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Abstract

With the help of discrete neural audio codecs, large language models (LLM) have
increasingly been recognized as a promising methodology for zero-shot Text-
to-Speech (TTS) synthesis. However, sampling based decoding strategies bring
astonishing diversity to generation, but also pose robustness issues such as typos,
omissions and repetition. In addition, the high sampling rate of audio also brings
huge computational overhead to the inference process of autoregression. To address
these issues, we propose VALL-E R, a robust and efficient zero-shot TTS system,
building upon the foundation of VALL-E [Wang et al.,|2023a]]. Specifically, we
introduce a phoneme monotonic alignment strategy to strengthen the connection
between phonemes and acoustic sequence, ensuring a more precise alignment by
constraining the acoustic tokens to match their associated phonemes. Furthermore,
we employ a codec-merging approach to downsample the discrete codes in shallow
quantization layer, thereby accelerating the decoding speed while preserving the
high quality of speech output. Benefiting from these strategies, VALL-E R obtains
controllablity over phonemes and demonstrates its strong robustness by approach-
ing the WER of ground truth. In addition, it requires fewer autoregressive steps,
with over 60% time reduction during inference. This research has the potential to be
applied to meaningful projects, including the creation of speech for those affected
by aphasia. Audio samples will be available at: https://aka.ms/valler,

1 Introduction

In recent years, Large Language Models (LLMs) have achieved impressive performance in various
fields including natural language processing (NLP) tasks [|Achiam et al.|[2023| [Touvron et al.| 2023
and computer vision (CV) tasks [Ramesh et al.| 2021} [Radford et al.|[2021]]. In audio domain, with the
emergence of neural audio codecs [[Zeghidour et al.,|2021} [Défossez et al., 2022], they can tokenize
audio with high fidelity, making language modeling of audio modalities feasible [Borsos et al., [2023].
For zero-shot text-to-speech (TTS) task, traditional methods often rely on speaker adaptation [[Chen
et al.,[2018] Moss et al.,|2020] or speaker encoding [Arik et al., 2018} |Cooper et al., 2020]], requiring
additional fine-tuning, complex pre-designed features, or heavy structure engineering. And there is
always a significant performance decline when facing unseen speakers. Leveraging the in-context
learning capabilities of LLM [Brown et al., 2020, several works [Wang et al.| 2023al |[Kharitonov
et al.| 2023} Jiang et al.| [2023| [Kim et al.| [2023| |[Hao et al., 2023|] attempt to apply LLM to model
discrete audio codec tokens or continuous mel-spectrogram [Meng et al., 2024]], and have shown
amazing performance in zero-shot TTS, which can synthesize a timbre and prosody with just a few
seconds of audio prompt.
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Although the TTS model based on LLM has achieved impressive results in maintaining naturalness
and timbre, it still suffers from issues including robustness and efficiency when applied: (1) TTS task
is a monotonic sequence to sequence task, but the decoder-only transformer structure in LLM only
captures the monotonic association between phoneme sequences and audio through self-attention
mechanism, which can easily lead to potential attention degradation problems when facing complex or
long sequences, resulting in inaccurate generation results. (2) Neural codecs have a high sampling rate
(75Hz in Encodec [Défossez et al.| [2022]]), and autoregressive can better model temporal information,
bringing better results while also incurring significant computational costs in the inference stage.
Recently, there have been some attempts to introduce phoneme information or transducer [|Graves,
2012| |Gong et al., [2024]] to help solve robustness problems, but this has also brought about issues
such as high inference consumption [Song et al.l 2024|] and slow training speed [Du et al., |2024].
Some other works attempt to improve efficiency by changing the pattern of token organization, but
the effect is not obvious [Borsos et al.| 2023 [Wang et al., [2023al |Copet et al., 2024, |Yu et al.| 2024].

In this paper, we introduce VALL-E R, a robust and efficient neural codec language model for
zero-shot TTS, aiming to alleviate the issues of robustness and inference efficiency encountered by its
predecessor VALL-E [Wang et al.| 2023a]. As shown in Figure 3] VALL-E R incorporates phoneme
prediction into acoustic token prediction during the training process and utilize monotonic alignment
strategy to guide the inference, with almost no computational burden introduced throughout the
entire process. Moreover, VALL-E R employs a novel codec-merging method that enables the use
of condensed codec codes within its autoregressive model, greatly improving the inference speed
via reducing the number of autoregressive steps in the inference stage. In summary, our proposed
VALL-E R provides the following key contributions:

* VALL-E R employs a codec-merging approach, which can reduce the sample rate of codes
in first layer without affecting the generated speech quality and retraining the codec model,
thereby significantly improving the inference speed of neural codec LM-based TTS model.

