
Loop Unrolled Shallow Equilibrium Regularizer
(LUSER) - A Memory-Efficient Inverse Problem

Solver

Peimeng Guan1, Jihui Jin1, Justin Romberg1, Mark A. Davenport1
1Department of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

guanpeimeng@gatech.edu

Abstract

In inverse problems we aim to reconstruct some underlying signal of interest from
potentially corrupted and often ill-posed measurements. Classical optimization-
based techniques proceed by optimizing a data consistency metric together with a
regularizer. Current state-of-the-art machine learning approaches draw inspiration
from such techniques by unrolling the iterative updates for an optimization-based
solver and then learning a regularizer from data. This loop unrolling (LU) method
has shown tremendous success, but often requires a deep model for the best
performance leading to high memory costs during training. Thus, to address the
balance between computation cost and network expressiveness, we propose an LU
algorithm with shallow equilibrium regularizers (LUSER). These implicit models
are as expressive as deeper convolutional networks, but far more memory efficient
during training. The proposed method is evaluated on image deblurring, computed
tomography (CT), as well as single-coil Magnetic Resonance Imaging (MRI) tasks
and shows similar, or even better, performance while requiring up to 8× less
computational resources during training when compared against a more typical LU
architecture with feedforward convolutional regularizers.

1 Introduction

In an inverse problems we face the task of reconstructing some data or parameters of an unknown
signal from indirect observations. The forward process, or the mapping from the data to observations,
is typically well known,but ill-posed or non-invertible. More formally, we consider the task of
recovering some underlying signal x from measurements y taken via some forward operator A
according to

y = Ax+ η, (1)
where η represents noise. The forward operator can be nonlinear, but to simplify the notation, we
illustrate the idea in linear form throughout this paper. A common approach to recover the signal is
via an iterative method based on the least squares loss:

x̂ = argmin
x

∥y −Ax∥2. (2)

For many problems of interest, A is ill-posed and does not have full column rank. Thus, attempting
to solve (2) does not yield a unique solution. To address this, we can extend (2) by including
a regularizing term to bias the inversion towards solutions with favorable properties. Common
examples of regularization include ℓ2, ℓ1, and Total Variation (TV). Each regularizer encourages
certain properties on the estimated signal x̂ (e.g., smoothness, sparsity, piece-wise constant, etc.) and
is often chosen based on task-specific prior knowledge.

NeurIPS 2022 AI for Science Workshop.

Recent works [1] attempt to tackle inverse problems using more data-driven methods. Unlike typical
supervised learning tasks that attempt to learn a mapping purely from examples, deep learning for
inverse problems have access to the forward operator and thus should be able to guide the learning
process for more accurate reconstructions. One popular approach to incorporating knowledge of
the forward operator is termed loop unrolling (LU). These methods are heavily inspired by standard
iterative inverse problem solvers, but rather than use a hand tuned regularizer, they instead learn the
update with some parameterized model. They tend to have a fixed number of iterations (typically
around 5-10) due to computational constraints. [2] proposes an interesting alternative that takes
advantage of deep equilibrium (DEQ) models [3–6] that we refer to as DEQ4IP. Equilibrium models
are designed to recursively iterate on their input until a “fixed point" is found (i.e., the input no longer
changes after passing through the model). They extend this principle to the LU method, choosing to
iterate until convergence rather than for a “fixed budget".

Our Contributions. We propose an alternative novel architecture for solving inverse problems
called Loop Unrolled Shallow Equilibrium Regularizer (LUSER). It incorporates knowledge of the
forward model by adopting the principles of LU architectures while reducing its memory consumption
by using a shallow (relative to existing feed-forward models) DEQ as the learned regularizer update.
Unlike DEQ4IP that converts the entire LU architecture into a DEQ model, we only convert the learned
regularizer at each stage. This has the advantage of simplifying the learning task for DEQ models,
which can be unstable to train in practice. To our knowledge, this is the first use of multiple sequential
DEQ models within a single architecture for solving inverse problems. Our proposed architecture
(i) reduces the number of forward/adjoint operations compared to the work proposed by [2], (ii)
reduces the memory footprint during training without loss of expressiveness as demonstrated by our
experiments, and (iii) is more stable to train in practice than DEQ4IP. We empirically demonstrate
better reconstruction across multiple tasks than state-of-the-art LU alternatives with a similar number
of parameters, with the ability to reduce computational memory costs during training by a factor of
up to 8×.

