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Abstract
Scaling dialogue systems to a multitude of do-001
mains, tasks and languages relies on costly002
and time-consuming data annotation for differ-003
ent domain-task-language configurations. The004
annotation efforts might be substantially re-005
duced by the methods that generalise well006
in zero- and few-shot scenarios, and also ef-007
fectively leverage external unannotated data008
sources (e.g., Web-scale corpora). We pro-009
pose two methods to this aim, offering im-010
proved dialogue natural language understand-011
ing (NLU) across multiple languages: 1)012
Multi-SentAugment, and 2) LayerAgg. Multi-013
SentAugment is a self-training method which014
augments available (typically few-shot) train-015
ing data with similar (automatically labelled)016
in-domain sentences from large monolingual017
Web-scale corpora. LayerAgg learns to select018
and combine useful semantic information scat-019
tered across different layers of a Transformer020
model (e.g., mBERT); it is especially suited021
for zero-shot scenarios as semantically richer022
representations should strengthen the model’s023
cross-lingual capabilities. Applying the two024
methods with state-of-the-art NLU models ob-025
tains consistent improvements across two stan-026
dard multilingual NLU datasets covering 16027
diverse languages. The gains are observed in028
zero-shot, few-shot, and even in full-data sce-029
narios. The results also suggest that the two030
methods achieve a synergistic effect: the best031
overall performance in few-shot setups is at-032
tained when the methods are used together.033

1 Introduction034

The aim of Natural Language Understanding035

(NLU) in task-oriented dialogue systems is to iden-036

tify the user’s need from their utterance (Xu et al.,037

2020). This comprises the following crucial in-038

formation: 1) intents, what the user intends to do,039

and 2) (typically predefined) slots, associated ar-040

guments of the intent (Tur et al., 2010; Tur and041

De Mori, 2011) which need to be filled with spe-042

cific values. Intent detection is often framed as a043

Figure 1: Illustration of two user utterances in the ATIS
flight domain with associated intents and slot tags.

standard sentence classification task, where every 044

sentence maps to one or more intent classes; slot 045

labelling is typically cast as a sequence labelling 046

task, where each word is labelled with a BIO-style 047

slot tag (Bunk et al., 2020), see Figure 1. 048

The supervised models for NLU in English 049

are plentiful and achieve extremely high accuracy 050

(Louvan and Magnini, 2020a; Qin et al., 2021). At 051

the same time, porting an NLU system to any new 052

domain and language requires collecting a large in- 053

domain dataset, and training a model for the target 054

language (Xu et al., 2020). Such in-domain annota- 055

tions in multiple languages are extremely expensive 056

and time-consuming (Rastogi et al., 2020), also re- 057

flected in the fact that large enough dialogue NLU 058

datasets for other languages are still few and far be- 059

tween (Razumovskaia et al., 2021). This in turn cre- 060

ates the demand for strong multilingual and cross- 061

lingual methods which generalise well and learn 062

effectively in zero-shot and few-shot scenarios. In 063

this work, we propose two methods to this end: 064

1) Multi-SentAugment, a weakly supervised data 065

augmentation method which improves the capabil- 066

ity of current state-of-the-art (SotA) dialogue NLU 067

in few-shot scenarios via self-training; 2) Layer- 068

Agg learns to effectively leverage and combine the 069

knowledge stored across different layers of a pre- 070

trained multilingual Transformer (e.g., mBERT). 071

The main goal of Multi-SentAugment is to re- 072

duce the required amount of labelled data and man- 073

ual annotation labour by harvesting the large pool 074
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of unannotated data, and carefully selecting rele-075

