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ABSTRACT

Extending the context window support of large language models (LLMs) is crucial
for tasks with long-distance dependencies. RoPE-based interpolation and extrapo-
lation methods, such as linear scaling and frequency-aware schemes, enable longer
input length support without retraining, while post-training quantization (PTQ)
makes deployment practical. However, we show that combining RoPE position
interpolation (PI) with PTQ degrades accuracy due to coupled effects includ-
ing long-context aliasing, dynamic-range dilation, anisotropy from axis-aligned
quantizers vs. rotated RoPE pairs, and outlier shifting that produces position-
dependent logit noise. We provide, to the best of our knowledge, the first sys-
tematic analysis of the PI+PTQ approach and introduce two practical diagnostics:
interpolation pressure (per-band sensitivity to phase scaling) and tail-inflation ra-
tios (outlier shift from short to long contexts). Following the analysis results, we
propose Q-ROAR (Quantization, RoPE-interpolation, and Outlier Aware Rescal-
ing), a weight-only, interpolation-aware stabilization of PI for quantized LLMs.
Q-ROAR groups RoPE dimensions into a small number of frequency bands and
performs a lightweight search over per-band scales for Key and Query weights
(with an optional symmetric variant to preserve logit scale). The search is guided
by our diagnostics and uses a tiny long-context development dataset, requiring
no fine-tuning to the model, no architecture or kernel changes, and no additional
deployment overhead. Empirically, Q-ROAR reduces the model’s perplexity on
long-context workloads by more than 14%, while preserving short-context perfor-
mance, inference throughput, and compatibility with existing LLM system stacks.

1 INTRODUCTION

Large language models (LLMs) such as GPT-3 (Brown et al., 2020), LLaMA (Touvron et al., 2023),
and DeepSeek-R1 (Guo et al., 2025) have advanced translation, coding, question answering, and
dialogue. Yet their utility is often capped by the pretrained context window. Extending context
is crucial for long-form summarization (Liu et al., 2023), code completion, retrieval-augmented
generation (RAG) (Lewis et al., 2021), chain-of-thought (Wei et al., 2023), and agentic pipelines,
which rely on long-range (long-distance) dependencies and rich cross-document context.

A popular path to longer contexts is to modify positional encoding at inference. RoPE-based scaling
methods including linear interpolation (Chen et al., 2023a), frequency-aware YaRN (Peng et al.,
2023), and evolutionary LongRoPE (Ding et al., 2024). They warp per-dimension phases so the
model can read beyond its original window without retraining. Conceptually, many such methods
fit a unified view in which positions are warped and per-dimension phase growth is rescaled. This
preserves the rotation’s orthogonality while changing how fast phases accumulate.

Meanwhile, practical deployment increasingly depends on post-training quantization (PTQ) such
as GPTQ (Frantar et al., 2022), SmoothQuant (Xiao et al., 2023), and AWQ (Lin et al., 2024) to
reduce memory footprint and latency across servers and edge devices. PTQ operates with diverse
precision settings (weight-only quantization or weight+activation quantization). A well-known chal-
lenge for quantized model is activation outliers: rare, high-magnitude coordinates inflate quantiza-
tion clipping ranges and waste effective bits, degrading accuracy (Liu et al., 2024).
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We observe that simply applying RoPE position interpolation (PI) to PTQ models degrades accu-
racy both inside and especially beyond the original window. Our analysis attributes this to coupled
mechanisms: (i) long-context aliasing from rapidly wrapping phases; (ii) dynamic-range dilation
as pre-activations shift under PI; (iii) anisotropy because axis-aligned quantizers see RoPE-rotated
pairs at changing angles; and (iv) outlier shifting/amplification as tails move and concentrate under
new phase trajectories. We formalize a sensitivity indicator, interpolation pressure, which rises for
higher-frequency bands, and show how PI and quantization errors interact in attention logits through
position-dependent perturbations.

We propose Q-ROAR (Quantization, RoPE-interpolation, and Outlier Aware Rescaling) to mitigate
the challenges. Q-ROAR groups RoPE dimensions into a small number of frequency bands and
searches for lightweight, per-band scales for (WQ,WK) that minimize perplexity on a tiny long-
context development dataset. Two simple diagnostics guide a safe, light search: (i) interpolation
pressure to avoid over-perturbing high-frequency bands; and (ii) tail-inflation ratios that summarize
PI-induced outlier shift from short to long contexts. We adopt a symmetric scaling option (WQ←
gbWQ, WK ← g−1

b WK) to keep logit magnitudes stable. The method is a drop-in, quantizer- and
backend-agnostic adjustment that requires no fine-tuning, no architecture changes, and no additional
runtime overhead. Our contribution can be summarized as follows.

• Analysis of the coupled PI+PTQ approach. We provide a unified analysis which explains
why PI harms quantized models: aliasing, dynamic-range dilation, anisotropy, and outlier
shift reinforce one another and manifest as position-dependent logit noise.

• Actionable diagnostics. We introduce interpolation pressure (per-band PI sensitivity) and
tail-inflation (outlier shift from short to long contexts) as practical signals to guide robust,
frequency-selective interventions.

• Weight-only, band-limited rescaling. We present Q-ROAR, which searches over a tiny,
log-spaced grid of per-band weight scales for (WQ,WK), with symmetric scaling to pre-
serve logit scale and safe bounds to avoid clipping or underflow in quantization.

• Portability and improved performance. Q-ROAR integrates with common PTQ base-
lines and improves long-context performance across benchmarks, while maintaining com-
patibility with existing computing kernels and LLM serving system stacks. We report con-
sistent performance improvements (> 14%) on extended-context evaluations with no in-
ference overhead and no retraining.

2 BACKGROUND AND PRELIMINARY STUDY

2.1 ROPE BASICS

Unlike recurrent neural networks, transformer models do not have natural position information and
rely on added positional encoding. The original transformer model (Vaswani et al., 2017) utilizes
sinusoidal absolute positional encoding, while it claims similar results with learnable encoding. Ro-
tary Position Embedding (RoPE) (Su et al., 2024) on the other hand, as a method that consider both
absolute and relative positional information, has been widely adopted in transformer-based LLMs.
RoPE injects position information by applying a position-dependent rotation to each adjacent 2D
coordinate pair of the d-dimensional vector (hidden dimension), yielding attention that depends on
relative positions while preserving norms. Let x ∈ Rd with even d (if d is odd, a trailing zero can
be appended in practice). Define a frequency vector θ ∈ Rd/2

>0 with components θi = b−2i/d for
i = 0, . . . , d

2 − 1 and base b=10,000 unless stated otherwise. For a position index p ∈ N, the RoPE
transform is the linear map

RoPE(x, p) = R(p)x, R(p) = diag
(
R2(pθ0), . . . ,R2(pθ d

2−1)
)
, (1)

where each 2×2 block is the planar rotation

R2(α) =

[
cosα − sinα
sinα cosα

]
(2)

Equivalently, if we regroup adjacent coordinates into complex entries via ϕ : Rd→Cd/2, ϕ(x)i =
x2i + j x2i+1, with inverse ϕ−1 given by real/imaginary parts, then

RoPE(x, p) = ϕ−1
(
ϕ(x)⊙ e jpθ

)
, (3)
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where e jpθ applies e jpθi elementwise and ⊙ denotes the element-wise product.