The remainder of the paper is organized as follows. Section 2 reviews related works in solving
inverse problems. Section 3 introduces the proposed LUSER, which we compare with other baseline
methods in image deblurring, CT, and MRI tasks in Section 4. We conclude in Section 5 with a brief
discussion.

2 Related Work

2.1 Loop Unrolling

As noted above, a common approach to tackling an inverse problem is to cast it as an optimization
problem consisting of the sum of a data consistency term and a regularization term

min
x

∥y −Ax∥22 + γ r(x), (3)

where r is a regularization function mapping from the domain of the parameters of interest to a real
number and γ ≥ 0 is a well-tuned coefficient. The regularization function is chosen for specific
classes of signals to exploit any potential structure, e.g., ∥x∥2 for smooth signals and ∥x∥0 or ∥x∥1
for sparse signals. The total-variation (TV) norm is another popular example of a regularizer that
promotes smoothness while preserving edges and is often used for imaging tasks.

When r is differentiable, the solution of (3) can be obtained in an iterative fashion via gradient descent.
For some step size λ at iteration k = 1, 2, . . . ,K, we apply the update:

xk+1 = xk + λA⊤(y −Axk)− λγ∇r(xk). (4)

For non-differentiable r, the more generalized proximal gradient algorithm can be applied with the
following update, where τ is a well-tuned hyperparameter related to the proximal operator:

xk+1 = proxτ,r(xk + λA⊤(y −Axk)). (5)

The loop unrolling (LU) method considers running the update in (4) or (5), but replaces λγ∇r or the
proximal operator with a learned neural network instead. The overall architecture repeats the neural
network based update for a pre-determined number of iterations, fixing the overall computational
budget. Note that the network is only implicitly learning the regularizer. In practice, it is actually

2

learning an update step, which can be thought of as de-noising or a projection onto the manifold of the
data. LU is typically trained end-to-end, i.e., when fed some initialization x0, the network will output
the final estimate xK , compute a loss with respect to the ground truth, and then back-propagate across
the entire computational graph to update network parameters. While end-to-end training is easier
to perform and encourages faster convergence, it requires all intermediate activations to be stored
in memory. Thus, the maximum number of iterations is always kept small compared to classical
iterative inverse problem solvers.

Due to the limitation in memory, there is a trade-off between the depth of a LU and the richness of
each regularization network. Intuitively, one can raise the network performance by increasing the
number of loop unrolled iterations. For example, [2] extends the LU model to potentially infinite
number of iterations using an implicit network, and [7] allows deeper unrolling iterations using
invertible networks, while requiring recalculation of the intermediate results from the output in
training phase. This approach can be computationally intensive for large-scale inverse problems or
when the forward operator is nonlinear and computationally expensive to apply. For example, the
forward operator may involve solving differential equations such as the wave equation for seismic
wave propagation [8] and the Lorenz equations for atmospheric modeling[9].

Alternatively, one can design a richer regularization network. For example [10] uses a transformer
as the regularization network and achieves extremely competitive results in the fastMRI challenge
[11], but requires multiple 24GB GPU for training with batch size of 1, which is often impractical,
especially for large systems. Our design strikes a balance in the expressiveness in regularization
networks and memory efficiency during training. Our proposed work is an alternative method to
achieve a rich regularization network without the additional computational memory costs during
training.

