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ABSTRACT

Vision-language models (VLMs) hold great potential for interpreting large-scale
remote sensing (RS) archives, which are critical for applications such as envi-
ronmental monitoring, disaster response, and urban planning. However, general-
purpose VLMs primarily focus on optical imagery, perform poorly on RS tasks,
and existing RS-specific VLMs still struggle with fine-grained understanding. To
address these limitations, we propose GeoAssistant, a tool-augmented multimodal
assistant tailored for RS scenarios. GeoAssistant interprets user instructions, au-
tonomously determines whether to invoke external tools, and synthesizes their
outputs to generate precise responses. A key innovation of our approach is its
capability to process both optical and Synthetic Aperture Radar (SAR) imagery,
enabling a wide range of tasks, including visual grounding, object detection, seg-
mentation, and multifaceted reasoning. To support this, we construct the first
cross-domain, tool-augmented instruction dataset for RS, addressing the critical
challenge of task-specific data scarcity. We also introduce GeoAssistBench, a
comprehensive benchmark for cross-domain, multi-task dialogue in RS, and use it
to evaluate GeoAssistant. Our results show that GeoAssistant consistently outper-
forms existing RS-specific VLMs across diverse tasks, demonstrating its practical

value for real-world RS applications.

1 INTRODUCTION

Recent advancements in Vision-Language Models
(VLMs) have demonstrated remarkable success in
the natural image domain. These models enable
unified visual understanding, capable of performing
diverse tasks such as classification, localization, vi-
sual question answering, and dense captioning (Liu
et al.| [2023; 2024 |Chen et al., 2024} 2023b)). Their
strong conversational and instruction-following ca-
pabilities have paved the way for general-purpose
multimodal assistants (Devlin et al.| |2019; [Achiam
et al.l [2023a; (Chen et al., 2023a; [Bai et al., 2023
Chen et al.| [2023c; \Qwen Team, [2025). This suc-
cess has motivated efforts to bring such capabili-
ties into the Remote Sensing (RS) domain. How-
ever, creating a truly practical, general-purpose RS
assistant requires overcoming two critical frontiers
largely unaddressed by current models.

First, resilient earth monitoring demands all-
weather, day-and-night analytical capabilities, a do-
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Figure 1: The diverse capabilities of GeoAs-
sistant across both SAR and optical imagery.

main where optical-only models fail. Although most research focuses on optical imagery, Synthetic
Aperture Radar (SAR) data provides this vital capability. For example, during a hurricane, SAR
can penetrate thick cloud cover to map flooded areas and assess infrastructure damage when optical
sensors are rendered ineffective. A robust RS assistant must therefore master SAR data to ensure
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operational continuity for time-critical applications like disaster management and maritime secu-
rity. Second, real-world problems require the execution of complex analytical workflows, not just
answering simple questions. A practical system must therefore be able not only to compose these
workflows from a suite of specialized tools but also to be designed for extensibility, allowing for the
integration of new capabilities as they emerge.

Despite recent progress, existing RS-VLMs still fall short of these goals. Efforts like SkyEyeGPT
(Zhan et all 2025) have focused on building large-scale instruction datasets, while others like
GeoChat (Kuckreja et al.,[2024) have improved region-level understanding. However, their research
focus remains predominantly on optical data, and more critically, they lack a unified framework for
the dynamic orchestration of specialized tools (Zhan et al.l 2025).

To overcome these multifaceted challenges, we introduce GeoAssistant, a tool-augmented multi-
modal assistant for RS. As illustrated in Figure[I} GeoAssistant supports a broad spectrum of tasks
on both SAR and optical (RGB) imagery, which we categorize into two types: (i) General Abilities,
such as VQA and captioning, relying on the model’s inherent knowledge, and (ii) specialized Tool
Abilities, such as object detection and segmentation, enabled through external tools. Rather than
functioning as a monolithic model, GeoAssistant is designed as a modular, end-to-end workflow
framework that integrates perception, instruction parsing, task decomposition, tool scheduling, and
response generation, while remaining extensible to future tools and capabilities.

To support this system, we construct the first large-scale instruction dataset for tool use in the RS
domain, comprising over 554K samples with both optical and SAR data alongside detailed tool-use
chains of thought. Furthermore, we introduce GeoAssistBench, a comprehensive benchmark suite
for evaluating multi-task, cross-domain dialogue and tool-augmented reasoning in RS. Extensive
experiments on GeoAssistBench demonstrate that GeoAssistant consistently outperforms existing
RS-specific VLMs across diverse tasks.

In summary, our main contributions are as follows:

* We construct the first large-scale instruction dataset for tool augmentation in RS, containing over
554K instruction pairs with both optical and SAR data. This dataset enhances the model’s cross-
domain understanding and tool-application capabilities.

* We develop GeoAssistant, a unified, tool-augmented assistant that dynamically orchestrates spe-
cialized visual tools based on user instructions. It executes complex tasks on both optical and SAR
imagery in an end-to-end manner, generating modular and extensible workflows.

* We introduce GeoAssistBench, a benchmark suite covering both optical and SAR domains, and
use it to comprehensively evaluate GeoAssistant. Experimental results show that GeoAssistant
consistently outperforms strong VLM and RS-specific baselines on tasks such as VQA, caption-
ing, and tool-augmented tasks.