vant in-domain examples which can then be auto-076

matically labelled (Du et al., 2021). In a nutshell,077

domain-relevant unannotated sentences are first re-078

trieved from a large multilingual sentence bank.079

The synthetic labels for the data are then generated080

by a teacher model, previously trained with avail-081

able annotated data. A final student model is then082

trained on the combination of synthetically labeled083

and annotated data. To the best of our knowledge,084

our work is the first to mine large unannotated085

monolingual resources in multiple languages to086

augment data for multilingual dialogue NLU.087

The goal of LayerAgg is to leverage useful lexi-088

cal and other semantic information scattered across089

layers (Tenney et al., 2019; Vulić et al., 2020) of a090

pretrained multilingual Transformer. Moving away091

from the standard fine-tuning practice of using only092

the representations from the top layer, we hypothe-093

sise that the model’s cross-lingual capabilities can094

be increased by forcing it (i) to propagate seman-095

tic information from lower layers, as well as (ii)096

to aggregate/combine semantic information from097

all its layers. In a nutshell, we propose to use a098

multilingual encoder with cross-layer Transformer,099

which selects and combines the knowledge from100

all layers of a pretrained model during fine-tuning.101

Our experiments show that Multi-SentAugment102

gives consistent improvements in few-shot and full-103

data scenarios on the two available multilingual104

dialogue NLU datasets: MultiATIS++ (Xu et al.,105

2020) and xSID (van der Goot et al., 2021). The106

results further indicate that LayerAgg improves107

zero-shot performance on the same datasets. Fi-108

nally, since the two methods can be independently109

applied to SotA NLU models, we demonstrate that110

they yield a synergistic effect: the highest scores111

on average are achieved with their combination.112

Contributions. 1) Multi-SentAugment is a simple113

yet effective data augmentation approach which114

leverages unannotated data from large Web-scale115

corpora to boost multilingual dialogue NLU. 2)116

LayerAgg is a novel cross-layer attention method117

which learns to effectively combine useful semantic118

information from multiple layers of a multilingual119

Transformer. 3) The two methods applied with120

SotA NLU models obtain consistent gains across121

two standard multilingual NLU datasets in zero-122

shot, and 8 languages in few-shot, and full-data123

setups, boosting the capability of cross-lingual dia-124

logue in resource-lean scenarios.125

2 Related Work and Background 126

Multilingual NLU for Dialogue Systems is usu- 127

ally divided into two tasks: intent detection and slot 128

labelling (Tur et al., 2010; Xu et al., 2020). In “pre- 129

Transformer” times, the methods for training multi- 130

lingual NLU systems were based on static multilin- 131

gual word vectors (Mrkšić et al., 2017; Upadhyay 132

et al., 2018; Schuster et al., 2019), lexicon align- 133

ment (Liu et al., 2019b,a), and model or annotation 134

projection via parallel data (Kulshreshtha et al., 135

2020; López de Lacalle et al., 2020). 136

Transfer learning with large pretrained multilin- 137

gual Transformer-based language models (LMs) 138

such as mBERT (Devlin et al., 2019) and XLM- 139

R (Conneau et al., 2020a) has demonstrated cur- 140

rently unmatched performance in many NLU tasks 141

(Liang et al., 2020; Hu et al., 2020; Ponti et al., 142

2020; Ruder et al., 2021), including intent clas- 143

sification and slot labelling (Zhang et al., 2019; 144

Liu et al., 2020). Fine-tuning a large multilin- 145

gual LM has become a standard for multilingual 146

NLU (Zhang et al., 2019; Xu et al., 2019; Kul- 147

shreshtha et al., 2020). However, the excessively 148

high data annotation costs for multiple domains 149

and languages still hinder progress in multilingual 150

dialogue (Razumovskaia et al., 2021). In this pa- 151

per, unlike prior work, we propose to use external 152

unannotated data to mine and automatically label 153

in-domain in-language examples which aid learn- 154

ing in low-data regimes across multiple languages. 155

Data Augmentation in Multilingual NLU, as 156

well as data augmentation methods in NLP in gen- 157

eral, aim to produce additional training data au- 158

tomatically, without the need to manually label 159

it. In monolingual English-only settings, English 160

NLU data has been augmented by generating ad- 161

ditional data with a large monolingual language 162

model (Peng et al., 2020) such as BERT (Devlin 163

et al., 2019) or GPT-2 (Radford et al., 2019), or 164

from atomic templates (Zhao et al., 2019). In mul- 165

tilingual settings, data augmentation methods for 166

NLU include simple text span substitution and syn- 167

tactic structure manipulation (Louvan and Magnini, 168

2020c,b). Recently, code switching (Krishnan et al., 169

2021) and generating translations through a pivot 170

language (Kaliamoorthi et al., 2021) have also been 171

proposed as data augmentation methods. 172

The previous work relies on (i) additional com- 173

ponents such as syntactic parsers or POS taggers, 174

or (ii) parallel and code-switched data. However, 175

they might be unavailable or of low-quality for 176
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many (low-resource) languages. In contrast, Multi-177

SentAugment relies on the cheapest and largest178

resource available: monolingual Web-crawled data;179

it disposes of any dependency parsers and taggers,180

which makes it more widely applicable. Mining181

knowledge from Web-scale data was shown effec-182

tive in various (non-dialogue) text classification183

tasks (Du et al., 2021) and in MT (Wu et al., 2019).1184

Layer Aggregation in Pretrained LMs. A stan-185

dard practice is to use the output of the final/top186

layer of a pretrained LM as input into task-specific187

classifiers (Devlin et al., 2019; Sun et al., 2019).188

At the same time, prior work shows that most of189

(decontextualised) lexical information (Ethayarajh,190

2019; Vulić et al., 2020) and word-order informa-191

tion (Lin et al., 2019) is localised in lower layers192

of BERT. Middle layers usually encode syntactic193

information (Hewitt and Manning, 2019; Jawahar194

et al., 2019) while (contextual) semantic informa-195

tion is spread across all the layers of a pretrained196

LM (Tenney et al., 2019), with higher layers cap-197

turing increasingly abstract language phenomena198

(Lin et al., 2019; Rogers et al., 2020; Tenney et al.,199

2019). Kondratyuk and Straka (2019) showed that200

using a weighted combination of all layers works201

well in cross-lingual settings for a syntactic task of202

dependency parsing. In addition, they proposed to203

use layer dropout to redistribute how the informa-204

tion is localised in a fine-tuned BERT model.205

In order to ’unlock’ additional semantic knowl-206

edge from other layers, we propose an additional207

Transformer encoder with cross-layer attention as208

a layer aggregation mechanism. We hypothesise209

that relying only on the representations from the210

top layer dilutes mBERT’s lexical and semantic211

information. Moreover, we expect lexically and212

semantically richer representations to be especially213

useful for zero-shot settings: aggregated (contex-214

tualised) semantic information from lower layers215

could help correctly identify the intent of the sen-216

tence, while lexical information could help identify217

the slot tag for different languages.2218

3 Methodology219

We assume a standard state-of-the-art approach to220

dialogue NLU in multiple languages (Xu et al.,221

1Unlike Du et al. (2021), we do not tune pretrained lan-
guage models to sentence similarity, but use off-the-shelf pre-
trained multilingual sentence encoders (Artetxe and Schwenk,
2019; Feng et al., 2020; Litschko et al., 2021).

2For instance, 10.07.2021 will be typically identified as
date in many languages

2020), based on fine-tuning pretrained multilingual 222

LMs on the tasks of intent detection and slot la- 223

belling. Following Xu et al. (2020), we fine-tune 224

the pretrained LM in a standard supervised fashion, 225

with task-specific linear layers stacked on top. 226

Separate NLU Models. The multilingual encoder 227

for each NLU task is fine-tuned separately, and 228

there is no knowledge exchange (but also no noise 229

or destructive inference) between the two tasks. We 230

adopt a standard task-specific fine-tuning setup (Xu 231

et al., 2020; Siddhant et al., 2020). 232

Joint NLU Model. Another line of recent work 233

pursued joint modelling of the two tasks, moti- 234

vated by the intuitive correlation between them.3 235

In this work, we follow a standard joint modelling 236

procedure (Xu et al., 2020; Hardalov et al., 2020; 237

Krishnan et al., 2021), where the model consists 238

of a shared multilingual encoder followed by task- 239

specific linear layers for intent classification and 240

slot labelling. The loss is then simply a sum of two 241

task-dedicated losses. In our experiments, we use 242

mBERT (Devlin et al., 2019) and XLM-R (Con- 243

neau et al., 2020a) as the encoder. 244

Multi-SentAugment (§3.1) and LayerAgg (§3.2) 245

are then applied to the joint NLU model, while we 246

also provide detailed comparisons to the separate 247

NLU models as baselines in zero-shot setups. 248

3.1 Multi-SentAugment 249

Large Web-crawled datasets have been proven use- 250

ful for extracting additional data for classification 251

tasks in English (Du et al., 2021). We adapt the ap- 252

proach of Du et al. (2021) to multilingual dialogue 253

NLU, that is, we propose to use large Web-crawled 254

corpora to obtain additional in-domain data for dia- 255

logue NLU tasks in multiple languages. 256

For each language l we are given: 1) some an- 257

notated training data Dl which consists of |Dl| 258

sentences x1, ..., x|Dl|, each labelled with intent 259

class and slot labels (see Figure 1); 2) a large Web- 260

crawled corpus Ul consisting of |Ul| sentences 261

s1, ..., s|Ul|; 3) off-the-shelf multilingual sentence 262

encoder F fine-tuned towards semantic sentence 263

similarity, that is, to produce semantic embeddings 264

of input sentences (Reimers and Gurevych, 2020). 265

The data augmentation process then consists of 1) 266

unsupervised data retrieval and 2) self-training. 267

3Information about the slots in an utterance could be infor-
mative of its intent, and vice versa. For instance, an utterance
containing temperature unit slot is more likely to be-
long to intent find_weather than to intent set_alarm.
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Figure 2: Illustration of the LayerAgg method.