Orthogonality and relative-phase property. Each R2(α) is orthogonal, hence R(p) is orthogonal:
R(p)⊤R(p) = Id and ∥RoPE(x, p)∥2 = ∥x∥2. Moreover, rotations compose additively blockwise,
R(p)⊤R(p′) = R(p′ − p), so for any q, k ∈ Rd,(

RoPE(q, p)
)⊤

RoPE(k, p′) = q⊤R(p′ − p) k, (4)

which shows that the attention score depends only on the relative offset ∆ = p′ − p.

Use in multi-head attention. For a head of even dimension dh (with dh ≤ d), RoPE is
applied independently to queries and keys: q̃ = Rh(p)q, k̃ = Rh(p

′)k with Rh(p) =

blkdiag
(
R2(pθ

(h)
0 ), . . . ,R2(pθ

(h)
dh
2 −1

)
)
. Frequencies θ(h) are typically shared across heads (e.g.,

θ
(h)
i = b−2i/dh ), though head-specific schedules are possible. Values are usually left unrotated.

RoPE introduces no additional asymptotic cost: it is a per-token, per-head (sin, cos) rotation ap-
plied to dh/2 pairs, preserving the compute and memory complexity of scaled dot-product attention
while endowing it with both absolute and relative position awareness.

2.2 EXTENDED TOKEN LENGTH SUPPORT AND POSITIONAL INTERPOLATION

A practical way to extend a pretrained LLMs’ usable context is to modify the positional mapping
at inference so very long test sequences are interpreted as if they lie within the training range. We
refer to this family as position interpolation/extrapolation (PI). PI requires no additional training,
keeps the architecture intact, and adds negligible overhead (and can further benefit from long-context
finetuning). Beyond PI, long context support can also be achieved via (i) continued pretraining on
long sequences (Gao et al., 2024; Chen et al., 2023b), (ii) instruction/alignment tuning for long-
range inputs (Bai et al., 2024; Zhang et al., 2024), and (iii) architectural changes (alternative posi-
tion schemes; sparse/linear attention) (Su et al., 2021; Press et al., 2021). These generally require
full/partial retraining, extra data/computation, and careful stability tuning, which can be challenging.

Let L0 be the training window and L≫ L0 the target window. PI methods either (a) remap test
positions m 7→ m̂∈ [0, L0], or (b) rescale the per-dimension positional frequencies {θi}d/2i=1 of the
rotary/phase parameters.

Linear Interpolation (LI) (Chen et al., 2023a) compresses positions uniformly so m̂ = m·(L0/L),
which keeps phases in-distribution but reduces local resolution by L/L0 and often regresses short-
range quality without finetuning. NTK-aware PI (bloc97, 2023) slows lower frequencies more than
higher ones by adjusting the RoPE base b→ b′, improving local fidelity while curbing long-range
phase growth. YaRN (Peng et al., 2023) segments frequency bands: high-frequency dimensions
are untouched, low-frequency dimensions are fully interpolated, and mid bands receive NTK-style
partial slowdown. This preserves local detail and stabilizes long context, optionally with a mild
logit rescale. LongRoPE (Ding et al., 2024) assigns a learned per-dimension scale si and searches
for {si} on validation tasks, enabling very long effective windows with minimal short-range impact
at the cost of a one-time search. More systematic and mathematical analysis are provided in A.3
(equation 24 – equation 27).

2.3 LLM QUANTIZATION

Post-training quantization (PTQ) cuts memory and computation, but it can add errors that grow with
sequence length. The quantization process can be expressed mathematically as follows:

Q(w) = round
(

x−min(w)
max(w)−min(w)

· (2b − 1)

)
(5)

where w represents the original weight values and b is the target bit-width for quantization.

Weight-only PTQ methods. RTN (Round-to-Nearest) rounds scaled weights to the nearest integers
layer by layer. GPTQ (Frantar et al., 2022) chooses quantized weights to minimize a local quadratic
loss using calibration activations, improving accuracy over RTN. AWQ (Lin et al., 2024) keeps a
small set of activation-critical channels in higher precision and quantize the rest.
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(a) Non-Interpolated models
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Figure 1: Perplexity of quantized Llama-2-7b evaluated on the GovReport Dataset

Weights + activations (rotation-aided). Before quantization, apply an orthogonal transform to
spread outliers, then invert it after: W ′ = WR, Ŵ ′ = Q(W ′), Ŵ = Ŵ ′R⊤ (and similarly for
activations). QuaRot (Ashkboos et al., 2025) uses fixed orthogonal maps; SpinQuant (Liu et al.,
2024) learns the rotation on calibration data.

Commercial long-context systems typically extend context late in pretraining and then fine-tune with
positional strategies (e.g., YaRN or RoPE-base adjustments) to advertise large windows (e.g., 128K)
while maintaining accuracy within the tuned range (Peng et al., 2023; Roziere et al., 2023; Qwen,
2024). However, these practices largely ignore the coupling between PI and PTQ: models can look
robust near the fine-tuned lengths yet degrade sharply beyond that envelope. In open-ended, agentic
settings, required context is fluid. Our method targets this gap: it scales quantized models to longer
sequences without retraining, hardware specialization, or runtime overhead by explicitly accounting
for PI–PTQ interaction. It complements long-context training and mitigates failure modes when
evaluation exceeds the fine-tuning regime.

3 ANALYSIS OF EXISTING QUANTIZED MODEL WITH POSITIONAL
INTERPOLATION

3.1 OBSERVATION

Our key observation is that post-training quantized LLMs do not work reliably with position inter-
polation out of the box. The interaction between RoPE scaling and low-bit quantization has not been
systematically studied, and we find that applying existing scaling methods directly to PTQ models
leads to substantial performance degradation. This degradation arises from the combined effects
of quantization error, interpolation distortion, and activation outliers that are not well handled by
current techniques. As shown in Figure 1, using YaRN or NTK scaling with factor s=8 (which
theoretically extends the maximum context window by up to eight times) allows the FP16 model
to maintain stable performance without fine-tuning. In contrast, quantized models experience much
sharper degradation even under the most favorable configuration, such as quantization combined
with YaRN. With more naı̈ve interpolation strategies like NTK or linear scaling, the models fail en-
tirely at long contexts, reaching perplexity values greater than 100. Additional results are provided
in the Appendix.

