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Abstract
The expressive power of message-passing graph
neural networks (MPNNs) is reasonably well un-
derstood, primarily through combinatorial tech-
niques from graph isomorphism testing. How-
ever, MPNNs’ generalization abilities—making
meaningful predictions beyond the training set—
remain less explored. Current generalization anal-
yses often overlook graph structure, limit the
focus to specific aggregation functions, and as-
sume the impractical, hard-to-optimize 0-1 loss
function. Here, we extend recent advances in
graph similarity theory to assess the influence of
graph structure, aggregation, and loss functions
on MPNNs’ generalization abilities. Our empiri-
cal study supports our theoretical insights, improv-
ing our understanding of MPNNs’ generalization
properties.

1. Introduction
Graphs represent interactions across life, natural, and for-
mal sciences, such as atomistic systems (Duval et al., 2023;
Zhang et al., 2023) or social networks (Easley & Kleinberg,
2010; Lovász, 2012), highlighting the need for machine
learning methods for graph data. Message-passing graph
neural networks (MPNNs) (Gilmer et al., 2017; Scarselli
et al., 2009) have recently gained attention, achieving suc-
cess in areas like drug design (Wong et al., 2023), weather
forecasting (Lam et al., 2023), and combinatorial optimiza-
tion (Cappart et al., 2023; Scavuzzo et al., 2024; Qian et al.,
2024).

Despite their success, MPNNs’ theoretical properties are
underexplored (Morris et al., 2024), with most studies fo-
cusing on expressivity, i.e., their ability to separate graphs
or approximate permutation-invariant graph functions. Ex-
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pressivity is analyzed via algorithmic alignment with the
1-dimensional Weisfeiler–Leman algorithm (1-WL) (We-
isfeiler & Leman, 1968; Weisfeiler, 1976; Morris et al.,
2023b), a heuristic for graph isomorphism, or universal
approximation theorems (Azizian & Lelarge, 2021; Böker
et al., 2023; Chen et al., 2019; Geerts & Reutter, 2022;
Maehara & NT, 2019; Rauchwerger et al., 2024). For in-
stance, Morris et al. (2019); Xu et al. (2019) showed that
the 1-WL bounds MPNNs’ expressivity in distinguishing
non-isomorphic graphs, while recent work (Böker et al.,
2023; Chen et al., 2022; 2023; Rauchwerger et al., 2024)
refines expressivity using advances in graph similarity, such
as the Tree distance (Böker, 2021).

Understanding when MPNNs generalize to unseen graphs
is equally crucial but understudied (Morris et al., 2024).
Recent works (Franks et al., 2023; Liao et al., 2021; Mor-
ris et al., 2023a; Scarselli et al., 2018) often use Vapnik–
Chervonenkis dimension (VC dimension) (Vapnik, 1995) or
related formalisms to derive generalization bounds based
on simplistic graph parameters, e.g., maximum degree. For
example, Morris et al. (2023a, Proposition 1 and 2) linked 1-
WL expressivity with VC dimension, assuming the 0-1 loss
function and specific aggregation functions. Their reliance
on 1-WL implies a simplistic notion of graph similarity,
where graphs are either equivalent or entirely dissimilar,
leading to vacuous bounds irrelevant to practice. Moreover,
in general, most analyses overlook architectural variations
like aggregation functions.

Present work Here, we extend modern generalization
frameworks based on (data-dependent) covering num-
bers (Xu & Mannor, 2012; Kawaguchi et al., 2022) to ad-
dress the above shortcomings. Specifically, we investigate
how refined notions of graph similarity, or pseudo-metrics
on graphs, enable smaller graph coverings and tighter anal-
yses of MPNNs’ generalization error. See Figure 1 for
an illustration of how pseudo-metrics induce distinct ge-
ometries, leading to improved generalization analysis. Our
analysis also incorporates various architectural choices and
loss functions.

Concretely, (1) we demonstrate that the choice of pseudo-
metric on n-order graphs significantly affects generaliza-
tion analysis. For instance, the Tree distance (Böker,
2021) yields a strictly tighter generalization error bound
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than Morris et al. (2023a). We provide a general proof tech-
nique for this improvement, covering loss functions such as
cross-entropy and mean absolute error, unlike Morris et al.
(2023a). (2) We link our pseudo-metrics to the Tree Mover’s
distance (TMD) (Chuang & Jegelka, 2022), deepening the
understanding of TMD, originally defined via a recursive
transportation formula. (3) We define the 1-MWL, a heuris-
tic for graph isomorphism that characterizes the expressivity
of MPNNs with mean aggregation and satisfies the Lips-
chitz property required for our generalization analysis. We
also derive a corresponding pseudo-metric on graphs equiva-
lent to 1-MWL in distinguishing non-isomorphic graphs. (4)
Empirically, our theoretical findings translate into practice,
offering nuanced insights into MPNN generalization.

In summary, our results highlight how refined graph similar-
ity notions improve the understanding of MPNNs’ general-
ization, considering graph structure, architectural choices,
and loss functions.

See Appendix A for a detailed discussion of related work.

1.1. Background

In the following, we provide the necessary background on
(pseudo-)metric spaces, covering numbers, and MPNNs. We
use standard notation for graphs and norms; see Appendix B.

Metric spaces and coverings In the remainder of the
paper, “distances” between graphs play an essential role,
which we make precise by defining a pseudo-metric (on
the set of graphs). Let X be a set equipped with a pseudo-
metric d : X × X → R+, i.e., d is a function satisfying
d(x, x) = 0 and d(x, y) = d(y, x) for x, y ∈ X , and
d(x, y) ≤ d(x, z) + d(z, y), for x, y, z ∈ X . The latter
property is called the triangle inequality. The pair (X , d)
is called a pseudo-metric space. For (X , d) to be a metric
space, d additionally needs to satisfy d(x, y) = 0 ⇒ x = y,
for x, y ∈ X .1 See Appendix B for the definition of (Lips-
chitz/uniform) continuity of a function between pseudomet-
ric spaces. Let (X , d) be a pseudo-metric space. Given an
ε > 0, an ε-cover of X is a subset C ⊆ X such that for
all elements x ∈ X there is an element y ∈ C such that
d(x, y) ≤ ε. Given ε > 0 and a pseudo-metric d on the set
X , we define the covering number of X , N (X , d, ε) :=

min{m | there is an ε-cover of X of cardinality m},

i.e., the smallest number m such that there exists a ε-cover
of cardinality m of the set X with regard to the pseudo-
metric d.

The covering number provides a direct way of constructing
a partition of X . Let K := N (X , d, ε) so that, by definition

1Observe that computing a metric on the set of graphs G up to
isomorphism is at least as hard as solving the graph isomorphism
problem on G.

of the covering number, there is a subset {x1, . . . , xK} ⊂
X representing an ε-cover of X . We define a partition
{C1, . . . , CK} where Ci := {x ∈ X | d(x, xi) =
minj∈[K] d(x, xj)}, for i ∈ [K]. To break ties, we take
the smallest i in the above. Note that X =

⋃
i∈[K] Ci. The

diameter of a set is the maximal distance between any two
elements in the set. Implied by the definition of an ε-cover
and the triangle inequality, eachCi has a diameter of at most
2ε.

Supervised learning on graphs We define supervised
learning on graphs as follows. Let G be the set of all graphs
and Y a set. Unless specified otherwise, G includes graphs
of varying orders with vertex features in arbitrary domains.
Later, we restrict G by bounding graph order or vertex fea-
ture domains. Similarly, Y varies depending on the task,
e.g., regression or binary classification. We consider classes
H ⊆ X G of graph embeddings, i.e., mappings from G
to X for some set X . A graph learning algorithm learns
such embeddings from data samples. More formally, let
Z := G × Y with a probability distribution µ. A data
sample S is a collection of elements from Z , drawn i.i.d.
according to µ. We denote (G, y) ∼ µ for an element drawn
from Z under µ, and S ∼ µk for a sample of size k ∈ N.
A graph learning algorithm for H maps each sample S
to a graph embedding hS ∈ H. The “goodness” of hS is
assessed using a loss function ℓ : X × Y → R+, assumed
bounded by someM > 0. That is, |ℓ(h(G), y)| ≤M for all
h ∈ H, G ∈ G, and y ∈ Y . We define the expected and em-
pirical error as: ℓexp(hS) := E(G,y)∼µ

[
ℓ
(
hS(G), y

)]
and

ℓemp(hS) := 1
|S|
∑

(G,y)∈S ℓ
(
hS(G), y

)
, where S ∼ µk

for k ∈ N. The generalization error, |ℓexp(hS)−ℓemp(hS)|,
is what we aim to bound in this work.

Message-passing graph neural networks One particular,
well-known class of graph embeddings is MPNNs. Follow-
ing Gilmer et al. (2017), let G be an attributed graph with
initial vertex-feature h

(0)
v ∈ Rd0 , d0 ∈ N, for v ∈ V (G).

An MPNN architecture consists of a stack of L neural net-
work layers for some L > 0. In each layer, t ∈ N, we
compute a vertex feature h

(t)
v :=

UPD(t)
(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))

∈ Rdt ,

dt ∈ N, for v ∈ V (G), where UPD(t) and AGG(t) are
parameterized functions, e.g., neural networks. In the case
of graph-level tasks, e.g., graph classification, one uses a
readout,

hG := READOUT
(
{{h(L)

v | v ∈ V (G)}}
)
∈ Rd,

to compute a single vectorial representation based on
learned vertex features after iteration L. Again, READOUT
may be a parameterized function.
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(b) Geometry under the trivial 1-WL discrete pseudo-
metric. All graphs are equally far apart, not taking
into account their similarity, mapping each graph to a
unique ε-ball.
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(c) Geometry under the Tree distance δ̃∥·∥. The
similarity of graphs is preserved under MPNNs,
leading to a smaller covering and a tighter general-
ization analysis.

Figure 1. Illustrating how the choice of pseudo-metrics influences the geometry and the size of coverings, leading to a tighter generalization
analysis.

Special cases of MPNN layers In the following, we dis-
cuss special cases of MPNNs, which we will subsequently
use in our analyses of MPNNs’ generalization abilities.
First, for an unlabeled n-order graph G, we assume all
initial vertex-features are identical, i.e., h(0)

v = h
(0)
w , for

v, w ∈ V (G). In this case, we define an MPNN layer using
order-normalized sum aggregation and order-normalized
readout, where

h(t)
v := φt

(
1/|V (G)|

∑
u∈N(v)

h(t−1)
u

)
, (1)

hG := ψ
(
1/|V (G)|

∑
u∈V (G)

h(L)
u

)
, (2)

for v ∈ V (G), where φt : Rdt−1 → Rdt is a Lφt
-Lipschitz

continuous function, with respect to the 2-norm-induced
metric, for dt ∈ N and t ∈ [L], and ψ : RdL → Rd is a Lψ-
Lipschitz continuous function.2 Secondly, for an attributed
n-order graph (G, a), i.e., we set h(0)

v = a(v), for v ∈
V (G), we define an MPNN layer using sum aggregation
and order-normalized readout, where

h(t)
v := φt

(
h(t−1)
v W

(1)
t +

∑
u∈N(v)

h(t−1)
u W

(2)
t

)
, (3)

hG := ψ
(
1/|V (G)|

∑
u∈V (G)

h(L)
u

)
, (4)

where φt and ψ are defined as in Equation (1) and
W

(1)
t ,W

(2)
t are dt−1 × dt matrices over R. Under the

additional assumption of positive homogeneity of φt, i.e.,
φt(λx) = λφt(x), for λ > 0, we define an MPNN layer us-
ing mean aggregation and order-normalized readout, where

h(t)
v := φt

(
h(t−1)
v W

(1)
t + 1/|N(v)|

∑
u∈N(v)

h(t−1)
u W

(2)
t

)
, (5)

hG := ψ
(
1/|V (G)|

∑
u∈V (G)

h(L)
u

)
. (6)

2Implied by Morris et al. (2019), choosing the function φt

appropriately, leads to a 1-WL-equivalent MPNN-layer.

MPNN classes Based on the above three types of MPNN
layers, we consider the following classes of MPNNs. Let
G be a class of graphs, we denote the class of all L-layer
MPNNs following Equation (1) where ψ is represented by
a feed-forward neural network (FNN) (See Appendix B.1
for a formal definition of FNNs) with Lipschitz constant
LFNN and bounded byM ′ ∈ R by MPNNord

L,M ′,LFNN
(G), i.e.,

MPNNord
L,M ′,LFNN

(G) :={
h : G → R

∣∣∣ h(G) := FNNθ ◦ hG where θ ∈ Θ
}
,

where Θ is the parameter set of FNNs. Analogously,
for Equation (3) and Equation (5), we define the classes
MPNNsum

L,M ′,LFNN
(G) and MPNNmean

L,M ′,LFNN
(G), respectively.

Finally, we denote the class of all MPNN architectures con-
sisting of L layers with a readout layer represented by an
FNN at the (L+ 1)th-layer by MPNNL(G).

In Appendix C, we provide the formal definition of the
1-Weisfeiler–Leman algorithm (1-WL), characterizing the
distinguishing power of sum aggregation MPNNs (Morris
et al., 2019). We also introduce 1-MWL, a variant of 1-WL,
characterizing the distinguishing power of mean aggrega-
tion MPNNs.

2. Pseudo-metrics on the set of graphs
We define and study (pseudo-)metrics on the set of graphs,
which we later use for a fine-grained generalization analysis
of MPNNs; see Appendix D for an extended discussion.
These pseudo-metrics are designed to align with MPNNs,
reflecting their computational properties. Since the expres-
siveness of MPNNs is bounded by the 1-WL, we aim to
define pseudo-metrics such that two graphs have a distance
of 0 if, and only if, they are 1-WL indistinguishable.

Building on Böker (2021), we define the Tree distance, as
follows. A matrix S ∈ [0,1]n×n is a doubly-stochastic
matrix if ∥Si,·∥1 = 1, for i ∈ [n], and ∥S·,j∥1 = 1, for
j ∈ [n]. Let Dn denote the set of n× n doubly-stochastic
matrices. Given a matrix norm ∥·∥, for two graphs G and
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H with adjacency matrices A(G) and A(H), respectively,
we define the Tree distance

δT∥·∥(G,H) := min
S∈Dn

∥A(G)S − SA(H)∥. (7)

Similarly, we extend the above definition to labeled
graphs in GB

n,d,3 resulting in the labeled Tree distance,
δ̃T∥·∥(G,H) :=

min
S∈Dn

∥A(G)S − SA(H)∥+Tr(S⊺L(G,H)), (8)

where L(G,H) = [dist(ℓG(i), ℓH(j))]i∈V (G),j∈V (H) for
some distance function dist between node features (see Ap-
pendix D). The following result shows that Equations (7)
and (8) are valid pseudo-metrics for many norms.

Proposition 1. For every entry-wise matrix norm or the cut
norm ∥·∥, δ̃T∥·∥ is a pseudo-metric on GB

n,d. Additionally, for

two vertex-labeled graphs G and H in GB
n,d, δ̃T∥·∥(G,H) =

0 if, and only, if G and H are 1-WL indistinguishable.

Although the Tree distance and its extension to labeled
graphs match the 1-WL algorithm in expressivity, they do
not consider the number of iterations needed to distinguish
two graphs. This limits our ability to provide tighter gen-
eralization error bounds for MPNNs with a fixed number
of layers. To address this, we define the Forest distance
on GR

n,d, which matches the expressivity of 1-WL up to L
iterations for fixed L ∈ N.

Forest distance To define the Forest distance, formally, let
(G, aG) and (H, aH) be attributed graphs of order n, where
aG : V (G) → Rd \ {0Rd} and aH : V (H) → Rd \ {0Rd},
for d ∈ N.4 Given a graph G, a node u ∈ V (G), and a
depth L ∈ N, we define the unrolling tree of u at depth L
as a rooted tree at u with depth L, where each node has
as children its neighbors in the graph G. This tree is also
called the computation tree (see Appendix C for a formal
definition). Now, for a fixed L ∈ N, consider the following
multiset of unrolling trees:

T L
G := {{τ(unr(G, u, L)) | u ∈ V (G)}}.

To account for unrolling trees of different orders, we per-
form a padding process on all trees in T L

G . That is, for
each vertex of each unrolling tree in the multiset T L

G , we
add children with the label 0 until each vertex has exactly
n − 1 children. Hence, after padding, all trees in T L

G will
have the exact same structure, though the vertices will have
different labels, and we denote their disjoint union, i.e., a

3Note that this pseudometric can also be defined on the space
GR
n,d, which includes graphs with continuous vertex features. How-

ever, we restrict our proof to Boolean features to establish the
equivalence with the 1-WL algorithm.

4Without loss of generality, we use the zero vector 0 for
padding purposes.

forest, by FG,L. We perform the same procedure for the
graph (H, ℓH), resulting in the forest FH,L. Note that the
forests FG,L and FH,L have the same structure but are pos-
sibly non-isomorphic due to their vertex labels not matching.
However, we can always find an edge-preserving bijection
between V (FG,L) and V (FH,L). Finally, given a vertex
u ∈ V (FG,L), we denote by l(u) ∈ [L] the level of ver-
tex u in the forest FG,L. Now given a weight function
ω : N → R+, we define the Forest distance of depth L and
weights ω, between G and H as FDL,ω(G,H) :=

min
φ

∑
u∈V (FG,L)

ω(l(u)) · ∥aG(u)− aH(φ(u))∥2, (9)

where the minimum is taken over all edge-preserving bijec-
tions φ between V (FG,L) and V (FH,L).5 When ω(l) = 1,
for l ∈ N, we denote the Forest distance by FDL. See Fig-
ure 2 for an illustration of the distance. The following result
shows that FD(ω)

L is a valid pseudo-metric.

Lemma 2. For every ω : N → R+, L ∈ N, the Forest
distance FDL,ω is a well-defined pseudo-metric on GR

n,d. In
addition, for two graphs, G,H , FDL,ω(G,H) = 0 if and
only if G,H are 1-WL indistinguishable after L iterations.

Now the following result shows that the Forest distance is a
simplified version of the TMD defined by Chuang & Jegelka
(2022), see Appendix F, providing a streamlined, easy-to-
understand definition of the TMD distance while preserving
all the essential properties required for our analysis.

Lemma 3. The Forest distance is equivalent to the Tree
Mover’s distance. That is, for all n, d, L ∈ N, ω : N → R+,
and for all graphs G,H ∈ GR

n,d,

TMD
(ω)
L (G,H) = FDL,ω̃(G,H),

where ω̃(n) =
∏n
i=1 ω(i), for i ∈ N.

While mathematically equivalent, the Forest distance and
TMD have distinct advantages. TMD allows more efficient
computation, making it practical for applications, whereas
the Forest distance intuitively captures structural differences
between graphs.

Mean Forest distance The Forest distance motivates the
definition of the mean-Forest distance, based on mean
unrolling (computation) trees (see Appendix G). This
is the first graph pseudo-metric that precisely captures
the distinguishing power of mean aggregation MPNNs
(see Lemma 29). These MPNNs also satisfy a Lips-
chitz property regarding the mean-Forest distance (see

5In the definition of the Forest distance, we use the Euclidean
norm following Chuang & Jegelka (2022). However, we note that
any other norm could also be used, as all norms are equivalent in
finite-dimensional spaces.

4



Covered Forests

G1 G2

φ

Figure 2. An illustration of the computation of the Forest distance
for depth L = 2 for two labeled graphs G1 and G2. Grey vertices
indicate the padded vertices in the unrollings, and φ represents an
edge-preserving bijection between the two forests.

Lemma 48). We remark that Chuang & Jegelka (2022) (Ap-
pendix B.1) introduced the unnormalized tree mover’s dis-
tance (TMD∗Lω ) and proved its Lipschitz property for mean
aggregation MPNNs. However, TMD∗Lω is more powerful
than the 1-MWL, as it relies on optimal transport between
unrolling trees, capturing 1-WL’s distinguishing power in-
stead of 1-MWL’s.

3. Robustness framework
In the following, we introduce the generalization framework
for studying the generalization abilities of MPNNs. We refer
to Section 1.1 for the formal setup and notation. Slightly
modifying the notation from Xu & Mannor (2012), we say
that a (graph) learning algorithm for the hypothesis class H,
e.g., a class of graph embeddings, on G := X ×Y , is (K, ε)-
robust, for K and ε, mappings from the set of all possible
samples to N and R+, respectively, if for all samples S, Z
can be partitioned into K(S) > 0 sets, {Ci}K(S)

i=1 , such that
the following holds. If (G, y) ∈ Ci, for some i ∈ [K], then
for all (G′, y′) ∈ Ci,∣∣ℓ(hS(G), y)− ℓ

(
hS(G

′), y′
)∣∣ < ε(S),

where hS is the graph embedding the learning algorithm
returns regarding the data sample S. Intuitively, the above
definition requires that the difference of the losses of two
data points in the same part of the partition is small. Xu &
Mannor (2012) showed that a (K, ϵ)-robust learning algo-
rithm implies a bound on the generalization error.
Theorem 4 (Theorem 3 in Xu & Mannor (2012)). For any
(K, ϵ)-robust (graph) learning algorithm for H on Z , we

have that for all δ ∈ (0,1), with probability at least 1− δ,

|ℓexp(hS)−ℓemp(hS)| ≤ ϵ(S)+M

√
2K(S) log(2) + 2 log(1/δ)

|S|
,

where hS , as before, denotes a graph embedding from H
returned by the learning algorithm given the data sample
S of Z . We recall that M is the bound on the loss function
ℓ.

See Appendix I for the refined results of Kawaguchi et al.
(2022) and our extension allowing for different radii within
each partition set.

