 12. By carefully arranging the order of facts and reducing
 845 the conditions of questions in the long context, we ensure that the model is required to search for all
 846 four supporting facts in sequence to produce the correct output.

847 Table 4: Variable settings, where R. denotes random.

Hops	Samples	Permute	Lengths
2	100	5	8K
3/4	R.	R.	0k - 64k

850 **Controlled Evaluation Data Synthesis** We use the 4-hop task with non-zero context as an exam-
 851 ple here. As shown in Table 4, all variables used for building data include the facts sample, the facts
 852 permutation, and the context length. Firstly, we select source samples from the BABILong official
 853 file “qa3_three-supporting-facts” as our base data. Then, we modify the original BABILong qa3
 854 supporting facts following the pattern shown in Figure 13. Afterward, we add interference to these
 855 four original facts while maintaining the relative order of the supporting facts. The process begins
 856 by selecting a noise context of the appropriate length and inserting the facts into it. Specifically, we
 857 divide the noise context into 10 equal-length chunks, leaving 10 candidate positions for the insertion
 858 of the 4 supporting facts (excluding the tail). Next, we randomly select five permutations from the
 859 860 861 862 863

864
 865
 866
 867
 868 Table 5: Performance statistics of using different numbers of attention heads on our preliminary
 869 synthetic task. Notably, we find that selecting the top-30 heads yields results that are nearly identical
 870 to those obtained when using all attention heads.
 871
 872
 873

Head Number	Supporting		Interference		Irrelevant		Low-frequency	
	Correct	Wrong	Correct	Wrong	Correct	Wrong	Correct	Wrong
Top-30	0.21	0.11	0.07	0.17	0.72	0.72	0.00	0.00
All	0.20	0.13	0.09	0.15	0.71	0.72	0.00	0.00

874
 875
 876 full set of C_{10}^4 candidate position permutations. After injecting noise, we randomly insert interfe-
 877 rence facts, i.e., facts that are similar to the supporting facts but irrelevant, among all sentences. We
 878 ensure that at least one interference fact is placed after the last supporting fact to test the model’s
 879 robustness. To ensure the correctness of the samples, we make sure that the objects appearing in the
 880 interference facts do not overlap with those in the supporting facts. Additionally, we ensure that the
 881 number of interference facts is between one and two times the number of supporting facts to avoid
 882 making the samples either too easy or too difficult. Finally, for all samples with the same context
 883 length, we use the same noise context to maintain consistency. In the end, we randomly insert a few
 884 emojis into the constructed context to test the sensitivity of the model to low-frequency tokens. For
 885 the 3-hop task, we directly use the original qa3 task format from BABILong as the base, and the
 886 subsequent processing follows a similar approach to the one described above for the 4-hop task.
 887
 888

One BABILong qa4 sample with 0k context
Input :
The bedroom is west of the office. The bathroom is west of the bedroom.
Question:
What is west of the office?
Supporting Facts:
The bedroom is west of the office.
Ground truth:
bedroom

901 Figure 11: A BABILong qa4 sample with 0k context
 902
 903
 904
 905
 906

B.2 DESIGN OF IG SCORE

907
 908 Prior work (Wu et al., 2024) has shown that not all attention heads behave uniformly, i.e., some are
 909 specialized for retrieval-like behaviors, while others are not. However, it is important to note that
 910 these findings are primarily derived from studies focused on copy-oriented tasks, such as NIAH. In
 911 contrast, our task involves reasoning and inference, which fundamentally differs from the objectives
 912 of retrieval heads. As a result, the mechanisms for attending to relevant context in our setting cannot
 913 be directly aligned with those used in retrieval-focused tasks. To further analyze the appropriate
 914 number of attention heads to select, we conduct experiments where we select the top-k attention
 915 heads ($k = 30$) that retrieve the most relevant information based on the attention scores (Table 5).
 916 We find that the performance using only a subset of attention heads was highly consistent with
 917 the results obtained by averaging over all attention heads. Therefore, for simplicity and ease of
 deployment, we adopt the latter approach, i.e., averaging IG scores across all attention heads.