The aim of unsupervised data retrieval is to con-268

struct an in-domain unannotated set of sentences269

by filtering the sentences from Ul . The process is270

formulated by the following equations:271

X = F(x1, . . . , x|Dl|);U = F(s1, ..., s|Ul|);272

σ =
UX>

‖U‖‖X‖ > θ;273

θ is a similarity threshold for sentence filtering: a274

sentence si will be added into the in-domain dataset275

if there is an annotated sentence xj ∈ Dl such that276

σi,j > θ. As a result of data retrieval, we obtain a277

set of in-domain unannotated sentences which are278

similar to annotated training data Dl .279

At self-training, we first fine-tune a joint NLU280

model on annotated Dl data. We then use this281

model to annotate the retrieved in-domain sen-282

tences. As our final NLU model, we fine-tune a283

new joint NLU model on the full dataset, combin-284

ing the Dl set and filtered and annotated sentences.285

3.2 LayerAgg286

To ensure the propagation and use of lexical and287

semantic information from lower layers, we pro-288

pose a simple layer aggregation technique based on289

cross-layer attention (Vaswani et al., 2017), illus-290

trated in Figure 2. In short, let wij be a representa-291

tion of a word (or WordPiece; Devlin et al. (2019))292

at position i at layer j, j = 1, . . . , Nl, where Nl293

is the number of layers in the pretrained LM (e.g.,294

Nl = 12 for mBERT). Layer-aggregated represen-295

tation wi of the input wi is computed as follows:296

wi = T(wi,1 :Nl ), (1)297

where wi ,1 :Nl
is a sequence comprising all (or-298

dered) wij per-layer representations, and T is a299

cross-layer Transformer encoder. In essence, T ef-300

fectively always operates over a sequence of length301

Nl: it outputs the representations from all layers,302

but which have now been self-attended. We then303

feed the last item (i.e., Nl-th item) of the sequence304

Dataset Languages Utterances Intents Slots

MultiATIS++

de, en, es,
zh, ja, fr,

pt
5871 18 84

tr 1353 17 71
hi 2493 17 75

xSID

en 43605

13 16
ar, da, de,

de-st (st), id, it,
kk, nl, sr,

tr, zh
800

ja 400

Table 1: Dataset statistics for MultiATIS++ and xSID.
Language codes are available in the Appendix.

representation output by the Transformer T into 305

the task-specific classifiers. Relying on the Nl-th 306

output representation, the model is forced to incor- 307

porate the information from all layers into the final 308

representation of the input token wi. The parame- 309

ters of T are also updated during fine-tuning. 310

4 Experimental Setup 311

Evaluation Datasets comprise two standard mul- 312

tilingual dialogue NLU datasets: MultiATIS++ (Xu 313

et al., 2020) and xSID (van der Goot et al., 2021), 314

created by translating monolingual labelled English 315

data into target languages. MultiATIS++ is a single 316

domain (airline) dataset while xSID covers 7 do- 317

mains including alarm, weather, music, events and 318

reminder. xSID is an evaluation only dataset, i.e., it 319

contains training data only for English. The statis- 320

tics of the datasets are presented in Table 1. The 321

datasets consist of sentences each labelled with an 322

intent class and BIO slot tags/labels, see Figure 1. 323

Large (Multilingual) Sentence Banks. We use 324

the CC-100 dataset (Conneau et al., 2020a; Wen- 325

zek et al., 2020), which comprises monolingual 326

CommonCrawl data in 116 languages. For compu- 327

tational tractability with resources at our disposal, 328

we rely on the smaller CC-100-100M dataset, a ran- 329

dom sample from the full CC-100 spanning 100M 330

sentences in each language. CC-100 covers multi- 331

ple domains, language styles and variations. 332

Multi-SentAugment: Setup. Unless noted other- 333

wise, we use the LASER multilingual sentence en- 334

coder (Artetxe and Schwenk, 2019), pretrained on 335

93 languages with a sentence similarity objective 336

on parallel data. The similarity threshold θ is set 337

to 0.8. Besides the basic setup, (i) we also analyse 338

the impact of the sentence encoder by running ex- 339

periments with another SotA multilingual encoder: 340

LaBSE (Feng et al., 2020; Litschko et al., 2021); 341
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(ii) we apply an additional filtering step based on342

the intent confidence of the teacher model, retain-343

ing only high-confidence examples.4344

LayerAgg. The aggregator Transformer T con-345

tains a single 512-dim layer with 4 attention heads.5346

Additionally, we present an extensive comparison347

with a standard layer aggregation method of Kon-348

dratyuk (2019) based on cross-layer attention.349

Fine-Tuning Setup. 1) In the zero-shot setup, we350

train the model on the English training data and351

evaluate on other (target) languages. 2) In the352

few-shot setup, unless stated otherwise, we add 10353

target-language examples (i.e., shots) per intent to354

the English training data. 3) In the full-data setup,355

we use the entire training set of the target language356

(without any English data). For unsupervised sen-357

tence retrieval in few-shot and full-data setups, we358

only use the examples in the target language as359

our query set Dl (see §3.1). In all experiments,360

we evaluate on the validation set after each epoch,361

and train for 20 epochs with a patience of 5 epochs,362

with Adam (Kingma and Ba, 2015) as the optimiser,363

batches of 32 and learning rate set to 5e−5, and the364

warm-up rate of 0.1. We experiment with mBERT365

Base and XLM-R Base as multilingual encoders.366

5 Results and Discussion367

Joint vs Separate NLU. We first establish the per-368

formance of joint versus separate baseline NLU369

models. The results from Tables 2 and 3 indi-370

cate that joint NLU training performs better on in-371

tent classification while separate task-specific NLU372

models are more beneficial on slot labelling. Our373

results corroborate the findings from prior work374

(Schuster et al., 2019; He et al., 2020; Weld et al.,375

2021). We suspect that joint training works bet-376

ter for intent classification as sentence-level rep-377

resentations are enriched with lexical information378

through the additional slot-labelling loss. At the379

same time, separate training attains stronger per-380

formance in slot labelling as it retains more task-381

specific representations for each token.382

Impact of LayerAgg. The motivation behind Lay-383

erAgg is to combine the strengths of both joint384

and separate training, that is, having sentence-level385

4In practice, when we label extracted sentences with the
teacher model, we only retain the sentences where the teacher
model is confident in its prediction, that is, it assigns the intent
class probability p ≥ 0.95.

