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Abstract

Large collections of time series data are com-
monly organized into hierarchies with different
levels of aggregation. We present Hierarchical
Coherent Networks (HINT), a forecasting frame-
work that adheres to these aggregation constraints.
We specialize HINT in the task via a multivariate
mixture optimized with composite likelihood and
made coherent via bootstrap reconciliation. Addi-
tionally, we robustify the networks to stark time
series scale variations, incorporating normalized
feature extraction and recomposition of output
scales within their architecture. We demonstrate
improved accuracy compared to the existing state-
of-the-art. We conduct ablation studies on our
model’s components and its theoretical founda-
tions. HINT’s code is available at this http URL.

1. Introduction
Hierarchical forecasting arises when collections of time se-
ries are organized under different aggregation levels. In such
scenarios, it is important to ensure the forecasts’ coherence
so that the forecast at disaggregate levels adds-up to the ag-
gregate forecast. In recent years hierarchical reconciliation
has become standard across industries, such as supply chain
management (Babai et al., 2022; Makridakis et al., 2020b),
electricity generation (Nystrup et al., 2020; Ben Taieb et al.,
2021), macroeconomics, and tourism management (Eckert
et al., 2021; Kourentzes & Athanasopoulos, 2019).

Despite progress in extending neural networks toward hi-
erarchical forecasting, current solutions encounter some
limitations like relying on restrictive probabilistic assump-
tions, enforcing only weak coherence, poor scalability for
multivariate approaches, and exhibiting modest accuracy
improvements over statistical baselines.

This work addresses the mentioned limitations by introduc-
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ŷ[i],τ
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Figure 1. (a) Hierarchical forecasting is a multivariate regression
problem with aggregation constraints. (b) Summing disaggregated
level’s forecasts (BU-reconciliation) can accumulate errors. (c)
Neural forecast models robust to stark differences in series’ scales
and a flexible coherent probabilistic output are a solution.

ing the Hierarchical Coherent Networks (HINT) family of
models. Our contributions are summarized below:

(i) Hierarchical Multivariate Mixture. Our modular
architecture leverages a task-specialized multivariate
mixture, optimized with composite likelihood and rec-
onciled via bootstrap sample reconciliation.

(ii) Temporal Scale Invariant Networks. Our residual-
learning framework normalizes inputs into the net-
work’s non-linearities operating range and recomposes
its output scales through a global skip connection, im-
proving accuracy and training robustness.

(iii) State-of-the-art results on five hierarchical bench-
mark datasets: Australian labour, Bay Area lane traffic
rates, quarterly and monthly Australian tourist visits,
and daily views of Wikipedia articles.

https://anonymous.4open.science/r/HINT-FBA8/README.md
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This paper is structured as follows. Section 2 reviews rele-
vant literature, and introduces notation, Section 3 describes
the methodology, Section 4 describes and analyzes our em-
pirical results. Finally, Section 5 concludes the paper.

2. Related Work
2.1. Hierarchical Reconciliation

Classic hierarchical forecasting methods involve a two-stage
process in which a set of univariate statistical base forecasts
are reconciled. There is a long literature on these reconcilia-
tion strategies that include BottomUp (Orcutt et al., 1968;
Dunn et al., 1976), TopDown (Gross & Sohl, 1990; Flied-
ner, 1999), and more recent optimal reconciliation strategies
like Comb (Hyndman et al., 2011), MinTrace (Wickrama-
suriya et al., 2019) and ERM (Ben Taieb & Koo, 2019).

Probabilistic forecast reconciliation is at the forefront of
hierarchical forecasting research. Among the few methods
capable of probabilistic coherence, there is PERMBU that
infuses multivariate dependencies to bottom-level probabil-
ities using copulas (Ben Taieb et al., 2017), NORMALITY
that constructs a multivariate reconciled distribution build-
ing upon Gaussian assumptions (Wickramasuriya, 2023),
and BOOTSTRAP that generates reconciled forecasts with
bootstrap sample reconciliation (Panagiotelis et al., 2023).

2.2. Hierarchical Neural Forecasting

Neural network based methods have gained popularity in
forecasting applications, outperforming most alternatives.
They have become widespread in industrial forecasting and
have consistently performed well in forecasting competi-
tions such as M4 (Makridakis et al., 2020a) and M5 (Makri-
dakis et al., 2020b). As surveys show, in recent years, the
academic community has greatly renovated interest in the
topic (Benidis et al., 2020).