2 RELATED WORK

The Evolution of Tool-Augmented Agents. The long-standing pursuit of building artificial in-
telligence agents that integrate perception, reasoning, and action (Ruan et all [2023) began with
foundational paradigms such as symbolic agents for deliberative planning (Newell & Simon, |1976)
and reactive agents for rapid responses (Brooks}|1991). The advent of machine learning, particularly
deep reinforcement learning, catalyzed a shift towards data-driven decision-making, with seminal
works like DQN, AlphaGo, and MAML demonstrating increasingly sophisticated strategies (Mnih
et al., [2015; [Silver et al., [2016; |[Finn et al., 2017).

More recently, the capabilities of LLMs and VLMs have enabled the development of general-
purpose agents with sophisticated planning and instruction-following abilities (Ouyang et al.,[2022).
LLMs like GPT-4 exhibit powerful reasoning (Achiam et al., [2023b), while VLMs such as CLIP
(Radford et al., [2021), BLIP (Li et al.| [2022), and LLaVA (Liu et al.| [2023) have advanced joint
vision-language understanding. To enhance agents’ capacity to perform complex tasks, researchers
have focused on integrating external tools. Frameworks like ReAct (Yao et al.,2023)) interleave rea-
soning with actions, Toolformer (Schick et al.| [2023) empowers LLMs to autonomously use APIs,
and LLaVA-Plus (Liu et al.,[2024) extends this paradigm to vision-language tasks through a unified
tool interaction framework driven by image-grounded instructions. Despite their progress, these
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Table 1: A comprehensive comparison of capabilities for different RS vision-language models. CL:
Classification, IC: Image Captioning, VQA: Visual Question Answer, OP: Object Positioning, PD:
Panoptic Detection, OD: Object Detection, VG: Visual Grounding, SS: Semantic Segmentation, IS:
Instance Segmentation, RS: Referring Segmentation.

Models | Image level | Region level | Pixel level | External Skills
‘CL 1C VQA CLSAR ICSAR VQASAR OPSAR ‘PD OD VG PDSAR VGSAR‘SS IS RS ‘TOOI Lea.ming
GeoChat v v v v
LHRS-Bot v v v v v
RSGPT v v v
ﬁ EarthGPT v v v v
3 RS-ChatGPT v v v v
;SkyEyeGPT v v Y v
« EarthMarker v v Y
Falcon v v v v v v
RS-Agent v v v v v v v
GeoAssistant (Ours) | v vV v v v v v v v v v v vV VY v

systems are predicated on the statistical patterns of natural images. Their direct application to RS is
consequently hindered by a significant domain gap, where factors like extreme scale variation and
sparse semantic content challenge their foundational architectural assumptions.

Intelligent Agents in Remote Sensing. To address this gap, several agent-like systems have been
specifically developed for RS. SkyEyeGPT (Zhan et al., 2025) unifies diverse RS tasks under a
single instruction-tuned interface, while LRSCLIP (Chen et al., [2025) and RS-MoE (Lin et al.,
2025) explore specialized image-text alignment and modular expert selection, respectively. Other
works like GeoChat (Kuckreja et al.,2024) have advanced region-level dialogue but are constrained
by static task flows and an absence of tool integration. RS-Agent (Xu et al., [2024) builds upon this
by incorporating tool modules, yet its reliance on fixed toolchains and predefined templates limits
its adaptability to novel tasks and flexible tool compositions. Furthermore, these systems are largely
confined to optical data, lacking robust SAR processing capabilities. A common thread among these
pioneering efforts is the challenge of achieving dynamic, context-aware tool orchestration grounded
in high-quality, multi-modal instruction data.

To provide a clear overview of the current landscape and position our work, we present a com-
prehensive comparison of capabilities in Table [T} The table summarizes the state-of-the-art in RS
VLMs, including prominent systems like GeoChat, SkyEyeGPT, LHRS-Bot (Muhtar et al., |2024),
RSGPT (Hu et al., 2023)), EarthGPT (Zhang et al.| 2024b), RS-ChatGPT (Guo et al., |[2024), Earth-
Marker (Zhang et al.,[2024a)), Falcon (Yao et al.|[2025a), and RS-Agent (Xu et al.||[2024). As TableE]
shows, while many models perform image-level tasks, few offer a complete suite of region and pixel-
level abilities. Furthermore, support for SAR data and dedicated training for tool use are notably
rare, motivating the design of our GeoAssistant.

Conversely, our proposed GeoAssistant is architected to overcome these specific limitations. It
integrates an instruction-tuned LLM with a flexible tool orchestration framework that enables ro-
bust instruction parsing and dynamic task scheduling. Unlike previous systems dependent on static
pipelines, GeoAssistant supports end-to-end, tool-aware execution grounded in domain-specific vi-
sual inputs, including both optical and SAR imagery.

3 GEOASSISTANT

GeoAssistant is designed to address a spectrum of multi-modal RS tasks, ranging from holistic
image comprehension to fine-grained, spatially-aware interactions. Its operational framework is de-
signed to strategically leverage both its intrinsic cross-domain understanding capabilities and its se-
lective tool augmentation mechanism, thereby ensuring response robustness and precision. Figure
shows the overview of GeoAssistant’s architecture. The tasks executable by GeoAssistant, charac-
terized by their interaction modalities and processing mechanisms, can be principally categorized as
follows:

a) General Image Understanding and Dialogue: This operational mode is dedicated to holistic,
context-driven reasoning, processing input RS imagery in conjunction with user textual queries. It
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Figure 2: An overview of the GeoAssistant architecture. Our model is centered around Vicuna 7B-
v1.5, which processes multi-modal inputs. The framework features a dual-pathway design: it can
directly generate responses for general understanding tasks (top path), or invoke specialized external
tools via a planning and reasoning module for precision-based tasks (right path).