2.2 Deep Equilibrium Models for Inverse Problems (DEQ4IP)

Deep equilibrium (DEQ) models introduce an alternative to traditional feed-forward networks [3–6].
Rather than feed an input through a fixed (relatively small) number of layers, DEQ models solve for
the “fixed-point" given some input. More formally, given a network fθ and some input x(0) and y,
we recursively apply the network via

x(k+1) = fθ(x
(k),y), (6)

until convergence.1 In this instance, y acts as an input injection that determines the final output. This
is termed the forward process. The weights θ of the model can be trained via implicit differentiation,
removing the need to store all intermediate activations from recursively applying the network. This
allows for deeper, more expressive models without the associated memory footprint to train such
models.

[2] demonstrates an application of one such model, applying similar principles to a single iteration
of an LU architecture. Such an idea is a natural extension as it allows the model to “iterate until
convergence" rather than rely on a “fixed budget". In another word, looping over (4) and (5) many
times (in practice, usually around 50 iterations) until xk converges. However, such a model can
be unstable to train and often performs best with pre-training of the learned portion of the model
(typically acting as a learned regularizer/de-noiser). It is also important to note is that such a model
would have to apply the forward operator (and potentially the adjoint) many times during the forward
process. Although this can be accelerated to reduce the number of applications, it is still often more
than the number of applications for an LU equivalent. This can be an issue if the forward operator
is computationally expensive to apply, an issue LU methods somewhat mitigate by fixing the total
number of iterations.

2.3 Alternative Approaches to Tackle Memory Issues

I-RIM [7] is a deep invertible network that address the memory issue by recalculating the intermediate
results from the output. However it is not ideal when forward model is computationally expensive.
Gradient checkpointing [12] is another practical technique to reduce memory costs for deep neural

1Note that, since our approach will ultimately use both methods, to aid in a clearer presentation we use
subscript, i.e., xk, to denote the LU iterations, and superscript with parenthesis, i.e., r(i), to denote the iterations
in the deep equilibrium model.

3

networks. It saves intermediate activations of some checkpoint nodes, and recomputes the forward
pass between two checkpoints for backpropagation. However, it is not an easy and efficient technique
to implement for a weight-tied neural network.

3 Methodology

LU methods have been the state-of-the-art approach for solving inverse problems due to their stability
when training, inclusion of the forward model, and their near instantaneous inference times. However,
there is a noticeable trade-off in terms of the memory requirements when training these models
and the accuracy for even medium scale problems, making them nearly impossible to use for much
larger scale inverse problems. DEQ4IP offers an interesting alternative, drastically reducing the
memory required during training and allowing the flexibility to adjust accuracy during reconstruction
when performing inference. However, these models can potentially suffer when the forward/adjoint
operators are computationally expensive, particularly when it takes more iterations to converge than a
standard fixed LU method.

To address these concerns, we propose a novel architecture for solving inverse problems called
Loop Unrolled Shallow Equilibrium Regularizer (LUSER) as an approach that limits the number
of forward/adjoint calls for particularly complex inverse problems while drastically reducing the
memory requirements for training, allowing us to scale up to much larger inverse problems (or require
less GPU memory for existing problems). LUSER achieves this by adopting DEQ models as the
learned regularizer update in a standard LU architecture. The implicit DEQ models are smaller in
size but just as expressive as typical convolutional models used as the learned regularizer update
allowing for an accurate reconstruction with less computational memory costs. Furthermore, learning
a proximal update is a far simpler task compared to solving the inverse problem as a whole, reducing
the instability during training commonly faced by DEQ models.

We adopt a “proximal gradient descent" styled LU architecture. The network takes in measurements
y and some initial estimate x0. The architecture consists of K stages, alternating between a gradient
descent step dk = xk + λA⊤(y −Axk) for k = 1, 2, . . . ,K, followed by a feed-forward pass of
the shallow equilibrium model acting as a proximal update block.