5We remind the reader that the Nl-th item of T’s output
sequence is fed to the task-specific layers (see §3.2).

representations enriched with lexical information 386

while keeping token representations specified. The 387

benefits of LayerAgg in both tasks in zero-shot se- 388

tups are indicated by the results in Tables 2-3. We 389

observe large improvements with LayerAgg, both 390

on average and for the large number of individual 391

target languages. It is worth noting that LayerAgg 392

provides gains also with both underlying multilin- 393

gual encoders. Besides that, adding LayerAgg also 394

yields more stable performance of the joint model 395

in general (e.g., compare the scores on Japanese 396

and Turkish slot labelling without and with Lay- 397

erAgg). The gains with LayerAgg also persist in 398

few-shot and full-data setups, as shown in Figure 3. 399

+LayerAgg versus +Attn. Table 2 also presents a 400

comparison of two layer aggregation techniques: 401

cross-layer attention from Kondratyuk and Straka 402

(2019) (+Attn), now adapted to dialogue NLU 403

tasks, and LayerAgg. While both methods pro- 404

duce gains over the Joint baseline in several target 405

languages, LayerAgg yields much more substantial 406

gains, and is more robust across different model 407

configurations and tasks. While the Attn aggrega- 408

tion simply provides a weighted sum of information 409

encoded across Transformer layers based on its im- 410

portance to the final prediction, LayerAgg has the 411

capability to analyse and aggregate the information 412

as it evolves between layers (Voita et al., 2019). 413

Impact of Multi-SentAugment. The results in 414

Figure 3 suggest that Multi-SentAugment is indeed 415

useful as data augmentation for the two NLU tasks, 416

both in few-shot and full-data scenarios, and for 417

different target languages.6 Achieving slight gains 418

in full-data scenarios implies that mining additional 419

monolingual data is beneficial even when a large 420

in-domain dataset in the target language is avail- 421

able. Notably, we observe larger gains for Turk- 422

ish and Hindi in Figure 3d: it is expected due to 423

the fact that MutiATIS++ contains a smaller num- 424

ber of sentences for tr and hi than for the other 425

target languages. Finally, the impact of filtering 426

by teacher confidence (see §3.1) is inconsistent 427

for intent classification (i.e., it seems to be target 428

language-dependent) while it improves the results 429

for slot labelling on average. Encouraged by these 430

insights, we will investigate more sophisticated in- 431

domain sentence mining methods in future work. 432

Combining Multi-SentAugment and LayerAgg 433

6We suspect that a slight performance drop in few-shot
setups for zh and ja mostly stems from some discrepancy in
tokenization between MultiATIS++ and CC-100.
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Target language de en es fr hi ja pt tr zh AVG

Intent classification (Accuracy × 100)

Separate mBERT 89.25 98.66 90.71 91.71 74.23 77.27 91.83 64.54 82.19 82.72
Joint mBERT 86.45 98.54 87.79 93.39 75.71 76.71 91.83 70.78 84.55 83.40
+Attn 85.67 98.66 88.91 87.57 76.63 80.52 91.04 69.65 84.21 83.02
+LayerAgg 90.03 98.54 93.28 94.51 74.92 77.27 92.95 70.21 81.52 84.34
Joint XLM-R 91.42 98.45 91.20 91.42 80.99 80.96 92.47 71.94 84.41 85.60
+Attn 91.12 98.88 90.41 91.12 78.01 82.16 94.79 70.56 83.32 85.19
+LayerAgg 94.81 98.73 91.97 93.58 78.28 84.25 92.68 68.41 86.15 86.27

Slot labelling (Slot F1 × 100)

Separate mBERT 70.41 95.20 73.31 66.66 39.13 56.54 63.00 49.31 56.65 59.38
Joint mBERT 70.52 95.54 70.20 67.20 41.00 48.20 63.20 41.17 56.48 57.25
+Attn 70.14 95.44 70.48 68.30 44.46 52.89 64.64 48.20 56.46 59.46
+LayerAgg (ours) 69.15 95.26 73.58 68.26 43.59 58.05 64.55 48.08 55.62 60.11
Joint XLM-R 81.57 95.58 81.05 73.24 33.71 48.22 75.65 38.92 65.27 62.20
+Attn 79.88 95.58 80.40 70.50 33.20 46.45 75.33 38.60 65.62 61.25
+LayerAgg 80.93 95.91 81.11 74.02 34.06 57.88 77.06 38.94 72.62 64.58

Table 2: Zero-shot results on MultiATIS++ (English is the source language in all experiments). The average is
computed across target languages (excluding English). Highest scores in each task for every encoder per column
in bold. The results are averaged across 5 random seeds. +Attn refers to using standard cross-layer attention as
layer aggregation, as done in prior work (Kondratyuk and Straka, 2019).

Target language ar da de st en id it ja kk nl sr tr zh AVG

Intent classification (Accuracy × 100)

Joint mBERT 46.13 74.07 62.67 47.07 98.80 68.00 58.47 35.47 40.07 65.87 58.13 47.60 72.61 56.35
+LayerAgg 51.13 72.93 63.00 49.47 98.67 69.00 62.20 39.33 47.53 65.73 61.73 50.80 69.64 58.54
Joint XLM-R 51.07 86.40 70.73 48.20 98.73 81.87 69.13 39.60 45.53 79.20 70.07 72.00 77.60 65.95
+LayerAgg 57.40 86.60 73.00 53.33 98.80 83.27 73.07 46.67 48.80 80.27 72.33 75.93 85.60 69.69

Slot labelling (Slot F1 × 100)

Joint mBERT 19.98 34.66 35.86 17.39 95.37 29.45 34.63 23.28 33.58 38.37 25.74 32.90 63.80 32.47
+LayerAgg 21.00 36.21 37.97 18.51 94.27 28.74 35.50 30.19 35.58 38.91 25.79 35.32 62.00 33.77
Joint XLM-R 32.40 68.81 53.72 20.68 94.97 64.31 56.93 25.45 28.97 71.57 48.96 46.78 56.42 47.91
+LayerAgg 35.36 68.50 52.16 21.24 95.67 66.21 56.78 23.68 28.60 68.10 50.57 47.91 56.96 48.01

Table 3: Zero-shot results on xSID. The average is computed across target languages (excluding English). Highest
scores in each task for every encoder per column in bold. The results are averaged across 5 random seeds.