* VALL-E R introduces phoneme monotonic alignment strategy, which can enhance the
alignment between phonemes and acoustic sequence to improve the robustness of decoder-
only Transformer TTS.

2 VALL-ER

In this study, we propose a robust and efficient zero-shot TTS system named VALL-E R. We first
introduce the codec-merging approach in Section [2.1] which can improve inference speed without
retraining the codec, and then illustrate the monotonic alignment strategy in decoder-only neural
codec LM in Section 2.2
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Figure 1: The architecture of proposed codec-merging approach. VQ denotes vector quantizer layer
here. Through the codec-merging module, the code in the first layer is downsampled twice, meaning
that every two adjacent codes in the first layer are the same and the other layers remain unchanged.

2.1 Codec-Merging Approach

Building upon the foundational work of Encodec [Défossez et al.,|2022]], we introduce the concept of
a merged codec. This innovative approach enables the downsampling of discrete codes across various
layers through alterations in the inference forward process. Remarkably, this is achieved without
necessitating any retraining or fine-tuning of the model, presenting a significant advancement in the
efficient manipulation of audio data representations.



The visual description of the proposed codec can be seen in Fig. [} The overall architecture of the
model remains consistent with Encodec, which comprises of three components: 1) a convolution-
based encoder that maps waveform data 2'*” into a sequence of latent representations z*" 7', where
F is channel and T is length of extracted codes; 2) a decoder that reconstructs the data #1%L from a
sequence of the quantized latent representations 2" *7'; 3) an 8-layer residual vector quantizer (RVQ)
module, which can convert the continual latent vector z¥*7T into the discrete code representation
C®*T iteratively. The main difference is that our merged codec inserts a codec-merging module
before the vector quantizer module to downsample the representation z <7

Assuming the merged rate of layer d is mg, rg *T represents the residual input of layer d. Then the

codec-merging module consists of two steps: the first one is downsampling the residual input rg xT

to Ti; (T/ma) by average pooling, and then upsampling r,,4 to its original length through repeat

operation. Next, the residual representation processed by the Merge module will be feed into the
following VQ layer to quantized into discrete code Cé *T through nearest-neighbour lookup over the

codebook embeddings. Through the merge module, we reduced the resolution of C’Cll *T by ensuring
consistent code of consecutive m, frames.

2.2 Neural Codec LM with Monotonic Alignment

Previously, monotonic strategies were only applicable to encoder-decoder structures. To address the
robustness issue in the decoder-only transformer based TTS, we integrated phonemes prediction into
the training of neural codec LM and design the monotonic alignment stratege during the inference
process. The overview is illustrated in Fig.[2|and details of training and inference are discussed in the
subsequent sections.

Training with Phoneme Prediction To achieve a good trade-off between speech quality and infer-
ence speed, our VALL-E R includes two models: autoregressive (AR) and non-autoregressive (NAR),
which is following VALL-E [Wang et al.| 2023a]. Specifically, given a training data pair {s, p}, where
s is speech sample, and p = {p1, p2, ..., L} is its corresponding phoneme transcription. Then, the
codec-merging model introduced in Sec. [2.T]is utilized to compress speech waveform s into discrete
acoustic tokens A with 8 quantizers, formulated as: MergeCodec(x) = A8*T = {al, ... a®},
where T is length of discrete codes and al = {a1,...,ar} represent the tokens in the i-th layer.
Because the training of VALL-E R requires the aligned phonemes and acoustic tokens, aligner tool
is adopted here to align p with acoustic tokens A, denoted as p1.7 = {p1, D2, ..., pr,} where p;

contains N, repetitions of p; and Zle N; =T.

For AR stage, to enhance the connection between phoneme and acoustic sequence, we build a neural
codec LM 6 4 to model the discrete acoustic tokens ai ;- from the first quantizer of codec-merging
model with phoneme prediction. As shown in Fig[Z] it’s conditioned on the phoneme sequence p to
generate both the acoustic token aj ;- and aligned phonemes p;.7 simultaneously, formulated as maxi-

.. . ey ~ T ~
mizing the following probability: p(ai.;, P1.7|p; 0ar) = [T p(as, pelars—1, Pr:t—1,P1:L; 0ar)-

In the second stage, we train a NAR LM 6y 4 gto generate the acoustic tokens from 2nd to 8-th layer
quantizers iteratively. It’s conditioned on phoneme sequences p, the previous few layers of generated
acoustic tokens a'” and phonemes alignment [;.7 to predict next layer of acoustic token a1,
formulated as maximizing: p(a?%.|p ;0 ) = _, p(al,|p Ln=1 ;0 )

: 1:7IP1.T,P1:L;UNAR n=2P\a1.7|P1.T>,a1.7 ,PL:L;UNAR)-
We also share the parameters of the acoustic embedding layer and the output prediction layer, which
means the weights of the j-th prediction layer are the same as the (j + 1)-th layer.