918 One of our 4-hop samples with 0k context
 919
 920 Input :
 921 Mary journeyed to the office.
 922 Mike went to the office.
 923 Mary got the apple.
 924 Daniel picked up the football.
 925 Daniel went back to the bedroom.
 926 Mary journeyed to the bathroom.
 927 Mary dropped the apple.
 928 Jonh went to the bathroom.
 929 **Question:**
 930 Where was the apple's location prior to the place where the apple was discarded, left or dropped?
 931 **Supporting Facts:**
 932 Mary journeyed to the office.
 933 Mary got the apple.
 934 Mary journeyed to the bathroom.
 935 Mary dropped the apple.
 936 **Ground truth:**
 937 office
 938

Figure 12: One of our 4-hop samples with 0k context

939
 940
 941 The pattern of our 4-hop sample
 942
 943 Supporting fact1: {x} {m} the {y1}
 944 Supporting fact2: {x} {p} the {o}
 945 Supporting fact3: {x} {m} the {y2}
 946 Supporting fact4: {x} {d} the {o}
 947 **Question:**
 948 Where was the {o}'s location prior to the place where the {o} was discarded, left or dropped?
 949 **Ground truth:**
 950 {y1}
 951 **Explanation:**
 952 {x} : a character name, selected from {Mary, Daniel, Mike, ...}
 953 {m} : a predicate indicating movement, selected from {went to, journeyed to, travelled to, ...}
 954 {y1}, {y2} : two different locations, selected from {office, bedroom, bathroom, ...}
 955 {p} : a predicate indicating picking up, selected from {picked up, took, grabbed, ...}
 956 {d} : a predicate indicating dropping, selected from {dropped, put down, discarded, ...}
 957 {o} : an object name, selected from {apple, football, milk, ...}

Figure 13: The pattern of our 4-hop sample

959
 960
 961
 962
 963 **C DERIVATION OF RELATION BETWEEN INFORMATION FLOW AND**
 964 **EMBEDDING GRADIENTS**
 965

966 In transformer-based models, the Information Flow in attention is essentially the product of the
 967 attention distribution and its corresponding gradient. Therefore, we can transform the derivation
 968 into **constructing the gradient relationship between the attention score distribution (A) and**
 969 **the embedding ($E(X)$)**. This can be established via the chain rule and implemented through the
 970 specific computation steps of the attention mechanism. Notably, in the following derivation, for
 971 simplicity, we omit the activation layers in the model. Additionally, considering that transformer-
 based models are composed of multiple identical network blocks stacked together, one can easily

972 extend the conclusions from a single layer to multiple layers. Therefore, we focus on proving the
 973 case with **one embedding layer and one attention module**.

974 Given the basic definition of the attention mechanism, we have:

$$\begin{cases} 976 \quad Q = E(X)W_Q, \quad A = \text{softmax}\left(\frac{QK^T}{\sqrt{d}}\right), \\ 977 \quad K = E(X)W_K, \quad O = A \cdot V, \\ 978 \quad V = E(X)W_V, \end{cases}$$

980 where $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$ are the model parameters, O is the attention output, $E(X) \in \mathbb{R}^{n \times d}$
 981 is the input embedding matrix, n and d are sequence length and model dimension, respectively.

982 Let the loss function be L . By the chain rule, the gradient of the loss with respect to $E(X)$ is:

$$\begin{aligned} 983 \quad \frac{\partial L}{\partial E(X)} &= \frac{\partial L}{\partial O} \frac{\partial O}{\partial E(X)} = \frac{\partial L}{\partial A} \frac{\partial A}{\partial E(X)} \\ 984 \quad &\quad + \frac{\partial L}{\partial V} \frac{\partial V}{\partial E(X)}. \end{aligned} \quad (5)$$

985 Since we have $\frac{\partial V}{\partial E(X)} = W_V^T$ and $\frac{\partial O}{\partial V} = A$, the gradient relationship between A and $E(X)$ is:

$$\frac{\partial L}{\partial E(X)} \propto \frac{\partial L}{\partial A} \frac{\partial A}{\partial E(X)} \quad (6)$$

986 To eliminate the influence of the Softmax(\cdot) function, we can further decompose equation 6 into:

$$\begin{cases} 987 \quad S = \frac{QK^T}{\sqrt{d}}, \\ 988 \quad \frac{\partial L}{\partial E(X)} \approx \frac{\partial L}{\partial A} \cdot \left(\frac{\partial A}{\partial S} \cdot \frac{\partial S}{\partial E(X)} \right), \end{cases} \quad (7)$$

989 where $\frac{\partial A}{\partial S}$ is the Jacobian of Softmax(\cdot) function, with elements A_{ij} ($\delta_{ik} - A_{ik}$)².