Connecting robustness, continuity, and expressivity A
natural approach to ensure the robustness of the learning
algorithm is to impose continuity assumptions on both the
loss functions and the graph embeddings. To formalize
this, let us consider two pseudo-metric spaces (X , dX ) and
(Y, dY), and define the pseudo-metric d∞ : (X ×Y)×(X ×
Y) → R+ as

d∞((x, y), (x′, y′)) := max{dX (x, x′), dY(y, y′)}.

Let ℓ : X × Y → R+ be a cℓ-Lipschitz continuous loss
function concerning the metric d∞ and (G, dG) be a pseudo-
metric space over a set of graphs. If the covering numbers
for the spaces (G, dG) and (Y, dY) can be bounded above,
then uniform continuity implies robustness, as shown next.

Proposition 5. Let (G, dG), (X , dX ), and (Y, dY) be
pseudo-metric spaces, and let H denote the class of
uniformly continuous graph embeddings from (G, dG) to
(X , dX ). If ℓ : X × Y → R+ is a cℓ-Lipschitz continuous
loss function, regarding d∞, then for any ε > 0,6 a graph
learning algorithm for H on G × Y is(

N
(
G, dG , γ(ε, ·)/2

)
· N (Y, dY , ε/2), cℓε

)
-robust.

Here, γ = γ(ε, hS) depends on both ε and S is the positive
function used in the definition of the uniform continuity of
hS ∈ H.

Lipschitzness and equicontinuity of the hypothesis class
By Proposition 5 and Theorem 4, we observe that the gener-
alization bound depends on the function γ, which, in turn,
depends on the specific choice of the MPNN hS . Ideally,
we aim to eliminate this dependency on S by deriving a uni-
form bound for all uniformly continuous MPNNs. This can
be achieved by showing the existence of a “uniform” choice
of γ(ε) that satisfies the uniform continuity definition for
all possible MPNNs within a hypothesis class. This prop-
erty is also known as equicontinuity of the hypothesis class.

6Since ε is a function in the definition of robustness, we clarify
that here ε refers to a constant function from the set of all possible
samples to a positive real number. For simplicity and with a slight
abuse of notation, we also denote this constant by ε.
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For instance, this holds for all the hypothesis classes of all
c-Lipschitz MPNNs, sharing the same Lipschitz constant c,
in which case we can set γ(ε) = ε/c.

Corollary 6. Let (G, dG), (X , dX ), and (Y, dY) be pseudo-
metric spaces, and let H denote the class of cH-Lipschitz
continuous graph embeddings from (G, dG) to (X , dX ).
Assume that the loss function is cℓ-Lipschitz, regard-
ing d∞. Then, graph learning algorithms for H are(
N
(
G, dG , ε/(2cH)

)
· N (Y, dY , ε/2), cℓε

)
-robust.

As will become clear later, we will use Corollary 6 to de-
rive our generalization bounds in the regression setting,
assuming a Lipschitz-continuous loss function. However,
for the classification setting, we will specifically use the
cross-entropy loss, which is Lipschitz-continuous, concern-
ing only one argument. In this case, we will need a slightly
modified version of Corollary 6 to establish our generaliza-
tion bounds, resulting in the following proposition, which
follows from Xu & Mannor (2012, Theorem 14)

Proposition 7. Let (G, dG), (X , dX ), and (Y, dY) be
pseudo-metric spaces, let H be a class of graph embed-
dings from (G, dG) to (X , dX ), and let ℓ : X × Y →
R+ be a loss function. For a graph learning algorithm
for H on G × Y , assume that there exists a positive
γ > 0 such that for all samples S and G1, G2 ∈ G,
y1, y2 ∈ Y , max{dG(G1, G2), dY(y1, y2)} ≤ γ =⇒
|ℓ(hS(G1), y1) − ℓ(hS(G2), y2)| < ϵ(S), then, H is
(N (Y, dY , γ/2) · N (G, dG , γ/2), ϵ)-robust.

See Appendix J.1 for more details on the relationship be-
tween robustness and continuity.

4. Fine-grained generalization analysis of
MPNNs

In this section, we derive the main generalization results of
this work using the robustness framework described in Sec-
tion 3. First, in Appendix L, we recover the VC-dimension
bounds from Morris et al. (2023a) within the robustness
framework, showing that these bounds can be obtained using
a trivial discrete pseudo-metric between graphs, defined as 1
when the graphs are 1-WL, distinguishable and 0 otherwise,
leading to vacuous generalization bounds. This motivates
us to analyze the impact of alternative pseudo-metrics that
yield more fine-grained generalization bounds within the
robustness framework compared to the trivial 1-WL-based
pseudo-metric. Our analysis considers different aggregation
functions, vertex labeling schemes, and loss functions.

We begin by exploring the generalization abilities of MPNN
architectures using sum aggregation. Specifically, we con-
sider unlabeled graphs and analyze MPNN layers defined
in Equation (1), i.e., order-normalized sum-aggregation
MPNNs, using the pseudo-metrics defined in Equation (7),

i.e., the Tree distance. This leads to Proposition 9, The-
orem 10, and Proposition 12 (for a class of binary trees).
Next, we consider labeled graphs and analyze MPNN lay-
ers defined in Equation (3), i.e., sum-aggregation MPNNs,
using the pseudo-metrics defined in Equation (9), i.e., the
Forest distance. This yields Proposition 15 and Proposi-
tion 16. These results can be extended to mean-aggregation
MPNNs using the mean-Forest distance, as described in Ap-
pendix M.

We first consider unlabeled n-order graphs, i.e., every vertex
has the same label. We analyze the binary classification
setting. Following Section 1.1 and Equation (1), here we
investigate the class MPNNord

L,M ′,LFNN
(Gn). We further con-

sider the binary cross-entropy loss ℓ : R×{0,1} → R, where
ℓ(x, y) := y log(σ(x))+ (1− y) log(1− σ(x)), where σ is
the sigmoid function. It is known that ℓ is Lipschitz on the
first argument (since it has a bounded first-order derivative)
for some Lipschitz constant Lℓ.

In Proposition 1 in Section 1.1, we observed that the Tree
distance of Equation (7) induces various pseudo-metrics
that are equivalent to the 1-WL in terms of expressivity.
Utilizing the analysis in Böker et al. (2023), we show that
the Tree distance using the cut norm satisfies the uniform
continuity property using the same γ(ε) for all MPNNs in
MPNNord

L,M ′,LFNN
(Gn), i.e., it is equicontinuous. Formally,

we consider the following variant of the Tree distance on
Gn,

δT□(G,H) := min
S∈Dn

∥A(G)S − SA(H)∥□,

where ∥·∥□ denotes the cut norm, see Equation (11) in Ap-
pendix B for details.

The following result shows the equicontinuity property of
MPNNs.

Theorem 8. For all ε > 0, L ∈ N there exists γ(ε) > 0
such that for n ∈ N,M ′ ∈ R, G,H ∈ Gn and all MPNN
architectures in MPNNord

L,M ′,LFNN
(Gn), we have

δT□(G,H) < n2 · γ(ε) =⇒ ∥hG − hH∥2 ≤ ε.

The proof is a direct implication of Theorems 29 and 31
in Böker et al. (2023) using the uniform continuity of
MPNNs concerning the Prokhorov metric (Theorem 29)
and then the ε-δ equivalence between the Prokhorov metric
and the Tree distance δT□ (Theorem 31). It is important
to note that, in the above result, we proved that all func-
tions in MPNNord

L,M ′,LFNN
(Gn), are uniformly continuous

sharing the same γ(ε), or equivalently the hypothesis class
MPNNord

L,M ′,LFNN
(Gn) satisfies the equicontinuity property.

This property is our primary motivation for choosing the
tree distance as the pseudo-metric.

Based on the above result, we define the following non-
decreasing function sγ : R+ ∪ {+∞} → R+ ∪ {+∞}
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where γ(+∞) := +∞, for all G,H ∈ Gn, for all h ∈
MPNNord

L,M ′,LFNN
(Gn),

sγ(ϵ) := sup{δ > 0 |δT□(G,H) ≤ n2δ ⇒ ∥hG−hH∥ ≤ ϵ},

and define its generalized inverse function sγ← : R+ ∪
{+∞} → R+ ∪ {+∞}, where R+ = (0,+∞), as

sγ←(y) := inf{ϵ > 0 | γ(ϵ) ≥ y}.

Note that sγ← is also non-decreasing. We further make
the convention that inf{∅} = +∞. We now establish the
following family of generalization bounds for the class
MPNNord

L,M ′,LFNN
(Gn) based on the results from Proposi-

tion 7.

Proposition 9. For n,L ∈ N, M ′ ∈ R, and ε > 1
2d
∗,

where d∗ is the minimum non-zero δT□ distance between two
graphs in Gn, any graph learning algorithm for the class
MPNNord

L,M ′,LFNN
(Gn) is(

2N (Gn, δT□ , ε), Lℓ · LFNN · sγ←
(
2ε

n2

))
-robust.

Hence, for any sample S and δ ∈ (0,1), with probability at
least 1− δ,

|ℓexp(hS)− ℓemp(hS)| ≤ Lℓ · LFNN · sγ←
(
2ε

n2

)

+M

√
4N (Gn, δT□ , ε) log(2) + 2 log(1/δ)

|S|
,

where M is an upper bound for the loss function ℓ and Lℓ
is the Lipschitz constant of ℓ(·, y), and y ∈ {0,1}.

As can be observed by Proposition 9, the tree distance—a
more fine-grained metric compared to the trivial 1-WL met-
ric (which is 1 for 1-WL-distinguishable graphs and 0 oth-
erwise)—enables deriving a wider range of generalization
bounds by allowing any real number as the radius for the
covering number. Choosing the radius ε is critical for tight
generalization bounds: larger ε reduces the covering number
but increases the first term of the bound, while smaller ε
has the opposite effect. Balancing this trade-off is impor-
tant, though computing the covering number as a function
of ε is an extremely hard problem. For a given n, the cov-
ering number can instead be bounded in terms of ε and
mn = |Gn/∼WL|, yielding covering number bounds depen-
dent on ε. For n-order graphs Gn and ε = 4k, a cover of
size mn/(k + 1) can be constructed for all k ∈ N, leading to
a family of bounds parametrized by k.

Theorem 10. For n,L ∈ N, and M ′ ∈ R, for any graph
learning algorithm for the class MPNNord

L,M ′,LFNN
(Gn) and

for any sample S and δ ∈ (0,1), with probability at least

1− δ, we have

|ℓexp(hS)− ℓemp(hS)| ≤ Lℓ · LFNN · sγ←
(
8k

n2

)

+M

√
4 mn

k+1 log(2) + 2 log
(
1
δ

)
|S|

.

(10)

for k ∈ N, where M is an upper bound on the loss function
ℓ, and mn = |Gn/∼WL|

In Appendix I in Proposition 36, we combine the extended
robustness definition along with Theorem 35 to extend the
generalization bounds from Theorem 10 to the class of unla-
beled graphs with at most n vertices, denoted as G≤n. The
proof of Proposition 36 is omitted, as it directly follows from
the tree construction described in the proof of Theorem 10.

Tighter bounds on the covering number The proof
of Theorem 10 establishes an upper bound on the cover-
ing number, decreasing linearly with the radius. We can use
this bound to determine the optimal radius minimizing the
generalization bound in Equation (10). However, it remains
unclear if this upper bound on the covering number is tight
or if the linear decay can be improved. Moreover, the bound
mn/(k + 1) relies on the number of equivalence classes mn,
which is hard to compute.

To address this, we analyze specific graph classes that
yield tighter bounds and simplify the computation of 1-
WL-distinguishable graphs. First, consider the class of un-
ordered, unlabeled, full binary trees on n vertices, denoted
T (2)
n , where n = 2j + 1 and j ∈ N. This class includes

rooted trees where each non-root vertex has 0 or 2 children.
The root need not be explicitly specified here since it is the
only vertex with degree 2; all others have degree 1 or 3.
The graphs in T (2)

n are also called Otter trees, named after
Richard Otter’s work on their enumeration (Otter, 1948).
The total number of Otter trees on n vertices, for n = 2j+1,
is given by the Wedderburn–Etherington number wj , with
j ∈ N. Although no closed-form formula exists for wj , re-
cursive methods enable efficient computation. Additionally,
the following asymptotic result holds.
Lemma 11 ((Finch, 2005, p. 295)). The asymptotic growth
ofwn is given bywn ∼ A·n−3/2 ·bn, for a positive constant
A whose precise value is not relevant for our purposes and
b ≈ 2.4832.

Based on this lemma, we show that for sufficiently large n,
we can bound the covering number of the set of Otter trees
with a function that decreases exponentially regarding the
radius of the cover leading. This results in the following
(tighter) generalization bounds for MPNNs on the space of
Otter trees.
Proposition 12. For L ∈ N,M ′ ∈ R and sufficiently
large n ∈ N, for any graph learning algorithm on

7
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MPNNord
L,M ′,LFNN

(T (2)
2n+1) and for any sample S, with δ ∈

(0,1), with probability at least 1− δ, we have

|ℓexp(hS)− ℓemp(hS)| ≤ Lℓ · LFNN · sγ←
(

16k

(2n+ 1)2

)
+M

√
4wn/b2k log(2) + 2 log(1/δ)

|S|
,

where k ∈ N, M is an upper bound on the loss function ℓ,
b ≈ 2.4832, and wn = |T (2)

2n+1|.

Note that using the above bound with a radius mildly depen-
dent on n, say logb(n), we can derive an upper bound on
the covering number that decreases quadratically with n.

Additionally, in Appendix N, we derive a graph class (de-
noted as Fn) that leads to non-constant improvement for a
constant ε and lift the above results to the regression setting.

Vertex-labeled graphs Finally, in this section, we aim
to extend the previous results to the space of discretely-
labeled n-order graphs, where vertex features are drawn
from a finite collection of d elements, i.e., GB

n,d. For ease of
notation, we consider one-hot encoding of the labels. Thus,
all vertices are initially labeled with a d-dimensional vector,
having a 1 in one position and 0 elsewhere. Furthermore,
we consider the set of graphs with bounded-degree q, for
q ∈ N. We denote this set as Gn,d,q, and the number of
equivalence classes induced by the 1-WL after L iterations
on this set by mn,d,q,L, or simply mn,d,q when L = n− 1.

To establish our generalization bounds based on the robust-
ness framework, we use the Forest distance FDL as defined
in Section 2. We begin with the following simple lemma,
bounding the Forest distance between two graphs differing
by either one edge or one label. Moreover, the following
lemma explains the assumption of bounded degree in our
graph class. Without this assumption, the bound below
would grow with n, making it impossible to establish uni-
form generalization bounds.

Lemma 13. For d, q ∈ N, there exists a constant b(d, q, L)
such that for n ∈ N and G,H ∈ Gn,d,q, if G can be de-
rived by either deleting an edge or changing a single ver-
tex feature of H , then FDL(G,H) ≤ b(d, q, L), where
b(d, q, L) = 2qL 1−qL

1−q .

In the following, we analyze the generalization
power of MPNNsum

L,M ′,LFNN
(Gn,d,q). Similar to the

case of unlabeled graphs, we consider the cross-
entropy function ℓ : R × {0,1} → R, defined by
ℓ(x, y) = y log(σ(x)) + (1 − y) log(1 − σ(x)), where
σ(x) is the sigmoid function. As with unlabeled graphs,
our generalization analysis requires MPNNs to be Lipschitz
continuous with respect to the chosen pseudo-metric. The
following result demonstrates the Lipschitz continuity prop-

erty of MPNNs in MPNNsum
L,M ′,LFNN

(Gn,d,q) concerning the
Forest distance. While our analysis is restricted to Gn,d,q , we
state and prove the following result in the more general set-
ting of graphs in GR

n,d, i.e., with real-valued vertex features.

Lemma 14. For L, n, d ∈ N,M ′ ∈ R and for all MPNNs
in MPNNsum

L,M ′,LFNN
(GR
n,d), we have

∥hG − hH∥2 ≤ 1

n
C(L)Lψ

L∏
i=1

Lφi
FDL(G,H),

for G,H ∈ GR
n,d, where C(L) is a constant that depends on

L and the Lipschitz constants of the MPNN layers.

We are now ready to present the generalization bound exten-
sion for labeled graphs.

Proposition 15. For ε > 0 and n,L, d, q ∈ N,M ′ ∈ R,
any graph learning algorithm for MPNNsum

L,M ′,LFNN
(Gn,d,q)

is

(2N (Gn,d,q,FDL, ε), Lℓ · LFNN · CFDL
· 2ε)-robust.

Hence, we have the following generalization bounds. For
any sample S and δ ∈ (0,1), with probability at least 1− δ,

|ℓexp(hS)− ℓemp(hS)| ≤ C̃ε

+M

√
N (Gn,d,q,FDL, ε)4 log(2) + 2 log(1/δ)

|S|
,

for ε > 0, where C̃ = 2/nLℓLFNNCFDL
, CFDL

=

C(L)Lψ
∏L
i=1 Lφi is the Lipschitz constant in Lemma 14

and M is an upper bound of the loss function ℓ.

Using a similar construction as Theorem 10, below, we up-
per bound the covering number in the generalization bound
by a function of the corresponding radius and mn,d,q,L,
leading to the following generalization bound.

Proposition 16. For n, q, d, L ∈ N, and M ′ ∈
R, for any graph learning algorithm for the class
MPNNsum

L,M ′,LFNN
(Gn,d,q) and for any sample S and δ ∈

(0,1), with probability at least 1− δ, we have

|ℓexp(hS)− ℓemp(hS)| ≤ 2C̃b(d, q, L)k

+M

√
mn,d,q,L

k+1 4 log(2) + 2 log(1/δ)

|S|
,

for k ∈ N, where C̃ = 2/nLℓLFNNCFDL
, CFDL

=

C(L)Lψ
∏L
i=1 Lφi

is the Lipschitz constant in Lemma 14
and M is an upper bound of the loss function ℓ.

In Appendix M, we lift the results to MPNNs using mean
aggregation. Additionally, in Section 5, we discuss our
analysis’s limitations and future work.
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5. Limitations, possible road maps, and future
work

While our results are the first to successfully incorporate
non-trivial graph similarities, architectural choices, and
loss functions into the generalization analysis, many open
questions remain regarding MPNN generalization proper-
ties. First, our techniques are tailored towards discretely-
labeled graphs, e.g., not accounting for real-valued labels.
While Rauchwerger et al. (2024) did a first step in this direc-
tion, their generalization bounds are implicit or existential,
i.e., they do not derive concrete upper bounds on the size of
the covering, only showing the existence of a finite cover-
ing via the compactness of the investigated pseudo-metric
spaces. Secondly, while our analysis can be extended to
other aggregation functions, e.g., weighted mean, it does
not account for other commonly used architectural choices,
such as normalization layers or skip connections. Thirdly,
although the experimental results in Section 6 indicate that
our generalization analysis holds in practice to some extent,
it does not explain why gradient descent-based algorithms
converge to generalizing solutions. Hence, future work
should extend our results to graphs with real-valued features
and study whether gradient descent-based algorithms can
converge to parameter assignments inducing the desired
coverings.

6. Experimental study
In the following, we investigate to what extent our theoreti-
cal results translate into practice. Specifically, we answer
the following questions.

Q1 To what extent do the empirical covering numbers for
different graph families match the theoretical upper
bounds derived in Section 4?

Q3 How are the Forest distance and MPNN outputs corre-
lated?

Q3 How does the covering number influence the general-
ization performance of MPNNs?

See https://github.com/benfinkelshtein/
CoveredForests for source code and instructions to
reproduce all results.

See Appendix P for an overview of employed data sets,
neural architectures, experimental protocols, and model con-
figurations.

Results and discussion In the following, we answer Q1-
Q3.

Q1 See Figures 8 and 9 in the appendix. Across the graph
classes Gn, T (2)

n , Fn, and all real-world datasets, we ob-

Table 1. The empirical generalization gap computed using the 1-
norm and our generalization bound based on estimates of the
Lipschitz constant and the upper bound on the loss function.

Dataset

MUTAG NCI1 MCF-7H OGBG-MOLHIV

Train loss 1.890 ±0.078 0.535 ±0.007 0.327 ±0.026 0.144 ±0.006

Test loss 1.546 ±0.054 0.588 ±0.151 0.325 ±0.010 0.151 ±0.005

Generalization gap 0.344 ±0.095 0.053 ±0.151 0.002 ±0.028 0.007 ±0.008

Our bound (Optimal ε) 0.705 0.060 0.007 0.015
Our bound (ε = 0) 0.946 0.079 0.008 0.019

serve that the covering number increases with larger graph
orders or smaller radii, aligning with the expected behavior.
Figure 10 in the appendix demonstrates that the covering
number bound presented in Theorem 10 is tighter than the
number of 1-WL indistinguishable graphs, mn, when com-
pared to the optimal cover, N (·, δT1 , ε), highlighting the
usefulness of our upper bound. This observation holds even
though the optimal cover is based on the 1-norm while our
bound is derived using the cut norm, further solidifying the
improved bound introduced in Theorem 10.

Q2 See Figure 11 in the appendix. We observe a strong
correlation between the Forest distance and the MPNN out-
put variations, indicated by a high Pearson correlation co-
efficient across varying datasets and MPNN layers. This
finding supports the validity of defining the Forest distance’s
Lipschitz constant in Lemma 14, showing that it captures
the computation of MPNNs.

Q3 See Table 1. The results demonstrate that the cover-
ing number bound presented in Proposition 15 is tight in
real-world settings, in the sense that the empirical general-
ization gap and the computed bound are of the same order of
magnitude, closely reflecting the real-world generalization
behavior. Furthermore, incorporating the upper bound pre-
sented in Proposition 16 yields an even tighter bound over
simply equating the covering number to the total number of
1-WL indistinguishable graphs.