Inference with Monotonic Alignment After training with teacher forcing, the neural codec LM
we obtained is surprising in context learning ability. With just a 3 seconds acoustic prompt, we
can replicate the timbre and prosody of unseen speakers without any fine-tuning or adaptation
methods [Wang et al.| [2023a]]. Take Fig. 2]as an example of autoregressive inference, we convert the
text input into phonemes sequence p* = {p!, ..., p}} and concatenate it with transcription phoneme
of acoustic prompt p? = {p, p5} to form phoneme tokens for model. In the following, we will use
acoustic tokens a = {af, ..., al,} and corresponding aligned phoneme tokens p® = {p/,...,pl } as
condition to predict the audio and phoneme of next step autoregressively. In order to improve the
robustness of the model, we adopted the Monotonic Alignment (MA) strategy during the inference
process, which means that the predicted phone needs to be aligned with the text input p? and can
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Figure 2: The training and autoregressive inference process of proposed VALL-E R. In the training
process, it enhances alignment between phonemes and acoustic by incorporating phoneme prediction
with teacher-forcing. And the inference process will generate the sequences monotonically based on
phonemes of text input.

only maintain the current or jump to the next phoneme. Specifically, at each step ¢, the current input
phoneme token is pé-. The output representation is e;, and corresponding probability of phoneme pz-
and p§- 41 is denoted as e; j and e; ;11 = 1 — e; ; respectively. Then, the phoneme pointer would
decide to keep p’ unmoved or jump to p, ; by sampling: z; ; ~ Bernoulli(m). The
sampled phoneme will be used as input for the 7 + 1 step and this AR process will repeat until
all phonemes have been covered. To increase the diversity of synthesis process, sampling based
decoding is used for acoustic tokens prediction. And for NAR model, we adopt greedy search method
to generate the (j + 1)-th layer acoustic tokens based on the self-aligned phoneme sequence and
previous few layers of generated acoustic tokens. Finally, decoder of neural codec is adopted here
to convert generated discrete codes into waveform. In summary, our inference process has three
characteristics [Tan et al.,[2021]] by using MA strategy: Locality, Monotonicity and Completeness.

3 Experiments

Dataset We use LibriSpeech [Panayotov et al.,[2015]] dataset in our experiments, which contains
960 hours of multi-speaker English speech data. In addition, we compress waveform into 8-layers
discrete codes with Encodec [Défossez et al., 2022]] and adopt Vocos [Siuzdakl 2023|] as vocoder.

Zero-shot Text-to-Speech tasks We measure the performances of the proposed VALL-E R under
two different tasks following the configuration used in [Wang et al., 2023a, |Kim et al., |2023]] on
LibriSpeech test-clean ranging from 4 to 10 seconds: Continuation and Cross-sentence. We list
the objective evaluation results in Table[I] Under the continuation configuration, although ELLA-
V achieves a certain improvement over the VALL-E via connecting phoneme tokens with their
corresponding acoustic tokens, our proposed VALL-E R employs a monotonic alignment strategy for
more precise control and approaches the performance of Encodec in terms of Word Error Rate (WER),
which can be considered as upper bound. In the cross-sentence task, due to the discontinuity of
content, which mismatches the continuation training manner, all systems experience varying degrees
of degradation in WER. Among these, ELLA-V, suffers a more significant impact because of its
strategies such as local advance. But VALL-E R is still the best in WER, reflecting the robustness and
intelligibility of our model. In terms of speaker similarity (Spk-Sim), VALL-E R is comparable to
VALL-E and ELLA-V, indicating that although our method explicitly encodes text contents, it does
not affect the performance of timbre cloning.

Efficiency Comparision We conducted a comparison of the inference times required to generate
10 seconds of speech among several neural codec language model inference patterns, detailing the



Table 1: Objective performance comparison on the continuation and cross-sentence zero-shot TTS. *
denote the results quoted from the original paper, and others are reproduced. Encodec represents that
ground-truth audios were passed through the encoder and decoder of Encodec.