facilitates comprehensive image-level dialogue, often dispensing with the need for pre-defined spa-
tial coordinates. The mode’s scope encompasses tasks from two primary categories: it addresses
General RS Understanding by handling VQA, scene classification, and image description. Cru-
cially, it also covers the SAR RS Understanding category, addressing SAR-specific VQA and image
description.

b) Tool-Augmented Spatial Reasoning: This mode is engaged for tasks demanding fine-grained
spatial reasoning or precise localization, which correspond to our RS Specific Tasks category and
include referring object grounding, interactive segmentation, and semantic segmentation. The cor-
nerstone of this mode is GeoAssistant’s selective tool invocation mechanism. When a tool is deemed
necessary, GeoAssistant seamlessly integrates it into its workflow of instruction parsing, tool selec-
tion, execution, and result synthesis to produce accurate, visually grounded outputs. This adaptive
methodology ensures both flexibility in handling diverse instructions and high-fidelity results for
precision-critical applications.

3.1 ARCHITECTURE

GeoAssistant’s architecture is built upon the LLaVA-Plus framework (Liu et al.l [2024), which en-
dows the system with advanced multi-modal reasoning and dynamic tool integration capabilities for
RS. This architecture integrates three core components:

(i) A Visual Backbone, typically a pre-trained Vision Transformer. For this work, we select CLIP-
ViT(L-14) as the visual backbone, which has an input resolution of 336 x336.

(i1) A Cross-Modal Adapter, which is a lightweight two-layer Multi-Layer Perceptron (MLP) consis-
tent with the LLaVA architecture (Liu et al.l[2023). We initialize this component using the MLP pro-
jector from LLaVA, pre-trained on CC3M-595K. This powerful initial alignment provides a robust
foundation for the model’s subsequent fine-tuning on domain-specific RS tasks, enabling efficient
and effective vision-language fusion.

(iii) An LLM, serving as the core cognitive hub of GeoAssistant. Its primary responsibilities in-
clude interpreting user instructions, fusing multimodal inputs, performing reasoning, and generating
textual responses. Crucially, it is also tasked with orchestrating the selective invocation of external
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@ User | Can you detect the aircraft in this SAR image and provide me their locations?
XX

-~

"reasoning": The question conmmands that I answer by initiating the pre-trained
open-set detection model lae-dino.
Agent | “actions": [{"API_name"] "lae_dino", API_params": {caption": aircraft"}}]
"value": I will use lae_dino to help to answer the question. Please wait for a
moment.

Yinink

tool outputs: [{'tool": 'lae_dino', ‘output': {'boxes': [[0.51, 0.43, 0.14, 0.16], [0.07, 0.36, 0.26, 0.29],
User |[[0.43,0.0,0.18,0.08]], 'logits': [0.74,0.83, 0.76], 'phrases': ['aircraft .", ‘aircraft .', 'aircraft .',
) ‘aircraft .'T}}]
o Please summarize the model outputs and answer my first question: detect the aircraft and provide their
locations

(reasoning": Thanks to the output of the lae_dino. I can answer the question
better

"actions": []

"value": I have detected 3 aircrafts. Their locations are as follows:
Agent | Aircraftl: [0.51, 0.43, 0.14, 0.16]. This aircraft is located in the center-right

part of the image.

Aircraft2: [0.07, 0.36, 0.26, 0.29]. This one is situated in the middle-left area.

Aircraft3: [0.43, 0.0, 0.18, 0.08]. This aircraft is found in the top-center part

{f‘rhe image.

Yonswer

Figure 3: GeoAssistant workflow on a tool-augmented object detection task. The process unfolds in
two turns. In the first turn, the agent receives the user’s multimodal query (X, X;) and generates a
plan (Yinink) that includes its reasoning and a call to an external tool. In the second turn, the agent
receives the tool’s output (X¢,,;) and synthesizes this new information to produce the final, grounded
answer (Ygnswer). User (automated)” step denotes an internal system process that simulates a
second conversational turn by reformatting the tool’s output and feeding it back to the agent.

specialized tools when precision is paramount. This architecture employs the open-source Vicuna-
v1.5 (7B) (Zheng et al.,|2023a) as this central unit.

3.2 WORKFLOW AND UPDATING FUNCTION

GeoAssistant operates through a structured, multi-turn dialogue workflow that unifies its direct rea-
soning and tool-augmented capabilities. This interaction, formalized as a two-turn process (Fig-
ure[3), is represented by the following sequence format:

User : X;, X;<STOP> Agent : Y;pinir<STOP> @))
User : X;00;<STOP> Agent : Y,,s<STOP> 2)

In the first turn, the user initiates the dialogue with a multi-modal query composed of an image X;
and a textual instruction X ;. The Agent processes this input and formulates a response Y;,;,,%, which
encapsulates its internal reasoning and a planned tool action. Following this, the system executes
the specified tool and returns its output as an observation, X;,.;. In the second turn, this observation
is provided as input to the Agent, which then synthesizes all available information to generate the
final textual answer, Yy,,s.

To accommodate both operational modes, the Agent’s outputs (Y;4nk and Yy, s) adhere to a unified
format comprising three fields: reasoning, actions, and value. For tasks not requiring external tools,
the actions field is null. The entire model is trained end-to-end with a standard auto-regressive
objective. The training loss is exclusively computed on the Agent-generated tokens (Yiinx and
Yans)- This targeted updating strategy compels the model to learn not only what to respond, but also
how and when to invoke tools, thereby mastering the complete reasoning and harmonized workflow
from the instruction data.