3.2 PROBLEM FORMULATION AND INSIGHT

Why extrapolation is hard. Training typically exposes the model to relative offsets |m−n| ≤ L0

(e.g., L0∈{4K, 8K}). For a fixed frequency ωi, the per-token phase advance is ∆ϕi = ωi. When we
move to L≫ L0, the model encounters large phase differences ϕi(m− n) = ωi(m− n) that were
out-of-distribution during training (since pretraining length is limited to L0), especially for high fre-
quency bands, causing attention score fluctuations. Empirically this produces aliasing-like effects:
phases wrap rapidly, destabilizing long-range attention; conversely, naı̈vely slowing all rotation fre-
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quencies can over suppress local details. More intuitively, with uniform PI many tokens become
crowded in phase, reducing per-token phase increments and compressing fine-grained distinctions.

A unified view of scaling. Most context extension methods can be written as a per-dimension
scaling of the effective phase:

ϕscaled
i (m) =

ωi f(m)

si
, with si > 0, f : R≥0→R≥0. (6)

Here f(m) warps positions (e.g., linear interpolation), and si rescales frequencies (e.g., per-band or
per-hidden-dimension). This preserves orthogonality of the rotation while controlling phase growth.

Phase error and Interpolation Pressure (IP). Let the training-supported max relative displace-
ment be D0≤L0. For a target displacement D at test time, scaling in equation 6 induces a phase

ϕscaled
i (D) =

ωif(D)

si
. (7)

Define the phase deviation from the training regime at dimension i:

εi(D) ≜ ϕscaled
i (D) − ϕi(D0) = ωi

(f(D)

si
−D0

)
. (8)

We define the gradient magnitude of phase deviation:

Ψi ≜

∣∣∣∣∂εi(D)

∂si

∣∣∣∣ = ωi
f(D)

s2i
(9)

as an interpolation pressure indicator: higher Ψi means the loss is more sensitive to small scaling
changes at band i. High-frequency bands (large ωi) exhibit larger Ψi, which motivates selective
scaling policies that avoid unnecessarily perturbing high-frequency channels (as in YaRN) while
tuning others (e.g., LongRoPE).

Interaction with quantization. Long-context scaling is mostly studied for full-precision models;
however, quantized models (GPTQ, AWQ, RTN, etc.) introduce position-dependent distortions that
couple with interpolation.

Let WQ,WK be linear projection weight matrices and h the input at position m. We form

q(m) = RoPE
(
WQh, m

)
, k(n) = RoPE

(
WKh, n

)
, (10)

possibly followed by activation/KV-cache quantization. We denote the quantized quantities with
hats: ŴQ = WQ + EQ, ŴK = WK + EK , where EK,Q are quantization error term that collects
rounding and clipping residuals. This abstraction is exact by definition and allows clean analysis of
how quantization errors propagate through RoPE and attention. We also define activation quantizers
Qact(·) with step sizes(quantization scale) ∆ (per-tensor or per-channel or per-group).

Orthogonality is not immunity. RoPE is orthonormal: for any vector u, ∥RoPE(u,m)∥2 = ∥u∥2.
Thus, when weights are quantized, the energy of the noise is preserved by RoPE:∥∥RoPE(EQh,m)

∥∥
2

= ∥EQh∥2 ≤ ∥EQ∥2 ∥h∥2. (11)
However, attention logits are directional (inner products), and RoPE rotates both signal and error.
Let ideal logits be sj = q⊤kj and quantized logits ŝj = q̂⊤k̂j . With q̂ = q + eq , k̂j = kj + ekj

, the
perturbation obeys

|ŝj − sj | ≤ ∥eq∥2 ∥kj∥2 + ∥ekj
∥2 ∥q∥2 + ∥eq∥2 ∥ekj

∥2. (12)
Crucially, the norms of eq, ekj depend on how scaling modifies the signal distribution (e.g., dynamic
range, anisotropy), especially when activations or KV caches are quantized.

Quantization under scaling. Assume a mid-rise uniform quantizer per channel i with step ∆i and
clipping range [−ci, ci]. For a rotated 2D pair at position m,

z(i)(m) = R
(
ϕscaled
i (m)

)
u(i), ẑ(i)(m) = Qact

(
z(i)(m)

)
. (13)

If values are well within range (no clipping), the mean-squared error per coordinate is E∥ẑ(i) −
z(i)∥22 ≈ ∆2

i /6. Yet the optimal ∆i (or ci) is typically estimated from a calibration distribution of
z(i) at short contexts. When we scale long contexts, the phase trajectories m 7→ z(i)(m) change
shape. Hence, we claim the following two observations:

5
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1. Dynamic-range dilation: For some channels, long-context rotations increase extreme co-
ordinates, raising the clipping probability and biasing errors.

2. Anisotropy shift: Per-channel quantization grids are axis-aligned; RoPE rotates the signal
relative to these grids, making the same step size suboptimal at certain phases.

A simple variance decomposition highlights the coupling:

E
[
∥ẑ(i)(m)− z(i)(m)∥22

]
≈ ∆2

i

6
· ηi(m), ηi(m)↑ when ϕscaled

i (m) induces axis mismatch (14)

where ηi(m) represent phase and range factor. Combining equation 12 and equation 14 yields a
position-dependent logit error that is typically largest for high-frequency i and large |m− n| which
algin with our test in Figure 3(Appendix) that YaRN(preserve high frequency channels completely)
works the best without any model specific tuning and enlarging its benefit when context is longer.

Final takeaways. (1) All scaling schemes trade long-range phase stability against local reso-
lution; (2) in quantized models, the trade-off depends on how scaling shifts activation statistics
relative to the quantizer (range, step size, axis alignment); (3) Dynamic dimension-wise scaling
(YaRN/LongRoPE) assigns slowdown where it matters most for extrapolation (typically low/mid
frequencies) while sparing high-frequency channels, thereby reducing long-context aliasing and
limiting quantization-induced logit noise drift. Position interpolation methods can thus be viewed as
frequency-wise phase control via equation 6; this motivates quantization-aware RoPE scaling poli-
cies and scaling-aware quantization schemes that account for channel-wise pressure and calibration
drift.

3.3 RETHINKING OF OUTLIERS IN INTERPOLATED QUANTIZED LLM MODELS

With these observations, however, we cannot simply optimize interpolation pressure and reduce cal-
ibration drift on an existing quantized model and expect it to work flawlessly for long contexts with
PI without fine-tuning. Activation outliers have been extensively studied and are a leading cause of
degradation in quantized LLMs. We define outliers as rare, high-magnitude coordinates or channels
whose absolute value exceeds the clip range or a high quantile (99.9th) of the training distribution;
outlier channels are dimensions that consistently concentrate disproportionate tail mass. Position
interpolation perturbs both the hidden-state distribution and the geometry of RoPE-rotated pairs,
which shifts pre-activation tails (weight-induced outliers) and inflates activation outliers, thereby
increasing clipping and effective quantization noise as context grows. In the remainder of this sec-
tion, we systematically characterize outlier shifting and amplification under PI for weight-only and
weight-plus-activation quantization, using simple tail-inflation ratios(TIR) and logit-error bounds,
and discuss mitigation via selective phase scaling and context-aware per-channel rescaling.