Model Continuation Cross-sentence
WER | Spk-SimtT WER| Spk-Sim 1
Ground Truth 1.41 0.923 - -
Encodec 1.62 0913 - -
VALL-E [Wang et al.|[2023a] 2.37 0.875 5.48 0.975
VALL-T [Du et al.[[2024]* - - 4.16 -
ELLA-V [Song et al.|[2024]* 2.28 0.870 - -
ELLA-V [Song et al.|[2024] 2.10 0.856 7.15 0.975
VALL-E R 1.58 0.876 3.18 0.974

Table 2: Performance of inference speed. The inference time indicates the generation time of 10s
speech. These results are all measured based on 75Hz Encodec [Défossez et al.l 2022]. Avg. denotes
Average. AR and NAR represent autoregressive and non-autoregressive model respectively. Results
with * are quoted from CLaM-TTS [Kim et al., 2023]]. According to statistics in the test set, the
average 10 second speech corresponds to 105 phonemes.

Model Avg. AR Steps  Avg. AR Time Avg. NAR Time Avg. Inference Time
AudioLM [Borsos et al.![2023] 750 * 8 > 40 - > 40
VALL-E [Wang et al.|[2023a] 750 10.1246 0.1478 10.2724
ELLA-V [Song et al.||2024] ~ 105 *2 + 750 15.5581 0.1993 15.7574
RALL-E [Xin et al.[[2024] ~ 105 + 750 12.1152 0.1683 12.2835
MusicGen [Copet et al..|2024] 7+ 750 10.2693 - 10.2693
VALL-E [Wang et al.|[2023a] - - - 6.2*
VoiceBox [Le et al.[[2024] - - - 6.4*(64 NFE)
CLaM-TTS [Kim et al.[|[2023] - - - 4.15*
VALL-E R (2x) 375 3.5251 0.1489 3.6740

time needed for AR and NAR module in Table @ The first row is the flatten pattern in AudioLM,
which generates all 8 layers of discrete audio codecs autoregressively, necessitating 750%8 steps to
generate 10 seconds of audio, resulting in extremely slow speeds. VALL-E adopts a coarse-to-fine
pattern, generating the first layer autoregressively, then employing non-autoregressive module for the
codec of subsequent 7 layers, significantly reducing inference time. ELLA-V, building upon VALL-E,
introduces a large number of phoneme tokens (around 2*105 in 10s speech) into the autoregressive
process. While this enhances robustness, it considerably slows down inference efficiency. Similarly,
RALL-E introduces control information for duration and pitch in autoregression through Chain-of-
Thought prompting, which also increases inference time. MusicGen, on the other hand, is based
on a delay pattern. Despite discarding the non-autoregressive module, its speed does not show a
significant improvement over VALL-E.

By employing our proposed codec-merging method, which reduces the bitrates at the first layer of
RVQ from 75hz to 37.5hz, we can effectively decrease the number of autoregressive steps required,
thereby significantly enhancing inference speed. Additionally, due to the exponential complexity of
the Transformer’s self-attention mechanism, halving the sampling rate results in a speed increase of
more than two times. This method also outpaces both the flow-matching based NAR model VoiceBox
and the Mel-VAE based CLaM-TTS in terms of speed.

4 Conclusion

In this paper, we propose VALL-E R, a robust and efficient zero-shot text-to-speech model based
on neural codec language models. We first employ codec-merging method to downsample the
discrete codes to improve inference speed without affecting the sound quality. More importantly, we
incorporate phoneme prediction into the training process and utilize monotonic alignment strategy
during the inference. Experimental results demonstrate that VALL-E R can effectively model the
correlation between phonemes and audio, significantly improve the robustness of speech synthesis,
and endow the ability to flexibly control prosody.
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A Appendix