7. Conclusion
Here, we focused on understanding how choosing different
pseudo-metrics on the set of graphs and capturing the com-
putation of different MPNN architectures allow for a tighter
analysis of the generalization error of MPNNs. Unlike pre-
vious works, our refined analysis allows us to account for
non-trivial graph similarities, the impact of different ag-
gregation functions, and various practically relevant loss
functions. Our empirical study confirmed the validity of
our theoretical findings. Overall, our theoretical framework
constitutes an essential initial step in unraveling how graph
structure and architectural choices influence the MPNNs’
generalization properties.
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A. Related work
In the following, we discuss relevant related work.

MPNNs Recently, MPNNs (Gilmer et al., 2017; Scarselli et al., 2009) emerged as the most prominent graph machine
learning architecture. Notable instances of this architecture include, e.g., Duvenaud et al. (2015); Hamilton et al. (2017); Kipf
& Welling (2017), and Veličković et al. (2018), which can be subsumed under the message-passing framework introduced
in Gilmer et al. (2017). In parallel, approaches based on spectral information were introduced in, e.g., Bruna et al. (2014);
Defferrard et al. (2016); Gama et al. (2019); Kipf & Welling (2017); Levie et al. (2019), and Monti et al. (2017)—all of
which descend from early work in Baskin et al. (1997); Goller & Küchler (1996); Kireev (1995); Merkwirth & Lengauer
(2005); Micheli & Sestito (2005); Micheli (2009); Scarselli et al. (2009), and Sperduti & Starita (1997).

Generalization frameworks Vapnik & Chervonenkis (1964; 1971); Vapnik (1998) laid out the theory of statistical
learning, introducing the VC dimension and its strong connection to uniform convergence; see also Mohri et al. (2018).
Xu & Mannor (2012) introduced an alternative approach based on a notion of “robustness.”. Here, if a testing sample is
“close” to a training sample, then the expected error is close to the training error, implying a bound on the generalization
error; see Section 3. They also showed that so-called weak robustness is sufficient and necessary for generalization.
Recently, Kawaguchi et al. (2022) proposed data-driven variations of the framework of Xu & Mannor (2012), allowing for a
tighter analysis in practice. Sokolic et al. (2017) used Xu & Mannor (2012) to showcase how invariant machine learning
architectures, regarding some group action, exhibit a smaller generalization error than their non-invariant counterparts.

Generalization abilities of MPNNs and GNNs Scarselli et al. (2018) used classical techniques from learning the-
ory (Karpinski & Macintyre, 1997) to show that MPNNs’ VC dimension (Vapnik, 1995) with piece-wise polynomial
activation functions on a fixed graph, under various assumptions, is in O(P 2n log n), where P is the number of parameters
and n is the order of the input graph; see also Hammer (2001). We note here that Scarselli et al. (2018) analyzed a different
type of MPNN not aligned with modern MPNN architectures (Gilmer et al., 2017); see also D’Inverno et al. (2024). Garg
et al. (2020) showed that the empirical Rademacher complexity (see, e.g., Mohri et al. (2018)) of a specific, simple MPNN
architecture, using sum aggregation and specific margin loss, is bounded in the maximum degree, the number of layers,
Lipschitz constants of activation functions, and parameter matrices’ norms. We note here that their analysis assumes
weight sharing across layers. Recently, Karczewski et al. (2024) lifted this approach to E(n)-equivariant MPNNs (Satorras
et al., 2023). Liao et al. (2021) refined the results of Garg et al. (2020) via a PAC-Bayesian approach, further refined
in Ju et al. (2023). See Lee et al. (2024) for (transductive) PAC-Bayesian generalization bounds for knowledge graphs.
Maskey et al. (2022; 2024) assumed that data is generated by random graph models, leading to MPNNs’ generalization
analysis depending on the (average) number of vertices of the graphs. In addition, Levie (2023) and Rauchwerger et al.
(2024) defined metrics on attributed graphs, resulting in a generalization bound for MPNNs depending on the covering
number of these metrics. Verma & Zhang (2019) studied the generalization abilities of 1-layer MPNNs in a transductive
setting based on algorithmic stability. Similarly, Esser et al. (2021) used stochastic block models to study the transductive
Rademacher complexity (El-Yaniv & Pechyony, 2007; Tolstikhin & Lopez-Paz, 2016) of standard MPNNs. See also Tang &
Liu (2023) for refined results. For semi-supervised vertex classification, Baranwal et al. (2021) studied the classification of a
mixture of Gaussians, where the data corresponds to the vertex features of a stochastic block model, deriving conditions
under which the mixture model is linearly separable using the GCN layer (Kipf & Welling, 2017). Recently, Morris et al.
(2023a) made progress connecting MPNNs’ expressive power and generalization ability via the Weisfeiler–Leman hierarchy.
They studied the influence of graph structure and the parameters’ encoding lengths on MPNNs’ generalization by tightly
connecting 1-WL’s expressivity and MPNNs’ VC dimension. They derived that MPNNs’ VC dimension depends tightly on
the number of equivalence classes computed by the 1-WL over a given set of graphs. Moreover, they showed that MPNNs’
VC dimension depends logarithmically on the number of colors computed by the 1-WL and polynomially on the number of
parameters. Since relying on the 1-WL, their analysis implicitly assumes a discrete pseudo-metric space, where two graphs
are either exactly equal or far apart. One VC lower bound reported in Morris et al. (2023a) was tightened in Daniëls &
Geerts (2024) to MPNNs restricted to using a single layer and a width of one. In addition, Pellizzoni et al. (2024) extended
the analysis of Morris et al. (2023a) to node-individualized MPNNs and devised a Rademacher-complexity-based approach
using a covering number argument (Bartlett et al., 2017). Similar to us, they also assume MPNNs that are (Lipschitz)
continuous regarding a given pseudo-metric. However, unlike the present work, they do not derive such pseudo-metric and
do not provide an explicit bound on the covering number. Franks et al. (2024) studied MPNNs’ VC dimension assuming
linearly separable data and showed a tight relationship to the data’s margin, also partially explaining when more expressive

15



Covered Forests

architectures lead to better generalization. Li et al. (2024) build on the margin-based generalization framework proposed by
Chuang et al. (2021), which is based on k-Variance and the Wasserstein distance. They provide a method to analyze how
expressiveness affects graph embeddings’ inter- and intra-class concentration. Kriege et al. (2018) leveraged results from
graph property testing (Goldreich, 2010) to study the sample complexity of learning to distinguish various graph properties,
e.g., planarity or triangle freeness, using graph kernels (Borgwardt et al., 2020; Kriege et al., 2020). Finally, Yehudai et al.
(2021) showed negative results for MPNNs’ generalization ability to larger graphs.

Graph (pseudo-)distances Based on older ideas in Dell et al. (2018); Dvorák (2010); Tinhofer (1991), Böker (2021)
defined the Tree distance, a pseudo-metric on the set of graphs, and showed a tight correspondence between the former and
homomorphism densities regarding trees, which also implies equivalence to the 1-WL. Böker et al. (2023) later lifted the
result to specific MPNNs using sum aggregation, deriving uniform continuity. Based on this, Sverdlov et al. (2024) defined
an extension of the Tree distance to account for labeled graphs and derived a specific MPNN architecture that exhibits a
bi-Lipschitz property. Chuang & Jegelka (2022) defined the TMD distance between the computation graphs of specific
MPNNs via a hierarchical optimal transport problem, showed equivalence to the 1-WL, and derived Lipschitz constants. In
addition, they studied MPNNs’ generalization abilities under distribution shifts. Levie (2023) defined the graphon-signal cut
distance, showed that MPNNs are Lipschitz continuous concerning this metric, and derived a bound on the covering number
of the space of attributed graphs under this metric. As a result of the Lipschitz continuity and finite covering, he derived a
generalization bound for MPNNs. However, the graphon-signal cut distance topology does not give the coarsest topology
under which MPNNs are continuous. At the same time, in the present work, we find such a maximally coarse topology,
which, in principle, reduces the covering number (asymptotically in the radius). Most recently, Rauchwerger et al. (2024)
extended Böker et al. (2023) to attributed graphs, i.e., the vertex features are in R1×d, deriving a universal approximation
theorem for MPNNs over such graphs and generalization bounds for MPNN using a covering number argument based on
the technique from Levie (2023). Unlike the present work, they do not derive explicit bounds on the covering number and
only study specific MPNN layers.

B. Detailed notation
Here, we outlined our notation in more detail.

Basic notations Let N := {1, 2, . . .} and N0 := N ∪ {0}. The set R+ denotes the set of non-negative real numbers. For
n ∈ N, let [n] := {1, . . . , n} ⊂ N. We use {{. . .}} to denote multisets, i.e., the generalization of sets allowing for multiple,
finitely many instances for each of its elements. For two non-empty sets X and Y , let Y X denote the set of functions
from X to Y . Given a set X and a subset A ⊂ X , we define the indicator function 1A : X → {0,1} such that 1A(x) = 1
if x ∈ A, and 1A(x) = 0 otherwise. Let M be an n ×m matrix, n > 0 and m > 0, over R, then Mi,·, M·,j , i ∈ [n],
j ∈ [m], are the ith row and jth column, respectively, of the matrix M . Let N be an n× n matrix, n > 0, then the trace
Tr(N) :=

∑
i∈[n]Nii. In what follows, 0 denotes an all-zero vector with an appropriate number of components.

Norms Given a vector space V , a norm is a function ∥ · ∥ : V → R+ which satisfies the following properties. For
all vectors u,v ∈ V and scalar s ∈ R, we have (i) non-negativity, ∥v∥ ≥ 0 with ∥v∥ = 0 if, and only, if v = 0;
(ii) scalar multiplication, ∥sv∥ = |s| ∥v∥; and the (iii) triangle inequality holds, ∥u + v∥ ≤ ∥u∥ + ∥v∥. When V is
some real vector space, say R1×d, for d > 0, here, and in the remainder of the paper, ∥ · ∥1 and ∥ · ∥2 refer to the 1-norm
∥x∥1 := |x1|+ · · ·+ |xd| and 2-norm ∥x∥2 :=

√
x21 + · · ·+ x2d , respectively, for x ∈ R1×d.

When considering the vector space Rn×n of square n× n matrices, a matrix norm ∥ · ∥ is a norm as described above, with
the additional property that ∥MN∥ ≤ ∥M∥∥N∥ for all matrices M and N ∈ Rn×n. A matrix norm is called induced, or
operator norm, if ∥M∥ := supx∈Rn,∥x∥=1 ∥Mx∥, for some vector norm ∥ · ∥ on Rn. A matrix norm is called element-wise

if it is defined in terms of a vector norm ∥ · ∥ by interpreting M as a vector in Rn2

. However, not every vector norm results
in an element-wise matrix norm. For instance, the norm ∥M∥∞ := maxi,j∈[n] |mij | is a valid norm on Rn2

but does not
satisfy the conditions of a matrix norm on Rn×n. Later in the paper, we use the cut norm on Rn×n, defined by

∥M∥□ := max
S⊂[n],T⊂[n]

∣∣∣ ∑
i∈S,j∈T

mij

∣∣∣. (11)

Finally, for p ∈ R1×d, d > 0, and ε > 0, the ball B∥·∥(p, ε, d) := {s ∈ R1×d | ∥p− s∥ ≤ ε}; when the norm is clear from
the context, we omit the subscript.
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Graphs An (undirected) graph G is a pair (V (G), E(G)) with finite sets of vertices V (G) and edges E(G) ⊆ {{u, v} ⊆
V (G) | u ̸= v}. vertices or nodes V (G) and edges E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v}. The order of a graph G is
its number |V (G)| of vertices. If not stated otherwise, we set n := |V (G)| and call G an n-order graph. We denote
the set of all n-order (undirected) graphs by Gn and the set of all (undirected) graphs up to n vertices by G≤n. In a
directed graph, we define E(G) ⊆ V (G)2, where each edge (u, v) has a direction from u to v. Given a directed graph
G and vertices u, v ∈ V (G), we say that v is a child of u if (u, v) ∈ E(G). A (directed) graph G is called connected
if, for any u, v ∈ V (G), there exist r ∈ N and {u1, . . . , ur} ⊆ V (G), such that (u, u1), (u1, u2), . . . , (ur, v) ∈ E(G),
and analogously for undirected graphs by replacing directed edges with undirected ones. We say that a graph G is
disconnected if it is not connected. For a graph G and an edge e ∈ E(G), we denote by G \ e the graph induced by
removing the edge e from G. For an n-order graph G ∈ Gn, assuming V (G) = [n], we denote its adjacency matrix by
A(G) ∈ {0,1}n×n, where A(G)vw = 1 if, and only, if {v, w} ∈ E(G). The neighborhood of a vertex v ∈ V (G) is
denoted by NG(v) := {u ∈ V (G) | {v, u} ∈ E(G)}, where we usually omit the subscript for ease of notation, and the
degree of a vertex v is |NG(v)|. A graph G is a tree if it is connected, but G \ e is disconnected for any e ∈ E(G). A tree or
a disjoint collection of trees is known as a forest.

A rooted tree (G, r) is a tree where a specific vertex r is marked as the root. For a rooted (undirected) tree, we can define an
implicit direction on all edges as pointing away from the root; thus, when we refer to the children of a vertex u in a rooted
tree, we implicitly consider this directed structure. For S ⊆ V (G), the graph G[S] := (S,ES) is the subgraph induced by
S, where ES := {(u, v) ∈ E(G) | u, v ∈ S}. A (vertex-)labeled graph is a pair (G, ℓG) with a graph G = (V (G), E(G))
and a (vertex-)label function ℓG : V (G) → Σ, where Σ is an arbitrary countable label set. For a vertex v ∈ V (G), ℓG(v)
denotes its label. A Boolean (vertex-)d-labeled graph is a pair (G, ℓG) with a graph G = (V (G), E(G)) and a label
function ℓG : V (G) → {0,1}d. We denote the set of all n-order Boolean d-labeled graphs as GB

n,d. An attributed graph is a
pair (G, aG) with a graph G = (V (G), E(G)) and an (vertex-)attribute function aG : V (G) → R1×d, for d > 0. That is,
contrary to labeled graphs, vertex annotations may be from an uncountable set. The attribute or feature of v ∈ V (G) is
aG(v). We denote the class of all n-order graphs with d-dimensional, real-valued vertex features by GR

n,d.

Two graphs G and H are isomorphic if there exists a bijection φ : V (G) → V (H) that preserves adjacency, i.e., (u, v) ∈
E(G) if, and only, if (φ(u), φ(v)) ∈ E(H). In the case of labeled graphs, we additionally require that ℓG(v) = ℓH(φ(v))
for v ∈ V (G). Moreover, we call the equivalence classes induced by ≃ isomorphism types and denote the isomorphism type
of G by τ(G). A graph class is a set of graphs that is closed under isomorphism. Given two graphs G and H with disjoint
vertex sets, we denote their disjoint union by G ∪̇H .

B.1. Continuity on metric spaces

Let (X , dX ) and (Y, dY) be two pseudo-metric spaces. A function f : X → Y is called cf -Lipschitz continuous if, for
x, x′ ∈ X ,

dY(f(x), f(x
′)) ≤ cf · dX (x, x′).

We also define a weaker notion of continuity, known as uniform continuity. Specifically, we say that f is uniformly
continuous if, for every ε > 0, there exists a γ(ε, f) > 0, possibly dependent on ε and f , such that, for x, x′ ∈ X ,

dX (x, x
′) ≤ γ(ε, f) ⇒ dY

(
f(x), f(x′)

)
≤ ε.

It is easy to check that cf -Lipschitz continuity implies uniform continuity with γ(ε, f) = ε/cf .

Feed-forward neural networks An L-layer feed-forward neural network (FNN), for L ∈ N, is a parametric function
FNN

(L)
θ : R1×d → R, d > 0, where θ := (W (1), . . . ,W (d)) ⊆ Θ and W (i) ∈ Rd×d, for i ∈ [L− 1], and W (L) ∈ Rd×1,

where

x 7→ σ
(
· · ·σ

(
σ
(
xW (1)

)
W (2)

)
· · ·W (L)

)
∈ R,

for x ∈ R1×d. Here, the function σ : R → R is an activation function, applied component-wisely, e.g., a rectified linear unit
(ReLU), where σ(x) := max(0, x). For an FNN where we do not need to specify the number of layers, we write FNNθ.
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C. The 1-dimensional Weisfeiler–Leman algorithm
The 1-dimensional Weisfeiler–Leman algorithm (1-WL) or color refinement is a well-studied heuristic for the graph
isomorphism problem, originally proposed by Weisfeiler & Leman (1968).7 Intuitively, the algorithm determines if two
graphs are non-isomorphic by iteratively coloring or labeling vertices. Given an initial coloring or labeling of the vertices
of both graphs, e.g., their degree or application-specific information, in each iteration, two vertices with the same label
get different labels if the number of identically labeled neighbors is unequal. These labels induce a vertex partition, and
the algorithm terminates when, after some iteration, the algorithm does not refine the current partition, i.e., when a stable
coloring or stable partition is obtained. Then, if the number of vertices annotated with a specific label is different in both
graphs, we can conclude that the two graphs are not isomorphic. It is easy to see that the algorithm cannot distinguish all
non-isomorphic graphs (Cai et al., 1992). However, it is a powerful heuristic that can successfully decide isomorphism for a
broad class of graphs (Arvind et al., 2015; Babai & Kucera, 1979).

Formally, let (G, ℓG) be a labeled graph. In each iteration, t > 0, the 1-WL computes a vertex coloring C1
t : V (G) → N,

depending on the coloring of the neighbors. That is, in iteration t > 0, we set

C1
t (v) := RELABEL

((
C1
t−1(v), {{C1

t−1(u) | u ∈ N(v)}}
))
,

for vertex v ∈ V (G), where RELABEL injectively maps the above pair to a unique natural number, which has not been
used in previous iterations. In iteration 0, the coloring C1

0 := ℓG is used.8 To test whether two graphs G and H are
non-isomorphic, we run the above algorithm in “parallel” on both graphs. If the two graphs have a different number of
vertices colored c ∈ N at some iteration, the 1-WL distinguishes the graphs as non-isomorphic. Moreover, if the number of
colors between two iterations, t and (t+ 1), does not change, i.e., the cardinalities of the images of C1

t and C1
i+t are equal,

or, equivalently,
C1
t (v) = C1

t (w) ⇐⇒ C1
t+1(v) = C1

t+1(w),

for all vertices v, w ∈ V (G ∪̇H), then the algorithm terminates. For such t, we define the stable coloring C1
∞(v) = C1

t (v),
for v ∈ V (G ∪̇H). The stable coloring is reached after at most max{|V (G)|, |V (H)|} iterations (Grohe, 2017). Finally,
when considering graphs of a fixed order n, we define the equivalence class of a graph G ∈ Gn induced by 1-WL as
[G] = {G′ ∈ Gn | G,G′ are 1-WL indistinguishable} and the quotient space consisting of the equivalence classes as
Gn/∼WL := {[G] | G ∈ Gn}. We similarly, use Gn/∼WLL for the quotient space of equivalences classes after L iterations, for
L ∈ N.

Connection between the 1-WL and MPNNs Morris et al. (2019) and Xu et al. (2019) showed that any possible MPNN
architecture is limited by the 1-WL in terms of distinguishing non-isomorphic graphs. Furthermore, for the MPNNs defined
in Equation (3), Morris et al. (2019) showed that, under appropriate parameter selections, they can achieve expressivity
equivalent to that of the 1-WL; see Grohe (2021) and Morris et al. (2023b) for details. Similarly, building on Morris
et al. (2019), it is straightforward to show that the MPNNs defined in Equation (1) can distinguish the same pairs of
non-isomorphic n-order graphs as the 1-WL.

Unrollings characterization for 1-dimensional Weisfeiler–Leman algorithm Following Morris et al. (2020b), given an
n-order labeled graph (G, ℓG), we define the unrolling tree of depth L ∈ N0 for a vertex u ∈ V (G), denoted as unr(G, u, L),
inductively as follows.

1. For L = 0, we consider the trivial tree as an isolated vertex labeled ℓG(u).

2. For L > 0, we consider the root vertex with label ℓG(u) and, for v ∈ N(u), we attach the subtree unr(G, v, L − 1)
under the root.

The above unrolling tree construction characterizes the 1-WL algorithm through the following lemma.

Lemma 17 (Folklore, see, e.g., Morris et al. (2020a)). For L ∈ N0, given a labeled graph (G, ℓG) and vertices u, v ∈ V (G),
the following are equivalent.

7Strictly speaking, the 1-WL and color refinement are two different algorithms. That is, the 1-WL considers neighbors and non-
neighbors to update the coloring, resulting in a slightly higher expressive power when distinguishing vertices in a given graph; see (Grohe,
2021) for details. Following customs in the machine learning literature, we consider both algorithms to be equivalent.

8Here, we implicitly assume an injective function from Σ to N.
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1. The vertices u and v have the same color after L iterations of the 1-WL.