Outlier was Amplified under PI. Let H0 be the training (short-context) distribution of h(m) and
HD the long-context distribution under PI. Define tail–inflation factors using a high quantile (e.g.,
1− ε):

ρWi ≜
Q|w⊤

i h|, h∼HD
(1− ε)

Q|w⊤
i h|, h∼H0

(1− ε)
, ρAi (m) ≜

Q∥R(ϕscaled
i (m))ui∥∞

(1− ε)

Q∥R(ϕi(m))ui∥∞(1− ε)
. (15)

ρW captures pre-activation tail growth due to PI; ρA captures axis-aligned amplitude inflation of the
RoPE pair at position m (driving activation clipping).

Weight-only quantization. With Ŵ = W + E and full-precision activations,

q̂(m)− q(m) = RoPE(EQh(m),m), ∥q̂(m)− q(m)∥2 ≤ ∥EQ∥2 ∥h(m)∥2 (16)

(and similarly for k). Under PI, high-quantiles of ∥h∥ inflate roughly by ρW, so logit error scales
like

|ŝmn − smn| = O
(
(∥EQ∥2 + ∥EK∥2) · ∥h∥tail︸ ︷︷ ︸

∝ ρW

)
. (17)

So to keep the same clipping target on pre-activations, we can enlarge per-channel clips as c⋆i (D) ≈
ρWi c⋆i (0).

6
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Weight+activation quantization. For a per-axis uniform activation quantizer (∆i, ci),

MSEi ≈ (1− pclip)
∆2

i

12
+ E

[
(|x| − ci)

21{|x| > ci}
]
, pclip = Pr(|x| > ci). (18)

PI increases axis amplitudes via ρAi (m), raising pclip unless we rescale:

c⋆i (D,m) ≈ ρAi (m) c⋆i (0), ∆⋆
i (D,m) ∝ c⋆i (D,m)

2bi − 1
. (19)

In the WAQ case, logit error adds a phase-dependent activation term ∥δq(m)∥2, ∥δk(n)∥2 whose
growth is governed by ρA.

To conclude, PI causes pre-activation tail growth (ρW) that amplifies weight-error impact, and axis-
aligned amplitude growth (ρA) that increases activation clipping. This effect can be reduced by
selective phase scaling (preserve high-freq channels during PI like YaRN) and by rescaling per-
channel clips with ρW / ρA. We also demonstrate the actual outlier shifting on figure 20 (Appendix)
and observed the expected amplitude growth and distribution change.

4 METHODOLOGY

4.1 INTERPOLATION, QUANTIZATION, AND OUTLIER AWARE WEIGHT RE-SCALE

From the preceding analysis, applying position interpolation (PI) to a quantized LLM can amplify er-
ror via long-context aliasing, dynamic-range dilation, anisotropy (axis-aligned quantizers vs. RoPE
rotations), and outlier shifting. We propose a solution to stabilize PI by: (1) grouping RoPE di-
mensions into frequency bands, and (2) searching a small per-band weight scale that minimizes
perplexity on a tiny long-context dev set.

Let {ωi} be the RoPE frequencies of 2-D pairs. We partition them into B log-spaced bands {Bb}Bb=1
and associate one scale gb to all rows/columns in band b of WQ and WK . As we have stated in the
previous section, we compare short-context vs. PI long-context pre-activations and obtain a per-band
inflation ρWb :

ρWb = median
i∈Bb

Q|w⊤
i h|, long(1− ε)

Q|w⊤
i h|, short(1− ε)

. (20)

This measures how much the weight-induced tails grow under PI. Then we create an additional
multiplicative scale to the corresponding bands:

W
(b)
Q ← gb W

(b)
Q , W

(b)
K ←

{
gb W

(b)
K (shared mode)

g−1
b W

(b)
K (symmetric mode)

(21)

and select the mode empirically (symmetric by default to avoid trivial logit rescaling). Additionally,
to keep the search small and stable we use two light-weight bounds:

gb ∈
[
1/γb, min

(
γb, κ/ρ

W
b

)]
, γb = 1 +

τ

1 + log(ωb,med/ωmin)
. (22)

Here γb tightens the window for higher-frequency bands to keep their original structure, and
κ/ρWb , κ ∈ [1.0, 1.3] to constraint overshoot of long-context pre-activations. We choose {gb} to
minimize weighted perplexity across a few target lengths to emphasize longer contexts:

Loss = min
{gb}

∑
ℓ∈L

wℓ ppl(ℓ; {gb}),
∑
ℓ

wℓ = 1, {gb} = argmin
λ

(Loss) (23)

We randomly sample 10 long documents (> 20k length) from Proof-pile (Zhangir Azerbayev, 2022)
as the tiny calibration set and more details can be found in algorithm 1 (Appendix).

We focus on rescaling weights (specifically WQ,WK) rather than adjusting activation quantization
for three reasons. (i) Unknown, high-variance activations. Under PI, activation statistics become
position- and content-dependent (phase crowding, aliasing, prompt style), so any activation clip/step
calibrated on short contexts can drift at long contexts; correcting this reliably demands runtime adap-
tation and larger calibration sets. In contrast, weight perturbations are static post-quantization, and
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their effect on queries/keys is linear and position-invariant under RoPE, making bandwise weight
scaling stable and predictable. (ii) Broader compatibility and generalizability. Many deployments
keep activations in FP16/BF16 (or quantize only KV caches) and use diverse kernels/runtimes;
changing activation quantizers often requires kernel changes and retuning. Weight-only scaling
is model-file–local, quantizer-agnostic, hardware-agnostic, and works whether activations are full
precision or quantized. (iii) Simplicity and safety. Bandwise scaling of WQ,WK (with a sym-
metric option WQ← gbWQ, WK ← g−1

b WK) preserves logit scale, avoids reconfiguring per-layer
clips/steps, and needs only a tiny dev set to search gb. This yields a drop-in fix that reduces long-
context aliasing and outlier amplification without touching the LLM serving system stack. Overall,
weight rescaling offers a robust, low-friction lever to counter PI-induced distortions while remaining
portable across models and inference backend.

5 EXPERIMENTS AND RESULTS

We conduct experiments primarily on the LLaMA-2-7B (Touvron et al., 2023) pretrained model
(additional Vicuna (Zheng et al., 2023) results can be found in Appendix) without any long-context
adaptation or fine-tuning. For position interpolation, we focus on YaRN, as it represents the current
state-of-the-art: it consistently outperforms alternatives and is the only method that remains stable at
extended token lengths without long context tuning. For quantization, we adopt a group size of 128
across all settings. In the AWQ baseline, weights are rescaled channel-wise using the search-derived
scales and clipping thresholds, following the official implementation. We additionally explore acti-
vation quantization and Hadamard rotation; details are provided in the Appendix. All experiments
are conducted on two NVIDIA RTX 4090 GPUs and one AMD MI300X accelerator.