(a) Few-shot intent classification (b) Few-shot slot labelling

(c) Full-data intent classification (d) Full-data slot labelling

Figure 3: Few-shot and full-data results on MultiATIS++. BASE = joint training baseline; MSA = +Multi-
SentAugment; MSA FILT = +Multi-SentAugment filtered by teacher model confidence; LA = +LayerAgg; LA
MSA = +LayerAgg +Multi-SentAugment; LA MSA FILT = +LayerAgg +Multi-SentAugment filtered by teacher
model confidence. Results are presented for mBERT, with same trends observed when using XLM-R.

results in a synergistic effect, based on the addi-434

tional slight gains observed in Figure 3 (the full re-435

sults are available in the Appendix, including the re- 436

sults in 5-shot and 20-shot setups). This is expected 437
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as the two methods offer distinct enhancements of438

the base joint NLU model: (i) Multi-SentAugment439

includes more diverse sentences and lexical infor-440

mation into the training data (i.e., enhancement at441

the input level), while (ii) LayerAgg aims to select442

and combine semantic information spread across443

mBERT’s layers (i.e., feature-level enhancement).444

Zero-Shot vs Few-Shot. As we discussed before,445

using Multi-SentAugment and LayerAgg seems to446

benefit the base NLU model both in low-data and447

full-data setups; we observe gains also in 5-shot448

and 20-shot setups (see the Appendix). Similar to449

other NLP tasks (e.g., named entity recognition,450

parsing, QA) (Lauscher et al., 2020), few-shot se-451

tups (e.g., even having only 5 examples per intent452

or ≈80 annotated sentences in total) yield huge453

benefits over zero-shot setups (see Table 9 in the454

Appendix; compare the results in Table 2 and Fig-455

ure 3). Our results provide another empirical proof456

calling for more modelling effort in more realis-457

tic few-shot cross-lingual transfer setups (Lauscher458

et al., 2020; Zhao et al., 2021) in future work. We459

also observe that the results in 10-shot setups when460

both Multi-SentAugment and LayerAgg are used461

are mostly on par with the results in 20-shot setups462

with the base NLU model. In general, this find-463

ing validates that the proposed methods can indeed464

reduce the manual annotation effort.465

6 Analysis and Further Discussion466

Target Language Analysis. While both Multi-467

SentAugment and LayerAgg are language-agnostic468

techniques per se, the actual transfer results also de-469

pend on the linguistic properties of the source and470

target languages. We thus aim to answer the follow-471

ing question: Which languages benefit most from472

Multi-SentAugment and LayerAgg? To this end, we473

study the correlations between zero-shot and few-474

shot transfer performance (i.e., gains over the joint475

baseline when using the two methods) and source-476

to-target language distance, which is based on the477

language vectors obtained from the URIEL typo-478

logical database (Littell et al., 2017). Following479

Lauscher et al. (2020), we consider the following480

linguistic features: syntax (SYN), encoding syntac-481

tic properties; language family memberships (FAM)482

and geographic locations (GEO).483

The results are shown in Table 4. SYN simi-484

larity has the highest correlation with zero-shot485

performance gains in both NLU tasks. We sus-486

pect that this might stem from LayerAgg’s prop-487

Data setup Task Method SYN FAM GEO

Zero-shot
Intent
classification LayerAgg -0.9356 -0.5252 -0.6849

Slot
labelling LayerAgg 0.6787 0.5392 -0.0509

Few-shot

Intent
classification

LayerAgg -0.1970 -0.2830 -0.1556
Multi-SentAugment 0.2433 0.0497 -0.5229
LayerAgg
+
Multi-SentAugment

0.5274 0.0192 -0.1298

Slot
labelling

LayerAgg -0.4227 -0.3112 -0.9544
Multi-SentAugment -0.0032 0.4203 0.3934
LayerAgg
+
Multi-SentAugment

0.1525 -0.1367 -0.6525

Table 4: Correlation between performance gains pro-
vided by each method (LayerAgg, Multi-SentAugment,
and their combination) on MultiATIS++ and language
distance scores between English as the source language
and target languages, based on different typological fea-
tures from URIEL (SYN, FAM, GEO).

de en es fr hi pt tr AVG

Joint 86.96 86.03 75.12 92.31 90.0 86.64 53.69 81.54
+LayerAgg 97.83 97.53 83.19 95.33 91.16 89.48 58.49 87.57

Table 5: F1 scores in a lexical probe of detecting the
1,000 most frequent words on MultiATIS++.

erty to selectively aggregate information from mul- 488

tiple layers, which is easier to learn if the input 489

sequences have similar syntactic structures. In sim- 490

ple words, LayerAgg might benefit more if similar 491

information is found at similar places in the input 492

sentences. FAM and GEO similarities are more cor- 493

related with gains in few-shot settings. This might 494

be due to the fact that languages which are simi- 495

lar genealogically (FAM) and geographically (GEO) 496

have more common lexical stems. It means that 497

Multi-SentAugment extracts sentences with lexi- 498

cally similar words which unlock the generalisation 499

abilities of the model. 500

Does LayerAgg Enrich Semantic Content? 501

While the task results seem to suggest this, we 502

design a probing experiment which aims to answer 503

the following question: Do the representations ob- 504

tained with LayerAgg really capture more semantic 505

information? To this end, we first obtain repre- 506

sentations of the 1,000 most frequent words (Con- 507

neau et al., 2018; Mehri and Eric, 2021) in Multi- 508

ATIS++7 in each sentence using a frozen mBERT 509

task-tuned on English, with and without LayerAgg. 510

We then aim to identify which word was encoded 511

by training a simple linear classifier. The rationale 512

is that by storing more lexical information in the 513

representations, similar words will obtain similar 514

representations: consequently, the classifier should 515

more easily identify the correct word. 516

7For a word tokenised into more than 1 WordPiece, we ob-
tain its vector by averaging its constituent WordPiece vectors.
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Figure 4: l-CKA similarities of mean-pooled represen-
tations of slots between different languages in Multi-
ATIS++. For a similar plot for xSID see the Appendix.