2. The unrolling trees unr(G, u, L) and unr(G, v, L) are isomorphic.

C.1. The mean 1-dimensional Weisfeiler–Leman algorithm

Similarly to 1-WL, we can define the mean-aggregation 1-WL (1-MWL) on a labeled graph (G, ℓG) and give a similar
characterization based on unrolling trees denoted as m-unr(G, u, L). We will later use the 1-MWL to characterize the
expressive power of MPNN layers using mean aggregation. Before we describe the 1-MWL algorithm and the unrolling
construction, we introduce some notation. For a given multiset X , we denote by set(X) the set consisting of all distinct
elements of X . Additionally, for each x ∈ set(X), we denote by mulX(x) the multiplicity of the element x ∈ X in the
multiset. We define

freq(X) :=

{(
x,

mulX(x)

|X|

) ∣∣∣∣ x ∈ set(X)

}
,

mapping each multiset to a set of pairs, encoding the frequency of each element in the multiset. Also, given a directed tree
T , for each vertex u ∈ V (T ), we denote by chT (u) the set of children of the vertex u ∈ V (T ), i.e., vertices that are one
level below u and are connected to u. Moreover, for a vertex u ∈ V (T ), we denote by subT (u) the rooted directed subtree
under vertex u with root u. Finally, for vertex u ∈ V (T ), we define desT (u) = {{τ(subT (v)) | v ∈ chT (u)}}.

Given a labeled graph (G, ℓG), the 1-MWL computes a vertex coloring C1,m
t : V (G) → N. That is, in iteration t > 0, we set

C1,m
t (v) = RELABEL(C1,m

t−1(v), freq(Mt−1(v))),

for v ∈ V (G), where RELABEL injectively maps the above pair to a unique natural number, which has not been used in
previous iterations, and Mt(v) = {{C1,m

t (u) | u ∈ N(v)}}. In iteration 0, we set C1,m
0 := ℓG.

Unrolling characterization for the 1-MWL. Given a labeled graph (G, ℓ) and a vertex u ∈ V (G), we define the mean
unrolling tree of depth L m-unr(G, u, L), characterizing the 1-MWL up to L iterations. For a vertex u ∈ V (G), starting
from the original unrolling tree T = unr(G, u, L) of depth L, considering the root as level 0, we prune the tree as follows.

1. Starting from level l = L− 1.

2. For all vertices u at level l, we consider the multiset desT (u). Let c be the greatest common factor of the elements in
{muldecT (u)(a) | a ∈ set(desT (u))}, then for each a ∈ set(decT (u)), we drop c−1

c muldesT (u)(a) copies of a from
decT (u), and we also prune the corresponding subtrees from T , leading to an updated tree.

3. If l = 0, the pruning is done; otherwise, we set l = l − 1 and repeat step 2 with the updated tree T .

We call the above-described algorithm the mean-pruning of the tree T . See Figure 3 for an illustration of the mean-pruning
process and the mean-unrolling tree. The above mean unrolling tree construction characterizes the 1-MWL through the
following result.

Proposition 18. For L ∈ N0, given a labeled graph (G, ℓG) and vertices u, v ∈ V (G), the following are equivalent.

1. The vertices u, v have the same color after L iterations of the 1-MWL.

2. The trees m-unr(G, u, L) and m-unr(G, v, L) are isomorphic.

Connection between the 1-MWL and MPNNs Similarly to the results by Morris et al. (2019), we show in Proposition 21
in Appendix C.2 that any possible MPNN architecture described by Equation (5) is limited by 1-MWL in terms of
distinguishing non-isomorphic graphs. Furthermore, again, for the MPNNs considered in Equation (5), we show that, under
appropriate parameter selection, they can achieve expressivity equivalent to 1-MWL.

C.2. Mean 1-WL unrollings characterization

Here, we show the correspondence between mean unrollings, the 1-MWL, and mean-aggregation MPNNs. We begin by
showing a characterization of the 1-MWL through the mean unrollings defined in Appendix C.1

We first show the following auxiliary lemma, which shows that the computation of m-unr(·) at depth L+ 1 induces a finer
partition of the set of vertices compared to the partition induced by m-unr(·) at depth L.
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u2

u3

u4

u1

u5

G

unr(G, u3, 3) m-unr(G, u3, 3)

mean-pruning

unr(G, u4, 3) m-unr(G, u4, 3)

mean-pruning

Figure 3. An illustration of the unrolling trees and the process of obtaining the mean unrolling trees from the unrolling trees through mean
pruning.

Lemma 19. For L ∈ N, given a labeled graph (G, ℓG) and vertices u, v ∈ V (G), the following holds,

m-unr(G, u, L+ 1) ≃ m-unr(G, v, L+ 1) =⇒ m-unr(G, u, L) ≃ m-unr(G, v, L).

Proof. As described in Appendix C.1, m-unr(G, v, L+1) is derived by applying the mean-pruning process to unr(G, v, L+
1). Consider the labeled tree (T1, ℓT1) := unr(G, v, L + 1). We define the L-depth labeled tree (T ′1, ℓT ′1) induced by
(T1, ℓT1) by relabeling all vertices at level L of T1 and then remove all leaves, i.e., vertices at level L+1. We relabel vertices
at level L as follows.

For a vertex x at level L of T1 with label ℓT1(x), let MT1,x denote the multiset of labels of its children, i.e.,

MT1,x = {{ℓT1
(y) | y ∈ chT1

(x)}}.

We compute the new label
ℓT ′1(x) = RELABEL(ℓT1

(x), freq(MT1,x)). (12)

Similarly, let (T2, ℓT2
) = unr(G, u, L + 1), and define (T ′2, ℓT ′2) analogously. By definition, m-unr(G, u, L + 1) ≃

m-unr(G, v, L + 1) if, and only if, the trees T ′′1 and T ′′2 , obtained by applying the mean-pruning process to T ′1 and T ′2,
respectively, are isomorphic. Now, if T ′′1 ≃ T ′′2 , it directly follows that m-unr(G, u, L) ≃ m-unr(G, v, L). The reasoning
is as follows: the trees T ′1 and T ′2 up to level L − 1 are structurally identical to unr(G, u, L + 1) and unr(G, v, L + 1),
respectively. Furthermore, if two vertices in layer L of T ′1 have the same label, then these vertices must have also had
the same label before the relabeling step (i.e., in unr(G, u, L+ 1)). This follows directly from Equation (12). Therefore,
if applying the mean-pruning process to T ′1 and T ′2 results in isomorphic graphs, applying the mean-pruning process to
unr(G, u, L) and unr(G, v, L) must also yield isomorphic graphs.

We next show the correspondence between mean unrollings and the 1-MWL.

Proposition 20 (Proposition 18 in the main paper). For L ∈ N0, given a labeled graph (G, ℓG) and vertices u, v ∈ V (G),
the following are equivalent.

1. Vertices u and v have the same color after L iterations of the 1-MWL.

2. The trees m-unr(G, u, L) and m-unr(G, v, L) are isomorphic.

Proof. For the proof of both directions of the proposition, we will need the following observation.

Observation 1 (Recursive formulation of mean unrolling). For each L ∈ N, u ∈ V (G), the mean unrolling m-unr(G, u, L+
1) can be constructed by considering a root vertex with label ℓG(u) and attaching to this root vertex all m-unr(G,w,L), for
w ∈ N(u), and finally performing the process described in step 2 of the m-unrolling construction on level l = 1.

20



Covered Forests

We now prove the two directions.

1 ⇒ 2: By induction on L. For L = 0, the result is clear. For the induction hypothesis, we assume that for some L ∈ N,
and for all vertices u, v ∈ V (G), if C1,m

L (u) = C1,m
L (v), then m-unr(G, u, L) ≃ m-unr(G, v, L). Now, for vertices

u, v ∈ V (G), if C1,m
L+1(u) = C1,m

L+1(v), then by definition, freq(ML(u)) = freq(ML(v)), where ML(v) = {{C1,m
L (w) |

w ∈ N(v)}}. We consider the tree Tu with root u and attach all m-unr(G,w,L), for w ∈ N(u). Analogously, we consider
the tree Tv with root v. By the observation above, we drop (if necessary) all the subtrees rooted at level 1 of Tu as described
in step 2 of the m-unr operation, leading to a new tree T ′u which is isomorphic to m-unr(G, u, L+ 1). We do the same on
Tv, leading to T ′v ≃ m-unr(G, v, L+ 1). Now, using the induction hypothesis, since freq(ML(u)) = freq(ML(v)), there
exists a bijection σ between the subtrees t rooted at level 1 of T ′u and the subtrees rooted at level 1 of T ′v , such that t ≃ σ(t),
for all subtrees t. Finally, because C1,m

L+1(u) = C1,m
L+1(v) implies C1,m

0 (u) = C1,m
0 (v), the roots of T ′u and T ′v have the same

color, implying that m-unr(G, u, L+ 1) ≃ m-unr(G, v, L+ 1).

2 ⇒ 1: For the reverse direction, we again proceed by induction. If m-unr(G, u, L + 1) ≃ m-unr(G, v, L + 1), the
observation above and the inductive hypothesis directly imply that freq(ML(u)) = freq(ML(v)). Furthermore, by
Lemma 19, m-unr(G, u, L + 1) ≃ m-unr(G, v, L + 1) implies m-unr(G, u, L) ≃ m-unr(G, v, L), which concludes the
proof.

Next, we show that mean-aggregation MPNNs as defined in Equation (5) are limited by 1-MWL in distinguishing non-
isomorphic graphs. In addition, we prove that under an appropriate parameter selection, both algorithms can achieve exactly
the expressivity of the 1-MWL. Formally,

Proposition 21. Let (G, ℓG) ∈ GB
n,d be a labeled graph and C1,m

t be the coloring function of 1-MWL on iteration t > 0.
Then for all t ≥ 0, u, v ∈ V (G) and for all MPNNs described by Equation (5), we have that,

C1,m
t (u) = C1,m

t (v) =⇒ h(t)
u = h(t)

v .

Additionally, for L > 0, there exists a choice of parameters W ′(1)
t , W ′(2)

t , φ′t, t ∈ [L], such that if h′(t) is the MPNN
induced by W ′(1)

t , W ′(2)
t , φ′t, we have that:

h′
(t)
u = h′

(t)
v =⇒ C1,m

t (u) = C1,m
t (v).

Proof. We recall that for a multiset X , freq(X) is defined as

freq(X) :=

{(
x,

mulX(x)

|X|

) ∣∣∣∣ x ∈ set(X)

}
.

We now define the following class of MPNN architectures:

h(t)
v := UPD(t)

(
h(t−1)
v ,AGG(t)

(
freq

(
{{h(t−1)

w | w ∈ N(v)}}
)))

, (13)

where UPD(t) and AGG(t) are two parameterized functions. It suffices to show that the MPNNs described by Equation (5)
are a special case of the MPNNs in Equation (13). The proof then proceeds by induction exactly as in Morris et al. (2019,
Theorem 1). To verify this, we set

AGG(t)(X) =
∑

(a1,a2)∈freq(X)

a1 · a2 ·W (2)
t−1,

UPD(t)(x1, x2) = φt

(
x1 ·W (1)

t−1 + x2

)
.

The other direction follows by straightforward adaption of the proof of Morris et al. (2019, Theorem 2) by adapting Lemma
11 and 14.
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D. Pseudo-metrics on graph
First, let us consider (pseudo-)metrics on the set of n-order unlabeled graphs Gn, for n ∈ N. The straightforward way to
define a metric on Gn is through the adjacency matrices of the graphs. To that, for n ∈ N, a matrix P ∈ {0,1}n×n is a
permutation matrix if ∥Pi,·∥1 = 1, for i ∈ [n], and ∥P·,j∥1 = 1, for j ∈ [n]. More generally, a matrix S ∈ [0,1]n×n is a
doubly-stochastic matrix if ∥Si,·∥1 = 1, for i ∈ [n], and ∥S·,j∥1 = 1, for j ∈ [n]. Let Pn and Dn denote the sets of n× n
permutation and doubly-stochastic matrices, respectively. Now observe that graphs G and H ∈ Gn are isomorphic if, and
only, if there exists a permutation matrix P ∈ Pn such that A(G)P = PA(H). Similarly, from Tinhofer (1991), it follows
that the graphs G and H are not distinguished by 1-WL if, and only, if there exist of a doubly-stochastic matrix S such that
A(G)S = SA(H).

Based on the above, for n ∈ N, let G,H ∈ Gn and ∥·∥ is a norm in Rn×n, we define the following pseudo-metric on Gn,

δ∥·∥(G,H) := min
P∈Pn

∥A(G)P − PA(H)∥.

By definition, it holds that δ∥·∥(G,H) = 0 if, and only, if G and H are isomorphic.

Secondly, we extend the above definition to the set of labeled n-order graphs. For simplicity and to be aligned with Morris
et al. (2023a), we consider d-dimensional Boolean features, though the following distance can also be defined in the set of real-
valued features. Given two labeled n-order graphs (G, ℓG), (H, ℓH) ∈ GB

n,d and a distance function dist : {0,1}d×{0,1}d →
R+, assuming V (G) = V (H) = [n], we define the distance matrix L(G,H) = [dist(ℓG(i), ℓH(j))]i∈V (G),j∈V (H).
Following Bento & Ioannidis (2019), we define the following metric on GB

n,d, for any entry-wise or operator norm ∥·∥,

δ̃∥·∥(G,H) := min
P∈Pn

∥A(G)P − PA(H)∥+Tr(P ⊺L(G,H)).

To see the effect of the second term, suppose that dist is the discrete distance function. Then, minP∈Pn
Tr(P ⊺L(G,H))

finds a label-preserving vertex permutation. Again, we can easily verify that δ̃∥·∥(G,H) = 0 if, and only, if (G, ℓG) and
(H, ℓH) are isomorphic.

E. Proof of the pseudo-metric property and 1-WL equivalence
In this section, we prove that the family of distances defined in GB

n,d by Equation (8) constitutes a well-defined pseudo-metric
on the set of graphs. We then show that this family of pseudo-metrics is equivalent in expressivity to the 1-WL algorithm,
i.e., we show Proposition 1.

To establish the pseudo-metric property, we use the result by Bento & Ioannidis (2019) showing that for every entry-wise
norm, the following distance defines a pseudo-metric on GB

n,d,

sδT∥·∥(G,H) := min
S∈Dn

∥A(G)S − SA(H)∥+Tr(S⊺L(G,H)),

where
Li,j = dist(ℓG(i), ℓH(j)),

for some distance function dist (e.g., dist(ℓG(i), ℓH(j) = 1 if ℓG(i) ̸= ℓH(j) and 0 otherwise.)

However, the cut norm is not an entry-wise norm, and thus, we need to prove the pseudo-metric property separately.
Nevertheless, we follow the argumentation used for entry-wise norms. To achieve this, we first establish the following
auxiliary lemma.

Lemma 22. Let A be the adjacency matrix of an n-order graph, then for all doubly-stochastic matrices S ∈ Dn, the
following inequalities hold,

∥AS∥□ ≤ ∥A∥□,
∥SA∥□ ≤ ∥A∥□.

Proof. By the Birkhoff-von-Neumann theorem, each doubly-stochastic matrix can be written as a convex combination of
permutation matrices. That is, if S ∈ Dn, there exist a k ∈ N, λ1, . . . λk ∈ [0,1], and permutation matrices P1, . . . ,Pk,
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such that S =
∑k
i=1 λiPi. Therefore, if A is the adjacency matrix of an n-order graph, then

∥AS∥□ = ∥A
k∑
i=1

λiPi∥□ ≤
k∑
i=1

λi∥APi∥□ =

k∑
i=1

λi∥A∥□ = ∥A∥□,

where the first inequality is derived from the sub-additivity and the absolute homogenicity property of the cut norm. In
addition, because the cut norm is invariant under permutations, it holds that ∥PiA∥□ = ∥A∥□. We similarly can prove the
second inequality.

We are now ready to show the pseudo-metric property of sδT□ on GB
n,d.

Proposition 23 (First part of Proposition 1 in the main paper). The distance function ĎδT□ defines a pseudo-metric on GB
n,d,

for d ∈ N

Proof. Let the graphs (GA, ℓGA
), (GB , ℓGB

), (GC , ℓGC
) ∈ GB

n,d.
Symmetry. To prove the symmetry property, i.e., ĎδT□(GA, GB) =

ĎδT□(GB , GA), we use the following properties:

1. For all adjacency matrices A, ∥A∥□ = ∥A⊺∥□.

2. For all S ∈ Dn,S
⊺ ∈ Dn.

3. Tr(A⊺B) = Tr(AB⊺).

We then have,

ĎδT□(GA, GB) = min
S∈Dn

∥A(GA)S − SA(GB)∥□ +Tr(S⊺L(GA, GB))

= min
S∈Dn

∥SA(GB)−A(GA)S∥□ +Tr(S⊺L(GA, GB))

= min
S∈Dn

∥A(GB)S
⊺ − S⊺A(GA)∥□ +Tr(SL(GA, GB)

⊺)

= min
S⊺∈Dn

∥A(GB)S
⊺ − S⊺A(GA)∥□ +Tr((S⊺)⊺L(GA, GB)

⊺)

= min
S⊺∈Dn

∥A(GB)S
⊺ − S⊺A(GA)∥□ +Tr((S⊺)⊺L(GB , GA))

= min
S∈Dn

∥A(GB)S − SA(GA)∥□ +Tr(S⊺L(GB , GA))

= ĎδT□(GB , GA),

as desired.

Triangle inequality. We define S′ := argminS∈Dn
∥A(GA)S − SA(GB)∥□ + Tr(S⊺L(GA, GB)) and S′′ =

argminS∈Dn∥A(GB)S−SA(GC)∥□+Tr(S⊺L(GB , GC)). It is easy to verify that the product of two doubly-stochastic
matrices is a doubly-stochastic matrix and, therefore,

ĎδT□(GA, GC) ≤ ∥A(GA)S
′S′′ − S′S′′A(GC)∥□ +Tr((S′S′′)⊺L(GA, GC)).

Therefore, it suffices to show that

∥A(GA)S
′S′′ − S′S′′A(GC)∥□ ≤ ∥A(GA)S

′ − S′A(GB)∥□ + ∥A(GA)S
′′ − S′′A(GC)∥□

and,
Tr((S′S′′)⊺L(GB , GC)) ≤ Tr((S′)⊺L(GA, GB)) + Tr((S′′)⊺L(GB , GC)).

For the first inequality, we use Lemma 22 and the triangle inequality for the cut norm,

∥A(GA)S
′S′′ − S′S′′A(GC)∥□ ≤ ∥A(GA)S

′S′′ − S′A(GB)S
′′∥□

+ ∥S′A(GB)S
′′ − S′S′′A(GC)∥□

≤ ∥A(GA)S
′ − S′A(GB)∥□ + ∥A(GB)S

′′ − S′′A(GC)∥□.
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For the second inequality, we use the notation dist(ℓG(i), ℓH(j)) for the distance between the label of vertex i ∈ V (G) and
the label of vertex j ∈ V (H) (e.g., dist(ℓG(i), ℓH(j)) = 1ℓG(i)̸=ℓH(j), where 1 is the indicator function.)

Tr((S′S′′)⊺L(GA, GC)) =
∑
i,j∈[n]

∑
k∈[n]

s′i,ks
′′
k,j dist(ℓGA

(i), ℓGC
(j))

≤
∑
i,j∈[n]

∑
k∈[n]

s′i,ks
′′
k,j(dist(ℓGA

(i), ℓGB
(k)) + dist(ℓGB

(k), ℓGC
(j)))

=
∑
i,k∈[n]

s′i,k dist(ℓGA
(i), ℓGB

(k))
∑
j∈[n]

s′′k,j

+
∑

k,j∈[n]

s′′k,j dist(ℓGB
(k), ℓGC

(j))
∑
i∈[n]

s′i,k

≤ Tr((S′)⊺L(GA, GB)) + Tr((S′′)⊺L(GB , GC)),

where the first inequality follows from the triangle inequality of metric dist, and the last inequality from ∥S′′∥1 ≤ 1 and
∥S′∥1 ≤ 1.

We now show the equivalence of the pseudo-metric sδT□ and the 1-WL in distinguishing non-isomorphic graphs.

Lemma 24 (Second part of Proposition 1 in the main paper). For all n, d ∈ N andG,H ∈ GB
n,d we have that sδT□(G,H) = 0

if, and only, if G and H are 1-WL indistinguishable.

Proof. For all n, d ∈ N and G,H ∈ GB
n,d, we simplify the notation as follows. Once an adjacency matrix A(G) is fixed

for an n-order graph G, we refer to the i-th vertex of G as the vertex corresponding to the i-th row of A(G), for i ∈ [n].
We define an injection θ : Bd → {n+ 2, n+ 3, . . .}. Then, we introduce a transformation Tθ : GB

n,d → G≤m′ , which maps
graphs G ∈ GB

n,d to unlabeled graphs G′ ∈ G≤m′ , where m′ is sufficiently large. The transformation Tθ is defined as
follows.

Given (G, ℓG) ∈ GB
n,d, for each u ∈ V (G), we add θ(ℓG(u)) new vertices, denoted u1,. . ., uθ(ℓG(u)), to the graph G. These

new vertices form a clique and one of them (without loss of generality, u1) is connected to u. Formally, we define:

Tθ((G, ℓG)) = G′,

where

V (G′) = V (G) ∪

 ⋃
u∈V (G)

θ(ℓG(u))⋃
i=1

{ui}

,
and

E(G′) = E(G) ∪

 ⋃
u∈V (G)

{u, u1}

 ∪

 ⋃
u∈V (G)

θ(ℓG(u))⋃
i,j=1
i ̸=j

{ui, uj}


.

Let m denote the number of added vertices, i.e., m =
∑
u∈V (G) θ(ℓG(u)). The adjacency matrix A(G′) of the transformed

graph G′ can then be represented in the following block structure:

A(G′) =

[
A(G) B
B⊺ D

]
,

where B ∈ Rn×m and D ∈ Rm×m are symmetric.

Now, let G,H ∈ GB
n,d and their transformed graphs be G′ = Tθ(G) and H ′ = Tθ(H). We aim to prove the equivalence of

the following statements, completing the proof.