4 RS TOOL-AUGMENTED INSTRUCTION DATASET

To serve as the foundation for training GeoAssistant, we constructed a large-scale, tool-augmented
instruction dataset comprising over 554,913 samples. The detailed breakdown of our dataset is
summarized in Table 2l
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Table 2: Overview of the abilities of GeoAssistant and data statistics of our constructed RS tool-
augmented instruction Dataset. For optical imagery: DOTA (Xia et al., 2018)), DIOR (Li et al.}
2020), FAIR 1M (Sun et al., 2022) are datasets for Panoptic Detection and Object Detection; Ris-
Bench (Dong et al., |2024)), OpenEarthMap is dataset (Xia et al.,|2023) for Semantic Segmentation;
RisBench, iSAID (Zamir et al., |2019) are datasets for Instance Segmentation and Referring Seg-
mentation; SpaceNet (Van Etten et al., 2018), CityScale (Hetang et al., 2024) are datasets for Road
Extraction; RICE is dataset for Cloud Removal (Lin et al.,[2019). For SAR imagery: SARLANG-
IM (Wei et all 2025) is dataset for General Understanding; SARDet-100K (Li et al., 2024b) is
dataset for Panoptic Detection and Visual Grounding.

| Abilities | Tools | Source | Size
General Understanding - GeoChat Instruct 198,326
& Panoptic Detection LAE-DINO |Pan et al. (2024) DOTA, DIOR, FAIRIM 18,982
g Object Detection LAE-DINO DOTA, DIOR, FAIRIM 12,557
g w Visual Grounding RemoteSAM [Yao et al. RiSBench, DIOR 16,086
iy,
= (2025b)
SHE Semantic Segmentation Segearth-OV |Li et al.[(2024a) OpenEarthMap 6,000
"g_ Instance Segmentation RemoteSAM RisBench, iSAID 13,000
= Referring Segmentation RemoteSAM RisBench, iSAID 14,999
Road Extraction SAM-Road Hetang et al. SpaceNet, CityScale 1,236
2024)
Cloud Removal SpA GAN |Pan|(2020) RICE 2,960
& 2 General Understanding - SARLANG-1M 249,488
< é Panoptic Detection DenoDet Dai et al.| (2024) SARDet-100K 11,710
= Visual Grounding fintuned LAE-DINO SARDet-100K 9,569
Total | - | - | - |554,913
Table 3: Overview of GeoAssistBench, including datasets, size, and input/output formats.
Task Dataset Size  Input/Output
Task Planning Custom 50 Instruction — Tool Calls
VQA RSVQA-LRBEN 10,004 Image + Question — Answer

RSVQA-HRBEN 62,554 Image + Question — Answer
Referring Object Detection GeoChat-Instruct 7,593  Image + Referring Expression — Bounding Box
SAR VQA SARDet-100K 11,955 Image + Question — Answer
SAR Image Captioning SARLANG-IM 6,000 Image — Text

4.1 DATA FOR GENERAL UNDERSTANDING

To cultivate the GeoAssistant’s internal reasoning for tool-free scenarios, we curated a corpus for
general visual understanding across both optical and SAR domains. For optical data, we refined
the GeoChat Instruct dataset (Kuckreja et al.| [2024), filtering out instances requiring grounding and
using an LLM to generate an explicit reasoning step for each instruction-response pair. For the
SAR domain, we adapted the SARLANG-1M dataset (Wei et al., [2025) by converting its image-
caption pairs into a similar instruction-following format, again generating relevant questions and a
corresponding thought process. This unified data structure teaches the agent to confidently handle
queries based on its inherent knowledge across different modalities.

4.2 DATA FOR TOOL-AUGMENTED TASKS

To teach GeoAssistant how and when to invoke external tools, we developed a unified data gener-
ation pipeline and applied it to both optical and SAR source datasets. This pipeline systematically
converts ground-truth labels into a two-turn dialogue format. For each source label, we prompt the
Gemini 2.5 Flash (Doshi, [2025) to: (i) generate a plausible human-like query (Xg). (ii) produce the
thought process and a structured tool call (Yzpink). (iil) format the ground-truth as the tool’s output
(Xtoot)- (iv) generate a final answer summarizing the findings (Yg,,s). This scalable methodology
allowed us to create a comprehensive dataset for training tool-use across a diverse set of precision-
critical tasks, including detection, segmentation, and grounding for both optical and SAR imagery.
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5 EXPERIMENT

5.1 BENCHMARK SETUP: GEOASSISTBENCH

To systematically evaluate GeoAssistant, we introduce GeoAssistBench, a benchmark suite span-
ning both optical and SAR modalities across a wide range of RS tasks. GeoAssistBench is con-
structed from established datasets and reformulated into a unified instruction—response format with
explicit tool-use chains of thought. The suite covers both general understanding and tool-augmented
reasoning. The detailed information can be seen from Table |3} GeoAssistBench includes the fol-
lowing four types of tasks:

» Task Planning Accuracy: A test set of 50 QA pairs covering object detection and instance seg-
mentation, measuring whether the agent correctly invokes the required tool sequence.

* Visual Question Answering (VQA): RSVQA-LRBEN and RSVQA-HRBEN (Lobry et al.,
2020), covering diverse geographic regions and question types.

* Referring Object Detection: GeoChat-Instruct (Kuckreja et al.l 2024), using Acc@0.5.

* SAR Understanding: ARDet-100K (Li et al.,2024b) for SAR VQA (object identification, count-
ing, classification, positioning), and SARLANG-1M (Wei et al.l [2025) for captioning. Metrics:
accuracy for VQA; BLEU (Papineni et al., [2002), ROUGE-L (Lin, 2004), and CIDEr (Vedantam
et al.| 2015)) for captioning.