The micro-averaged F1 scores are shown in Ta-517

ble 5. The same positive trend with large gains518

in the classification score is observed in all lan-519

guages, confirming our hypothesis. We note that520

the large gains are reported not only for English521

(which was used for task fine-tuning), but also in522

other languages, suggesting the benefits of Layer-523

Agg in boosting cross-lingual lexical capabilities524

of multilingual encoders in transfer scenarios.525

Cross-lingual Similarity in LayerAgg. We now526

assess how LayerAgg captures cross-lingual rep-527

resentation similarity by comparing self-attention528

maps for different languages emerging from Trans-529

former T. We analyse the similarity of represen-530

tations of the source language (en) with each tar-531

get language in MultiATIS++ and xSID using lin-532

ear Centered Kernel Alignment (l-CKA, Kornblith533

et al. 2019), a standard tool for such analyses in534

Transformer-based models (Conneau et al., 2020b;535

Glavaš and Vulić, 2021). We measure 1) cross-536

lingual correspondence for slots where l-CKA is537

computed between the representations of the same538

slot8 in different languages; 2) the correlation be-539

tween the l-CKA scores and transfer performance.540

The l-CKA scores for MultiATIS++ in Figure 4541

reveal high similarities between self-attention maps542

for similar languages. For instance, the scores543

are high between Romance languages in Multi-544

ATIS++ and Germanic languages in XSID. At the545

same time, the scores are low between ja and Ro-546

mance languages and between tr and all other,547

non-Turkic languages. Spearman’s ρ correlation548

scores between the l-CKA scores and zero-shot549

8Slot representation is the average of attention maps of
tokens labelled with that slot. We cannot compare attention
maps for each word/WordPiece directly: we lack alignments
between the words across sentences in different languages.

Data size F hi ja tr AVG

Intent classification (Accuracy × 100)

Few-shot LASER 81.76 79.28 78.87 79.97
LaBSE 86.43 77.16 69.36 77.65

Full-data LASER 88.71 96.42 82.41 89.18
LaBSE 89.28 96.42 84.54 90.08

Slot labelling (Slot F1 × 100)

Few-shot LASER 73.34 81.92 68.11 74.46
LaBSE 69.88 81.19 70.28 73.78

Full-data LASER 80.45 88.35 73.32 80.71
LaBSE 83.32 91.79 71.86 82.32

Table 6: A comparison of LASER and LaBSE as under-
lying encoders for Multi-SentAugment. A model vari-
ant without LayerAgg used; very similar trends are ob-
served with the +LayerAgg variant (see the Appendix).

transfer performance are also very strong. For 550

MultiATIS++, ρ = 0.95 (intent classification) and 551

ρ = 0.92 (slot labelling), while for xSID: ρ = 0.77 552

(intent classification) and ρ = 0.59 (slot labelling). 553

Another Multilingual Sentence Encoder? Intu- 554

itively, the effectiveness of Multi-SentAugment de- 555

pends on the underlying multilingual sentence en- 556

coder F. We now analyse how much performance 557

differs if we replace one state-of-the-art encoder 558

(i.e., LASER) with another: LaBSE (Feng et al., 559

2020), running Multi-SentAugment with LaBSE 560

in 3 languages from 3 different language families 561

that also use different scripts – Turkish, Hindi and 562

Japanese. The results in Table 6 do indicate some 563

performance variance across tasks and languages: 564

LaBSE is slightly better in full-data scenarios while 565

LASER performs better in few-shot scenarios. In 566

future work on Multi-SentAugment, we will inves- 567

tigate encoder ensembles, and we plan to make the 568

mining process more scalable and quicker. 569

7 Conclusion 570

We presented 1) LayerAgg, a layer aggregation 571

method which learns to effectively combine use- 572

ful semantic information from multiple layers of a 573

pretrained multilingual Transformer, and 2) Multi- 574

SentAugment, a data augmentation approach that 575

leverages unannotated Web-scale monolingual cor- 576

pora to reduce manual annotation efforts. Our re- 577

sults suggest that both methods, applied with state- 578

of-the-art multilingual dialogue NLU models, yield 579

performance benefits both for intent classification 580

and for slot labelling. The methods obtain con- 581

sistent gains in zero-shot, few-shot and full-data 582

setups on 2 multilingual NLU datasets spanning 16 583

languages. In future work, we will extend the meth- 584

ods towards truly low-resource languages. The 585

code will be released online at: [URL]. 586
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Goran Glavaš and Ivan Vulić. 2021. Is supervised syn- 652
tactic parsing beneficial for language understanding 653
tasks? an empirical investigation. In Proceedings of 654
the 16th Conference of the European Chapter of the 655
Association for Computational Linguistics: Main 656
Volume, pages 3090–3104, Online. Association for 657
Computational Linguistics. 658

Momchil Hardalov, Ivan Koychev, and Preslav Nakov. 659
2020. Enriched pre-trained transformers for joint 660
slot filling and intent detection. arXiv preprint 661
arXiv:2004.14848. 662

Keqing He, Yuanmeng Yan, and Weiran Xu. 2020. 663
Adversarial cross-lingual transfer learning for slot 664
tagging of low-resource languages. In 2020 In- 665
ternational Joint Conference on Neural Networks 666
(IJCNN), pages 1–8. IEEE. 667

John Hewitt and Christopher D. Manning. 2019. A 668
structural probe for finding syntax in word repre- 669
sentations. In Proceedings of the 2019 Conference 670
of the North American Chapter of the Association 671
for Computational Linguistics: Human Language 672
Technologies, Volume 1 (Long and Short Papers), 673
pages 4129–4138, Minneapolis, Minnesota. Associ- 674
ation for Computational Linguistics. 675

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra- 676
ham Neubig, Orhan Firat, and Melvin Johnson. 677
2020. XTREME: A massively multilingual multi- 678
task benchmark for evaluating cross-lingual gener- 679
alisation. In International Conference on Machine 680
Learning, pages 4411–4421. PMLR. 681

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 682
2019. What does BERT learn about the structure 683
of language? In Proceedings of the 57th Annual 684
Meeting of the Association for Computational Lin- 685
guistics, pages 3651–3657, Florence, Italy. Associa- 686
tion for Computational Linguistics. 687

Prabhu Kaliamoorthi, Aditya Siddhant, Edward Li, 688
and Melvin Johnson. 2021. Distilling large lan- 689
guage models into tiny and effective students using 690
pQRNN. arXiv preprint arXiv:2101.08890. 691

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 692
method for stochastic optimization. In Proceedings 693
of ICLR 2015. 694