1. δT∥·∥(G
′, H ′) = 0.

2. G′ and H ′ are 1-WL-indistinguishable.
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G
u

v w

Tθ

(θ( ) = 5, θ( ) = 6)

Tθ(G) u

v w

u5

u4 u3

u1 u2

v1 v2

v6 v3

v5 v4

w1 w2

w6 w3

w5 w4

Figure 4. An illustration of the Tθ transformation of a labeled graph G into an unlabeled graph Tθ(G). For illustration reasons the colors
red and blue have chosen as the initial node features in RB

d.

3. G and H are 1-WL-indistinguishable.

4. δ̃T∥·∥(G,H) = 0.

The equivalences follow as outlined below:

• 1.⇔ 2.: This is a direct result of Tinhofer (1986).

• 2.⇒ 3. LetC ′(1)t andC(1)
t represent the coloring functions of the 1-WL algorithm applied to the graphsG′ and (G, ℓG),

respectively. We aim to show that for all u, v ∈ V (G), if C ′(1)∞ (u) = C
′(1)
∞ (v), then it follows that C(1)

∞ (u) = C
(1)
∞ (v).

To do this, we will prove by induction that for each t, if C ′(1)t+2(u) = C
′(1)
t+2(v), then C(1)

t (u) = C
(1)
t (v).

For t = 0, if C ′(1)2 (u) = C
′(1)
2 (v), we conclude that ℓG(u) = ℓG(v). Otherwise, the vertices u and v would have

different cliques attached to them, resulting in distinct colors in the second iteration. Now, assume the induction
hypothesis, i.e., C ′(1)t+2(u) = C

′(1)
t+2(v) =⇒ C

(1)
t (u) = C

(1)
t (v), for t ∈ N. Next, suppose that C ′(1)t+3(u) = C

′(1)
t+3(v).

We further note that the added vertices in G′, even from the first iteration, have different colors from those of the
original vertices since their degrees are strictly larger than n + 1, while the original vertices have degrees strictly
smaller than n + 1. That is, |NG′(ui)| > n − 1 and |NG′(u)| < n + 1 for all u ∈ V (G), i ∈ [θ(ℓG(u))]. By the
definition of the 1-WL algorithm and applying the induction hypothesis, we obtain the following,

C
(1)
t (u) = C

(1)
t (v),

{{C(1)
t (w) | w ∈ NG′(u)}} = {{C(1)

t (w) | w ∈ NG′(v)}}.

By the second equality and the fact that the added vertices, namely {ui}i∈θ(ℓG(u)) for u ∈ V (G), will always have
distinct stable colors from the original vertices (i.e., vertices in V (G)), we deduce that

{{C(1)
t (w) | w ∈ NG(u)}} = {{C(1)

t (w) | w ∈ NG(v)}}.

This completes the induction.

• 3.⇒ 2. It suffices to show that C(1)
t (u) = C

(1)
t (v) implies the following three equalities.

(a) C ′(1)t (u) = C
′(1)
t (v), for all u, v ∈ V (G),

(b) C ′(1)t (u1) = C
′(1)
t (v1),

(c) C ′(1)t (ui) = C
′(1)
t (vj), for all i, j ∈ [θ(ℓG(u))].
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We can prove (a) =⇒ (b) and (b) =⇒ (c) by induction. First, we show that if C ′(1)t (u1) = C
′(1)
t (v1), then

C
′(1)
t+1(ui) = C

′(1)
t+1(vj) for all u, v ∈ V (G) and i, j ∈ [θ(ℓG(u))] (implying (b) =⇒ (c)). Similarly, we can show by

induction that C ′(1)t (u) = C
′(1)
t (v) implies C ′(1)t+1(u1) = C

′(1)
t+1(v1) for all u, v ∈ V (G) (implying (a) =⇒ (b)).

Next, we use again induction to prove C(1)
t (u) = C

(1)
t (v) =⇒ (a). If C(1)

t+1(u) = C
(1)
t+1(v), by the induction

hypothesis and the definition of the 1-WL algorithm, we obtain.

C
′(1)
t (u) = C

′(1)
t (v),

{{C ′(1)t (w) | w ∈ NG(u)}} = {{C ′(1)t (w) | w ∈ NG(v)}}.

By (b) and (c), we conclude that {{C ′(1)t (w) | w ∈ NG′(u)}} = {{C ′(1)t (w) | w ∈ NG′(v)}}. Hence, we have
C
′(1)
t+1(u) = C

′(1)
t+1(v), completing the proof.

• 1. ⇒ 4.: Assume δT∥·∥(G
′, H ′) = ∥A(G′)S′ − S′A(H ′)∥ = 0 for some doubly stochastic matrix S′. By Theorem

3.5.11 in Grohe (2017), if C∞ denotes the stable coloring under the 1-WL algorithm on G′, H ′, then S′ can be
explicitly expressed as

S′i,j =

{
1/|V (G) ∩ C−1

∞ (c)|, if C∞(i) = C∞(j) = c for some color c,
0, otherwise.

The newly added vertices in G′ and H ′ always have stable colors distinct from those of the original vertices since their
degrees are strictly larger than n+1, while the original vertices have degrees strictly smaller than n+1. Consequently,
S′ has a block diagonal structure

S′ =

[
S 0

0 S̃

]
,

where S ∈ Dn and S̃ ∈ Dm. Substituting into the equation ∥A(G′)S′ − S′A(H ′)∥ = 0, we deduce that

∥A(G)S − SA(H)∥ = 0.

The term Tr(S⊺L(G,H)) can be written as

Tr(S⊤L(G,H)) =
∑

i∈V (G),j∈V (H)

Si,jL(G,H)i,j .

If
∑
i∈V (G),j∈V (H) Si,jL(G,H)i,j ̸= 0, then, there exists i ∈ V (G) and j ∈ V (H) for which Si,j > 0 and

ℓG(i) ̸= ℓH(j) which is a contradiction since Si,j = S′i,j > 0 and if ℓG(i) ̸= ℓH(j), there would have been attached
different vertices to vertices i and j, implying that they would have different stable colors. Hence, δT□(G,H) = 0.

• 4.⇒ 1.: Suppose δ̃T∥·∥(G,H) = 0. We construct a block diagonal doubly stochastic matrix S′ ∈ Dn+m, consisting of
two blocks in Dn and Dm respectively, such that ∥A(G′)S′ − S′A(H ′)∥ = 0.

Assume δ̃T□(G,H) = 0. This implies that there exists S ∈ Dn, s.t. ∥A(G)S −SA(H)∥ = 0 and Tr(S⊺L(G,H)) =
0.

We choose to order the vertices being ordered by their colors vertices in G and H . That is, a vertex u ∈ V (G) comes
before vertex v ∈ V (G) if the stable coloring satisfies C∞(u) < C∞(v). Following the described ordering, and
Theorem 3.5.11 in Grohe (2017), then S is symmetric, satisfying Si,j > 0 if, and only, if vertices i, j have the same
color when the 1-WL algorithm acts on G and H , without considering initial labels. Moreover, Tr(S⊺L(G,H)) = 0
implies that Si,j > 0 =⇒ ℓG(i) = ℓG(j). Therefore, if two vertices have the same stable color after 1-WL without
considering initial labels, then these two vertices also have the same initial labels. This implies that the adjacency
matrices of G′, H ′ can be written as follows,

A(G′) =

[
A(G) B
B⊺ D

]
,

A(H ′) =

[
A(H) B
B⊺ D

]
,
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where B ∈ Rn×m, such that

Bi,j =

{
1, i ∈ {2, . . . n} and j = 1 +

∑i−1
k=1 θ(ℓG(k)),

0, otherwise,

and D ∈ Rm×m is a block diagonal symmetric matrix of the attached cliques. We now define S′ to be

S′ =

[
S 0

0 S̃

]
,

where S̃ is defined as follows,

S̃ =


K1,1 K1,1 · · · K1,n

K2,1 K2,2 · · · K2,n

...
...

. . .
...

Kn,1 Kn,2 · · · Kn,n

 ,
where Ki,j ∈ Rθ(ℓG(i)×θ(ℓG(j)) is

Ki,j =


Si,j 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .
It is then easy to verify that, S̃ is a doubly stochastic and symmetric matrix satisfying S̃B⊺ = B⊺S which by symmetry
implies BS̃ = SB. Finally, it is easy to verify that DS̃ = S̃D, by showing that DS̃ is symmetric and using the
symmetry of D and S̃. All together, this implies

A(G′)S′ =

[
A(G)S BS̃

B⊺S DS̃

]
=

[
SA(H) SB

S̃B⊺ S̃D

]
= S′A(H ′),

as desired.

This concludes the proof.

F. The Tree Mover’s distance
The following introduces the Tree Mover’s Distance (TMD), defined through the optimal transport problem. Following the
notation from the original paper by Chuang & Jegelka (2022), we introduce the optimal transport problem and the Wasserstein
distance. We then define an optimal transport problem between the sets of unrolled computation trees corresponding to the
vertices of two labeled graphs. Next, we define a distance between labeled rooted trees and extend this definition to the
space of labeled graphs, using the optimal transport problem and the unrolling trees of graphs’ vertices.

The Optimal Transport We begin with a brief introduction to Optimal Transport (OT) and the Wasserstein distance. Let
X = {xi}mi=1 and Y = {yj}mj=1 be two multisets of m elements each. Let C ∈ Rm×m be the transportation cost for each
pair, i.e., Cij = d(xi, yj), where d is a distance function between X and Y . The Wasserstein distance is defined through the
following minimization problem,

OT∗d(X,Y ) := min
γ∈Γ (X,Y )

⟨C,γ⟩
m

, Γ (X,Y ) = {γ ∈ Rm×m+ | γ1m = γ⊤1m = 1m},

where ⟨·, ·⟩ is defined as the sum of the elements resulting from the entry-wise multiplication of two matrices with equal
dimensions, and 1m denotes the all ones m-dimensional column vector. In the following, we use the unnormalized version
of the Wasserstein distance,

OTd(X,Y ) := min
γ∈Γ (X,Y )

⟨C,γ⟩ = m · OT∗d(X,Y ).
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Distance between rooted trees via hierarchical OT Let (T, r) denote a rooted tree. We further let Tv be the multiset of
subtrees of T consisting of subtrees rooted at the children of v. Determining whether two trees are similar requires iteratively
examining whether the subtrees in each level are similar. By recursively computing the optimal transportation cost between
their subtrees, we define the distance between two rooted trees (Ta, ra), (Tb, rb). However, the number of subtrees could be
different for ra and rb, i.e., |Tra | ≠ |Trb |. To compute the OT between sets with different sizes, we augment the smaller set
with blank trees.

Definition 25. A blank tree T0 is a tree (graph) that contains a single vertex and no edge, where the vertex feature is the
zero vector 0p ∈ Rp, and Tn0 denotes a multiset of n blank trees.

Definition 26. Given two multisets of trees Tu, Tv , define ρ to be a function that augments a pair of trees with blank trees as
follows,

ρ : (Tv, Tu) →
(
Tv ∪ Tmax(|Tu|−|Tv|,0)

0 , Tu ∪ Tmax(|Tv|−|Tu|,0)
0

)
.

We now recursively define a distance between rooted trees using the optimal transport problem.

Definition 27. The distance between two trees rooted (Ta, ra), (Tb, rb) is defined recursively as:

TDω(Ta, Tb) :=

{
∥xra − xrb∥+ ω(L) · OTTDw(ρ(Tra , Trb)) if L > 1,

∥xra − xrb∥ otherwise,

where ∥·∥ is a norm on the feature space, L = max(Depth(Ta),Depth(Tb)) and ω : N → R+ is a depth-dependent weighting
function.

Extension to labeled graphs Below, we extend the above distance between rooted trees to the TMD on labeled graphs by
calculating the optimal transportation cost between the graphs’ unrolling trees.

Definition 28. Given two graphs G,H and L > 0, the tree mover’s distance between G and H is defined as

TMDLω(G,H) = OTTDω
(ρ(T L

G , T L
H )),

where T L
G and T L

H are multisets of the depth-L unrolling trees of graphs G and H , respectively.

G. Mean-Forest distance
Normalized Tree Mover’s distance We can scale the vertex features of the forests to extend the definition of the Forest
distance to the normalized TMD; see Chuang & Jegelka (2022). This distance satisfies the Lipschitz property of mean
aggregation MPNNs, as shown in Chuang & Jegelka (2022, Appendix B.). However, this distance is strictly more expressive
than the mean-1-WL algorithm, meaning that there are graphs that are not distinguished by the 1-MWL but have a positive
normalized TMD. To see this, consider the distance between two star graphs, one with a root labeled 1 and two neighbors
labeled 1 and 2, and the other with a root labeled 1 and four neighbors, two of which are labeled 1 and the other two with 2.
It is clear that the 1-MWL cannot distinguish these two simple graphs. However, the normalized TMD between these graphs
is positive because the number of vertices at the first level differs. This motivates us to define the mean-Forest distance
through the mean unrollings defined in Section 1.1.

Mean-Forest distance Here, we define the mean-Forest distance, providing a pseudo-metric aligned with the mean-
aggregation MPNN models and preserving the expressivity of the 1-MWL. That is, for a given attributed n-order graph
(G, ℓG) with labels in R1×d and a fixed L ∈ N, consider the following multiset of mean-unrolling trees,

sT L
G = {{τ (m-unr(G, u, L)) | u ∈ V (G)}}.

In analogy to the use of the normalized Wasserstein distance to define the normalized TMD in Chuang & Jegelka (2022),
here we scale all vertex features to align our distance with the mean aggregation scheme described by Equation (5), thereby
ensuring the Lipschitz property. For each vertex u in each tree, we divide its vertex feature by s(u), where s(u) is defined
inductively as follows. For the root r, s(r) = 1. For any other vertex u, with parent v, we define s(u) as the product of the
number of children of v and s(v). Next, we perform a padding process on all trees in sT L

G as follows. For each vertex of each
tree, we add children with the vertex feature 0 until each vertex has exactly n− 1 children. We then construct the forest
consisting of all n trees and denote this forest by Fm

G,L.
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The mean-Forest distance between two labeled graphs G and H is defined as

FDm
L (G,H) = min

φ

∑
u∈V (Fm

G,L)

∥ℓFm
G,L

(u)− ℓFm
H,L

(φ(u))∥2,

where the minimum is taken over all edge-preserving bijections between V (Fm
G,L) and V (Fm

H,L). Now, the following result
shows that the mean-Forest distance is a valid pseudo-metric.
Lemma 29. The mean-Forest distance FDm

L is a well-defined pseudo-metric on GR
n,d, for L ∈ N. Additionally, for two

graphs G,H , FDm
L (G,H) = 0 if, and only, if G,H are 1-MWL indistinguishable after L iterations.

H. Properties of the Forest distance and the mean-Forest distance
Here, we prove the main results regarding the Forest distance and mean-Forest distance as defined in Section 2. We start
by showing the equivalence between the Forest distance and the Tree Mover’s distance, as stated in Lemma 3. Next, we
establish that the mean-Forest distance is a well-defined pseudo-metric on the set of graphs and has equivalent expressivity to
1-MWL; see Lemma 29. We then show the Lipschitz-continuity property of sum and mean aggregation MPNNs concerning
the Forest distance and mean-Forest distance, respectively, i.e., Lemma 14 and Lemma 48. Finally, we derive an upper
bound for the covering number of graph class Gn,d,q regarding the Forest distance, as stated in Proposition 16.

We begin by showing the equivalence between the Forest distance and the TMD. Specifically, we prove Lemma 3 using a
recursive formula for the Forest distance for the simple case where the weight ω ≡ 1. The proof for general weight function
ω remains the same. To proceed, we will introduce some further notations. Recall the definition of the Forest distance, for
L ∈ N and graphs G,H ∈ GR

n,d, the Forest distance

FDL(G,H) = min
φ

∑
u∈V (FG,L)

∥ℓG(u)− ℓH(φ(u))∥2,

where FG,L denotes the forest consisting of all padded trees in T L
G , and the minimum is taken over all edge-preserving

bijections φ between V (FG,L) and V (FH,L). We denote the set of forests consisting of depth-L complete trees (i.e.,
non-leaf vertex has exactly n− 1 children), with vertex labels from Rd, by FL. For two forests F1, F2 ∈ FL, we define
Ďiso(F1, F2) as the set of edge-preserving bijections between V (F1) and V (F2). If F1 and F2 contain a different number
of trees, we pad the smaller forest with depth-L complete trees with 0 vertex labels. The forest transport function FTL
between two forests in FL is then defined as

FTL(F1, F2) := min
φ∈Ďiso(F1,F2)

 ∑
u∈V (F1)

∥x(F1)
u − x

(F2)
φ(u)∥2

,
where x

(Fj)
u ∈ R1×d represents the label of vertex u in Fj for j ∈ {1,2}. Observing this, we immediately find that

FDL(G,H) = FTL(FG,L, FH,L).

Now, for a rooted tree T with root r, let Tr denote the multiset containing all subtrees rooted at the children of r in T , and
let Fr represent the forest of padded (with 0 labeled vertices) subtrees rooted at r’s children. Additionally, given a forest F
composed of rooted trees, denote by roots(F ) the set of roots of the trees in F . The following lemma provides a recursive
formula for the Forest distance.
Lemma 30. For forests F1, F2 ∈ FL,

FTL(F1, F2) = min
σ : roots(F1)→roots(F2)

bijection

 ∑
r∈roots(F1)

(
∥x(F1)

r − x
(F2)
σ(r)∥2 + FTL−1(Fr, Fσ(r))

).
Proof. We prove the lemma by substituting the definition of FTL−1(Fr, Fσ(r)) into the recursive formula. By definition of
the forest transport function, we have,

FTL−1(Fr, Fσ(r)) = min
φ∈Ďiso(Fr,Fσ(r))

 ∑
u∈V (Fr)

∥x(F1)
u − x

(F2)
φ(u)∥2

.
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Substituting this into the recursive formula yields that

min
σ : roots(F1)→roots(F2)

bijection

 ∑
r∈roots(F1)

(
∥x(F1)

r − x
(F2)
σ(r)∥2 + FTL−1(Fr, Fσ(r))

)
is equal to

min
σ : roots(F1)→roots(F2)

bijection

( ∑
r∈roots(F1)

(
∥x(F1)

r − x
(F2)
σ(r)∥2

+ min
φ∈Ďiso(Fr,Fσ(r))

 ∑
u∈V (Fr,F1

)

∥x(Fr)
u − x

(Fσ(r))

φ(u) ∥2


which is equal to

min
σ : roots(F1)→roots(F2)

bijection

 ∑
r∈roots(F1)

min
φ∈Ďiso(Fr,Fσ(r))

∥x(F1)
r − x

(F2)
σ(r)∥2 +

∑
u∈V (Fr)

∥x(Fr)
u − x

(Fσ(r))

φ(u) ∥2

,
which in turn is equal to FTL(F1, F2). Here, the last equality follows from the fact that computing a bijection between
the roots of the trees in two forests and then computing edge-preserving bijections between the subtrees of these roots is
equivalent to directly computing edge-preserving bijections between the two forests.

Next, using Lemma 30, we show the equivalence of Forest distance and TMD.

Lemma 31 (Lemma 3 (for ω ≡ 1) in the main paper). The Forest distance is equivalent to the TMD when ω ≡ 1. That is,
for graphs G,H ∈ GR

n,d,
TMDL(G,H) = FDL(G,H).

Proof. We prove by induction on L that if T1 and T2 are multisets of n depth-L trees, and F1 and F2 are the padded forests
induced by T1 and T2, respectively, then

OTTD(ρ(T1, T2)) = FTL(F1, F2),

where OT, TD, and ρ denote the optimal transport problem, Tree distance, and padding function, respectively, as defined
in Appendix F. Setting T1 = T L

G and T2 = T L
H implies the equivalency between the two distances. For L = 0, consider

multisets T1, T2 of trivial “trees,” i.e., isolated vertices. By the optimal transport problem definition, if we assume
T1 = T2 = [n], we have

OTTD(ρ(T1, T2)) = min
S∈Dn

 ∑
u∈T1,v∈T2

Su,v∥x(G)
u − x(H)

v ∥2

,
which is a minimization problem with a convex feasible set and linear objective function. Therefore, the minimum is attained
on an extreme point. The Birkhoff-von Neumann theorem shows that the extreme points for doubly stochastic matrices are
the permutation matrices. Since φ ∈ Ďiso(FG,L, FH,L) is equivalent to choosing a permutation matrix, we conclude that,

OTTD(ρ(T1, T2)) = min
P∈Pn

 ∑
u∈T1,v∈T2

Pu,v∥x(G)
u − x(H)

v ∥2

 = FT0(F1, F2).

For the inductive hypothesis, we assume that

OTTD(ρ(T1, T2)) = FTL−1(F1, F2),

for multisets T1, T2 of (L− 1)-depth trees and their corresponding forests F1, F2. Now, let us consider two multisets of
L-depth trees, T1 and T2, with associated forests F1 and F2. With slight abuse of notation, we introduce a canonical ordering
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for the elements in the multisets T1 and T2 such that each t ∈ T1 can be used interchangeably as a tree or as an index for
the entries of the permutation matrix. Additionally, for each rooted tree t ∈ T1, we denote the root by rt. We compute the
optimal transport OTTD(ρ(T1, T2)) using the definition from Appendix F as follows,

OTTD(ρ(T1, T2)) = min
P∈Pn

 ∑
t∈T1,t′∈T2

Pt,t′ TD(t, t′)


= min

P∈Pn

 ∑
t∈T1,t′∈T2

Pt,t′
(
∥x(t)

rt − x(t′)
rt′

∥2 +OTTD(ρ(Trt , Trt′ ))
)

= min
P∈Pn

 ∑
t∈T1,t′∈T2

Pt,t′
(
∥x(t)

rt − x(t′)
rt′

∥2 + FTL−1(Frt , Frt′ )
)

= FDL(F1, F2),

where the last two equalities follow from the inductive hypothesis and from Lemma 30, respectively.