990 For each element $S_{ij} = \frac{Q_i K_j^T}{\sqrt{d}} \in S$, the gradient with respect to $E(X)$ can be written as:

$$\begin{aligned} 991 \quad \frac{\partial S_{ij}}{\partial E(X)} &= \frac{\partial \left(\frac{(E(X)_i W_Q)(E(X)_j W_K)^T}{\sqrt{d}} \right)}{\partial E(X)} \\ 992 \quad &= \frac{1}{\sqrt{d}} (W_Q^T \cdot K_j \cdot \delta_{ik} + W_K^T \cdot Q_i \cdot \delta_{jk}). \end{aligned} \quad (8)$$

1000 Based on equation 7 and equation 8, we can summary that:

$$\begin{aligned} 1001 \quad \frac{\partial L}{\partial E(X)_i} &\propto \underbrace{\frac{\partial L}{\partial A_{ij}}}_{\substack{\text{Sensitivity of } L \text{ to } A}} \\ 1002 \quad &\times \underbrace{A_{ij}(1 - A_{ij})}_{\substack{\text{Derivation from Softmax}}} \\ 1003 \quad &\times \underbrace{\frac{\partial S_{ij}}{\partial E(X)}}_{\substack{\text{Linear Transformation}}}. \end{aligned} \quad (9)$$

1004 Based on equation 9, we can derive that when A_{ij} increases, indicating higher attention between
 1005 token i and token j , the sensitivity of L to A ($\frac{\partial L}{\partial A_{ij}}$) also increases. This results in larger derivatives

1006 ² δ_{ik} is the Kronecker delta function. If i equals to k , $\delta_{ik} = 1$, else $\delta_{ik} = 0$. We can also rewrite this
 1007 equation into $A_{ij}(1 - A_{ij})$.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
Table 6: Configuration of context window scaling training setting.

Context Window Scaling Training Setting	
Backbone	Llama-3-8B-base
Training Objective	Language modeling
RoPE base	20,000,000
Context window size	8K → 64K
Data seq-length	64,000
Deepspeed	Zero2
Global batch size	64
Epoch	2
Training Steps	160
Ring-attention size	4
Learning-rate	1e-5
LR-scheduler	cosine_with_min_lr
Optimizer	Adam ($\beta_1 = 0.9, \beta_2 = 0.95$)
GPUs	A100 (80GB) × 8
Training time	≈8h / epoch
Training data	PG19 (Rae et al., 2019)
Total consumed tokens	0.65B

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
Table 7: Configuration of language modeling training setting.

Language Modeling Post-training Setting	
Backbone	Llama-3.1-8B-base
Training Objective	Language modeling
RoPE base	500,000
Context window size	128K
Data seq-length	64,000
Deepspeed	Zero2
Epoch	2
Global batch size	32
Training Steps	320
Ring-attention size	4
Learning-rate	1e-5
LR-scheduler	cosine_with_min_lr
Optimizer	Adam ($\beta_1 = 0.9, \beta_2 = 0.95$)
GPUs	A100 (80GB) × 8
Training time	≈8.5h / epoch
Training data	PG19 (Rae et al., 2019)
Total consumed tokens	0.65B

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
Table 8: Configuration of long-context SFT training setting.