Figure 1 illustrates a single block in LUSER as a learned proximal operator. The input dk from
the previous stage is processed only once by a set of input injection layers to avoid redundant
computation. The input injection will determine the final fixed point output [5]. The recursive portion
of the proximal block consists of two sets of layers: the data layer and the mixing layer. The current
estimate of the fixed point is first passed through the data layer before being concatenated with the
input injection and processed by the mixing layer. This process repeats until a fixed point is found.
Although Figure 1 shows the simplest way of finding the fixed point, in practice acceleration or other
fixed point solvers are applied to solve for the fixed point. We apply Anderson acceleration [13] for
all of our models.

Injection Layer

Data Layer Mix Layerconcatenate Is converged?Initialize
with zeros

No

Yes

Figure 1: A proximal block in LUSER

At each stage, the shallow equilibrium regularizer attempts to output its best estimate of the ground
truth x∗. We introduce a skip connection between the input dk and the final output so that the
regularizer is learning the residual r between the input dk and the ground truth x∗ instead. When
xk converges to x∗, dk will also converge to x∗ and we expect the residual to be closer and closer
to the zero vector. Therefore, we initialize the input of data layer with a zero vector with the same
dimensions as the input dk in the hopes that fewer iterations will be needed at later stages as the
current estimate xk converges towards the ground truth. Let r(i) denote the ith update of the residual,

4

where r(0) = 0 and r(∞) be the fixed point solution of the residual. Let ⊕ denote the concatenation
operator. The process in one loop unrolled block can be formulated as the following:

xk+1 = dk + MixLayer
(

DataLayer(r(∞))⊕ InjectLayer(dk)
)
. (7)

Because of the fixed point solver within each regularization block, LUSER uses fewer layers to
achieve a similar level of performance, thus we call LUSER a shallow equilibrium regularizer.

We also explore two variants of LUSER, dubbed LUSER-SW and LUSER-DW. LUSER-SW refers to
a shared-weight version of the proposed algorithm, where the proximal operator in all loop unrolled
iterations are weight-tied and thus identical. Theoretically, the regularizer should be able to handle
any input regardless of the iteration step. However, in practice, the distribution of intermediate
reconstructions can be vastly different. Thus, training a single model to handle all these instances
can be a daunting task, leading to poor generalization across the different stages. Since the total
computational budget is fixed, one approach can be to use different weights (DW) for the learned
proximal operator at each stage to handle the potentially different distributions. This will increase
the number of parameters that need to be trained and stored, but since LUSER already has so few
parameters to begin with, expanding to the different weight variant is still feasible. This paper will
compare two variants of LUSER with other architectures in different tasks.

DEQ4IP relies on the learned proximal operator to have the same weights, thus we cannot include a
different weight variant for comparison. On the other hand, the same principles can be applied to the
LU variant of DEQ4IP. However, we aim to only compare models of similar number of parameters
(or less in the case of LUSER-SW), and thus restrict our attentions to the shared weight variant of LU
only.

4 Experiments and Results

In this section, we compare our proposed networks to LU with DnCNN as proximal operator (LU-
DnCNN) and DEQ4IP on three different tasks: image deblurring, computed tomography (CT),
and single-coil accelerated Magnetic Resonance Imaging (MRI). The datasets we use are RGB
CelebA [14], LoDoPaB-CT [15], and single-coil knee data from fastMRI [11] respectively. We
also experiment with incorporating an auxiliary loss of including an MSE loss on intermediate
reconstructions with the ground-truth instead of just the final output. This is done for the LU models
(LU-DnCNN, LUSER).