The following results relate the mean Forest distances to the 1-MWL in distinguishing non-isomorphic graphs.

Lemma 32 (Lemma 29 in Appendix G). For L ∈ N, the mean-Forest distance FD
(m)
L is a well-defined pseudo-metric on

GR
n,d. Additionally, FD(m)

L (G,H) = 0 if, and only, if G,H are 1-MWL indistinguishable after L iterations.

Proof. We recall the definition of the mean-Forest distance between two graphs G,H ∈ GR
n,d, which can be written as

FD
(m)
L (G,H) = min

P∈PnF

A(F
(m)
G,L)P=PA(F

(m)
H,L)

(Tr(P ⊺L(G,H))),

where L(G,H)
u,v = ∥x(G)

u − x
(H)
v ∥2, and nF is the total number of vertices in the forest after the padding process i.e.,

nF = (n− 1)L+1 − 1.

It is easy to verify that FD(m)
L (G,G) = 0 and FD

(m)
L (G,H) = FD

(m)
L (H,G) for all G,H ∈ GR

n,w. Now, for the triangle
inequality, consider GA, GB , GC ∈ GR

n,w and P ′, P ′′ as the permutation matrices arising from the minimization formula of

FD
(m)
L (GA, GB) and FD

(m)
L (GB , GC), respectively. Note that P ′P ′′ is a permutation matrix satisfying

A(F
(m)
GA,L

)P ′P ′′ = P ′A(F
(m)
GB ,L

)P ′′ = P ′P ′′A(F
(m)
GC ,L

),

implying that
FD

(m)
L (GA, GC) ≤ Tr((P ′P ′′)⊺L(GA, GC)).

Following the same derivations as in Proposition 23, we show that

Tr((P ′P ′′)⊺L(GA, GC)) ≤ Tr((P ′)⊺L(GA, GB)) + Tr((P ′′)⊺L(GB , GC)),

which proves the triangle inequality.

The additional property: FD(m)
L (G,H) = 0 if, and only if, G and H are 1-MWL indistinguishable after L iterations, follows

directly from the unrolling characterization of 1-MWL as described in Proposition 18.

Computational complexity Throughout the paper, we discuss two main distances: the tree distance (with either the cut
norm or the L2-norm) and the forest distance. As shown in Lemma 3, the forest distance is equivalent to the Tree Mover’s
Distance (TMD) introduced by Chuang & Jegelka (2022). This equivalence allows for efficient computation via dynamic
programming (as described in the original paper), with a time complexity of O(t(n) + Lnt(q)), where q is the maximum
degree of a node (in both graphs), n is the number of nodes, and t(m) = O(m3 log(m)).
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The tree distance with the L2-norm can be computed in polynomial time (specifically, an ϵ-approximation), as detailed
in (Nesterov & Nemirovskii, 1994, Section 6.3.3). In contrast, computing the tree distance with the cut norm involves a
significantly harder combinatorial optimization problem. One of the most well-known approximation techniques for this
case is described in (Alon & Naor, 2004). Additional relevant works include Alon et al. (2002); Frieze & Kannan (1999). It
is worth mentioning that for the theoretical results in our paper, either the tree distance with the cut norm or with the 2-norm
can be used interchangeably, as they define the same topology as discussed in (Böker et al., 2023).

I. Extended robustness framework
Kawaguchi et al. (2022) improved the generalization bound in Theorem 4 by establishing a data-dependent bound that
reduces the dependency on K from

√
K to log (K), as shown in the following theorem.

Theorem 33 (Theorem 3 in Kawaguchi et al. (2022)). For any (K, ϵ)-robust (graph) learning algorithm for H on Z , with
partition {Ck}K(S)

k=1 , we have that for all δ ∈ (0,1), with probability at least 1− δ, for a sample S drawn from Z according
to µ, it holds that

ℓexp(hS) ≤ ℓemp(hS) + ϵ(S) + ζ(hS)

((√
2 + 1

)√ |TS | log(2K/δ)
|S|

+
2|TS | log(2K/δ)

|S|

)
,

where ISk = {i ∈ [|S|] | (xi, yi) ∈ Ci}, ζ(hS) = max(x,y)∈Z{ℓ(hS(x), y))}, and TS = {k ∈ [K] | |ISk | ≥ 1}.

Here, we introduce an extended definition of robustness that allows us to choose different radii for the various partition sets.
This modification makes the first term of the generalization bounds in Theorem 4 data-dependent.

Definition 34. A (graph) learning algorithm for H is (K, ε)-robust, with K, ε = (ε1, . . . εK) mapping from the set of all
possible samples to N and (0,∞)K(S), respectively, if Z can be partitioned into K(S) sets, {Ci}K(S)

i=1 , such that for all
samples S , and for any (G, y) ∈ S , the following holds. If (G, y) ∈ Ci for some i ∈ {1, . . . ,K}, then for all (G′, y′) ∈ Ci,
we have ∣∣ℓ(hS(G), y)− ℓ

(
hS(G

′), y′
)∣∣ < εi(S),

where hS is the graph embedding the learning algorithm returns concerning the data sample S.

Building on our refined definition of robustness, we derive the following generalization bound. The proof is nearly identical
to that of Theorem 3 in Xu & Mannor (2012); however, for completeness, we provide the proof in Appendix J.

Theorem 35. For any (K, ε)-robust (graph) learning algorithm for H on Z , we have that for all δ ∈ (0,1), with probability
at least 1− δ,

|ℓexp(hS)− ℓemp(hS)| ≤
K∑
i=1

|{s ∈ S | s ∈ Ci}|
|S|

ϵi(S) +M

√
2K log(2) + 2 log(1/δ)

|S|
.

where hS , as before, denotes a graph embedding from H returned by the learning algorithm given the data sample S of Z .
We recall that M is the bound on the loss function ℓ.

Based on Theorem 35 and the proof technique outlined in Theorem 10, we present the following generalization bound for
the class of unlabeled graphs consisting of at most n vertices (i.e., G≤n)

Proposition 36. For n,L ∈ N,M ′ ∈ R, for any graph learning algorithm for the class MPNNord
L,M ′,LFNN

(G≤n) and for any
sample S and δ ∈ (0,1), with probability at least 1− δ, we have

|ℓexp(hS)− ℓemp(hS)| ≤ Lℓ · LFNN ·
n∑
i=1

|{s ∈ S | s ∈ Gi × Y}|
|S|

sγ←
(
8k

i2

)
+M

√
4m≤n/k + 1 log(2) + 2 log(1/δ)

|S|
,

for k ∈ N, where M is an upper bound on the loss function ℓ, and m≤n := |G≤n/∼WL|.

J. Missing proofs from Section 3
The following results extends the robustness based generalization bounds utilizing the generalized robustness property.

32



Covered Forests

Theorem 37 (Theorem 35 in Appendix I). If we have a (K, ε)-robust (graph) learning algorithm for H on Z , then for all
δ ∈ (0,1), with probability at least 1− δ, for a sample S drawn from Z according to µ, it holds that

|ℓexp(hS)− ℓemp(hS)| ≤
K(S)∑
i=1

|{s ∈ S | s ∈ Ci}|
|S|

ϵi(S) +M

√
2K(S) log(2) + 2 log(1/δ)

|S|
.

where hS , as before, denotes a graph embedding from H returned by the learning algorithm given the data sample S of Z .
We recall that M is the bound on the loss function ℓ.

Proof. Let Ni = {s ∈ S | s ∈ Ci}. Note that (|N1|, . . . , |NK |) is an i.i.d multinomial random variable with parameters |S|
and (µ(C1), . . . , µ(CK)), where µ is the unknown distribution on Z from which our sample is drawn. The following holds
by the Bretagnolle-Huber-Carol inequality (see Proposition A.6 of van der Vaart et al. (1996)),

Pr

(
K∑
i=1

(
|Ni|
|S|

− µ(Ci)

)
≥ λ

)
≤ 2K exp

(
−nλ

2

2

)
.

Thus, with probability at least 1− δ, we have:

K∑
i=1

∣∣∣∣ |Ni||S|
− µ(Ci)

∣∣∣∣ ≤
√

2K log 2 + 2 ln(1/δ)

|S|
.

The discrepancy between the expected and empirical losses can be bounded as follows:

|ℓexp(hS)− ℓemp(hS)|

=

∣∣∣∣∣
K∑
i=1

E(ℓ(hS , z)|z ∈ Ci)µ(Ci)−
1

|S|
∑
s∈S

ℓ(hS , s)

∣∣∣∣∣
≤

∣∣∣∣∣
K∑
i=1

E(ℓ(hS , z)|z ∈ Ci)
|Ni|
|S|

− 1

|S|
∑
s∈S

ℓ(hS , s)

∣∣∣∣∣
+

∣∣∣∣∣
K∑
i=1

E(ℓ(hS , z)|z ∈ Ci)µ(Ci)−
K∑
i=1

E(ℓ(hS , z)|z ∈ Ci)
|Ni|
|S|

∣∣∣∣∣
≤

∣∣∣∣∣ 1|S|
K∑
i=1

∑
s∈Ni

max
z2∈Ci

|ℓ(hS , s)− ℓ(hS , z2)|

∣∣∣∣∣+
∣∣∣∣∣max
z∈Z

|ℓ(hS , z)|
K∑
i=1

∣∣∣∣ |Ni||S|
− µ(Ci)

∣∣∣∣
∣∣∣∣∣

≤
K∑
i=1

|{s ∈ S | s ∈ Ci}|
|S|

ϵi(S) +M

√
2K log(2) + 2 log(1/δ)

|S|
,

where the first inequality is due to triangle inequality, the second by definition ofNi, the third by definition of the generalized
robustness property and the bound M .

The following result links continuity and robustness.

Proposition 38 (Proposition 5 in the main paper). Let (G, dG), (X , dX ), and (Y, dY) be pseudo-metric spaces, and let H
denote the class of uniformly continuous graph embeddings from (G, dG) to (X , dX ). If ℓ : X × Y → R+ is a cℓ-Lipschitz
continuous loss function, regarding d∞, then for any ε > 0, a graph learning algorithm for H on G × Y is(

N
(
G, dG , γ/2

)
· N (Y, dY , ε/2), cℓε

)
-robust.

Where γ(·, h) be the positive function γ used in definition of the uniform continuity of h ∈ H

Proof. Let {Ci}K1
i=1 be a partition corresponding to a γ(ε, hS)/2-cover of G, and let {Yj}K2

j=1 be a partition of Y correspond-
ing to an ε/2-cover of Y . Then we have K1 = N

(
G, dG , γ(ε, hS)/2

)
and K2 = N (Y, dY , ε/2). Letting K = K1K2, we
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define the partition Di,j := Ci × Yj , for i ∈ [K1] and j ∈ [K2] of G × Y . We now verify that this partition satisfies the
robustness conditions.

To this end, consider a sample (G, y) ∈ S from G×Y and assume (G, y) ∈ Di,j , along with another element (G′, y′) ∈ Di,j .
We need to show that ∣∣ℓ(hS(G), y)− ℓ

(
hS(G

′), y′
)∣∣ ≤ cℓε.

Since G and G′ both belong to Ci, we have dG(G,G′) ≤ γ(ε, hS) and this implies that dX
(
hS(G), hS(G

′)
)
≤ ε. Similarly,

since y and y′ both belong to Yj , we have dY(y, y′) ≤ ε. Thus, using the fact that the loss function ℓ is cℓ-Lipschitz
continuous, we obtain ∣∣ℓ(hS(G), y)− ℓ

(
hS(G

′), y′
)∣∣ ≤ cℓmax

{
dX
(
hS(G), hS(G

′)
)
, dY(y, y

′)
}

≤ cℓmax{ε, ε} = cℓε,

as desired.

J.1. Robustness and expressiveness

To apply Theorem 4 in our analysis, we must choose our pseudo-metric dG , the class of graph embeddings H, and the loss
function so that the Lipschitzness of the graph embeddings and the loss function guarantee robustness; see Corollary 6.
Since we are primarily interested in the generalization abilities of MPNN architectures, the chosen pseudo-metric should be
aligned with the MPNN outputs to satisfy a Lipschitz property. A minimal requirement is that whenever the distance between
two graphs through the chosen pseudo-metric is zero, the MPNN outputs should be identical. We derive the following result
by combining this observation with the results from Morris et al. (2019) regarding the equivalence of MPNNs and the 1-WL
algorithm.
Observation 2. Let (G, dG) be a set of graph G paired with a pseudo-metric dG and H be the hypothesis class of all possible
MPNNs. Then, if h is Ch-Lipschitz for all h ∈ H, we have that the pseudo-metric dG is at least as expressive as the 1-WL,
i.e., for all G1, G2 ∈ G with dG(G1, G2) = 0, we have that G1, G2 are 1-WL indistinguishable.

The observation shows some minimal expressivity requirements for the pseudo-metric must be met to satisfy the Lipschitz
property on MPNNs. Thus, for the rest of this work, we focus on pseudo-metrics that are at least as expressive as the 1-WL
or its variants such that the 1-MWL.

K. Graphon analysis
In the following section, we define graphons, the extension of graphs to graphs with infinitely many (and uncountable)
vertices. Formally, the space of graphons is the completion of the space of graphs to a compact space concerning the
cut-distance; see Frieze & Kannan (1999) and Lovász (2012, Theorem 9.23). Next, we extend the tree distance to the space
of graphons such that the graphon tree distance between two induced graphons is precisely the tree distance between the
original graphs. We further introduce the Prokhorov pseudo-metric δP on the space of graphons as defined in (Böker et al.,
2023). We proceed by describing a message-passing mechanism on the space of graphons such that applying this mechanism
to a graphon induced by a graph is equivalent to using the MPNN defined in Equation (1) to the original graph. Finally, we
present Theorems 29 and 31 from Böker et al. (2023), showing the equicontinuity of MPNNs on graphons concerning the
Prokhorov pseudo-metric and the uniform continuity of the Prokhorov pseudo-metric concerning the graphon tree distance,
respectively. Combining these two results, we establish the equicontinuity of MPNNs concerning the tree distance, as stated
in Theorem 8 of the main paper.

Graphons We begin with the definition of a graphon, which is just a symmetric measurable function W : [0,1]2 → [0,1].
We denote the set of all graphons by W . Graphons generalize graphs in the following sense. Every n-order graph G can
be viewed as a graphon WG by partitioning [0,1] into n intervals (Iv)v∈V (G), each of mass 1/n, and letting WG(x, y) for
x ∈ Iu, y ∈ Iv be one if {u, v} ∈ E(G) and zero otherwise. We call WG the induced graphon by graph G.

Graphon tree distance A graphon W defines an operator TW : L2([0,1]) → L2([0,1]) on the space L2([0,1]) of square-
integrable functions modulo equality almost everywhere as

(TW f)(x) :=

∫
[0,1]

W (x, y)f(y) dλ(y), x ∈ [0,1], f ∈ L2([0,1]).
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Following Böker (2021) we define the graphon tree distance of two graphons U and W as

δT□(U,W ) := inf
S

sup
f,g

|⟨f, (TU ◦ S − S ◦ TW )g⟩| ,

where the supremum is taken over all measurable functions f, g : [0,1] → [0,1] and the infimum is taken over all Markov
operators S, i.e., operators S : L2([0,1]) → L2([0,1]) such that S(f) ≥ 0 for every f ≥ 0, S(1[0,1]) = 1[0,1], and
S∗(1[0,1]) = 1[0,1] also for the Hilbert adjoint S∗. Markov operators are the infinite-dimensional analog to doubly stochastic
matrices (Eisner et al., 2015).

The following result by Böker (2021) shows that the graphon tree distance specializes to the tree distance defined on graphs
when applied to the corresponding induced graphons.

Lemma 39 ((Böker, 2021, Lemma 15)). Let G,H ∈ Gn for some n ∈ N. Then,

δT□(G,H) = n2 · δT□(WG,WH).

Prokhorov pseudo-metric on graphons Without delving into technical details, we denote the Prokhorov pseudo-metric
on W as δP . The formal definition can be found in Böker et al. (2023). Intuitively, the Prokhorov pseudo-metric is a
pseudo-metric on the space of graphons and is based on the Prokhorov distance between the color histograms produced by a
continuous counterpart of the 1-WL algorithm applied to graphons.

Message passing graph neural networks on graphons For a graphon W ∈ W , an L-layer MPNN initializes a feature
h
(0)
x := φ0 ∈ Rd0 for x ∈ [0,1]. Then, for t ∈ [L], we compute h

(t)
x : [0,1] → Rdt and the single graphon-level feature

hW ∈ R1×d after L layers by

h(t)
x := φt

(∫
[0,1]

W (x, y)h(t−1)
y dλ(y)

)
, and hW := ψ

(∫
[0,1]

h(L)
x dλ(x)

)
. (14)

Where, (φ)Lt=1, ψ are the functions of Equation (1). This definition generalizes Equation (1) on graphons. More precisely,
we have the following result.

Lemma 40 ((Böker et al., 2023, Theorem 9)). Let G ∈ Gn, for some n ∈ N, let (φLt=1) be an L-layer MPNN model, and ψ
be Lipschitz. Then,

hG = hWG
.

We are now ready to present Theorems 29 and 31 from (Böker et al., 2023), presenting the uniform continuity of MPNNs on
graphons for the Prokhorov pseudo-metric and the uniform continuity of the Prokhorov pseudo-metric for the graphon tree
distance, respectively.

Theorem 41 ((Böker et al., 2023, Theorem 29)). For all L ∈ N, ε > 0, there exists a δ1 > 0 such that, for all graphons U
andW , if δP (U,W ) ≤ δ1, then ∥hU−hW ∥2 ≤ ε for every L′-layer MPNN model given by Equation (14) with L ≤ L′.

Theorem 42 ((Böker et al., 2023, Theorem 31)). For every ε > 0, there exists a δ2 > 0 such that, for all graphons U and
W , if δT□(U,W ) ≤ δ2, then δP (U,W ) ≤ ε.

We now combine the above two results to show the equicontinuity of MPNNord
L,M ′,LFNN

(Gn), as stated in Theorem 8 in the
main paper.

Theorem 43 (Theorem 8 in the main paper). For all ε > 0 and L ∈ N, there exists γ(ε) > 0 such that for n ∈ N, M ′ ∈ R,
G,H ∈ Gn, and all MPNN architectures in MPNNord

L,M ′,LFNN
(Gn), the following implication holds,

δT□(G,H) < n2 · γ(ε) =⇒ ∥hG − hH∥2 ≤ ε.

Proof. Given ε > 0, let δ1(ε) be as described in Theorem 41. Set this δ1(ε) as the ε in Theorem 42 and compute
δ2(δ1(ε)) = δ2(ε). Now, by setting γ(ε) = δ2(ε), we have that for all n ∈ N and G,H ∈ Gn, if δT□(WG,WH) ≤ γ(ε), or
equivalently, by Lemma 39 if,

δT□(G,H) ≤ n2 · γ(ε),
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then δP (WG,WH) ≤ δ1(ε). Hence, by Theorem 41, ∥hWG
− hWH

∥2 ≤ ε, for all L-layer MPNN models given by
Equation (14). Finally, by Lemma 40, the last inequality can equivalently be written as

∥hG − hH∥2 ≤ ε,

completing the proof.

L. Robustness and VC dimension bounds
Here, we show how we can recover previously obtained bounds on the generalization abilities of MPNNs of Morris et al.
(2023a) through the generalization framework of Section 3. That is, we show how the robustness framework of Section 3
allows us to recover the results in Morris et al. (2023a, Proposition 1 and 2) by fixing a particular pseudo-metric on the set
of n-order graphs. Unlike Morris et al. (2023a), our results not only hold for the binary classification setting using the 0-1
loss but, under mild assumptions, for arbitrary loss functions, such as the cross entropy loss and also standard loss functions
for the regression case.

Analysis of generalization abilities of MPNNs of Morris et al. (2023a) To state the results of Morris et al. (2023a), we
first introduce the VC dimension of MPNNs. That is, for a class of MPNNs MPNN(X ) operating on a set of graphs X , e.g.,
MPNNL(X ), the VC dimension VC-dim(MPNN(G)) is the maximal number m of graphs G1, . . . , Gm in X that can be
shattered by MPNN(X ). Here, G1, . . . , Gm are shattered if for any τ in {0,1}m there exists a MPNN mpnn ∈ MPNN(X )
such that for all i in [m],

mpnn(Gi) = τi.

By standard learning-theoretic results, bounding the VC dimension of a class of functions directly implies a bound on the
generalization error.9

Theorem 44 (Vapnik & Chervonenkis (1964); Vapnik (1998, adapted to MPNNs)). Let X be a set of graphs and let
MPNN(X ) be a class of MPNNs operating on X , with VC-dim(MPNN(X )) = d < ∞. Then, for all δ ∈ (0,1), with
probability at least 1− δ, the following holds for all mpnn ∈ MPNN(X ),

ℓexp(mpnn) ≤ ℓemp(mpnn) +

√
2d log (eN/d)

N
+

√
log (1/δ)

2N
.