A.1 Overview of VALL-E R

It predicts both acoustic token (blue) and its corresponding phoneme sqeuence (green) synchronously,
which can strengthen the alignment between phoneme and audio to improve the robustness of VALL-
E model. Note that VALL-E R achieves faster inference speeds by adopting the proposed merged
codec codes within its autoregressive model.
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Figure 3: The overview of VALL-E R.
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VALL-E R is a purely reseach project with no immediate plans to transition it into a commercial
product or to broaden public access. This technology has the potential to create synthesized voices that
reflect individual identities, lending itself to a variety of applications such as education, entertainment,
journalism, personal content creation, assistive technologies, automated voice systems, language
translation, and chatbots. The ability of VALL-E R to replicate a specific person’s voice convincingly
varies based on the length and clarity of the provided speech sample, any present background noise,
and other influencing elements. There are inherent risks associated with the technology, including
the possibility of misusing it to mimic voice recognition systems or impersonate individuals. Our
experiments were conducted with the presumption of consent from the individuals whose voices were
being reproduced. In any future applications involving speakers not initially included in the model,
measures must be taken to ensure consent for the use of their voice, along with the implementation of
tools for detecting synthetic speech. Should there be any concerns about VALL-E R being utilized
inappropriately, illegally, or in a manner that infringes upon personal or others’ rights, reports can be
submitted through the designated Report Abuse Portal.

A.2 Related Work

A.2.1 Neural Codec Language Modeling

Recently, language models have increasingly garnered attention within both the academic and indus-
trial sectors, demonstrating their formidable capabilities in feature modeling and problem-solving
across domains such as text [Touvron et al.,2023], images [Ding et al.,2021], and videos [Kondratyuk
et al.,[2023]]. In the audio domain, AudioLM [Borsos et al.l [2023]] has been trained on discrete audio
tokens, accomplishing audio synthesis tasks through hierarchical prediction of these tokens, and text
conditional control can also be achieved through models such as CLAP [Zhao et al., 2023]. For
zero-shot TTS, VALL-E [Wang et al,|2023a]] pioneered the integration of discrete codecs and ap-
proached TTS as a conditional language modeling task, enabling voice generation in unseen speakers
from a mere short speech sample, thereby underscoring the powerful representational capacity of
language models in TTS. Following it, numerous improvements have been made. VALL-E X [Zhang
et al., |2023|] expanded upon multilingual capabilities, supporting a broader range of tasks. VioLA
[Wang et al.,|2023b] further integrated various cross-modal tasks involving speech and text into a
single codec-based Transformer decoder-only model. In terms of robustness, EALL-V [Song et al.,
2024 enhanced robustness by implicitly establishing a connection between text and audio during
the synthesis process through text insertion. VALL-T [Du et al., 2024] improved robustness by
combining with a Transducer and introducing text control by adjusting relative position encoding.



Meanwhile, CLaM-TTS [Kim et al.} 2023]] leveraged a pre-trained language model and probabilistic
discrete learning to enhance the expressiveness of synthesized speech, marking significant advance-
ments in the field. Concurrently with our work, RALL-E [Xin et al.| [2024] attempts to enhance
the robustness of VALL-E through the adoption of chain-of-thought (CoT) prompting techniques.
Although the above works have effectively improved the performance of decoder-only transformer
based text-to-speech system, no one has yet attempted to improve the efficiency of autoregression,
which is currently a pain point.

A.2.2 Monotonic Alignment

In autoregressive acoustic modeling, issues such as word skipping, repetition, and attention collapse
often occur due to inaccuracies in the attention alignments learned within the encoder-decoder
framework. To alleviate this problem, considering some properties of the alignments between text
and waveform sequence, applying monotonic mechanism to enhance attention has demonstrated to
be particularly effective to strictly preserve monotonicity and locality [He et al.,[2019]. Considering
the alignments between text and speech are depending on their positions, numerous TTS models
have incorporated location-based attention mechanisms to exploit the positional information for
more accurate alignment [Sotelo et al., [2017, [Vasquez and Lewis, 2019, Battenberg et al., [2020].
For monotonic attention, it leverages the prior that the alignments between text and speech are
monotonic [He et al., 2019, Raffel et al.l 2017]]. In each decoding step, the attention alignment
position moves forward at most one step, so there is no situation where any input unit is skipped
or repeated. While such methods have enhanced stability by introducing linear alignment, the
constraints of hard attention significantly hinders the encapsulation of global contextual information,
where the model only focuses on one token at a time. Therefore, models in [[Tachibana et al.
2018}, (Chiu and Raffel, |2017] restrict the attention on the source sequence into a sliding window,
replacing hard attention. Furthermore, Chen et al. [[Chen et al.l 2020] introduce an innovative
approach to penalize off-diagonal attention weights by constructing a band mask that promotes the
concentration of attention weights within a diagonal band, thus enhancing alignment fidelity while
maintaining contextual awareness. Although these methods have effectively improved the robustness
of autoregressive TTS systems, they are all based on the encoder-decoder architecture and are not
compatible with the current popular decoder-only architecture.