4.1 Experimental Setup

In the image deblurring task, the blurry image is obtained by applying a (9× 9) Gaussian kernel with
variance of 5 to an image with additive white Gaussian noise with a standard deviation of 0.01. If the
image is RGB, the same kernel is applied to all channels. For accelerated MRI tasks, measurements in
k-space (or frequency domain) are often subsampled due to the cost in measurement. The goal of MRI
reconstruction is to recover the underlying physical structure from subsampled noisy measurements.
We simulate the forward operator A with a 2-dimensional Fourier transform with randomly selected
rows. We consider two common subsampling scenarios: 4x and 8x acceleration, or subsampling
the columns in full measurement by a factor of 4 and 8 respectively. For the CT task, the forward
operator is a Radon transform, and we uniformly select 200 out of 1000 angles in measurements.
The adjoint of measurement A⊤y is used as initialization for MRI and CT tasks, which brings the
measurement back to the signal domain. However, in the deblurring task, since the measurement
lies in a same domain as the underlying clean image, y is used as the initial guess. Notice that some
works use the filtered backprojection as the initialization for CT, such as [16], but we use the adjoint
for the purpose of consistency.

We fix the budget of LU-DnCNN and LUSER to be a total of 8 iterations, while as we allow DEQ4IP
to iterate until it reaches a fixed point. We use a DnCNN adopted from [17] with 17 convolutional
layers with 64 channels, followed by BatchNorm and ReLU activations for the regularizer for LU-
DnCNN and DEQ4IP. For the learned regularizer update in LUSER, we use 2 convolutional layers
each for the input injection layer and data layer. The mixing layer contains 3 convolutional layers.

In order to stablize training for DEQ inspired models, we wrap all convolutional layers in DEQ4IP
and LUSER with Spectral Norm (SN) [18]. We list more details for the learned proximal network for

5

Table 1: Architecture of Proximal Network in LUSER
Layer Details

Injection Layer SN(conv(Cin:1, Cout:32, ks:3, pad:1)) + LeakyReLU
SN(conv(Cin:32, Cout:32, ks:3, pad:1)) + LeakyReLU

Data Layer SN(conv(Cin:1, Cout:32, ks:3, pad:1)) GN + LeakyReLU
SN(conv(Cin:1, Cout:32, ks:3, pad:1)) GN + LeakyReLU

Mix Layer
SN(conv(Cin:64, Cout:64, ks:3, pad:1)) GN + LeakyReLU
SN(conv(Cin:64, Cout:64, ks:3, pad:1)) GN + LeakyReLU

SN(conv(Cin:64, Cout:1, ks:3, pad:1))

LUSER in Table 1 for the case when the input has a single channel. Cin and Cout denote the input
and output channels, ks refers to the kernel size of a convolutional layer, pad denotes the padding in
2-dimension, and GN stands for GroupNorm.

We use two metrics to evaluate the quality of reconstruction: Peak Signal-to-Noise Ratio (PSNR) in
dB and the Structural Similarity Index (SSIM). Note that although we use the same models as [2],
we train our models from scratch and report lower values on the MRI task. We suspect that this is
due to evaluating with a single channel only. When we include the imaginary channel (for a total
of 2 channels), the metrics we recorded are more aligned with those reported in [2]. All models are
trained with a single RTX6000 24GB GPU.

4.2 Main Results

Table 2 compares the average PSNR and SSIM. The different weight version of LUSER outperforms
LU-DnCNN with a similar number of network parameters. LUSER-SW achieves similar level of
performance in most tasks with only 5 layers, versus 17 layers in LU-DnCNN. DEQ4IP attains the
best performance in image delurring task, but it requires repetitive computation of forward/adjoint
operators. Training shared-weight architectures with auxillary losses improves the reconstruction
quality in most tasks. Figure 2 shows representative reconstruction results. The overall performances
are similar, but LUSER-DW attains better qualities in detailed structures, especially compared to
LU-DnCNN. The areas with improvements are emphasized with red boxes in the ground truth images.

Table 2: Average PSNR and SSIM for test set, the best two performances are in bold.