To bound the VC dimension of MPNNs, Morris et al. (2023a) consider X = GB
n,d, the set of n-order graphs with d-

dimensional Boolean vertex features and Y = {0,1}. Like Morris et al. (2023a), for d > 0, by mn,d,L we denote the number
of unique graphs in GB

n,d distinguishable by 1-WL after L iterations. Now, Morris et al. (2023a) proved the following upper
and lower bounds for the VC dimension of L-layer MPNNs on the set GB

n,d of graphs, showing that the VC dimension is
bounded by the ability of the 1-WL to distinguish n-order graphs.
Proposition 45 (Morris et al. (2023a, Proposition 1)). For all n, d and L ∈ N, it holds that

VC-dim
(
MPNNL

(
GB
n,d

))
≤ mn,d,L.

This upper bound holds regardless of the choice of aggregation, update, and readout functions used in the MPNN architecture.
They also show a matching lower bound.
Proposition 46 (Morris et al. (2023a, Proposition 2)). For all n, d, and L ∈ N, all mn,d,L 1-WL-distinguishable n-order
graphs with d-dimensional boolean features can be shattered by sufficiently wide L-layer MPNNs. Hence,

VC-dim
(
MPNNL

(
GB
n,d

))
= mn,d,L.

Hence, combining the above result with Theorem 44 implies that for all samples S, with probability at least 1− δ,

ℓexp(hS) ≤ ℓemp(hS) +

√
2mn,d,L log (e|S|/mn,d,L)

|S|
+

√
log (1/δ)

2|S|
.

9For ease of exposition, compared to Morris et al. (2023a), we use a slightly different definition of MPNNs’ VC dimension. However,
the proofs of Propositions 1 and 2 also work in the case of the above definition.
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Note that the logarithm must be positive for the above bound to be meaningful. This requires the assumption that the sample
size is significantly larger than the total number of 1-WL-distinguishable graphs, which is generally not feasible, especially
for large graphs. We now largely recover the above generalization bound without any assumptions on the sample size
through the theory outlined in Section 3 and extend it to the case of regression.

Recovering Morris et al. (2023a) via the robustness framework Let us consider the binary classification setting with
Y = {0,1} and the 0-1 loss function ℓ : Y × Y → {0,1}, where ℓ(y1, y2) = 0 if, and only if, y1 = y2. Given that the
expressive power of any MPNN with L layers is bounded by 1-WL after L iterations (Morris et al., 2019), it is straightforward
to verify that any graph learning algorithm for MPNNL(GB

n,d) on Z := GB
n,d × Y is (2mn,d,L, 0)-robust, leading to the

following generalization bound. For δ ∈ (0,1) and for all samples S, with probability at least 1− δ, we have

|ℓexp(hS)− ℓemp(hS)| ≤

√
4mn,d,L log(2) + 2 log(1/δ)

|S|
.

To see this, observe that we can construct a partition of Z using the sets C = G× {j}, for G ∈ Gn/∼WLL , j ∈ {0,1}.

Regression setting In contrast to Morris et al. (2023a), the robustness framework is flexible enough to accommodate
different loss functions straightforwardly. For example, consider the set of graphs GB

n,d, we now extend to the regression
setting where Y = (0,1), with the loss function ℓ : Y × Y → (0,1), defined by ℓ(y1, y2) = |y1 − y2|. We then define the
pseudo-metric WL1,L on GB

n,d as follows,

WL1,L(G,H) :=

{
1, if 1-WL distinguishes G and H after L iterations,
0, otherwise.

.

We further consider the metric | · | on (0,1) as the absolute difference metric. Observing that: (1) the covering number
N ((0,1), | · |, ε) < 2/ε, for ε < 1, (2) the covering number N (GB

n,d,L,WL1,L, ε) = mn,d,L, for ε < 1, (3) the loss function
ℓ(x, y) = |x− y| is 2-Lipschitz, and (4) L-layer MPNNs are 1-Lipschitz with respect to the WL1,L pseudo-metric, we can
apply Corollary 6 to obtain the following bound. For δ ∈ (0,1), for all samples S, with probability at least 1− δ and for
ϵ < 1, we have

|ℓexp(hS)− ℓemp(hS)| ≤ 4ϵ+

√
2/ϵ ·mn,d,L log(2) + 2 log(1/δ)

|S|
.

M. Fine-grained analysis of MPNNs with other aggregation functions
In this section, we extend the previous results analyzing MPNN layers using mean aggregation according to Equation (5).
Let smn,d,q,L denote the number of equivalence classes induced by the 1-MWL after L iterations on Gn,d,q. For the case
when L = n− 1, we simply write smn,d,q. To establish generalization bounds, we rely on the mean-Forest distance FDmL
defined in Section 2. Similar to the Forest distance, we can bound the mean-Forest distance between two graphs that differ
by either a single edge or vertex label change, as shown in the following lemma, the proof proceeds identically to the proof
of Lemma 13.
Lemma 47. For d, q, L ∈ N, there exists a constant b(m)(d, q, L) such that for n ∈ N and G,H ∈ Gn,d,q, if G can be
obtained from H by either deleting an edge or by replacing a vertex feature with a new one, then

FD
(m)
L (G,H) ≤ b(m)(d, q, L).

We next analyze the generalization power of the MPNN class MPNNmean
L,M ′,LFNN

(Gn,w,q). Again, we consider the loss function
ℓ : R× {0,1} → R, defined by ℓ(x, y) = y log(σ(x)) + (1− y) log(1− σ(x)), where σ(x) is the sigmoid function. The
following result shows the Lipschitz continuity property of MPNNs in MPNNmean

L,M ′,LFNN
(Gn,w,q) concerning the mean-Forest

distance. Similarly to sum aggregation MPNNs, we state and prove the Lipschitz property below for the more general setting
with graphs in GR

n,d.

Lemma 48. For every L, n, d ∈ N,M ′ ∈ R and for all MPNNs in MPNNmean
L,M ′,LFNN

(GR
n,d), we have

∥hG − hH∥2 ≤ 1

n
C(m)(L)Lψ

L∏
i=1

Lφi
FDm

L (G,H), for all G,H ∈ GR
n,d,
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where C(m)(L) is a constant depending on L.

We now state the generalization bound for mean aggregation MPNNs.

Proposition 49. For ε > 0 and n, q, d, L ∈ N,M ′ ∈ R and any graph learning algorithm for MPNNmean
L,M ′,LFNN

(Gn,d,q) is(
2N (Gn,d,q,FD(m)

L , ε), Lℓ · LFNN · C
FD

(m)
L

· 2ε
)

-robust.

Hence, for any sample S and δ ∈ (0,1), with probability at least 1− δ,

|ℓexp(hS)− ℓemp(hS)| ≤ C̃(m)ε+M

√
2N (Gn,w,q,FD(m)

L , ε)2 log 2 + 2 log(1/δ)

|S|
, for ε > 0,

where C̃(m) = 2/nLℓLFNNCFD
(m)
L

, C
FD

(m)
L

= C(m)(L)Lψ
∏L
i=1 Lmlpi the Lipschitz constant by Lemma 48, and M , is an

upper bound of the loss function ℓ.

We similarly bound the covering number concerning the mean-Forest distance, deriving the following bound.

Proposition 50. For n, q, d, L ∈ N, and M ′ ∈ R, for any graph learning algorithm for the class MPNNsum
L,M ′,LFNN

(Gn,d,q)
and for any sample S and δ ∈ (0,1), with probability at least 1− δ, we have

|ℓexp(hS)− ℓemp(hS)| ≤ 2C̃(m)b(m)(d, q, L)k +M

√
Ďmn,d,q,L

k+1 4 log(2) + 2 log(1/δ)

|S|
, for k ∈ N,

N. Covering number dependency on graphs’-order
In previous sections, we showed that for different choices of ε, the covering number can be bounded by a function that
always increases scales on n as mn, i.e., the number of 1-WL-indistinguishable classes. Specifically, when estimating the
limit

lim
n→∞

N (Gn, δT□ , ε)
mn

,

the result will always be a constant that depends on ε. While one could use Equation (10) with radius 4n to obtain a bound
that scales as mn/(n+ 1) in n, such an increase in radius would impact the first term in the generalization bound. Hence,
the question arises of whether it is possible to derive a bound that grows more slowly with n than mn for some sufficiently
interesting graph class, using either a constant radius or a radius that depends only mildly on n.

More formally, a natural question is whether we can establish tighter bounds for the covering number for a given constant ε
that does not depend, or mildly depends, on n. For instance, is there a choice of ε > 0 and a graph class Fn such that

N (Fn, δT□ , ε) ≤
|Fn/∼WL|
bn

, (15)

where bn → ∞ as n grows? If such a graph class exists, then MPNNs could effectively handle the growth in graph size
without significantly impacting their generalization performance. Below, we present a class of graphs Fn that satisfies
Equation (15) for radius ε = 4.

We define the class Fn as follows, let Pn denote a path on n vertices, with vertex set V (Pn) = {v1, . . . , vn} and edge set
E(pn) = {{v1, v2}, . . . , {vn−1, vn}}. We denote by P(n) the set consisting of disjoint unions of paths on n vertices. Then,
we define the graph class

Fn := {(V,E) |V := V (Pn) ∪̇V (P ), E := E(P ) ∪̇E(Pn)∪̇{u, v}, for P ∈ P(n),

u ∈ V (P ), and v ∈ V (Pn)}.

We will now show that for the graph class Fn and ε = 4, Equation (15) holds.

Proposition 51. For the the graph class Fn ⊂ Gn constructed above, we have

N (Fn, δT□ , 4) ≤
2|Fn/∼WL|

n
.
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Note that in the above proposition, we established that the covering number is bounded by |P(n)|, which has an interesting
combinatorial interpretation. Specifically, |P(n)| represents the integer partition of n, i.e., the number of distinct ways to
express n as a sum of positive integers. While there is no known closed formula for the integer partition, it can be accurately
approximated through asymptotic expansions and computed precisely via recurrence relations, making the bound efficiently
computable (Andrews & Eriksson, 2004).

Regression setting Here, we lift the results from the previous section to the regression setting. Specifically, we use
consider the loss function ℓ(x, y) = |x− y|, resulting in the following results.

Proposition 52. For every L, n ∈ N,M ′ ∈ R and for all MPNNs in MPNNord
L,M ′,LFNN

(Gn), we have the following
generalization bound. For any sample S, and any δ ∈ (0,1), with probability at least 1− δ, for ε < 2M ′,

|ℓexp(hS)− ℓemp(hS)| ≤ 2 · LFNN · sγ←
(
2ε

n2

)
+M ′

√
N (Gn, δT□ , ε)

4M ′ log(2)
ε + 2 log(1/δ)

|S|
.

O. Missing proofs from section Section 4
The following result links robustness with the generalization error of order-normalized MPNNs.

Proposition 53 (Proposition 9 in the main paper). For ε > 1
2 · inf

δT□(G,H)>0
δT□(G,H), n,L ∈ N, and M ′ ∈ R, any graph

learning algorithm for the class MPNNord
L,M ′,LFNN

(Gn) is(
2N (Gn, δT□ , ε), Lℓ · LFNN · sγ←

(
2ε

n2

))
-robust.

Hence, for any sample S and δ ∈ (0,1), with probability at least 1− δ,

|ℓexp(hS)− ℓemp(hS)| ≤ Lℓ · LFNN · sγ←
(
2ε

n2

)
+M

√
4N (Gn, δT□ , ε) log(2) + 2 log

(
1
δ

)
|S|

,

where, M is an upper bound for the loss function ℓ and Lℓ, the Lipschitz constant of ℓ(·, y), y ∈ {0,1}.

Proof. We first note that since FNN is bounded by M ′, we know that the loss function is also bounded from some M ∈ R.
Now, let Z = Gn × {0,1}. For a given ε > 0, graphs G1, G2 ∈ Gn, and y1, y2 ∈ {0,1}, if max{δT□(G1, G2), δ(y1, y2)} <
sγ(ε)n2, where δ is the Kronecker-delta metric on {0,1}, i.e.,

δ(y1, y2) =

{
∞, if y1 ̸= y2, and
0 if y1 = y2,

we have that δ(y1, y2) < sγ(ε)n2, implies y1 = y2, and therefore, for any sample S,

|ℓ(hS(G1), y1)− ℓ(hS(G2), y2)| = |ℓ(hS(G1), y1)− ℓ(hS(G2), y1)|
≤ Lℓ|hS(G1)− hS(G2)|
≤ Lℓ · LFNN · ε.

Therefore, by Proposition 7, any learning algorithm for MPNNord
L,M ′,LFNN

(Gn) is(
2N (Gn, δT□ ,

sγ(ε)n2

2
), Lℓ · LFNN · ε

)
-robust.

Now, we replace ε with sγ←
(
2ε
n2

)
. By definition of sγ←, if sγ←

(
2ε
n2

)
̸= 0, we have sγ

(
sγ←
(
2ε
n2

))
≥ 2ε

n2 . Thus,

N (Gn, δT□ ,
sγ(sγ←( 2ε

n2 ))n2

2 ) ≤ N (Gn, δT□ , ε), leading to the following generalization bound:

|ℓexp(hS)− ℓemp(hS)| ≤ Lℓ · LFNN · sγ←
(
2ε

n2

)
+M

√
4N (Gn, δT□ , ε) log(2) + 2 log

(
1
δ

)
|S|

.
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It remains to check the case where sγ←
(
2ε
n2

)
= 0.

If sγ←
(
2ε
n2

)
= 0, then sγ(x) ≥ 2ε

n2 for all x > 0. Thus, for all graphs G1, G2, with δT□(G1, G2) <
2ε
n2 · n2, we have:

∥hG1
− hG2

∥2 ≤ x, for all x > 0, h ∈ MPNNord
L,M ′,LFNN

(Gn) ⇔

∥hG1 − hG2∥2 = 0, for all h ∈ MPNNord
L,M ′,LFNN

(Gn),

which, following Böker et al. (2023), implies that δT□(G1, G2) = 0.

Now, observe that since for all G1, G2 ∈ Gn with δT□(G1, G2) < 2ε, we have δT□(G1, G2) = 0, implying

ε ≤ 1

2
inf

G,H∈Gn
δT□(G,H)>0

δT□(G,H),

which leads to a contradiction, since we have assumed ε > 1
2 inf G,H∈Gn

δT□(G,H)>0

δT□(G,H).

The following results provide a generalization bound using the number of graphs distinguished by 1-WL to derive an upper
bound on the covering number.

Theorem 54 (Theorem 10 in the main paper). For n,L ∈ N,M ′ ∈ R, for any graph learning algorithm for
MPNNord

L,M ′,LFNN
(Gn) and for any sample S and δ ∈ (0,1), with probability at least 1− δ, we have

|ℓexp(hS)− ℓemp(hS)| ≤ Lℓ · LFNN · sγ←
(
8k

n2

)
+M

√
4 mn

k+1 log(2) + 2 log(1/δ)

|S|
,

for k ∈ N, where M is an upper bound on the loss function ℓ.

Proof. First, note that δT□(G,H) = 0 if, and only, if the graphs G,H ∈ Gn are 1-WL-equivalent. By the triangle inequality,
we also have that if G,H ∈ Gn, and G′ ∈ [G], H ′ ∈ [H] are two arbitrarily chosen graphs from their respective equivalence
classes, then

δT□(G,H) = δT□(G′, H ′).

Thus, we can define the Tree distance between two equivalence classes as the Tree distance between two randomly chosen
representatives. Moreover, computing the covering number on Gn is equivalent to computing the covering number on the
pseudo-metric space (Gn/∼WL, δT□).

We now construct a labeled directed tree with labels from Gn/∼WL level-wise, starting from the root r (level 0), as follows.

1. The root corresponds to the complete graph on n vertices denoted as Kn, which is unique in its equivalence class.

2. The first level consists of a single vertex corresponding to the graph derived by deleting an edge from the complete
graph on n vertices. Denote this graph as K−n , which is also unique in its equivalence class.

3. In the next level, we compute all graphs obtained by deleting an edge from K−n . Denote these graphs as G1, . . . , Gr,
for r ∈ N. We then de-duplicate the set {G1, . . . , Gr} for the 1-WL, keeping one representative for each equivalence
class. This reduces the set to [G1], . . . , [Gr′ ], where r′ ≤ r. These equivalence classes form the children of the vertex
at level 1.

4. For each vertex corresponding to a graph class [Gi] in level 2, we compute its children as follows. We first compute all
graphs in the set.

[Gi]c = {G′ | ∃G ∈ [Gi], e ∈ E(G) such that G \ {e} ≃ G′}.

We connect these graphs to the vertex [Gi]. We then prune the tree by arbitrarily dropping all 1-WL-equivalent graphs,
keeping only one as the representative.

5. We continue this process until we reach the vertex corresponding to the empty graph.
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Observe that in the resulting tree, the total number of vertices is exactly mn, since for each l ∈
[
n(n−1)

2

]
, level l contains all

1-WL-equivalence classes for graphs with n vertices and n(n−1)
2 − l edges. Additionally, the tree satisfies the following two

properties:

1. Each parent is at most at a distance 2 from its children.

2. All siblings are at most at a distance of 4 from each other.

To verify this, consider the following. If [G1] is a child of [G], then there exists G1 ∈ [G1], G ∈ [G], and an edge e ∈ E(G)
such that G \ {e} ≃ G1. By the triangle inequality and the fact that

δT□(G,G′) = 0,

since G and G′ are 1-WL-indistinguishable, we have

δT□([G], [G1]) = δT□(G,G1) = 2.

Similarly, if [G1] and [G2] are siblings, the triangle inequality gives

δT□([G1], [G2]) ≤ δT□([G], [G1]) + δT□([G], [G2]) ≤ 4.

This follows from the fact that if the adjacency matrices of two graphs differ in exactly two entries, then their Tree distance
is bounded above by 2. Now, we construct a cover of Gn/∼WL as follows.

1. We start from the leaves of the tree and merge each leaf with its parent. We repeat this step k times. The resulting
graph is still a tree.

2. In this induced tree, we create as many disjoint sets of 1-WL-equivalence classes as there are leaves in the induced tree
by considering all classes corresponding to a leaf as a set. Each group contains at least k + 1 elements.

3. We then remove all leaves, creating a new tree T ′. For each leaf in T ′, we repeat the merging process as many times as
necessary until each leaf contains at least k + 1 equivalence classes (requiring at most k merges).

At the end of this process, each group will have at least k + 1 elements, and the Tree distance between any two elements in
the same group will be at most 4k. To see this, note that for any two graph classes [G] and [H] in the same partition set, if
we consider the tree to be undirected, there exists a path of length at most 2k in the initial tree connecting [G] and [H]. Thus,
we can find graphs G ∈ [G] and H ∈ [H], differing by at most 2k edge additions or deletions, implying that G and H are at
Tree distance at most 4k. This implies that the covering number

N(Gn, δT□ , 4k) ≤
mn

k + 1
.

The following result derives tighter bounds for Otter trees.

Proposition 55 (Proposition 12 in the main paper). For L ∈ N,M ′ ∈ R and sufficiently large n ∈ N, for any graph learning
algorithm on MPNNord

L,M ′,LFNN
(T (2)

2n+1) and for any sample S, with δ ∈ (0,1), with probability at least 1− δ, we have

|ℓexp(hS)− ℓemp(hS)| ≤ Lℓ · LFNN · sγ←
(

16k

(2n+ 1)2

)
+M

√
4wn/b2k log(2) + 2 log(1/δ)

|S|
,

where k ∈ N, M is an upper bound on the loss function ℓ, b ≈ 2 4832, and wn = |T (2)
2n+1|.

Proof. As in the proof of Theorem 10, we begin by constructing a rooted, labeled, directed tree. However, the labels are

now graphs from
n⋃
j=1

T (2)
2j+1, and we do not need to use 1-WL equivalence classes, as 1-WL can distinguish any pair of

non-isomorphic trees.

1. The root (level 0) corresponds to the isolated vertex graph.
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(a) An illustration of tree construction as described in the proof
of Theorem 10. On the left, we show all possible trees that can be
computed according to the description in the proof, represented in a
directed acyclic graph (DAG) format. On the right, we display an
arbitrarily chosen tree from this set.

(b) An illustration of the grouping process applied to the chosen
tree, which leads to the desired upper bound for the covering number.
All vertices belong to a group with at least two elements (possibly
excluding from the root).

Figure 5. Illustrations related to tree construction and the grouping process.

2. The first level consists of a single vertex corresponding to the 3-path graph.

3. At level l + 1, we compute the children of vertices at level l as the graphs obtained by connecting a leaf vertex of the
graphs in level l with two additional vertices. We then prune the tree by removing isomorphic graphs.

4. We continue this process until all binary trees at the current level have 2n+ 1 vertices.

The above construction shows that level l consists of all Otter trees with 2l + 1 vertices. Additionally, each child is at most
at Tree distance 4 from its parent and at most 8 from its siblings. Therefore, we can cover T (2)

2n+1 using T (2)
2n−1 balls of radius

8. Recursively, we can show that T (2)
2n+1 can be covered using T (2)

2(n−2k)+1 balls of radius 8k. Using the asymptotic formula
from Lemma 11, we obtain

N (T (2)
2n+1, 8k) ≤ wn−2k = wn

wn−2k
wn

=
wn
b2k

.

The following result derives tighter bounds for a specialized graph class constructed from paths.
Proposition 56 (Proposition 51 in the main paper). For the the graph class Fn ⊂ Gn constructed above, we have

N (Fn, δT□ , 4) ≤
2|Fn/∼WL|

n
.

Proof. First note that since 1-WL is complete in the space of forests, |Fn/∼WL| is exactly the number of non-isomorphic
graphs in Fn. We prove that Fn can be partitioned into |P(n)| subsets, each containing at least n/2 non-isomorphic graphs.
Furthermore, within each partition set, all graphs are pairwise at Tree distance of at most 4. This result implies that while
the total number of non-isomorphic graphs in Fn is greater than |P(n)| · n/2, we can cover them using only |P(n)| sets.