5.1 EVALUATION ON THE GOVREPORT DATASET

We evaluate the model’s perplexity (PPL) with the GovReport dataset (Huang et al., 2021) from 2K
to 32K using YaRN scaling on LLaMA-2-7B (Touvron et al., 2023) and Vicuna-7B (Zheng et al.,
2023). Perplexities are computed with a 256 token sliding window and reported as moving averages.
As shown in Table 1, Q-ROAR W4 closely tracks FP16 up to 16K: across 2K–16K the absolute gap
to FP16 is smaller than 0.04 PPL. At 32K, Q-ROAR reduces degradation relative to all baselines,
reaching 5.833 vs. 6.069 (FP16), 6.302 (AWQ W4), and 6.783 (RTN W4) as a relative improvement
of 8% over AWQ and 14% over RTN at the longest window. Overall, these results support that
channel-aware rescaling mitigates the compounding effects of interpolation and quantization as the
window grows, while preserving standard sequence length performance.

Table 1: GovReport perplexity on LLaMA-2-7B across evaluation context sizes (lower is better).

Setting Context Length
(YaRN = 16)

Evaluation Context Window Size
2048 4096 8192 16384 32768

FP16 64K 4.437 4.359 4.329 4.175 6.069
RTN W4 64K 4.544 4.485 4.470 4.575 6.783
AWQ W4 64K 4.489 4.421 4.405 4.414 6.302
Q-ROAR W4 (ours) 64K 4.441 4.393 4.321 4.181 5.833

5.2 EVALUATION ON THE PROOF-PILE DATASET

We evaluate LLaMA-2-7B on Proof-Pile from 2K to 131K tokens and results are shown in Table 2.
With moderate YaRN scaling (s=8), all quantized baselines stay close to FP16, and Q-ROAR W4
is consistently the best among them; at 16K, for instance, Q-ROAR reaches 2.458 compared with
2.476 for AWQ and 2.517 for RTN. Under aggressive scaling (s=32, 32K–131K) without any long-
context finetuning, even YaRN fails to fully stabilize quantized models. RTN and AWQ deteriorate
substantially; at 131K they reach 9.958 and 8.700, respectively, versus 5.386 for FP16. In this
regime, Q-ROAR clearly dominates, cutting perplexity relative to RTN by 19–21% and relative to
AWQ by 7–10% across 32K, 64K, and 131K (e.g., at 32K: 5.054 vs. 6.249 for RTN and 5.460 for
AWQ; at 131K: 7.869 vs. 9.958 and 8.700), while remaining near FP16 at shorter lengths.
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Table 2: Proof-pile perplexity on LLaMA-2-7B across evaluation context sizes (lower is better).
Values at ≤16K use YaRN scale factor s=8; values at ≥32K use s=32.

Setting Evaluation Context (s=8) Evaluation Context (s=32)
2048 4096 8192 16384 32768 65536 131072

FP16 2.847 2.667 2.543 2.438 4.261 4.074 5.386
RTN W4 2.917 2.739 2.613 2.517 6.249 6.187 9.958
AWQ W4 2.891 2.709 2.583 2.476 5.460 5.410 8.700
Q-ROAR W4 (ours) 2.888 2.701 2.577 2.458 5.054 4.992 7.869

Overall, these results indicate that the interaction between position interpolation and post-training
quantization is the main failure mode at long context lengths, and that Q-ROAR largely mitigates
the resulting degradation.

5.3 STANDARD LLM BENCHMARKS

The results on the standard benchmarks are shown in Table 3. We evaluate WikiText2 test set (Merity
et al., 2016) and five zero-shot commonsense reasoning tasks. The selected benchmarks include
BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-easy, and ARC-challenge (Clark et al., 2018).

Table 3: Performance of LLaMA-2-7B on standard LLM benchmarks under different quantization
and PI settings. Zero-shot accuracy on 5 tasks plus average and WikiText2 perplexity.

Setting ARC-C ARC-E BoolQ HellaSwag WinoGrande 5-shot Avg. WikiText2 PPL
Base Context (4096 context window length)

Baseline FP16 52.3 80.1 76.2 78.9 67.7 70.83 5.47
RTN W4 48.6 76.5 72.4 74.1 59.1 64.14 5.73
RTN W4-A4 47.2 75.0 71.3 72.8 57.9 62.02 5.92
AWQ W4 48.9 76.8 73.1 74.9 59.6 64.25 5.61
AWQ W4-A4 47.5 75.2 71.7 73.2 58.1 62.31 5.77

Extended Context with YaRN (32K context window length, s=8)
Baseline FP16 48.7 75.6 72.0 73.5 58.6 63.71 6.09
RTN W4 48.0 75.1 71.4 72.8 57.7 63.32 6.41
RTN W4-A4 47.1 74.6 70.9 72.0 57.4 62.84 6.60
AWQ W4 48.3 75.3 71.9 73.1 58.0 63.52 6.31
AWQ W4-A4 47.3 74.8 70.8 72.3 57.2 62.53 6.49
Q-ROAR W4 49.0 75.9 72.4 73.8 58.6 63.96 6.18
Q-ROAR W4-A4 48.2 75.2 71.7 73.0 58.2 63.21 6.39

At the base 4K context, quantization inevitably lowers performance compared to FP16, with AWQ
generally stronger than RTN. When extending the context to 32K with YaRN, all methods see a drop,
but Q-ROAR consistently narrows the gap. Both W4 and W4-A4 variants of Q-ROAR deliver higher
average accuracy and lower perplexity than existing quantization baselines, and in several cases
even match or slightly surpass FP16 at long context. This demonstrates that Q-ROAR effectively
stabilizes quantized models under interpolation stress without sacrificing standard-context accuracy.

6 CONCLUSION

In this paper, we analyzed why position interpolation degrades post-training quantized LLMs and
introduced interpolation pressure (PI) and tail-inflation Ratios (TIR) to quantify the interaction
between RoPE scaling and quantization. Guided by these diagnostics, we proposed Q-ROAR, a
portable weight-only rescaling of (WQ,WK) applied at the band level. Q-ROAR delivers consistent
long-context improvements with negligible overhead and without kernel modifications. The method
is designed for RoPE-interpolated and quantized models, it substantially reduces aliasing and outlier
amplification at extended lengths. Overall, Q-ROAR lowers perplexity on long-context workloads
by 14% to 21% compared to directly applying quantization on RoPE-interpolated LLM models
while maintaining short-context accuracy and remaining fully compatible with standard LLM infer-
ence system pipelines.
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A APPENDIX

A.1 LLM USAGE

In this paper, we use LLM mainly for polish writing and generate some plotting scripts for appendix.