PSNR LU-DnCNN DEQ4IP LUSER-SW LUSER-DW
SSIM Final loss Aux loss Final loss Final loss Aux loss Final loss Aux loss

CelebA 29.93 30.39 31.57 30.30 30.65 31.40 31.15
0.862 0.871 0.895 0.869 0.878 0.891 0.888

CT 30.59 31.59 31.79 28.82 28.04 31.83 31.66
0.844 0.859 0.868 0.801 0.797 0.860 0.859

4x MRI 29.01 29.02 29.01 28.82 29.18 29.86 29.37
0.668 0.671 0.678 0.662 0.685 0.740 0.713

8x MRI 27.50 27.65 27.51 27.42 27.42 28.06 27.55
0.576 0.572 0.570 0.562 0.560 0.630 0.596

Table 3 compares the network sizes (number of parameters) as well as the maximum training batch
sizes for three commonly seen GPU RAM capacities: 8 GB, 10 GB and 24 GB. Batch sizes are
recorded with maximum even numbers, except when it is 1 for stochastic gradient descent. Notice
that in MRI, because the Fourier transformation is implemented in tensor form, the minimum batch
size it can take is 2. We use the batch size as a proxy for the memory requirements during training.
Since DEQ4IP is an extension of LU-DnCNN, their networks are of the same size, but implicit DEQ
models support larger batch sizes making DEQ4IP far more memory-efficient during training. The
advantages of using DEQ models for LUSER and DEQ4IP are particularly highlighted in the case of
limited memory (smaller GPUs). LU-DnCNN is unable to even train for the CT and MRI task with
limited memory constraints, while LUSER and DEQ4IP can. This pattern is expected to repeat for
more large scale tasks where standard LU architectures will be unable to train at all due to memory
requirements. It is important to note that memory requirements depend more on the depth of the

6

Figure 2: Representative reconstructions, where each row represents one task. The left-most column
shows the initialization or input to the networks; the middle three columns show the reconstructions
for LU-DnCNN, DEQ4IP and LUSER-DW; and the right-most column shows the underlying true
images. Regions corresponding to qualitative improvements are emphasized in red boxes in the last
column.

Table 3: Comparison of network sizes and maximum possible batch sizes during training. Entries
with ‘-’ denote that the architecture with a batch size of 1 cannot fit into a particular GPU RAM
capacity.

GPU RAM LU-DnCNN DEQ4IP LUSER-SW LUSER-DW
Max Batch Size Capacity (17 layers) (17 layers) (5 layers) (5 layers)

deblurring

#Params 558,580 558,580 96,503 770,073
8 GB 1 16 10 10

10 GB 1 16 14 14
24 GB 4 68 34 34

CT

#Params 556,033 556,033 93,954 751,625
8 GB - 4 2 2

10 GB - 6 4 4
24 GB 2 20 10 10

MRI

#Params 557,185 557,185 95,107 760,849
8 GB - 4 4 4

10 GB 2 6 4 4
24 GB 4 16 12 12

network than the number of parameters. For example, even though LUSER-DW and LUSER-SW
have different numbers of parameters, they share the same architecture/depth and thus use roughly
the same amount of memory during training.

We observe that LUSER takes longer to train in each epoch than LU-DnCNN, but the training
converges in fewer iterations than LU-DnCNN. The total training time for all methods are roughly
the same for the image deblurring and MRI tasks, but DEQ4IP takes longer to train on the CT
problem as it is finding a fixed-point with a more complicated forward operator. During evaluation,
LU-DnCNN is the fastest, and the DEQ4IP and LUSER are in similar speed. When the forward

7

operator is computationally intensive, LUSER evaluates faster than DEQ4IP. Table 4 compares the
various properties among the three architectures.