Long-context Alignment Training Setting	
Backbone	Llama-3.1-8B-Instruct
Training Objective	Supervised fine-tuning
RoPE base	500,000
Context window size	128K
Data seq-length	4,000~128,000
Deepspeed	Zero2
Global batch size	32
Epoch	2
Training Steps	250
Ring-attention size	4
Learning-rate	1e-5
LR-scheduler	cosine_with_min_lr
Optimizer	Adam ($\beta_1 = 0.9, \beta_2 = 0.95$)
GPUs	A100 (80GB) × 8
Training time	≈6.5h / epoch
Training data	LongMIT (Chen et al., 2024b), LongAlpaca (Chen et al., 2023c)
Total consumed tokens	0.53B

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
Table 9: Testing configuration of RULER

Evaluation Configuration of RULER	
Question Answering	qa_1, qa_2
Single NIAH	niah_single_1, niah_single_2, niah_single_3
Multi-keys NIAH	niah_multikey_1, niah_multikey_2, niah_multikey_3
Multi-values NIAH	niah_multiquery
Multi-queries NIAH	niah_multivalue
Others	common words extraction (CWE), frequent words extraction (FWE), variable tracking (VT)
Length	32K, 64K
Num samples/task	50

on the embeddings. Additionally, if A_{ij} becomes excessively large, approaching 1, the value of $A_{ij}(1 - A_{ij})$ might tend toward 0. However, this is often not an issue in long-context scenarios, as the attention scores are unlikely to approach values near 0.5 due to the long context. Even if they exceed 0.5 (possibly for some special tokens), the increase in the first term ($\frac{\partial L}{\partial A_{ij}}$) helps mitigate this effect.

D IMPLEMENTATION DETAILS

D.1 TRAINING DETAILS

For all experiments, we utilize the open-source training framework OpenRLHF³ (Hu et al., 2024), Ring-flash-attention⁴ (Liu et al., 2023) and DeepSpeed (Rajbhandari et al., 2020). For LongCE training (Fang et al., 2024b), we set the sliding context window size as 8192 and employ the recommended hyper-parameters in the official code⁵.

³<https://github.com/OpenRLHF/OpenRLHF.git>

⁴<https://github.com/zhuzilin/ring-flash-attention.git>

⁵<https://github.com/PKU-ML/LongPPL.git>

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
Table 10: Testing configuration of BABILong.

Metric	QA1	QA2	QA3	QA7	QA8
Num	100	100	100	100	100
Supporting Fact	1	2	3	1~10	1~8
Interference Fact	1~9	1~66	1~317	1~42	1~42

1087
1088
1089
Table 11: Evaluation results on HELMET (Yen et al., 2025).

Model	Recall	RAG	ICL	Re-rank	QA	Summ.	Cite	Avg.
Claude-3.5-Sonnet	94.7	38.1	61.0	7.2	12.6	36.6	18.7	38.4
Mistral-Nemo-12B	14.6	40.0	84.0	0.0	22.5	18.5	0.5	25.7
ProLong-512K-Instruct	98.8	63.2	86.5	22.5	43.9	29.2	1.4	49.4
Meta-Llama-3.1-8B	95.2	59.5	83.9	14.0	43.2	27.0	2.9	46.5
+ CDT	97.2	61.8	86.6	18.5	46.7	27.9	9.4	49.7

1090
1091
1092
1093
1094
1095
1096
1097
Context Window Scaling To scale the context window size of the Llama-3-8B-base model from 8K to 64K (8 \times), we adjust the RoPE base from 500,000 to 20,000,000 and directly train the model. We provide training configurations in Table 6.

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Data Post-processing Details For the context window scaling experiments, we employ the PG-19 (Rae et al., 2019) dataset. For long-context SFT and CDT experiments, we construct our data from publicly available long-context QA datasets, including LongMiT (Chen et al., 2024b) and LongAlpaca (Chen et al., 2023c). The LongMiT dataset primarily consists of multi-hop QA tasks that require reasoning over 2 to 6 evidence passages. To adapt it for our setting, we apply two pre-processing steps: (i) Length distribution control — we constrain the sampled instances to fall within 16K–128K tokens. This range balances the need for sufficiently long contexts with training efficiency, given our compute resources (8 \times A800 GPUs). Excessively long sequences were avoided as they considerably slow down training. (ii) Evidence balancing — we uniformly sample across different numbers of supporting passages to obtain a more balanced distribution for multi-hop reasoning. To complement this, we include data from LongAlpaca, which predominantly features single-evidence QA with lengths around 16K tokens (under our model’s tokenizer). This addition enriches the training distribution by covering shorter single-evidence scenarios, which are underrepresented in LongMiT. In total, our final training set comprises 7,000 samples from LongMiT and 1,000 samples from LongAlpaca, which are shuffled together before training.