Dan Kondratyuk. 2019. Cross-lingual lemmatization 695
and morphology tagging with two-stage multilin- 696
gual BERT fine-tuning. In Proceedings of the 16th 697
Workshop on Computational Research in Phonetics, 698
Phonology, and Morphology, pages 12–18, Florence, 699
Italy. Association for Computational Linguistics. 700

9

https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://arxiv.org/abs/2004.09936
https://arxiv.org/abs/2004.09936
https://arxiv.org/abs/2004.09936
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.naacl-main.426
https://doi.org/10.18653/v1/2021.naacl-main.426
https://doi.org/10.18653/v1/2021.naacl-main.426
https://doi.org/10.18653/v1/2021.naacl-main.426
https://doi.org/10.18653/v1/2021.naacl-main.426
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://arxiv.org/abs/2007.01852
https://arxiv.org/abs/2007.01852
https://arxiv.org/abs/2007.01852
https://www.aclweb.org/anthology/2021.eacl-main.270
https://www.aclweb.org/anthology/2021.eacl-main.270
https://www.aclweb.org/anthology/2021.eacl-main.270
https://www.aclweb.org/anthology/2021.eacl-main.270
https://www.aclweb.org/anthology/2021.eacl-main.270
https://arxiv.org/pdf/2004.14848.pdf
https://arxiv.org/pdf/2004.14848.pdf
https://arxiv.org/pdf/2004.14848.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9207607&casa_token=wDNQ6jrJLCEAAAAA:AOfWrG5bpZ_suIksiTjt6bITnwdCt_4khB7q0kvcMCvC2yhmkIWLILyqJ6Dhga2LHDEi0Ehb7Q&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9207607&casa_token=wDNQ6jrJLCEAAAAA:AOfWrG5bpZ_suIksiTjt6bITnwdCt_4khB7q0kvcMCvC2yhmkIWLILyqJ6Dhga2LHDEi0Ehb7Q&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9207607&casa_token=wDNQ6jrJLCEAAAAA:AOfWrG5bpZ_suIksiTjt6bITnwdCt_4khB7q0kvcMCvC2yhmkIWLILyqJ6Dhga2LHDEi0Ehb7Q&tag=1
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://arxiv.org/abs/2101.08890
https://arxiv.org/abs/2101.08890
https://arxiv.org/abs/2101.08890
https://arxiv.org/abs/2101.08890
https://arxiv.org/abs/2101.08890
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/W19-4203
https://doi.org/10.18653/v1/W19-4203
https://doi.org/10.18653/v1/W19-4203
https://doi.org/10.18653/v1/W19-4203
https://doi.org/10.18653/v1/W19-4203


Dan Kondratyuk and Milan Straka. 2019. 75 lan-701
guages, 1 model: Parsing universal dependencies702
universally. In Proceedings of the 2019 Confer-703
ence on Empirical Methods in Natural Language704
Processing and the 9th International Joint Confer-705
ence on Natural Language Processing (EMNLP-706
IJCNLP), pages 2779–2795.707

Simon Kornblith, Mohammad Norouzi, Honglak Lee,708
and Geoffrey Hinton. 2019. Similarity of neural709
network representations revisited. In International710
Conference on Machine Learning, pages 3519–3529.711
PMLR.712

Jitin Krishnan, Antonios Anastasopoulos, Hemant713
Purohit, and Huzefa Rangwala. 2021. Multilin-714
gual code-switching for zero-shot cross-lingual in-715
tent prediction and slot filling. arXiv preprint716
arXiv:2103.07792.717

Saurabh Kulshreshtha, Jose Luis Redondo Garcia, and718
Ching-Yun Chang. 2020. Cross-lingual alignment719
methods for multilingual BERT: A comparative720
study. In Findings of the Association for Compu-721
tational Linguistics: EMNLP 2020, pages 933–942,722
Online. Association for Computational Linguistics.723

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and724
Goran Glavaš. 2020. From zero to hero: On the725
limitations of zero-shot language transfer with mul-726
tilingual Transformers. In Proceedings of the 2020727
Conference on Empirical Methods in Natural Lan-728
guage Processing (EMNLP), pages 4483–4499, On-729
line. Association for Computational Linguistics.730

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fen-731
fei Guo, Weizhen Qi, Ming Gong, Linjun Shou,732
Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei733
Zhang, Rahul Agrawal, Edward Cui, Sining Wei,734
Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Winnie735
Wu, Shuguang Liu, Fan Yang, Daniel Campos, Ran-736
gan Majumder, and Ming Zhou. 2020. XGLUE: A737
new benchmark datasetfor cross-lingual pre-training,738
understanding and generation. In Proceedings of the739
2020 Conference on Empirical Methods in Natural740
Language Processing (EMNLP), pages 6008–6018,741
Online. Association for Computational Linguistics.742

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.743
Open sesame: Getting inside BERT’s linguistic744
knowledge. In Proceedings of the 2019 ACL Work-745
shop BlackboxNLP: Analyzing and Interpreting Neu-746
ral Networks for NLP, pages 241–253, Florence,747
Italy. Association for Computational Linguistics.748

Robert Litschko, Ivan Vulić, Simone Paolo Ponzetto,749
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A Language Codes991

en English
ar Arabic
da Danish
de German

de-st
South Tyrolean
German dialect

es Spanish
fr French
hi Hindi
id Indonesian
it Italian
ja Japanese
kk Kazakh
nl Dutch
pt Portuguese
sr Serbian
tr Turkish
zh Chinese
th Thai

Table 7: Language codes used in the paper.

B Training Hyperparameters992

Parameter Value
Optimizer Adam
Learning rate 5e-5
Batch size 32

BERT model
BERT base;
multilingual cased

Table 8: Training hyperparameters

C Impact of the Number of Annotated993

Examples in the Target Language994

Shots (# of sentences) Intent classification Slot labelling
0 (0) 83.41 57.25
5 (81) 84.63 75.08
10 (153) 88.53 79.51
20 (270) 89.37 81.24
Full (4488) 94.43 85.42

Table 9: Impact of the amount of annotated examples
in the target language. The results are averages across
8 target languages on MultiATIS++ (Xu et al., 2020)
with the baseline Joint NLU model (with mBERT as
the multilingual encoder).
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D Full Results for Full-Data and 10-shot setups995

Target language de es fr hi ja pt tr zh AVG

Intent classification (Accuracy × 100)