Table 4: Method Comparisons
LU DEQ4IP LUSER

Training Time Fast Slow Moderate
Evaluation Time Fast Slow Moderate
Training Stability Stable Unstable Stable

Network Size Large Large Small
Expressiveness Low Moderate High

Training Memory Usage Large Small Moderate

5 Conclusion

Loop unrolling architectures with deep convolutional layers as the learned regularizer update are
a popular approach for solving inverse problems. Although its variants achieve state-of-the-art
results across a variety of tasks, LU algorithms incur a huge memory cost when training due to the
requirement of saving all intermediate activations, sometimes even requiring multiple GPUs to train
on complex tasks. DEQ4IP offers an interesting alternative via extending LU to infinitely many
layers by finding a fixed point solution, but can be impractical when the forward/adjoint operators
are nonlinear or larger in scale. To address the memory issue, we proposed two variants of loop
unrolling architectures with deep equilibrium models as the learned regularizer updates, LUSER-SW
and LUSER-DW. We verify the memory savings (by comparing batch sizes) relative to loop unrolling
algorithms with a DnCNN model. Across all tasks, LUSER-DW outperforms LU-DnCNN with a
similar number of network parameters, while reducing the memory requirements by a factor of 5 or
more. LUSER offers a path forward for large-scale, complex, non-linear inverse problems that are
currently infeasible to train with existing methods.

Acknowledgment

Guan and Davenport are supported by the Center for Energy and Geo Processing (CeGP) at Georgia
Tech and the King Fahd University of Petroleum and Minerals. Jin and Romberg are supported in
part by the Office of Naval Research Task Force Ocean under Grant No. N00014-19-1-2639.

References
[1] Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexandros G Dimakis,

and Rebecca Willett. Deep learning techniques for inverse problems in imaging. IEEE Journal
on Selected Areas in Information Theory, 1(1):39–56, 2020.

[2] Davis Gilton, Gregory Ongie, and Rebecca Willett. Deep equilibrium architectures for inverse
problems in imaging. IEEE Transactions on Computational Imaging, 7:1123–1133, 2021.

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

[4] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. Advances
in Neural Information Processing Systems, 33:5238–5250, 2020.

[5] Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley J Osher, and Wotao
Yin. Fixed point networks: Implicit depth models with jacobian-free backprop. 2021.

[6] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit
deep learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

[7] Patrick Putzky and Max Welling. Invert to learn to invert, 2019.

8

[8] Chris Chapman. Fundamentals of seismic wave propagation. Cambridge university press, 2004.

[9] Christian Oestreicher. A history of chaos theory. Dialogues in clinical neuroscience, 2022.

[10] Zalan Fabian and Mahdi Soltanolkotabi. Humus-net: Hybrid unrolled multi-scale network
architecture for accelerated mri reconstruction. arXiv preprint arXiv:2203.08213, 2022.

[11] Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J.
Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J.
Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero,
Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens,
C. Lawrence Zitnick, Michael P. Recht, Daniel K. Sodickson, and Yvonne W. Lui. fastmri: An
open dataset and benchmarks for accelerated mri, 2018.

[12] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian Zhang, and
Christopher Ré. Low-memory neural network training: A technical report. arXiv preprint
arXiv:1904.10631, 2019.

[13] Homer F Walker and Peng Ni. Anderson acceleration for fixed-point iterations. SIAM Journal
on Numerical Analysis, 49(4):1715–1735, 2011.

[14] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[15] Johannes Leuschner, Maximilian Schmidt, Daniel Otero Baguer, and Peter Maass. Lodopab-
ct, a benchmark dataset for low-dose computed tomography reconstruction. Scientific Data,
8(1):1–12, 2021.

[16] AmirEhsan Khorashadizadeh, Konik Kothari, Leonardo Salsi, Ali Aghababaei Harandi, Maarten
de Hoop, and Ivan Dokmani’c. Conditional injective flows for bayesian imaging. arXiv preprint
arXiv:2204.07664, 2022.

[17] Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin.
Plug-and-play methods provably converge with properly trained denoisers. In International
Conference on Machine Learning, pages 5546–5557. PMLR, 2019.

[18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

9

	Introduction
	Related Work
	Loop Unrolling
	Deep Equilibrium Models for Inverse Problems (DEQ4IP)
	Alternative Approaches to Tackle Memory Issues

	Methodology
	Experiments and Results
	Experimental Setup
	Main Results

	Conclusion