A.2 ALGORITHM AND SEARCHING PARAMETER

Algorithm 1 Band-Limited Weight Rescale for Quantized LLMs

Require: RoPE freqs {ωi}, bands {Bb}Bb=1, dev set D, lengths L with weights wℓ, quantile 1 − ε,
prior τ , cap κ, grid size K

1: for each band b = 1, . . . , B do
2: Estimate ρWb on D (short vs. PI long)
3: Set bounds [g

b
, gb]←

[
1/γb, min(γb, κ/ρ

W
b )

]
, with γb = 1 + τ

1+log(ωb,med/ωmin)

4: Build a log-spaced grid Gb of K points in [g
b
, gb]

5: end for
6: Initialize gb ← 1 (all b); compute baseline J =

∑
ℓ wℓ ppl(ℓ) on D

7: for each band b = 1, . . . , B do
8: for each g ∈ Gb do
9: Temporarily apply W

(b)
Q ← gW

(b)
Q and W

(b)
K ← g−1W

(b)
K (symmetric mode)

10: Score Ĵ(g) =
∑

ℓ∈L wℓ ppl(ℓ) on D
11: end for
12: Commit gb ← argming∈Gb

Ĵ(g)
13: end for
14: Optionally run a reverse pass (b = B → 1) for refinement
15: return final {gb} and rescaled WQ,WK

We use B=8 log-spaced bands; ε=10−3 (quantile); τ=0.1 (frequency prior); κ=1.2 (overshoot
cap); K=7 grid points per band; wℓ ∝ ℓ to emphasize longer contexts. We cache model states
between trials and evaluate each candidate once (optionally recheck the best at the longest length).
This keeps complexity at O(B ·K) and aligns decisions with RoPE frequency structure while only
modifying WQ/WK .

A.3 ADDITIONAL ROPE INTERPOLATION WORK DETAILS

Let L0 be the training context window and L ≫ L0 the desired test window. PI methods either (a)
remap test positions m 7→ m̂ into [0, L0], or (b) rescale the per-dimension positional frequencies
{θi}d/2i=1 used by the model’s rotary/phase parameters.1

Linear Interpolation (LI) (Chen et al., 2023a). Positions are uniformly compressed so the long
context matches the training range:

m̂ = m · L0

L
. (24)

In this case, large test positions are squeezed back into [0, L0], keeping the effective positional
phases within the regime the model saw during training. In this case, all hidden rotation dimension
pair was slow down equally. However, local resolution is reduced by the factor L/L0, which can
weaken short-range attention and does not works well without finetune.

NTK-aware PI (bloc97, 2023). on the other hand, slow low frequencies channels more than high
ones by adjusting the RoPE base. If the original base is b (so θi = b−2(i−1)/d), choose a stretch
α > 1 and set

b′ = b · α
d

d−2 ⇐⇒ θ̃i = θi · α− 2(i−1)
d−2 . (25)

1We use θi to denote the model’s internal per-dimension “positional frequency” parameters; details of RoPE
are standard and omitted here.
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This method non-uniform slowdown preserves high-frequency detail (local fidelity) while still curb-
ing long-range phase growth in low frequencies—often stronger tails than LI with little short-context
regression.

YaRN (Frequency-Band Segmentation)(Peng et al., 2023). YaRN does not interpolate the high-
frequency dimensions (small wavelength λi), always interpolates the low-frequency dimensions
(large λi) to avoid extrapolation, and applies an NTK-style partial interpolation in between. Let
S=L/L0 ≥ 1 be the stretch and define a wavelength proxy λi ∝ 1/θi. YaRN sets a per-dimension
slowdown exponent gi ∈ [0, 1] that increases with λi:

θ̃i = θi S
−gi , gi =


0, λi ≪ L (high freq; no interpolation),

1, λi ≥ L (low freq; always interpolate),

βi ∈ (0, 1), otherwise (NTK-like blend; increases with λi).

(26)

Equivalently, low-frequency bands are linearly compressed (m 7→ m/S), high-frequency bands
are left unchanged, and mid bands receive a softer, NTK-aware slowdown. This preserves local
detail while stabilizing long-range behavior; a mild attention-logit rescale may be used for additional
stability.

LongRoPE (Per-Dimension Scaling) (Ding et al. (Ding et al., 2024)). LongRoPE generalizes
YaRN by assigning an independent scaling si≥ 1 to each positional dimension and searching {si}
on validation tasks:

θ̃i =
θi
si
, i = 1, . . . , d

2 . (27)

LongRoPE allocate stronger slowdowns to the most alias-prone (typically higher-frequency) di-
mensions and lighter slowdowns elsewhere. This heterogeneous policy has enabled extremely long
effective windows (reported to millions of tokens) while preserving task performance. However it
require one-time search/tuning to obtain {si}.
Overall, PI methods extend token length support without finetuning by either remapping positions
(Eq. 24) or rescaling positional frequencies (Eqs. 26–27). Linear Interpolation is the simplest but
uniformly compresses local resolution; YaRN offers a band-wise compromise; LongRoPE further
tailors the slowdown per dimension to maximize long-range stability with minimal impact on short-
range behavior.

A.4 ADDITIONAL RESULTS WITH VICUNA-7B

See results in table 4

Table 4: GovReport perplexity on Vicuna-7B (YaRN = 16)

Setting Context Length
(YaRN = 16)

Evaluation Context Window Size
2048 4096 8192 16384 32768

FP16 64K 4.504 4.424 4.394 4.238 6.251
RTN W4 64K 4.612 4.552 4.537 4.644 6.986
AWQ W4 64K 4.556 4.487 4.471 4.480 6.491

Q-ROAR W4 64K 4.508 4.459 4.386 4.244 6.008

A.5 ADDITIONAL COMPREHENSIVE STUDY WITH FIGURE AND PLOTS

This section presents a comprehensive ablation study examining the effects of different quantization
methods, position interpolation techniques, Hadamard transformations, and their combinations on
long-context language model performance. All experiments are conducted using perplexity evalua-
tion on extended sequences up to 19,456 tokens.
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A.5.1 POSITION INTERPOLATION METHODS ANALYSIS

Position interpolation is crucial for extending pre-trained models to longer contexts than their train-
ing sequences. We compare three approaches: YARN (Yet Another RoPE extensioN), NTK-aware
scaled RoPE, and no interpolation.
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Position Interpolation Methods for Long Context Extension

Figure 2: Position Interpolation Methods Comparison. Performance comparison of NTK-aware
scaling, YARN interpolation, and no interpolation across FP16 and AWQ quantized models. YARN
consistently demonstrates superior performance for long-context extension, maintaining lower per-
plexity degradation as sequence length increases.
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(a) FP16 Precision
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(b) AWQ Int4 Quantization
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Position Interpolation Methods: YARN vs NTK Detailed Analysis

Figure 3: Detailed YARN vs NTK Analysis. In-depth comparison showing (a) direct performance
comparison, (b) relative improvement of YARN over NTK, (c) scaling factor analysis, and (d) con-
vergence behavior. YARN shows consistent advantages, particularly at longer sequence lengths with
up to 15% relative improvement over NTK interpolation.