5.2 IMPLEMENTATION, TRAINING AND SERVING

We initialize GeoAssistant using pre-trained CLIP-ViT-L/14 and LLaVA-v1.5 (7B) weights. The
model undergoes full-parameter fine-tuning for 2 epochs using the AdamW optimizer, a learning rate
of 2e-5, a cosine learning rate scheduler, and a global batch size of 144. All images are processed
at a 336 x 336 resolution. The entire training process took approximately 4 days on a system
equipped with 8 NVIDIA 6000 Ada GPUs. The fine-tuning curriculum is a two-stage process: an
initial stage on our optical dataset, followed by a second stage on the SAR dataset. To mitigate
catastrophic forgetting, the second stage’s data is a mixture of SAR samples and 20% of the optical
image-text pairs. During training, each tool-augmented task is guided by a unique chain-of-thought
template. For deployment, the fully trained 7B GeoAssistant and its tools are served via the FastChat
system (Zheng et al.,[2023b) on a single NVIDIA A100 80GB GPU.

5.3 QUANTITATIVE RESULTS

Task Planning Accuracy: As shown in Table i} GeoAssistant achieves a perfect 100% accuracy
on task planning, surpassing RS-ChatGPT and RS-Agent. This highlights that our advantage stems
from architectural design for tool orchestration rather than solely the underlying LLM.

Table 4: Comparison of our GeoAssitant with specialized VLMs on Task Planning Accuracy. OD:
Object Detection, IS: Instance Segmentation.

Model oD IS | Avg
RS-ChatGPT
gpt-3.5-turbo-1106  77.42%  55.39% | 66.40%
gpt-3.5-turbo 51.21% 76.43% | 63.82%
gpt-4o-mini 44.15% 84.45% | 64.30%
RS-Agent
gpt-3.5-turbo-1106  82.78%  79.45% | 81.11%
gpt-3.5-turbo 90.21% 68.89% | 79.55%
gpt-4o-mini 94.79%  100% 97.39%

GeoAssistant (Ours) 100% 100% | 100%

Visual Question Answering: On both RSVQA-LRBEN and the more challenging RSVQA-
HRBEN benchmarks, GeoAssistant outperforms all baselines across every metric (Table[5] Table|[6).
These results demonstrate robust visual reasoning and strong generalization ability.
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Table 5: Comparison of our GeoAssistant with VLMs on the RSVQA-LRBEN dataset.

Model Presence Comparison Rural/Urban  Average
LLaVA-1.5 (Liu et al., 2023) 55.46 68.20 59.00 62.77
MiniGPTv2 (Chen et al.,[2023a) 55.16 55.22 39.00 54.96
RSGPT (Hu et al.|[2023) 91.03 91.70 94.00 92.29
GeoChat(Kuckreja et al.| 2024) 91.09 90.33 94.00 90.70
LHRS-Bot (Muhtar et al.,|[2024) 88.51 90.00 89.07 89.19
GeoAssistant 92.06 91.88 95.12 93.23

Table 6: Comparison of our GeoAssistant with VLMs on the RSVQA-HRBEN dataset. Results are
reported using the Accuracy.

Model Presence Comparison Average
MiniGPTv2 (Chen et al.,[2023a) 40.79 5091 46.46
Qwen-VL (Qwen Teaml, 2025) 66.44 60.41 63.06
InternVL2-8B (Chen et al., [2023c) 67.35 7691 72.70
GeoChat(Kuckreja et al.| |[2024) 58.45 83.19 72.30
EarthGPT (Zhang et al.,|2024b)) 62.77 79.53 72.06
GeoAssistant 63.45 83.91 73.68

Referring Object Detection: On the GeoChat-Instruct dataset (Table [7), GeoAssistant consis-
tently surpasses advanced VLM baselines. The gains are especially pronounced in the Multiple
objects category, where it outperforms the strongest baseline by a large margin.

Table 7: Comparison of our GeoAssistant with VLMs on the Geochat-Instruct dataset. Results are
reported using the Acc@0.5 metric.

Model Small Medium Large Single Multiple

MiniGPTv2 (Chen et al.,[2023a)) 1.7 9.9 219 9.1 3.6
GeoChat(Kuckreja et al.| 2024) 290 13.60 21.70 16.00 4.30
InternVL2-8B (Chen et al.,[2023c) 7.20 23.76 31.99 25.77 9.30

GeoAssistant (Ours) 10.63 25.11 3245 26.32 16.84

SAR Visual Question Answering and Captioning: GeoAssistant achieves state-of-the-art per-
formance on SARDet-100K for VQA and SARLANG-1IM for captioning. As shown in Table[§]and
Table [9] it substantially outperforms baselines across all SAR VQA subtasks and delivers CIDEr
scores an order of magnitude higher in SAR captioning. These results confirm its superior ability to
interpret complex SAR imagery.

Table 8: Comparison of our GeoAssistant with VLMs on the SAR Captioning task. The version
used here for QWEN2.5-VL and LLaVA1.5 are 7B size model.