Now, for each P ∈ P(n), we define a set SP containing n/2 non-isomorphic graphs from Fn such that for all P, P ′ ∈ P(n),
we have SP ∩ SP ′ = ∅. We construct SP as follows. For each P ∈ P(n), let Pmax denote the largest connected component
of P . Choose, without loss of generality, a vertex u ∈ V (Pmax) with degree 1, i.e., a non-interior vertex) and define

SP :=
{
(V,E)

∣∣∣ V := V (pn) ∪̇V (P ), E := E(P ) ∪̇E(pn) ∪ {u, v}, where v = vj for j ∈ ⌈n/2⌉
}
.
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Figure 6. An illustration related to tree construction (left) and the grouping process for Otter trees (right) asymptotically leading to an
exponential decrease of the covering number with the radius.

Clearly, |SP | = n/2. We now verify the following claims.

1. For all G1, G2 ∈ SP , G1 and G2 are non-isomorphic.

2. For all P, P ′ ∈ P(n), SP ∩ SP ′ = ∅.

Proof of (1). Let G1, G2 ∈ SP with edge sets E(G1) = E(P ) ∪ {u, vj1} and E(G2) = E(P ) ∪ {u, vj2}, where j1 ̸= j2
and j1, j2 ∈

⌈
n
2

⌉
. Assume further that j1, j2 ̸= 1. If j1 < j2, then in G2, starting from vertex v1, we can trace a path of

length j2 + |E(Pmax)|. In G1, however, such a path does not exist. If j1 = 1 ̸= j2, it is evident that G1 has a connected
component consisting of a path of length n+ |V (Pmax)|, which is absent in G2.

Proof of (2). If P and P ′ have different numbers of disconnected components, then for all G1 ∈ SP and G2 ∈ SP ′ , G1 and
G2 will differ in edge count. Furthermore, if P and P ′ have the same number of connected components but |Pmax| ≠ |P ′max|,
then the size of the largest connected component in G1 will differ from that in G2. Finally, if P and P ′ have identical
numbers of connected components and |Pmax| = |P ′max|, then the connected component size histograms of G1 and G2 must
differ; otherwise, P and P ′ would be isomorphic.

The following result establishes that MPNNs using sum aggregation are Lipschitz continuous regarding the Forest distance.
Lemma 57 (Lemma 14 in the main paper). For L, n, d ∈ N,M ′ ∈ R and for all MPNNs in MPNNsum

L,M ′,LFNN
(GR
n,d), we

have

∥hG − hH∥2 ≤ 1

n
C(L)Lψ

L∏
i=1

Lφi
· FDL(G,H), for all G,H ∈ GR

n,d,

where C(L) is a constant depending on L

Proof. Let θ be an edge-preserving bijection between the padded forests FG,L and FH,L. This bijection θ induces another
bijection, θ(l), between vertices at layer l of trees in FG,L and vertices at layer l of trees in FH,L, for each l ∈ {0, . . . , L}. We
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Figure 7. An example of graphs within the class Fn for n=7.

further define sθ(l)(u, v) = 1 iff θ(l)(u) = v and 0 elsewhere. We present the proof for the case L = 2 and let W (1)
t ,W

(2)
t

be identical matrices; for L > 2 and any choice of matrices W
(1)
t ,W

(2)
t , the proof is analogous, though the notation

becomes more complex. Specifically, one may generalize by replacing W
(1)
t and W

(2)
t with Lipschitz continuous functions,

and the proof would still hold. We show the Lipschitz property by recursively bounding the following difference:

∥hG − hH∥ =

∥∥∥∥∥∥ψ
 1

n

∑
u∈V (G)

h(2)
u

− ψ

 1

n

∑
v∈V (H)

h(2)
v

∥∥∥∥∥∥
≤ 1

n
Lψ

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∥∥∥h(2)

u − h(2)
v

∥∥∥,
where in the last step, we applied the triangle inequality, as implied by the bijection θ(0) between the roots.

Thus, we have that ∥hG − hH∥ is less than

1

n
Lψ

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)

∥∥∥∥∥∥φ2

h(1)
u +

∑
u′∈N(u)

h
(1)
u′

− φ2

h(1)
v +

∑
v′∈N(v)

h
(1)
v′

∥∥∥∥∥∥
≤ 1

n
LψLφ2

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)

∥∥∥∥∥∥h(1)
u − h(1)

v +
∑

u′∈N(u)

h
(1)
u′ −

∑
v′∈N(v)

h
(1)
v′

∥∥∥∥∥∥
≤ 1

n
LψLφ2

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∥∥∥h(1)

u − h(1)
v

∥∥∥
︸ ︷︷ ︸

A

+
1

n
LψLφ2

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)

sθ(1)(u′, v′)
∥∥∥h(1)

u′ − h
(1)
v′

∥∥∥
︸ ︷︷ ︸

B

,

where, in the last step, we again applied the triangle inequality, this time induced by the bijection θ(1) between the vertices
at the first layer. Note that it is possible that |N(u)| > |N(v)|, meaning some neighbors of u are mapped by θ(1) to padded
vertices. In this case, we can trivially apply the triangle inequality by setting h

(1)
v′ = 0 in the expression above.

Next, we bound term A:

A ≤ 1

n
LψLφ2

Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)

∥∥∥∥∥∥h(0)
u − h(0)

v +
∑

u′∈N(u)

h
(0)
u′ −

∑
v′∈N(v)

h
(0)
v′

∥∥∥∥∥∥
≤ 1

n
LψLφ2Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∥∥∥h(0)

u − h(0)
v

∥∥∥
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+
1

n
LψLφ2

Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)

sθ(1)(u′, v′)
∥∥∥h(0)

u′ − h
(0)
v′

∥∥∥.
Similarly, the term B is bounded by

≤ 1

n
LψLφ2Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)

sθ(1)(u′, v′)

∥∥∥∥∥∥h(0)
u′ − h

(0)
v′ +

∑
u′′∈N(u′)

h
(0)
u′′ −

∑
v′′∈N(v′)

h
(0)
v′′

∥∥∥∥∥∥
≤ 1

n
LψLφ2

Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)

sθ(1)(u′, v′)
∥∥∥h(0)

u′ − h
(0)
v′

∥∥∥
+

1

n
LψLφ2Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)

sθ(1)(u′, v′)
∑

u′′∈N(u′),v′′∈N(v′)

sθ(2)(u′′, v′′)
∥∥∥h(0)

u′′ − h
(0)
v′′

∥∥∥.
Therefore, choosing as θ the edge-preserving bijection minimizes Equation (9) we get,

∥hG − hH∥ ≤ 2
1

n
LψLφ2Lφ1FDL(G,H).

The following result derives a bound on the generalization error for MPNNs using sum aggregation.
Proposition 58 (Proposition 52 in the main paper). For everyL, n ∈ N,M ′ ∈ R and for all MPNNs in MPNNsum

L,M ′,LFNN
(Gn),

we have the following generalization bound: For any sample S, and any δ ∈ (0,1), with probability at least 1− δ,

|ℓexp(hS)− ℓemp(hS)| ≤ 2 · LFNN · sγ←
(
2ε

n2

)
+M ′

√
N (Gn, δT□ , ε)

4M ′ log(2)
ε + 2 log

(
1
δ

)
|S|

,

for ε < 2M ′.

Proof. Similarly to the classification setting we apply Proposition 7. First note that ℓ is 2-Lipschitz since,

|ℓ(x1, y1)− ℓ(x2, y2)| = ||x1 − y1| − |x2 − y2||
≤ |x1 − x2|+ |y1 − y2|
≤ 2max{|x1 − x2|, |y1 − y2|}.

Now, let Z = Gn× [−M ′,M ′]. For a given ε > 0, graphs G1, G2 ∈ Gn, and y1, y2 ∈ [0,1], if max{δT□(G1, G2), |y1, y2| <
sγ(ε)n2, we have that for any sample S,

|ℓ(hS(G1), y1)− ℓ(hS(G2), y2)| ≤ 2max{|hS(G1)− hS(G2)|, |y1, y2|}
≤ 2 · LFNN · ε.

Therefore, by Proposition 7, any learning algorithm for MPNNord
L,M ′,LFNN

(Gn) is(
N
(
(0,1), | · |, sγ(ε)n2

2

)
· N
(
Gn, δT□ ,

sγ(ε)n2

2

)
, 2 · LFNN · ε

)
-robust.

Similarly we replace ε with sγ←
(
2ε
n2

)
and we get N (Gn, δT□ ,

sγ(sγ←( 2ε
n2 ))n2

2 ) ≤ N (Gn, δT□ , ε), leading to the following
generalization bound: For any sample S, and any δ ∈ (0,1), with probability at least 1− δ, |ℓexp(hS)− ℓemp(hS)| is less
than

2 · LFNN · sγ←
(
2ε

n2

)
+M ′

√
N ([−M ′,M ′], | · |, ε) · N (Gn, δT□ , ε)2 log(2) + 2 log

(
1
δ

)
|S|

,

or,

|ℓexp(hS)− ℓemp(hS)| ≤ 2 · LFNN · sγ←
(
2ε

n2

)
+M ′

√
N (Gn, δT□ , ε)

4M ′ log(2)
ε + 2 log

(
1
δ

)
|S|

,

for ε < 2M ′.
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The following results upper bounds the covering number regarding the Forest distance using the number of 1-WL-
distinguishable graphs after L iterations.
Proposition 59 (Proposition 16 in the main paper). For n, q, d, L ∈ N, and M ′ ∈ R, for any graph learning algorithm for
the class MPNNsum

L,M ′,LFNN
(Gn,d,q) and for any sample S and δ ∈ (0,1), with probability at least 1− δ, we have

|ℓexp(hS)− ℓemp(hS)| ≤ 2C̃b(d, q, L)k +M

√
mn,d,q,L

k+1 4 log(2) + 2 log(1/δ)

|S|
, for k ∈ N,

where C̃ = 2/nLℓLFNNCFDL
, CFDL

= C(L)Lψ
∏L
i=1 Lφi

is the Lipschitz constant in Lemma 14 and M is an upper bound
of the loss function ℓ.

Proof. It suffices to show that for all n,L, d, q ∈ N, we have the following bound for the covering number.

N (Gn,d,q,FDL, 2b(d, q, L)k) ≤
mn,d,q,L

k + 1
.

Let Gn,d,q/∼WLL be the quotient space defined by 1-WL after L iterations on Gn,d,q , i.e., mn,d,q,L = |Gn,d,q/∼WLL |. We denote
the equivalence classes in this space by [G]L. Following the proof in Theorem 10, it suffices to construct a rooted tree with
labels from Gn,d,q/∼WLL satisfying the following properties,

• The total number of vertices is mn,d,q,L, and each vertex has a unique label.

• The graph corresponding to each parent vertex is at most at Forest distance (depth L) of b(d, q, L) from the graphs
corresponding to its children.

• Graphs corresponding to sibling vertices are at most at Forest distance (depth L) of 2b(d, q, L).

We construct such a tree as follows:

1. The root (at level l = 0) corresponds to the empty graph on n vertices, where each vertex has the same feature. Without
loss of generality, we assume this feature to be (1,0, . . . ,0) ∈ R1×d.

2. At the next level (l + 1), for a vertex at level l with label, say, [Gi]L, we compute its children as follows. We first
calculate all graphs in the set

[Gi]L,c := [Gi]
(e)
L,c ∪ [Gi]

(f)
L,c,

where
[Gi]

(e)
L,c = {G′ ∈ Gn,d,q | ∃G ∈ [Gi]L, e ∈ E(G′) such that G′ \ {e} ≃ G},

and

[Gi]
(f)
L,c =

{
G′ ∈ Gn,d,q | ∃G ∈ [Gi]L, u ∈ V (G), u′ ∈ V (G′) such that

changing ℓG(u) to ℓG′(u′) implies G ≃ G′
}
.

We connect all graphs in [Gi]L,c to the vertex [Gi]L. Then, we prune the tree by arbitrarily removing all 1-WL-equivalent
(after L iterations) graphs, retaining only one as the representative.

3. We continue this process until all graph classes in Gn,d,q/∼WLL have been used as labels.

The following result shows the Lipschitz continuity property of MPNNs using mean aggregation regarding the mean-Forest
distance.
Lemma 60 (Lemma 48 in the main paper). For L, n, d ∈ N,M ′ ∈ R and for all MPNNs in MPNNmean

L,M ′,LFNN
(GR
n,d), we

have

∥hG − hH∥2 ≤ 1

n
C(m)(L)Lψ

L∏
i=1

LφiFD
m
L (G,H), for all G,H ∈ GR

n,d,

where C(m)(L) is a constant depending on L.
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Proof. Let θ be an edge-preserving bijection between the padded forests F (m)
G,L and F (m)

H,L. This bijection θ induces another

bijection, θ(l), between vertices at layer l of trees in F (m)
G,L and vertices at layer l of trees in F (m)

H,L, for l ∈ {0, . . . , L}.
Similarly, we define sθ(l)(u, v) = 1 iff θ(l)(u) = v and 0 elsewhere. We present the proof for the case L = 2 with
W

(1)
t ,W

(2)
t as identical matrices; for L > 2 and any choice of matrices W (1)

t ,W
(2)
t , the proof is analogous, though the

notation becomes more complex. Specifically, one may generalize by replacing W
(1)
t and W

(2)
t with Lipschitz continuous

and positive homogeneous functions, and the proof would still hold. For each u ∈ V (G), we denote by Nu the number of
neighbors of u (i.e., Nu = |N(u)|). Then,

∥hG − hH∥ =

∥∥∥∥∥∥ψ
 1

n

∑
u∈V (G)

h(2)
u

− ψ

 1

n

∑
v∈V (H)

h(2)
v

∥∥∥∥∥∥
≤ 1

n
Lψ

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∥∥∥h(2)

u − h(2)
v

∥∥∥,
where we have just applied the triangle inequality, as implied by the bijection θ(0) between the roots. Thus, we have that
∥hG − hH∥ is bounded by

1

n
Lψ

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)

∥∥∥∥∥∥φ2

h(1)
u +

1

Nu

∑
u′∈N(u)

h
(1)
u′

− φ2

h(1)
v +

1

Nv

∑
v′∈N(v)

h
(1)
v′

∥∥∥∥∥∥
≤ 1

n
LψLφ2

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)

∥∥∥∥∥∥h(1)
u − h(1)

v +
∑

u′∈N(u)

1

Nu
h
(1)
u′ −

∑
v′∈N(v)

1

Nv
h
(1)
v′

∥∥∥∥∥∥
≤ 1

n
LψLφ2

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∥∥∥h(1)

u − h(1)
v

∥∥∥
︸ ︷︷ ︸

A

+
1

n
LψLφ2

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)

sθ(1)(u′, v′)

∥∥∥∥∥h(1)
u′

Nu
−

h
(1)
v′

Nv

∥∥∥∥∥︸ ︷︷ ︸
B

,

where, in the last step, we again applied the triangle inequality induced by the bijection θ(1) between the vertices at the first
layer. Note that it is possible that Nu > Nv, meaning some neighbors of u are mapped by θ(1) to padded vertices. In this
case, we can trivially apply the triangle inequality by setting h

(1)
v′ = 0 in the expression above.

Next, we bound term A, i.e.,

A ≤ 1

n
LψLφ2Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)

∥∥∥∥∥∥h(0)
u − h(0)

v +
1

Nu

∑
u′∈N(u)

h
(0)
u′ − 1

Nv

∑
v′∈N(v)

h
(0)
v′

∥∥∥∥∥∥
≤ 1

n
LψLφ2

Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∥∥∥h(0)

u − h(0)
v

∥∥∥
+

1

n
LψLφ2

Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)

sθ(1)(u′, v′)

∥∥∥∥∥h(0)
u′

Nu
−

h
(0)
v′

Nv

∥∥∥∥∥.
Similarly, we can bound the term B by

1

n
LψLφ2

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)
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sθ(1)(u′, v′) ·

∥∥∥∥∥∥φ1

h
(0)
u′

Nu
+

1

NuNu′

∑
u′′∈N(u′)

h
(0)
u′′

− φ1

h
(0)
v′

Nv
+

1

NvNv′

∑
v′′∈N(v′)

h
(0)
v′′

∥∥∥∥∥∥,
where we have used the positive homogeneity property of φ1. Therefore,

B ≤ 1

n
LψLφ2

Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)

sθ(1)(u′, v′)

∥∥∥∥∥h(0)
u′

Nu
−

h
(0)
v′

Nv

∥∥∥∥∥
+

1

n
LψLφ2Lφ1

∑
u∈V (G),v∈V (H)

sθ(0)(u, v)
∑

u′∈N(u),v′∈N(v)

sθ(1)(u′, v′)

∑
u′′∈N(u′),v′′∈N(v′)

sθ(2)(u′′, v′′) ·

∥∥∥∥∥ h
(0)
u′′

NuNu′
−

h
(0)
v′′

NvNv′

∥∥∥∥∥.
Hence, choosing as θ the edge preserving bijection minimizes Appendix G we get,

∥hG − hH∥ ≤ 2
1

n
LψLφ2Lφ1FDL(G,H),

as desired.

P. Experimental results
In the following section, we describe the experiments in detail and report the results.

Datasets To investigate Q1, we conducted experiments using the graph classes Gn, T (2)
n , and Fn(defined in Appendix N).

Additionally, we experimented with the binary classification real-world datasets MUTAG, NCI1, MCF-7H (Morris et al.,
2020a), and OGBG-MOLHIV (Hu et al., 2020), to match our theoretical setup and address Q1, Q2, and Q3. For real-world
datasets analyzed under Q1, we computed the covering number across all graphs up to a specified order, with smaller graphs
being padded with isolated vertices, aligning their order. Similarly, for Q3, graphs were padded to match the order of the
largest graph in the dataset; see Table 2 for dataset statistics and properties.

Neural architectures To address Q2, we used randomly initialized GIN architectures (Feng et al., 2022) with varying
numbers of layers and matching parameters for the Forest distance. Conversely, for Q3, we trained GIN architecture with
three layers across five random seeds to estimate variance. Both architectures incorporated ReLU activation functions and
sum pooling, disregarding potential edge labels. We tuned the feature dimension across the set 32, 64, 128, 256 based on
validation set performance, training MUTAG and NCI1 for 100 epochs and MCF-7H and OGBG-MOLHIV for 20 epochs
using the Adam optimizer (Kingma & Ba, 2015). The training setup included a learning rate of 0.001, a batch size of 128,
and no learning rate decay or dropout across all datasets. All models were implemented with PyTorch Geometric (Fey &
Lenssen, 2019) and executed on a system with 128GB of RAM and an Nvidia Tesla A100 GPU with 48GB of memory.

Experimental protocol and model configuration For Q1, we calculated the covering number N (·,FD3, ε) for various
datasets, graph orders, and radii by solving the corresponding set cover problem. We also compare the bound on the covering
number presented in Theorem 10 against the covering number N (·, δT1 , ε) using the 1-norm instance of the cut norm as
computing the cut norm is MaxSNP-hard. For Q2, we measure whether the Forest distance input perturbations lead to
perturbations in the MPNN outputs as expected in Lemma 14. We used a random 80/10/10 split for training/validation/testing.
Each plot included 1 000 data points generated by selecting a random graph size. The Forest distance for two graphs of
the chosen size, randomly sampled from the dataset, can be compared with the Euclidean distance between their MPNN
outputs. For Q3, we evaluated the generalization gap by estimating the train and test losses and compared it against our
generalization bound derived for the Forest distance in Proposition 15. We utilized an upper estimate of the Lipschitz
constant obtained from Q2 and an Lℓ = 1 (Mao et al., 2023) to compute the bound. We selected the radii that yielded the
tightest bound. See Table 3 for the values of C̃, CFD3 , and mn,d,3 used in the computation of our bound.
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Figure 8. The covering number N (·,FD3, ε) and the number of 1-WL indistinguishable graphs mn (upper row, black) for the graph
families Gn, T (2)

n , and Fn across different graph sizes n and radii ε.

Figure 9. The covering number N (·,FD3, ε) and the number of 1-WL indistinguishable graphs mn (upper row, black) for real-world
datasets across varying graph sizes n and radii ε.

Q. Dataset statistics
The statistics of the real-world datasets can be found in Table 2, and estimates of the coefficients in Theorem 10 can be
found in Table 3.
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Figure 10. The covering number N (·,FD3, 0 7) bound, the 1-norm set cover and the number of 1-WL indistinguishable graphs mn for
real-world datasets with varying graph orders.

Figure 11. Correlation between MPNN outputs and the Forest distance FD across real-world datasets using a varying number of MPNN
layers. The Pearson correlation coefficient r between ∥h(G1)− h(G2)∥2 and the Forest distance FD3 are shown on the top left of the
figures

Table 2. Statistics for the MUTAG, NCI1, MCF-7H, and OGBG-MOLHIV datasets.
Dataset

MUTAG NCI1 MCF-7H OGBG-MOLHIV

# Graphs 188 4 110 27 770 41 127
# Classes 2 2 2 2
Avg. # vertices 17.9 29.9 26.4 25.5
Avg. # edges 39.6 32.3 28.5 27.5
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Table 3. Estimates of the coefficients in Proposition 15 for real-world datasets. We compute mn,d,3 in a data-dependent fashion for each
dataset, i.e., not for the whole graph class.

Dataset

MUTAG NCI1 MCF-7H OGBG-MOLHIV

S 150 3 288 22 216 32 902
mn,d,3 139 3 808 25 448 34 433
M 5.890 2.389 0.497 1.704
CFD3

0.377 0.202 0.101 0.107
n 28 111 244 222
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