Key Findings:

• YARN consistently outperforms NTK-aware scaling by 8-15% across all sequence lengths
• No interpolation leads to catastrophic performance degradation beyond training context
• YARN maintains more stable convergence properties compared to NTK scaling
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(a) FP16: NTK vs YARN
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(b) AWQ: NTK vs YARN
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Position Interpolation Methods: Comprehensive Analysis

Figure 4: Interpolation Method Deep Dive Analysis. Comprehensive analysis across four dimen-
sions: (a) method comparison with error bars, (b) relative performance improvements, (c) sequence
length sensitivity analysis, and (d) convergence stability metrics. Results demonstrate YARN’s ro-
bustness across different evaluation criteria.

• The advantage of YARN becomes more pronounced at longer sequences (>12K tokens)

A.5.2 QUANTIZATION METHODS COMPARISON

We evaluate four quantization approaches: FP16 (reference), AWQ (Activation-aware Weight Quan-
tization), RTN (Round-to-Nearest), and NF4 (4-bit NormalFloat), examining both weight-only and
weight+activation quantization scenarios.

Key Findings:

• NF4 achieves the lowest perplexity degradation (2.68%) while maintaining 4x compression

• AWQ provides an practical balance with 5.13% degradation and efficient inference

• Weight+activation quantization increases degradation by 4% but enables higher throughput

• Advanced quantization techniques can further reduce quality loss by 1-2% due to the con-
sideration of outlier effect

• Performance degradation will be further enlarged with the increased interpolation scale rate
and token length, so our approach is necessary and exactly tackling this problem

A.5.3 HADAMARD TRANSFORMATION EFFECTS

Hadamard transformations can improve quantization by redistributing activation magnitudes and
weight distributions. We analyze their impact on different projection layers and quantization scenar-
ios.

Key Findings:
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Quantization Methods Comparison on Long Context Tasks

Figure 5: Main Quantization Methods Comparison. Performance evaluation of primary quanti-
zation techniques across extended sequences. NF4 achieves the best quality-compression trade-off,
while AWQ provides an excellent balance between performance and efficiency for practical deploy-
ment.
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Figure 6: Quantization Precision Analysis. Detailed comparison of quantization methods showing
(a) perplexity vs sequence length, (b) memory efficiency metrics, (c) compression ratios, and (d)
quality-efficiency Pareto frontier. NF4 emerges as the optimal choice for quality-sensitive applica-
tions.

• Hadamard transformations provide 3-8% improvement in weight+activation quantization
• Benefits are more pronounced in deeper layers and gate/up projections
• Weight-only quantization shows minimal improvement from Hadamard transforms
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Figure 7: Weight vs Activation Quantization Effects. Comparative analysis of weight-only ver-
sus weight+activation quantization strategies. Results show that activation quantization introduces
additional performance degradation but enables higher compression ratios and inference speed im-
provements.
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(a) Hadamard with Weight vs Weight+Activation
RTN Baseline
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RTN + Hadamard (qkv)
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Advanced Quantization Techniques Analysis

Figure 8: Advanced Quantization Techniques. Analysis of sophisticated quantization methods
including mixed-precision strategies and adaptive quantization. Advanced techniques show promise
for further improving the quality-efficiency trade-off.

• Layer-specific optimization of transformations can yield additional 2-3% gains

A.5.4 TEMPERATURE SCALING AND CALIBRATION

Temperature scaling affects the quantization calibration process and can significantly impact model
performance. We analyze different temperature settings and their interaction with quantization meth-
ods.

Key Findings:

• Optimal temperature varies by quantization method (0.8-2.2 range)

• AWQ shows higher temperature sensitivity than RTN or NF4

• Temperature scaling effects are amplified in long-context scenarios

• Proper calibration(weight re-scale) can recover 40-60% of quantization quality loss
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(a) Weight-only Quantization
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(b) Weight + Activation Quantization
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Hadamard Transformation Effects on Different Quantization Schemes

Figure 9: Hadamard Transformation Effects. Impact of Hadamard transformations on (a) weight-
only quantization and (b) weight+activation quantization across different projection layers (gate, up,
down). Hadamard transformations show more significant benefits for weight+activation scenarios.
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(a) Output Projection (o_proj)
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(b) Query-Key-Value Projection (qkv_proj)

RTN Baseline
RTN + Hadamard (qkv_proj)
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(c) Up Projection (up_proj)

RTN Baseline
RTN + Hadamard (up_proj)
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(d) Gate Projection (gate_proj)
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Hadamard Transformation Effects on Different Projection Layers

Figure 10: Layer-wise Hadamard Analysis. Detailed examination of Hadamard effects across
different transformer layers and projection types. Analysis reveals (a) per-layer sensitivity, (b)
projection-specific benefits, (c) cumulative effects, and (d) optimization convergence patterns.

A.5.5 CHANNEL RESPONSE AND EMBEDDING ANALYSIS

Advanced analysis of channel-wise responses and embedding-specific modifications reveals impor-
tant insights for optimization and specialized deployment scenarios.

Key Findings:

• Channel importance follows a power-law distribution with 20% critical channels
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Figure 11: Pre-quantization Transformation Effects. Analysis of various pre-quantization trans-
formations including Hadamard, rotation, and scaling operations. Results demonstrate the impor-
tance of proper transformation selection for different quantization schemes.
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(a) Temperature Scaling Effects
AWQ Default (T=1.0)
AWQ Temp 5.0
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Temperature Scaling and Context Length Analysis

Figure 12: Temperature Scaling Analysis. Comprehensive study of temperature effects on quan-
tization performance showing (a) temperature sensitivity curves, (b) calibration stability, and long-
context behavior. Proper temperature selection can improve performance by 5-10%.

• Embedding-only (first layer) modifications can improve efficiency by 15-20% for specific
tasks

• Adaptive channel rescaling shows improvement over uniform approaches

• Position encoding modifications interact significantly with interpolation methods

A.5.6 COMPREHENSIVE METHOD COMPARISON

We present a holistic comparison of all investigated methods and their combinations.

A.6 POSITION INTERPOLATION EFFECTS ON ACTIVATION DISTRIBUTIONS

We analyze how Position Interpolation (PI) methods affect transformer activation distributions, fo-
cusing on quantization implications. Our analysis examines pre-activation tail growth (ρW ) and
axis-aligned amplitude growth (ρA) across four PI approaches using LLaMA-2-7B.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 2500 5000 7500 10000 12500 15000 17500 20000
Sequence Length

6

7

8

9

10

11
Pe

rp
le

xi
ty

(a) Perplexity Convergence
FP16 Reference
AWQ Int4
RTN Int4
RTN Int4 W+A
NF4

0 2000 4000 6000 8000 10000
Sequence Length

0

2

4

6

8

10

12

R
el

at
iv

e 
E

rr
or

 (%
)

(b) Relative Error vs FP16 (%)
AWQ Int4
RTN Int4
RTN Int4 W+A
NF4

Method Convergence Analysis

Figure 13: Method Convergence Analysis. Convergence behavior and stability analysis across
different combinations of techniques. Results show convergence patterns, optimization stability,
and method interaction effects critical for reliable deployment.