A.3 Locality, Monotonicity and Completeness

* Locality: Each phoneme token can correspond to one or several consecutive acoustic tokens,
ensuring a flexible and accurate mapping. Conversely, each acoustic token is uniquely
aligned to a single phoneme token. This one-to-one alignment strategy effectively prevents
issues such as misreading, enhancing the clarity and stability of the model.

* Monotonicity: If phoneme p, follows p; in the phonemes sequence, the corresponding
acoustic tokens for p, are also positioned sequentially after those for p,. This sequential
alignment is critical as it inherently prevents the repetition of words.

* Completeness: It is mandated that each phoneme token is represented by at least one
corresponding acoustic token. This coverage requirement is essential for preventing the
word skipping.

A4 Inference for Controlling Prosody

In the inference process, benefiting from the powerful in context learning ability of the LM, our
proposed VALL-E R can automatically clone both timbre and prosody of the speaker in the prompt
by predicting the acoustic and phoneme autoregressively. Because VALL-E R explicitly models
phoneme, it has strong control over prosody: when we use preset phoneme sequences to replace
the self-predicted phoneme sequences in the inference process, we can use the preset prosody to
generate speech, thereby achieving the effect of controlling prosody and timbre separately. It can also
be regarded as a voice conversion task, whose goal is to make the timbre of target speech sound like
that of prompt speech without changing the linguistic information and prosody of source speech.
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A.5 Experiments Setup
A.5.1 Dataset

We use LibriSpeech [Panayotov et al., 2015]] dataset in our experiments, which contains 960 hours
of multi-speaker transcribed English speech data. Because VALL-R requires phoneme alignment
information during training and inference processing, Montreal Forced Aligner (MFA) [McAuliffe
et al.L[2017] is utilized to align transcript and audio. For the neural codecs, we use Encodec [Défossez
et al.| 2022]], which applies Residual Vector Quantization (RVQ) to compress 24khz waveform into
8-layers discrete codes at 75hz. To synthesize higher quality audio, we adopt Vocos [Siuzdak, [2023]]
as vocoder which is aligned with Encodec.

A.5.2 Evaluation Metrics

Objective Metrics We evaluated robustness, speaker similarity, sound quality and efficiency with
several objective metrics. For robustness and intelligibility, we measure them by computing the word
error rate (WER) of the synthesized transcription from generated speech concerning the input text,
with Conformer-Transducer ASR modeﬂ [[Gulati et al., [2020].

For speaker similarity, we employ WavLM-TDNN modeﬂ [Chen et al., 2022b|c] which extract the
speaker vector representing the voice attribute of the speakers. We measure the speaker similarity by

computing the cosine similarity between the generated and the prompt speeches, which is denoted as
Spk-Sim.

To evaluate the sound quality of the reconstruction audio, we adopt the metrics from speech enhance-
ment fields, such as the Perceptual Evaluation of Speech Quality (PESQ) and Short-Time Objective
Intelligibility (STOI) to evaluate the performance.

Subjective Metrics We measure the quality of the generated speech from human evaluations via three
types of Mean Opinion Score (MOS): 1) Quality MOS (QMOS) for the speech quality assessment, 2)
Similarity MOS (SMOS) to measure speaker similarity between the prompt and the generated speech,
3) Comparative MOS (CMOS) to assess the overall naturalness and quality of the synthesized speech
against the baseline, which is ranging from -1 to 1.

A.5.3 Baseline

To demonstrate the robustness and inference efficiency of our system, we selected multiple classic
baseline systems for comparison. For robustness, besides its predecessor VALL-E [Wang et al.,
2023a]], we mainly compare two recent works which are proposed to improve robustness. One is
VALL-T, it adopts transducer to enhance text controllability via adjusting relative position encoding.
And another one is ELLA-V [Song et al.,[2024], which interleaves sequences of acoustic and phoneme
tokens to achieve the fine-grained control at the phoneme level. To ensure fair comparison, all the
systems including VALL-E R and baselines, are trained with the same dataset (LibriSpeech) and
architecture (stacked 12-layers Transformer). As for efficiency, since the inference time of neural
codec LM based TTS system mainly depends on the number of autoregressive steps, we selected
representative methods including AudioLM [Borsos et al., [2023]], VALL-E [Wang et al., 2023a]],
ELLA-V [Song et al.|[2024]], RALL-E [Xin et al., 2024], MusicGen [Copet et al.,[2024]], and compared
the impact of different token arrangement methods on efficiency.