Model BLEU.1 BLEU2 BLEU3 BLEU4 ROUGEL CIDEr
Concise Caption
LLaVAL.5 (Liu et al.,2023) 9.22 4.84 2.26 1.07 14.72 0.02
QWEN2.5-VL (Qwen Teaml) [2025)) 18.42 9.85 4.90 2.31 18.12 2.95
Geochat(Kuckreja et al.| 2024) 10.21 6.31 2.78 1.64 16.52 0.25
GeoAssistant (Ours) 41.64 29.35 20.16 14.22 44.04 25.64
Complex Caption
LLaVAL.5 (Liu et al.,[2023) 7.13 3.08 1.11 0.44 12.06 0.18
QWEN2.5-VL (Qwen Team, [2025) 15.12 7.12 3.15 1.40 16.08 2.21
Geochat(Kuckreja et al.,[2024) 14.04 5.64 2.41 1.18 14.02 0.22
GeoAssistant (Ours) 29.19 18.78 11.19 7.18 28.76 15.64
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Table 9: Comparison of our GeoAssistant with VLMs on the SAR VQA task. OI: Object Identifica-
tion, IC: Instance Counting, OC: Object Classification, OP: Object Positioning. Results are reported
using the Accuracy.

Model

LLaVA-1.5 (Liu et al., 2023)
QWEN2.5-VL (Qwen Team, 2025)
GeoChat(Kuckreja et al., 2024)

(0)

53.46
55.46
62.04

IC

45.20
47.20
54.36

oC

29.00
25.00
51.54

OP

12.77
13.23
19.84

.
GeoAssistant 7746 67.24 62.64 29.72
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Figure 4: Qualitative results demonstrating GeoAssistant’s versatility across optical and SAR im-
agery. The examples illustrate its ability to address both general understanding and tool-augmented
tasks, highlighting robust multimodal reasoning and grounded response generation across diverse
remote sensing scenarios.

5.4 QUALITATIVE ANALYSIS

Figure ] presents a range of qualitative results to intuitively demonstrate GeoAssistant’s capabilities.
The examples in optical imagery showcase its proficiency in both holistic understanding tasks and
fine-grained spatial operations. Furthermore, the model exhibits strong cross-domain performance
by effectively addressing analogous tasks on challenging SAR imagery, such as SAR-specific visual
grounding and panoptic detection. For instance, in the optical panoptic detection task, GeoAssistant
not only identifies multiple distinct objects but also accurately provides their coordinates and spatial
relationships.

6 CONCLUSION

In this paper, we addressed two key limitations of existing RS vision—language models: their re-
striction to optical imagery and lack of dynamic tool orchestration. We introduced GeoAssistant, a
modular framework trained on a large-scale instruction dataset with SAR data and tool-use chains of
thought. To enable systematic evaluation, we proposed GeoAssistBench, a benchmark covering op-
tical and SAR tasks. GeoAssistant achieves strong performance across GeoAssistBench, including
SAR VQA, referring object detection, and task planning. Our results show that combining a flexible
tool-centric architecture with diverse instruction data and standardized benchmarks is essential for
robust RS agents. This work takes a step toward practical assistants, with future directions including
expanded tool repositories and improved multi-step planning.
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ETHICS STATEMENT

This work adheres to the principles of open and reproducible research. GeoAssistant is built upon
publicly available, open-source models, and the GeoAssistant Instruction Dataset is constructed us-
ing established open-access remote sensing datasets. Upon publication, we will release the full
dataset under the Creative Commons Attribution 4.0 (CC BY 4.0) license and the source code un-
der the MIT License. By relying solely on open resources, we aim to ensure transparency, avoid
ethical concerns related to proprietary or sensitive data, and promote broad adoption for beneficial
applications such as environmental monitoring and disaster response.

We acknowledge potential dual-use risks: while remote sensing technologies have valuable civilian
uses, such as climate research and disaster relief, they could also be misapplied for harmful surveil-
lance or military purposes. Our releases are intended strictly for academic research, with the goal of
fostering responsible and trustworthy Al development in the remote sensing community.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The architecture, training
setup, and hyperparameters of GeoAssistant are described in Section[d] with additional implementa-
tion details provided in the Appendix. The construction process of our instruction dataset, including
preprocessing and tool-use annotation, is documented in Section [3| and further elaborated in the
supplementary materials. The datasets used in GeoAssistBench are all publicly available, and their
sources and sizes are summarized in Table[3] To facilitate replication, we will release the full GeoAs-
sistant Instruction Dataset, the GeoAssistBench benchmark suite, and the source code under open
licenses upon publication. In addition, the supplementary materials already include our implemen-
tation code and a subset of the dataset. Together, these resources provide the necessary transparency
for reproducing our experiments and extending our framework.
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A APPENDIX

A.1 LIMITATIONS

Manually Curated Tool Repository. While GeoAssistant demonstrates strong performance, its
current tool repertoire is manually curated. This inevitably constrains the system’s adaptability to
new tasks. A promising direction for future work is to develop methods for automatic discovery and
seamless integration of new tools, thereby enhancing the agent’s scalability and robustness.

Modality Expansion. Our present focus is on optical and SAR imagery, which represent two of
the most widely used modalities in remote sensing. However, other data types such as hyperspec-
tral, LiDAR, or temporal image sequences provide complementary information that is crucial in
many real-world applications. Extending support to such modalities would significantly broaden the
applicability of GeoAssistant and strengthen its role as a general-purpose RS assistant.

Choice of Backbone LLM. GeoAssistant employs Vicuna-v1.5 (7B) (Zheng et al., 2023a) as its
central reasoning unit, following prior work in tool-augmented agents to ensure comparability and
reproducibility. Our primary objective is not to maximize raw language performance, but to en-
able reliable tool selection and invocation, where Vicuna has proven effective. While this choice
may somewhat limit immediate generalizability to other language or vision-language models, the
framework itself is designed to be backbone-agnostic. Future extensions could flexibly incorporate
stronger or more specialized models (e.g., LLaMA-3, Qwen-VL, or LLaVA-Plus), offering opportu-
nities to further enhance reasoning capacity and multimodal integration without altering the overall
architecture.