1128
1129
1130
1131
1132
1133
Language Modeling Post-training and Long-context SFT The language modeling post-training and long-context SFT are directly applied to the Llama3.1-8B-base and Llama3.1-8B-Instruct, respectively, which already have 128K context window size. We provide the training configurations in Table 7 and Table 8 respectively.

D.2 EVALUATION DETAILS

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
We conduct long-context evaluation mainly based on the long-context evaluation framework LOOM-Scope⁶ (Tang et al., 2025).

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611

1134
1135 Table 12: Evaluation results of two more LLMs on real-world long-context tasks and long-form
1136 reasoning tasks.
1137

Models	Type	LongBench-E				BABILong	
		S-Doc QA	M-Doc QA	Summ	Few-shot	Code	Avg.
Qwen2.5-7B-Instruct + CDT	- SFT	44.54 44.93	46.29 47.29	28.15 28.65	56.03 57.33	16.52 19.18	38.30 39.48 47.56
Qwen3-8B + CDT	- SFT	44.12 45.33	48.10 49.13	29.30 31.89	44.12 46.24	29.18 32.98	38.85 41.11 52.88
Mistral-V0.3-Instruct + CDT	- SFT	44.89 45.01	40.76 41.79	20.52 26.08	67.11 67.75	47.04 57.27	44.06 47.58 53.84

1145
1146
1147 **LongBench-E** LongBench-E is a variant of LongBench (Bai et al., 2024b) designed specifically
1148 for long-context real-world tasks. We chose LongBench-E because it shares the same test dataset
1149 distribution as LongBench while covering a wider range of context lengths. For the Llama3-8B-base
1150 model, we truncate the input to 8K tokens, whereas for other models, we truncate the input to 32K
1151 tokens.
11521153 **Language Modeling** For the language modeling task, we calculate both LongPPL and PPL met-
1154 rics on the GovReport dataset (Huang et al., 2021), which consists of long sequences from govern-
1155 ment reports. We sample 50 documents from GovReport, each with a context length of up to 32K
1156 tokens.
11571158 **RULER** RULER (Hsieh et al., 2024) is a comprehensive synthetic dataset that includes 6 different
1159 testing categories to evaluate a model’s long-context understanding capabilities. We utilize all test
1160 categories, with each category containing 50 test samples covering lengths of 32K and 64K. We post
1161 the testing configuration of RULER in Table 9.
11621163 **Long-form Reasoning** We evaluate the long-form reasoning capability of models on selected
1164 tasks from BABILong (Kuratov et al., 2024). Specifically, we select tasks that involve multiple
1165 supporting facts, as well as QA1, as the testing dataset. The BABILong testing configurations are
1166 shown in Table 10.
1167

D.3 BASELINE ILLUSTRATION

1168 We evaluate our method on three foundation
1169 models, i.e., LLaMA-3-8B-Base, LLaMA-3.1-
1170 8B-Base, and LLaMA-3.1-8B-Instruct—to en-
1171 sure fair and consistent comparisons across all
1172 baselines. The baselines include: YaRN, which
1173 extends the context window using an improved
1174 NTK-based positional scaling method; CE
1175 (Cross Entropy), a standard language modeling
1176 objective without any context-aware weight-
1177 ing; LongCE, which builds upon the LongPPL
1178 method by identifying key tokens via perplex-
1179 ity during training and assigning them higher
1180 loss weights; SFT, an instruction tuning setup
1181 where input tokens are excluded from the loss
1182 calculation; and LOGO, a DPO-based training
1183 approach designed to mitigate misalignment
1184 in long-context tasks. Additionally, we com-
1185 pare against several strong open-source long-
1186 context models: ProLong-512K-Instruct and
1187 NExtLong-512K-Instruct, which apply long-
1188 context scaling techniques on top of LLaMA-
1189 3-8B-Instruct and LLaMA-3.1-8B-Instruct, re-1190 Table 13: Model performance on language mod-
1191 eling tasks.
1192