A.5.4 Training Configuration

During the training, we trained the autoregressive (AR) model in the teacher-forcing manner and
selected the first 3 seconds as the prompt to optimize the non-autoregressive (NAR) model. Regarding
the model architecture, both our AR and NAR models are structured with a 12-layer Transformer
framework. Key parameters including the number of attention heads, embedding dimension, hidden
state dimension, feed-forward network dimension, and dropout rate are configured to 16, 1024, 1024,
4096, and 0.1, respectively. These models are trained on 8 NVIDIA V100 16GB GPUs across 400k
steps utilizing the AdamW optimizer. The training protocol initiates with a learning rate warm-up

3https://huggingface.co/nvidia/stt_en_conformer_transducer_xlarge
*https://huggingface.co/microsoft/wavlm-base-plus-sv
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phase over the first 32k updates, reaching a peak at 5 x 10~%. Subsequently, the learning rate
undergoes a linear decay coupled with a weight decay factor of 0.01.

A.6 Analysis and Discussion

Table 3: Subjective performance for MOS score on LibriSpeech test clean. QMOS and SMOS scores
include a 95% confidence interval. CMOS denotes comparision with baseline system VALL-E.

Model QMOS SMOS CMOS
Ground Truth 4.224+0.11 4.18 £0.15 +0.33
VALL-E 3.96 £ 0.18 3.84 +0.21 0.00

VALLE-R 4.02+0.20 3.89=£0.16 +0.07

Subjective Evaluation Table[3|showcases the results of subjective audio evaluations. VALL-E R
outperforms the baseline (VALL-E), in quality and intelligibility, as indicated by QMOS. According to
SMOS measurements, our compliance with prompt audio is comparable to baseline. The comparative
scores (CMOS) highlight VALL-E R’s proximity to the Ground Truth regarding naturalness, clarity,
and comprehensibility. Overall, VALL-E R’s generated speech exceed the baseline in naturalness,
quality and intelligibility, which is consistent with the results of objective evaluation.

Table 4: Performance for the cross-sentence prosody controlling tasks. The lower the score, the
higher the similarity of the prosody.

Model MCD-DTW-SL |
VALL-E [Wang et al., [2023a] 9.03
ELLA-V [Song et al.;[2024] 11.77
VALL-E R 8.55
VALL-E R-Prosody 7.82

Controllability of VALL-E R  Benefiting from the explicit modeling of phonetic sequences, VALL-
E R is capable of precisely controlling the duration of each phoneme’s articulation, thereby achieving
timbre conversion while preserving prosody. In this experiment, we randomly selected an audio
sample from the LibriSpeech test set to serve as acoustic prompt, providing the reference timbre.
Another audio sample was randomly chosen, with its phonetic transcription serving as both the
textual prompt and prosody reference. We conducted a comparison among multiple baseline systems,
calculating the Mel Cepstral Distortion with Dynamic Time Warping and weighted Speech Length
(MCD-DTW-SL) [[Chen et al.} 2022a]] between the generated audio and the target audio to evaluate
the similarity in speech length and alignment quality as a measure of prosody. Results are presented
in Table {4} neither VALL-E nor ELLA-V is capable of precise duration control, thus limiting their
speech generation capabilities to the prosody of the given acoustic prompt. For VALL-E R-Prosody,
we can employ the aligned phoneme sequence from the target prosody audio as input for the neural
codec language model. This enables the preservation of target prosody while cloning the timbre from
the acoustic prompt. According to the results, this approach also achieved the lowest MCD-DTW-SL,
indicating a superior preservation of the prosody. It also indicates that our VALL-E R has better
controllability.

Effect of Merged Codec The codec-merging strategy results in a reduction of the model’s bitrate,
thus we have explored the impact of different configurations of the merged codec on audio quality,
presenting the results in Table 5] These experiments involved reconstruction tasks performed on the
LibriSpeech test set, where the quality of audio was assessed by comparing the ground truth with
the reconstructed audio using metrics PESQ and STOI. Results reveal that when we only reduce
the sampling rate by half for the first layer codec, the audio quality and intelligibility are almost
unaffected. However, as we expand this reduction to 4 layers and 8 layers, a significant decrease in
performance is observed, which does not enhance the inference speed. Thus, downsampling only
the first layer achieve the trade-off between quality and efficiency. Although all our experiments are
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Table 5: Effectiveness of codec-merging method. Experiments are conducted on LibriSpeech test set.
Model Merge No Merge Merge Rate PESQ(NB) PESQ(WB) STOI

Encodec - 1-8 - 3.6188 3.2427 0.9498
1 2-8 2 3.5686 3.1742 0.9468

1-4 5-8 2 3.1820 2.7046 0.9274

1-8 - 2 2.0160 1.4901 0.8323

1 2-8 3 3.5294 3.1206 0.9449

1 2-8 4 3.4945 3.0805 0.9436

conducted with 2x downsampling rate, we also explored the effects of increasing the downsampling
to 3x and 4x. It was found that tripling and quadrupling the downsampling rate only resulted in a
slight decrease in audio quality, which underscores the potential of VALL-E R to further improve
inference efficiency.
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Figure 4: The trends of WER, with respect to the variations in top_p value when decoding.