Joint 96.08 95.07 98.99 79.13 78.12 90.59 73.19 97.09 88.53
+MSA 97.09 96.86 97.42 81.76 79.28 95.74 78.87 94.18 90.15
+MSA FILT 97.31 96.64 98.21 78.56 82.53 94.40 79.15 92.61 89.93
+LA 98.10 95.07 97.20 83.20 79.13 95.96 71.49 95.52 89.46
+LA +MSA 92.95 96.75 97.42 84.38 79.73 96.87 72.34 95.97 89.55
+LA +MSA FILT 97.87 91.94 97.47 84.84 79.73 95.63 78.87 96.08 90.30

Slot labelling (Slot F1 × 100)

Joint 85.41 80.52 82.16 74.12 78.63 83.34 71.65 80.22 79.51
+MSA 82.95 80.70 82.41 73.34 81.92 84.10 68.11 80.85 79.30
+MSA FILT 86.19 81.90 82.79 76.02 82.55 83.62 66.82 76.18 79.51
+LA 85.50 82.13 82.62 73.80 75.64 84.37 71.92 73.40 78.67
+LA +MSA 85.48 83.10 82.97 72.87 80.99 84.46 68.46 76.30 79.33
+LA +MSA FILT 85.89 80.38 81.45 76.71 77.92 85.00 74.24 76.34 79.74

Table 10: Few-shot results on MultiATIS++. Acronyms: +MSA = +Multi-SentAugment; +MSA FILT = +Multi-
SentAugment filtered by teacher model confidence; +LA = +LayerAgg; +LA +MSA = +LayerAgg +Multi-
SentAugment; +LA +MSA FILT = +LayerAgg +Multi-SentAugment filtered by teacher model confidence. High-
est scores in each task per column in bold.

Target language de es fr hi ja pt tr zh AVG

Intent classification (Accuracy × 100)

Joint 98.65 97.76 97.87 88.26 95.97 97.98 84.26 94.66 94.43
+MSA 98.54 97.54 98.21 88.71 96.42 97.09 82.41 94.49 94.18
+MSA FILT 98.43 96.64 97.87 88.94 96.75 97.65 85.82 94.83 94.62
+LA 98.88 96.65 98.54 91.67 96.64 97.42 83.97 96.98 95.09
+LA +MSA 98.77 97.54 98.54 88.72 96.64 98.10 84.40 96.86 94.95
+LA +MSA FILT 98.66 97.31 97.65 91.76 96.75 97.42 82.84 96.98 94.92

Slot labelling (Slot F1 × 100)

Joint 94.02 85.37 88.26 78.11 91.01 91.05 64.14 91.41 85.42
+MSA 94.02 85.05 89.39 80.45 88.35 91.06 73.32 90.93 86.57
+MSA FILT 93.65 85.12 88.77 80.78 90.56 90.99 67.41 91.67 86.12
+LA 94.26 85.73 89.02 80.92 92.03 90.77 71.09 92.33 87.02
+LA +MSA 93.16 85.69 89.10 81.97 92.24 91.36 70.14 91.59 86.91
+LA +MSA FILT 93.86 85.96 88.68 80.82 91.81 90.87 69.29 92.52 86.72

Table 11: Full-data results on MultiATIS++. Acronyms: +MSA = +Multi-SentAugment; +MSA FILT = +Multi-
SentAugment filtered by teacher model confidence; +LA = +LayerAgg; +LA +MSA = +LayerAgg +Multi-
SentAugment; +LA +MSA FILT = +LayerAgg +Multi-SentAugment filtered by teacher model confidence. High-
est scores in each task per column in bold.
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E 5-shot and 20-shot Results with Multi-SentAugment 996

Target language de es fr hi ja pt tr zh AVG

Intent classification (Accuracy × 100)

Joint 96.19 94.63 96.08 63.74 78.28 95.07 60.00 93.06 84.63
+MSA 92.72 92.50 94.40 69.90 81.64 93.62 64.26 89.14 84.77
+MSA FILT 97.20 96.87 97.31 77.77 79.28 95.19 61.14 90.37 86.89

Slot labelling (Slot F1 × 100)

Joint 83.31 77.66 79.95 67.00 72.32 82.5 62.66 75.19 75.08
+MSA 80.12 75.81 79.24 69.64 65.86 82.72 62.81 74.46 73.83
+MSA FILT 83.16 79.25 78.62 70.49 74.30 81.22 62.39 72.08 75.19

Table 12: 5-shot results of Multi-SentAugment on MultiATIS++. Acronyms: +MSA = +Multi-SentAugment;
+MSA FILT = +Multi-SentAugment filtered by teacher model confidence. Highest scores in each task per column
in bold.

Target language de es fr hi ja pt tr zh AVG

Intent classification (Accuracy × 100)

Joint 97.54 89.81 97.65 84.38 88.80 92.05 77.30 87.46 89.37
+MSA 97.65 95.97 98.43 80.96 84.43 95.41 76.03 93.62 90.31
+MSA FILT 97.09 91.15 98.10 87.57 85.14 96.53 78.30 84.99 89.86

Slot labelling (Slot F1 × 100)

Joint 88.93 84.03 85.63 73.15 82.12 85.09 72.88 78.05 81.24
+MSA 87.99 82.41 84.03 74.99 82.38 85.37 71.91 83.59 81.58
+MSA FILT 88.94 81.79 84.00 76.56 81.83 83.74 72.08 84.13 81.63

Table 13: 20-shot results of Multi-SentAugment on MultiATIS++. Acronyms: +MSA = +Multi-SentAugment;
+MSA FILT = +Multi-SentAugment filtered by teacher model confidence. Highest scores in each task per column
in bold.
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F Impact of Sentence Encoder997

(+LayerAgg Variant)998

Model F hi ja tr AVG

Intent classification (Acc times 100)

Full-data LASER 88.71 96.64 84.40 89.92
LaBSE 90.08 96.98 83.55 90.2

Few-shot LASER 84.28 79.73 72.34 78.78
LaBSE 79.93 77.72 77.73 78.46

Slot labelling (Slot F1 times 100)

Full-data LASER 81.97 92.24 70.14 81.45
LaBSE 82.85 91.40 69.62 81.29

Few-shot LASER 72.87 80.99 68.46 74.11
LaBSE 72.68 76.78 72.72 74.06

Table 14: Effect of sentence encoder comparing
LASER (Artetxe and Schwenk, 2019) and LaBSE
(Feng et al., 2020) in full-data and few-shot scenarios
for intent classification and slot labelling for LayerAgg
model.

G l-CKA Similarities on xSID999

Figure 5: l-CKA similarities of mean-pooled represen-
tations of slots between different languages in xSID.
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