Models	LongPPL	PPL
Llama-3-8B-Base + YaRN	> 100 3.55	> 100 5.60
+ CE	3.90	6.46
+ LongCE	3.55	5.60
+ CDT (ours)	3.04	5.40
Llama-3.1-8B-Base + CE	3.22 3.28	4.79 4.86
+ LongCE	3.24	5.28
+ CDT (ours)	2.10	5.19
Llama-3.1-8B-Instruct + SFT	4.05 3.31	5.52 5.51
+ LOGO	4.11	5.54
+ CDT (ours)	2.36	5.64

1188 Table 14: Statistical significance calculation on LongBench-E data with t-Test.
1189

1190 Models	1191 P-Value
1192 Llama3-8B-Base V.S. Llama3-8B-Base-CDT	3.68e-15
1193 Llama3.1-8B-Base V.S. Llama3.1-8B-Base-CDT	1.53e-2
1194 Llama3.1-8B-Instruct V.S. Llama3.1-8B-Instruct-CDT	2.39e-3

1195
1196 respectively; and LLaMA-3.1-8B-SEALONG, a DPO-trained model specifically optimized for long-
1197 context alignment.
1198

1200 E MORE EVALUATION RESULTS 1201

1202 E.1 ANALYSIS OF RESULTS ON REAL-WORLD LONG-CONTEXT TASKS 1203

1204 The strong performance of CDT on code-related tasks, as shown in Table 1, is particularly notable.
1205 Code Completion requires models to accurately interpret local context and predict missing seg-
1206 ments accordingly. CDT is especially well-suited for such tasks, as it enhances the model’s ability
1207 to focus on local context information during generation, which likely contributes to the observed
1208 performance improvements. Table 15 offers a more intuitive illustration through a specific Code
1209 Completion example. In LongBench-E, this task is evaluated using the Edit Similarity (Edit Sim)
1210 metric, which is highly sensitive to the number of tokens generated—especially under the official
1211 64-token generation limit. In the provided example, LLaMA-3.1-8B-Instruct produces entirely in-
1212 correct outputs, while GPT-4o generates overly lengthy responses that negatively affect the Edit Sim
1213 score. In contrast, the CDT-enhanced model generates a concise and accurate response, resulting
1214 in a significantly higher Edit Sim score. Furthermore, CDT leads to substantial improvements for
1215 both LLaMA-3.1-8B-Instruct and LLaMA-3-8B-Base on the Code task. These improvements can
1216 be attributed to two main factors. First, the training set includes code completion instances (e.g., 263
1217 examples from LongMIT), which enable the model to learn relevant instruction-following patterns.
1218 Second, the baseline model’s lower performance in this domain makes the gains from CDT more ap-
1219 parent. By contrast, LLaMA-3.1-8B-Base already demonstrates strong performance on code-related
1220 tasks—likely due to the composition of its pretraining data—resulting in smaller relative gains when
1221 CDT is applied.
1222

1223 E.2 GENERALIZING CDT TO MORE MODELS

1224 We apply our CDT method to more LLMs, including Qwen2.5-7B-Instruct (Yang et al., 2024) and
1225 Mistral-V0.3-Instruct (Jiang et al., 2023). We evaluate the model performance on real-world long-
1226 context tasks, long synthetic tasks, and long-form reasoning tasks. We report the model performance
1227 in Table 12, where we can observe that our CDT can significantly improve the model performance
1228 on different models. For instance, the Mistral-V0.3-Instruct model obtains more than 30 points on
1229 the long-form reasoning task.
1230

1231 E.3 EVALUATION RESULTS ON LANGUAGE MODELING TASKS 1232

1233 Apart from evaluating with LongPPL on the language modeling task, we also calculate the PPL
1234 scores, which are shown in Table 13.
1235