Effect of top_p in Inference In order to demonstrate the stability and robustness of our proposed
VALL-E R, we conducted ablation experiments during the decoding stage, attempting to analyze the
impact of the top_p in sampling on WER. And the figure of WER changing with top_p is shown in
Fig. |4 For VALL-E, due to its lack of control over text, reducing the top_p parameter leads to a loss
of randomness in the model. This makes the model inclined to predict silent frames to maximize
the overall probability of the generated content, resulting in an endless loop and consequently poor
Word Error Rate (WER). However, by incorporating a monotonic alignment strategy, our proposed
VALL-E R becomes possible to finely control the pronunciation text. Therefore, even when reducing
top_p, VALL-E R not only maintains diversity but also ensures the normal generation of content,
exhibiting strong robustness.

Visualization of Attention Weights To better demonstrate the mechanism behind the stability of
our proposed VALL-E R model, we also conducted a deeper analysis through visualization. Given a
speech sample y and its transcription z, we calculated the average attention weights among 16 heads
between the speech and text prompts within the first layer of the transformer during autoregressive
inference process. And the weights are displayed in the Figure 5]

In the visualization for VALL-E, as depicted in Figure (a), we can observe a faint bright line along
the diagonal. This indicates that during audio synthesis, VALL-E constantly needs to pay attention
to which phoneme it is currently processing from the given prompt sequence. However, as the
audio lengthens, the attention becomes increasingly scattered. This suggests that without explicit
indications, the model becomes confused about which element to focus on, leading to misreadings,
omissions, and repetitions. In contrast, for our proposed VALL-E R, depicted in Figure (b), there
is no distinct bright line, and the attention is evenly distributed. This demonstrates that VALL-E R
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(a) Attention weight of VALL-E.
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(b) Attention weight of VALL-E R with Monotonic Alignment.
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Figure 5: Visualization of Attention Weight between Phoneme Prompt and Generated Codec. The
brighter the color, the greater the weight.

introduces explicit phoneme indications, allowing the model to focus on the global information of the
text without worrying about the progress of reading. Finally, in Figure (c), we provide the alignment
path of phonemes in VALL-E R during the inference process. An uninterrupted and monotonous
diagonal can be observed, which indicates that all phonemes are covered by the generated speech one
by one, satisfying the characteristics of locality, monotonicity, and completeness.

Table 6: Ablation study on Librispeech test-clean set. MA denotes monotonic alignment with
phoneme. MC represents merged codec.

Model MA MC WER Spk-Sim
v v 158 0876

VALL-ER = 0 165 0877

VALLE - - 237 0875

Ablation Study We also conduct ablation experiments to study the effectiveness of the methods we
proposed, with the results presented in Table[f] Initially, within VALL-E R, we replaced the merged
codec (first layer downsample 2x) with the tradition codec. The results indicate that the merged
codec does not adversely affect WER or Spk-sim while improving inference speed, thereby affirming
the superiority of our proposed acceleration strategy. Subsequently, upon removing the monotonic
phoneme strategy, the model regresses completely to VALL-E, leading to a significant deterioration in
WER performance. This highlights the effectiveness of our proposed method in terms of robustness.

B Ethics Statement and Broader Impact

Since VALL-E R is capable of synthesize speech that preserves speaker identity, it may carry
potential risks for misuse, such as spoofing voice identification or impersonating specific individuals.
Our experiments were conducted under the premise that the user agree to be the target speaker in
synthesised speech. If the model be applied to unseen speakers in real-world scenarios, it will be
imperative to establish a protocol that ensures the speaker’s authorization for the use of their voice, as
well as the integration of a model capable of detecting synthesized speech. To mitigate such risks,a
detection model could be developed to discriminate whether an audio clip has been synthesized by
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VALL-E R. Furthermore, We commit to adhering to the Microsoft Al PrinciplesE] in practice when
further developing the models.

>https://www.microsoft.com/ai/responsible-ai
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