A.2 ABLATION STUDY

To validate the effectiveness of our proposed two-stage training strategy, we conducted a series
of ablation studies. The goal was to isolate the contribution of each component of our training
methodology, such as the multi-stage curriculum and the data mixing strategy in the second stage.
We evaluated the performance on the four sub-tasks of SAR VQA to provide a detailed analysis.
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Table [I0] shows the results of the ablation study on the two-stage training strategy. The results are
contextualized by comparing them with the baseline models presented in our main results Table 8.

Table 10: Ablation study on the two-stage training strategy. “Multi-Stage” indicates a two-stage
process, and “Stage-2 Mixing” indicates that optical data was mixed with SAR data during the
second stage. Performance is reported as Accuracy (%) on the SAR VQA sub-tasks.

Multi-Stage Stage-2Mixing OI IC OC OP

X X 55.46 47.20 25.00 13.23
v X 62.04 54.36 51.54 19.84
v v 77.46 67.24 62.64 29.72

The analysis of these results clearly demonstrates the value of our approach. While a baseline
single-stage training yields performance comparable to general-purpose VLMs like QWEN2.5-VL,
adopting a two-stage curriculum elevates performance to a level similar to that of a strong, domain-
adapted model like GeoChat. Critically, the final addition of our data mixing strategy in the sec-
ond stage provides the substantial boost required to achieve state-of-the-art results. This final step
is essential for mitigating catastrophic forgetting, thereby validating that the synergy between the
multi-stage approach and data mixing is a key contributor to GeoAssistant’s superior performance
on the challenging SAR VQA task.

A.3 METRICS APPLIED FOR EACH TASK

Here we introduced the metrics we used to measure our model’s performance in each task with our
motivation and their detailed formulation.

A.3.1 ACCURACY

Accuracy is a fundamental metric used to evaluate the performance of our model across several key
tasks. It generally measures the proportion of correct predictions among the total number of cases
evaluated. The formula for accuracy is:

TP+ TN
TP+TN+FP+ FN

Accuracy =

where:

TP (True Positives): The number of positive instances correctly identified.

TN (True Negatives): The number of negative instances correctly identified.

» FP (False Positives): The number of negative instances incorrectly identified as positive.

FN (False Negatives): The number of positive instances incorrectly identified as negative.

In our work, it was applied to the following tasks: Task Planning, Visual Question Answering, and
SAR Visual Question Answering, as it directly quantifies the GeoAssistant’s performance on these
tasks.

A.3.2 BLEU, CIDER, ROUGE-L

To evaluate the quality of the generated text for the SAR Captioning task, we employed three stan-
dard metrics: BLEU (Papineni et al.| [2002), ROUGE-L (Lin| [2004), and CIDEr (Vedantam et al.,
2015). These metrics compare the machine-generated captions against human-created reference
captions.

BLEU BLEU measures the precision of n-grams in the candidate sentence compared to the ref-

erence sentences. It calculates how many words and phrases from the generated text appear in the
ground-truth text. A higher score indicates a better match. The formula is:

N
BLEU = BP - exp (Z wp, logpn>

n=1
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where:

* p, is the modified n-gram precision for n-grams of a specific order (the paper reports for
n=1 to 4).
* w, are positive weights, typically %

* BP is the Brevity Penalty, which penalizes generated captions that are too short compared
to the reference length. It is calculated as:

1 ifc>r
BP =
{e(l_r/“) ife<r

(where c is the length of the candidate sentence and r is the effective reference corpus
length).

ROUGE-L ROUGE-L focuses on recall, measuring the quality of a summary by comparing it
to other ideal summaries created by humans. It is based on the length of the Longest Common
Subsequence (LCS) between the candidate and reference sentences. The score is calculated using
an F-measure, which balances precision (FP.,) and recall (R;.s):

LCS(X,Y
Rlcs = #
m
LCS(X,Y
Bcs == M
n
2
ROUGEL — (LF ) Bies Fres

Rlcs + ﬁzf)lcs
where:

* X is the reference sentence of length m.

* Y is the candidate sentence of length n.

LCS(X,Y) is the length of the longest common subsequence of X and Y.
* [ is a parameter that balances the importance of precision and recall.

CIDEr CIDEr is a metric designed specifically for image captioning that measures the consen-
sus between a candidate sentence and a set of reference sentences. It performs a TF-IDF (Term
Frequency-Inverse Document Frequency) weighting for each n-gram, giving more weight to infor-
mative words and less to common ones. The final score is a weighted average of cosine similarities
for n-grams of different lengths. The formula for a given n-gram order n is:

1 M gn(C‘) -g"(S“)
CIDEr, (¢;, S;) = — Z -
(€090 = 57 2 Tgrteall- g (oo

where:

* ¢; is the candidate caption for image .
¢ S; = {si1, Si2, ..., Siar } 1s the set of M reference captions for image 4.
* ¢" is a vector representation of the n-grams, with TF-IDF weights.

The paper highlights that GeoAssistant achieved CIDEr scores an order of magnitude higher than
the next best model, demonstrating a strong consensus with human-generated descriptions.

A.3.3 AVERAGE PRECISION

To evaluate performance on the Referring Object Detection task, the paper utilizes the Average
Precision (Acc@0.5) metric.

The core of this metric is the Intersection over Union (IoU), which calculates the ratio of the inter-
section area to the union area of the predicted bounding box (B),) and the ground-truth bounding
box (By;).