1236 E.4 EXPERIMENT STATISTICAL SIGNIFICANCE 1237

1238 We collect the prediction results of the original model and the CDT model on the LongBench-E
1239 benchmark, and conduct a paired-samples t-test to assess the statistical significance of the mean
1240 difference before and after the improvement, shown in Table 14. The results show that our method
1241 significantly outperforms the baseline model at the 5% significance level, indicating that our method
achieves statistically significant improvements.
1242

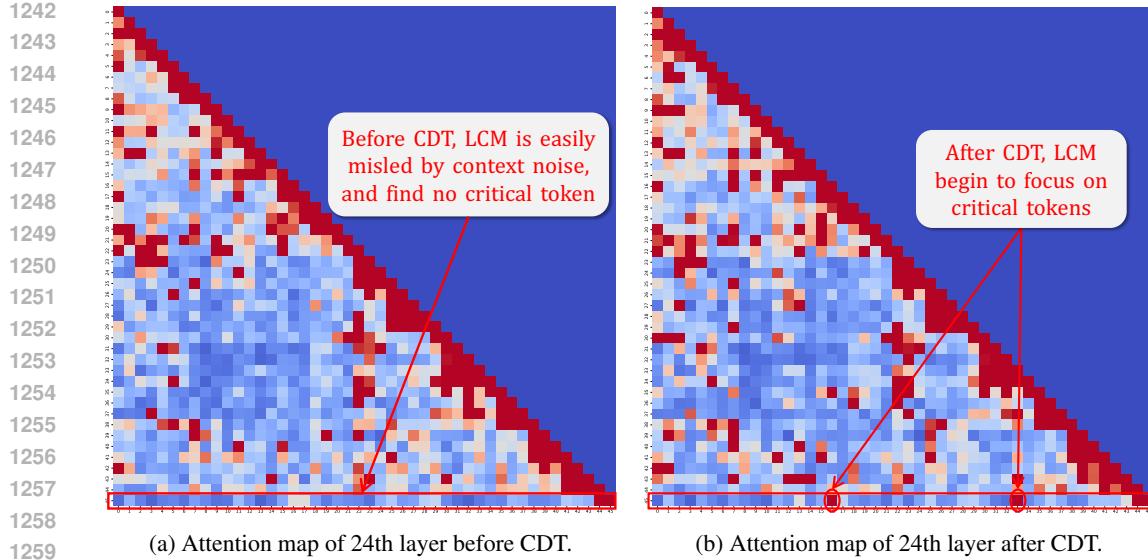


Figure 14: Comparison between Attention Maps Before and After CDT. In each figure, a deeper (red) color indicates larger model attention to the corresponding context chunk. The final row of each map represents how the question attends to the entire input sequence, including both the context and the question itself. For clearer visualization, we recommend zoom in on this figure.

F ANALYSIS OF ATTENTION MAP BEFORE AND AFTER CDT

In this section, we present a visualization of the model’s attention patterns before and after applying the CDT training strategy. Given the long input length (12,000 tokens) used in our evaluation, we evenly partition the input sequence into 46 chunks and calculate the total attention score for each chunk individually. For each chunk, a higher total attention score indicates that the model places greater focus on this chunk. We visualize the attention maps of the 24th layer of the model, as this layer provides the clearest representation of CDT’s impact. As shown in Figure 14, we can observe that, before applying CDT, the model’s attention is predominantly concentrated on the question itself (the rightmost portion of the final row in Figure 14a), while key information within the context is largely overwhelmed by noise. In contrast, after CDT training, the model not only attends to the question but also shows significantly increased attention to relevant contextual information, as highlighted by the red circles in the final row of Figure 14b. **It is noteworthy that the attention map shows no significant changes before and after CDT training, indicating that CDT training does not compromise the original characteristics of the LCM. Instead, it enhances the ability of LCM to capture critical information.**