Figure 14: Channel Response Sensitivity. Testing each channel responses on Q,K projection layer
weight rescaling (all attention layers) with fixed factor 2
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(a) Channel Response Techniques
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(b) Temperature & Beta Parameter Effects
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Channel Response and Parameter Optimization Analysis

Figure 15: Channel Response Analysis. Analysis of channel-wise activation patterns and their
impact on quantization performance. Results show channel importance distributions, optimization
opportunities, and adaptive quantization potential.

A.6.1 OUTLIER SHIFTING PATTERN ANALYSIS

Figure 20 examines how PI methods systematically alter the spatial and magnitude characteristics of
activation outliers. The analysis reveals that PI methods exhibit distinct outlier magnitude distribu-
tions, with YARN showing broader outlier spreads compared to baseline methods. Spatial analysis
demonstrates position-dependent outlier patterns that are particularly relevant for long-context ap-
plications, while channel-wise analysis reveals non-uniform outlier distribution across attention pro-
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(c) Individual Channel Scaling
Channel Response 0.5x
Channel Response 1.5x
Channel Response Search

0 2500 5000 7500 10000 12500 15000 17500 20000
Sequence Length

6

7

8

9

10

Pe
rp

le
xi

ty

(d) Negative Channel Response
Standard AWQ
Negative Channel Response

Embedding-only Modifications and Channel Response Techniques

Figure 16: Embedding-Only Modifications. Specialized analysis of embedding layer modifica-
tions showing (a) embedding quantization effects, (b) vocabulary adaptation strategies, (c) position
encoding modifications, and (d) combined optimization approaches. Embedding modifications can
provide targeted improvements for specific use cases.

jection dimensions. The high correlation between baseline and PI method outlier patterns suggests
systematic rather than random activation shifts, indicating that PI methods introduce predictable
changes to activation characteristics.

A.6.2 PRE-ACTIVATION TAIL GROWTH (ρW ) ANALYSIS

Figure 21 reveals that YARN exhibits slightly elevated outlier fractions (0.85% vs 0.82% baseline),
indicating increased weight quantization sensitivity. All methods show heavy-tailed distributions
(kurtosis > 1000) that challenge standard quantization approaches.

A.6.3 AXIS-ALIGNED AMPLITUDE GROWTH (ρA) ANALYSIS

As shown in Figure 22, YARN demonstrates the highest amplitude concentration (52.97) and peak
channel variance (1.311), indicating increased activation clipping risk. Linear interpolation exhibits
the most controlled amplitude growth (concentration: 51.06).

A.6.4 COMPREHENSIVE PI EFFECTS ANALYSIS

Figure 23 illustrates the fundamental trade-off between long-context capability and quantization
compatibility. Linear interpolation occupies the most quantization-friendly region despite higher
computational difficulty scores. However it dose not work without finetune the model.

A.6.5 KEY FINDINGS AND IMPLICATIONS

• YARN requires careful activation clipping management due to highest amplitude concen-
tration
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Comprehensive Method Comparison: All Techniques
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Figure 17: Comprehensive Method Comparison Matrix. Complete comparison matrix showing
performance, efficiency, and complexity trade-offs across all method combinations. This analy-
sis guides optimal configuration selection for different deployment constraints and quality require-
ments.

• NTK scaling provides balanced performance-quantization trade-offs
• All PI methods exhibit heavy-tailed distributions requiring calibration-aware quantization
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Performance Analysis Across Different Sequence Length Ranges

Figure 18: Sequence Length Breakdown Analysis. Detailed performance analysis across different
sequence length ranges showing (a) short-context performance, (b) medium-context behavior, (c)
long-context scalability, and (d) extrapolation capabilities. Critical for understanding method appli-
cability across different use cases.
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Figure 19: Statistical Analysis and Error Patterns. Statistical significance testing and error pattern
analysis across all experimental conditions. Results provide confidence intervals, significance levels,
and systematic error identification for robust conclusions.
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Figure 20: Outlier shifting patterns across PI methods showing (a) outlier magnitude distributions
for activations exceeding 3σ threshold, (b) spatial distribution of outliers along sequence positions,
(c) channel-wise outlier occurrence analysis, and (d) correlation analysis between baseline and PI
method outlier patterns.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

No P
I

YA
RN

NTK
Lin

ea
r

Position Interpolation Method

0

20

40

60

80

100
Ta

il 
Ra

tio
 (p

er
ce

nt
ile

/
)

(a) Tail Growth Comparison
99th percentile
99.9th percentile

No P
I

YA
RN

NTK
Lin

ea
r

Position Interpolation Method

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Ou
tli

er
 Fr

ac
tio

n 
(>

3
)

0.008
0.008

0.008 0.008(b) Outlier Growth Patterns

No P
I

YA
RN

NTK
Lin

ea
r

Position Interpolation Method

0

200

400

600

800

1000

1200

Ex
ce

ss
 K

ur
to

sis

(c) Distribution Tail Heaviness

0.0 0.2 0.4 0.6 0.8 1.0
Layer Number

96

98

100

102

104

Ta
il 

Ra
tio

 (9
9.

9t
h 

pe
rc

en
til

e/
)

(d) Layer-wise Tail Growth Progression (Fast Analysis)
No PI
YARN
NTK
Linear

2 0 2 4 6 8
Activation Value

10 3

10 2

10 1

100

De
ns

ity

(e) Distribution Shape Comparison
No PI
YARN

No P
I

YA
RN

NTK
Lin

ea
r

Position Interpolation Method

0

2

4

6

8

10

W
ei

gh
t-E

rro
r A

m
pl

ifi
ca

tio
n 

Fa
ct

or

(f) Weight-Error Amplification ( ^W)

Pre-activation Tail Growth Analysis ( ^W): Weight-Error Amplification

Figure 21: Pre-activation tail growth analysis showing (a) tail ratio comparison, (b) outlier fractions,
(c) distribution kurtosis, (d) layer-wise progression, (e) distribution comparison, and (f) weight-error
amplification factors across PI methods.
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Axis-aligned Amplitude Growth Analysis ( ^A): Activation Clipping Effects

Figure 22: Amplitude growth analysis showing (a) concentration factors, (b) peak amplitudes, (c)
channel distribution, (d) layer progression, (e) clipping risk, and (f) spatial patterns for activation
quantization assessment.
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Figure 23: Comprehensive PI effects showing (a) ρW vs ρA trade-offs, (b) layer-wise progression,
(c) quantization difficulty prediction, and (d) performance-efficiency analysis.
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