16



Under review as a conference paper at ICLR 2026

You are an AT visual remote sensing assistant that can analyze a single image. You receive 5 sentence that
describe the objects in the image. Generate a question that users may be interested to ask about the

image. The question should ask the AT to detect some objects in the image. The question should be answerable
by the given sentences and the given object locations.

Prompt System

There are houses in this image. There is swimming pool in this image. Several houses located in this area. A

User swimming pool is surrounded by houses. A swimming pool located at the bottom-left corner of this image.
lswimming pool: [0.03, 0.78, 0.08, 0.85].

house: [0.10, 0.75, 0.20, 0.85]

house: [0.02, 0.65, 0.10, 0.75]

Agem' Question: could you detect the swimming pool that surrounded by houses at the bottom-left corner of this
image?

You receive questions and answer examples that ask assistant to make a visual grounding on a remote sensing
image.

Then you receive the ouput of the RmoteSAM model. The output is a list of objects detected in the image, with
their corresponding bounding boxes. These coordinates are in the form of bounding boxes, represented as [x1,
V1, x2, y2] with floating numbers ranging from O to 1. These values correspond to the top left x, top lefty,
bottom right x, and bottom right y.

IThen you receive the question asked by the user. Your core rules are as follows:

System 1. You must adhere to the following standard image coordinate system: The origin (0,0) is at the top-left corner
lof the image. The x-coordinate increases to the right (to 1.0), and the y-coordinate increases downwards (to
1.0

2. When describing an object's location, your primary source of truth is the bounding box coordinates. Your
description of the location (e.g., ‘upper-left’, ‘lower-right', ‘center') MUST be mathematically consistent with
these coordinates.

3. Before finalizing your answer, perform a self-correction check to ensure your verbal description of a location
imatches the numerical coordinates provided.

Answer:

<reasoning>: Since I can not answer this question by my own capability, I will use the pre-trained RemoteSAM
model to help user to answer this question.

Agent | <actions>: [{' API_name']: RemoteSAM, API_params: {'sentence': swimming pool that surrounded by houses at
the bottom-left corner of this image.}}]

<value>: Yes, I can detect the swimming pool surrounded by houses at the bottom-left corner of this image. It
is located at [0.03, 0.78, 0.08, 0.85].

Figure 5: An example of instruction data construction using in-context learning.

The formula for IoU is:

Area(B), N By;)

IoU =
© Area(B, U By;)

A prediction is considered correct if the IoU score is 0.5 or greater. The Acc@Q.5 score is then
simply the percentage of predictions that meet this threshold. This provides a clear measure of how
accurately the model can locate specific objects described by the user.

A.3.4 REPRODUCIBILITY DETAILS

Hyperparameter Settings Our training hyperparameters, such as the learning rate and AdamW
optimizer settings, were chosen based on established practices and widely-used values for fine-
tuning 7B-scale Vision-Language Models like LLaVA-v1.5.

Decoding Strategy and Determinism For all evaluation tasks, we employ a deterministic greedy
decoding strategy by setting the femperature parameter to 0. We do not use stochastic methods like
beam search for our reported results. This ensures that for any given input, the model’s output is
identical across multiple runs. Consequently, all reported results are from a single evaluation run.
Given the deterministic nature of our evaluation process, there is no statistical variation to report
between runs. For the training process, we set all random seeds for relevant libraries to a fixed value
of 42 to ensure the reproducibility of data processing and model initialization.
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A.4 GEOASSISTANT INSTRUCTION DATASET

We developed a unified data generation pipeline based on the self-instruct methodology. A key char-
acteristic of our dataset is its unique multi-turn, tool-augmented dialogue format. Unlike traditional
instruction datasets, each sample explicitly models the agent’s decision-making process, including
its reasoning for invoking a specific tool and the subsequent synthesis of the tool’s output into a final
answer. This structure is crucial for teaching the model not just what to answer, but how to leverage
external capabilities. The entire dataset was generated using a carefully designed in-context learning
pipeline, where a large language model was prompted to create high-quality, diverse, and plausible
human-agent interactions from ground-truth labels. The role of the system prompts in this process
is critical, as illustrated in Figure [5} In the first turn, a system prompt guides the LLM to formu-
late a realistic user query from descriptive ground-truth data. In the second, more crucial turn, the
system prompt provides detailed context about the specific tool to be used. For instance, it defines
the task, specifies the expected output format from the RemoteSAM model, establishes rules for the
coordinate system, and instructs the agent to perform self-correction. This structured prompting
is essential for generating the high-quality, tool-aware reasoning chains that form the core of our
training data.

A.5 QUALITATIVE RESULTS

To provide a more intuitive understanding of GeoAssistant’s capabilities, Figure [6] presents a series
of qualitative comparisons on SAR VQA tasks. The examples highlight that GeoAssistant consis-
tently provides more accurate and contextually relevant answers compared to other leading VLMs.
For instance, in object identification and counting tasks, our model correctly interprets complex SAR
image features where other models often fail. This superior performance underscores the effective-
ness of our training strategy and the value of our tool-augmented instruction dataset. In the spirit
of transparent analysis, we also present several failure cases in the lower panel of Figure [6] These
cases typically occur under conditions of high ambiguity or when dealing with object categories that
are underrepresented in the training data. For example, the model may misclassify visually simi-
lar objects (e.g., a highway interchange confused with a bridge) or struggle with precise counting
when objects are densely clustered. These limitations highlight a valuable direction for future work:
enhancing the model’s fine-grained discriminative abilities through more diverse data augmentation
and potentially incorporating more sophisticated visual reasoning modules.
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Figure 6: Qualitative results in SAR VQA tasks comparing other VLMs.
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