G LIMITATION AND FUTURE WORK

Due to the expectation maximization (EM) nature of CDT, it includes an additional context noise detection process, which introduces extra computational costs during the training phase. Although we have demonstrated in Section 6.3 that these additional costs are negligible compared to the performance gains, theoretically, *the noise detection cost will increase as the model size grows since it involves a complete forward-backward propagation process*. We leave this for future work, aiming to explore a simpler method for identifying the context noise or to develop more efficient model architectures. For example, designing specific network modules to handle noise, as proposed in Ye et al. (2024), could be a promising direction. Additionally, we observe that *the improvement brought by our method on complex reasoning tasks is not as significant as that on other tasks*, and we are yet to understand the relationship between this and the training data or the training objective function. In the future, we aim to further investigate the impact of context noise on the model’s long-form reasoning abilities, as well as the relationship between the CDT strategy and the enhancement of the model’s reasoning capabilities.

H USE OF LLMs

1296 During the writing of this paper, we leveraged large language models (LLMs) to refine the clarity and
1297 fluency of our writing, particularly in the Abstract and Introduction sections. Specifically, we used
1298 the Qwen web interface ⁷ to access the Qwen series of models (e.g., Qwen-Max), inputting early
1299 drafts of these sections and requesting stylistic improvements while preserving technical accuracy
1300 and original intent. The model’s suggestions helped enhance sentence structure, academic tone, and
1301 overall readability. All final content was carefully reviewed, validated, and edited by the authors to
1302 ensure fidelity to our research and adherence to scholarly standards.

I ERROR ANALYSIS

1308 In this section, we analyze the error pattern of partial model predictions on real-world long-context
1309 tasks. As shown in Table 15, we use colored text to highlight the correct and incorrect parts of the
1310 model’s predictions.

1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

⁷<https://chat.qwen.ai>

1350 Table 15: Generation samples of Llama3.1-8B-Instruct, Llama3.1-8B-Instruct-CD (ours), and
 1351 GPT4o on real-world long-context tasks.
 1352

Code Completion Task	
Question: Completing the code based on the context: [...] \n self.interface = self.interface.replace(' ', '').lower() \n self.param_type = None \n self.if_type = None \n # state \n self.results = dict() \n [Completion] self.result = dict() \n def check_params(self): \n """Check all input params"""\n if not self.interface: \n self.module.fail_json(msg='Error: Interface name cannot be empty.') [...]	Llama3.1-8B-Instruct: for (int i = 0; i < s.length(); i++) {if (!Character.isDigit(s.charAt(i)) && s.charAt(i) != ',') } Llama3.1-8B-CD (ours): if self.interface == 'all':\n self.param_type = INTERFACE_ALL\n GPT4o: if self.interface.lower() == 'all':\n self.param_type = INTERFACE_ALL\n elif '/' in self.interface or self.interface.isdigit():\n self.param_type = INTERFACE_FULL_NAME\n else:\n self.if_type = get_interface_type(self.interface)\n Golden Answer: if self.interface == 'all':\n
Long-context Multi-hop Reasoning Task	
Question: What did M. King Hubbert's employer announce it was in the process of doing in April 2010? [...] In April 2010 Shell announced that the corporation is in process of trying to find a potential buyer for all of its operations in Finland and is doing similar market research concerning Swedish operations. [...]	Llama3.1-8B-Instruct: Shell announced the sale of some of its assets, including its liquefied petroleum gas (LPG) business, to meet the cost of a planned \$28 Llama3.1-8B-CD (ours): trying to find a potential buyer for all of its operations in Finland and is doing similar market research concerning Swedish operations. GPT4o: MV Miralda's owner announced it was in the process of trying to find a potential buyer for all of its operations in Finland and in doing similar market research concerning. Golden Answer: trying to find a potential buyer for all of its operations in Finland
Single-QA Long-context Task	
Question: What metrics are used in evaluation? [...] Figure FIGREF22 shows the results of these experiments wherein we are able to maintain the precision on the subset of the training set used for testing while reducing its recall and thus generalising the model. The fact that the model is generalizing on a dissimilar dataset is confirmed by the increase in the development set. F1 score. [...]	Llama3.1-8B-Instruct: Macro-averaged F-score. Llama3.1-8B-CD (ours): macro-averaged F-score, precision, recall, F1 score. GPT4o: Macro-averaged F-score. Golden Answer: precision, recall , F1 score