The literature has permeated into hierarchical forecast-
ing, with contributions like SHARQ (Han et al., 2021),
HIRED (Paria et al., 2021), and PROFHIT (Kamarthi et al.,
2022) approximate coherent methods using variants of
bottom-up aggregation regularization. Fully coherent ap-
proaches include HierE2E (Rangapuram et al., 2021) a
multivariate approach that incorporates MinTrace-like
reconciliation in the network’s optimization, TDProb (Das
et al., 2022) that learns TopDown proportions to probabilis-
tically reconcile univariate base models.

Despite recent progress in extending neural networks toward
hierarchical forecasting, existing solutions still face chal-
lenges: (i) they rely on restrictive probabilistic assumptions
or are not entirely coherent; (ii) multivariate approaches’
computational complexity scales poorly; (iii) the accuracy
improvements over statistical baselines are still modest.

2.3. Mathematical Notation

A hierarchical time series (HTS) is a multivariate time series
under aggregation constraints. We denote the HTS by the
vector y[i],t = [y⊺

[a],t |y
⊺
[b],t ]

⊺ ∈ RNa+Nb , for time step t,
where [a], [b] denote respectively the aggregate and bottom
level indices. The total number of series in the hierarchy is
|[i]| = (Na +Nb). We distinguish between the time indices
[t] and forecast indices τ ∈ [t+ 1 : t+ h], and hierarchical,
bottom and aggregate indexes ι ∈ [i], β ∈ [b] , α ∈ [a].

At any time t, the constraints are y[a],t = A[a][b]y[b],t where
A[a][b] denotes the relationship between the bottom-level
series to the upper-level series. We can write the HTS as

y[i],t = S[i][b]y[b],t ⇔
[
y[a],t

y[b],t

]
=

[
A[a][b]

I[b][b]

]
y[b],t (1)

where S[i][b] and I[b][b] are the summing and identity matri-
ces. Figure 1(a) is an example with Nb = 4 and Na = 3:

y[a],t = [yTotal,t, yβ1,t + yβ2,t, yβ3,t + yβ4,t]
⊺
,

y[b],t = [yβ1,t, yβ2,t, yβ3,t, yβ4,t]
⊺
,

(2)

where yTotal,t = yβ1,t+yβ2,t+yβ3,t+yβ4,t. The summing
matrix associated to Figure 1(a) is given by

S[i][b] =


A[a][b]

I[b][b]

 =



1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


.

Definition 2.1. (Probabilistic Coherence). Let
(Ω[b],F[b],P[b]) be a probabilistic forecast space, with F[b] a
σ-algebra on RNb . Let S(·) : Ω[b] 7→ Ω[i] be the constraints’
implied transformation. A coherent probabilistic forecast
space (Ω[i],F[i],P[i]) satisfies:

P[i] (S(B)) = P[b] (B)
for any set B ∈ F[b] and image S(B) ∈ F[i]

(3)

that is, it assigns a zero probability to any set that does not
contain any coherent forecasts (Panagiotelis et al., 2023).

Definition 2.2. (Hierarchical Reconciliation). For time
t, horizon h, and forecast indexes τ ∈ [t + 1 : t + h].
Reconciliation for point forecasts ŷ[i],τ , is denoted by:

ỹ[i],τ = S[i][b]P[b][i]ŷ[i],τ = SP(ŷ[i],τ ) (4)

where P[b][i] is defined by the reconciliation technique . And
SP(·) : Ω[i] 7→ Ω[b] 7→ Ω[i] is the reconciliation’s implied
transformation (Hyndman & Athanasopoulos, 2018).
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ŷ3,τ
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Figure 2. The HINT model family utilizes a specialized multivariate mixture probability output layer that achieves coherency via bootstrap
sample reconciliation ỹ[i],τ = SP(ŷ[i],τ ). Additionally HINT incorporates the TemporalNorm module to augment networks with
scale-invariance through input normalization and output scale recomposition through a global skip connection.

3. HINT Methodology
The HINT model family estimates the following conditional
probability under coherency constraints from Definition 2.1:

P
(
y[i][t+1:t+h] |θ

)
(5)

where θ depends on {xh
[i][:t], xf

[i][:t+h], xs
[i]} historic, fu-

ture and static variables. Here we describe our proposed
approach, its high-level diagram and main principles of
operation are depicted in Figure 2.

3.1. Hierarchical Multivariate Mixture

HINT is a highly modular system that supports a wide range
of probabilistic outputs. We leverage HINT’s flexibility to
accommodate a multivariate Gaussian mixture model spe-
cialized in hierarchical forecasting. Its conditional forecast
distribution is described by:

P̂
(
y[i][t+1:t+h]| θ̂

)
=

Nk∑
κ=1

ŵκ

∏
(ι,τ)∈[i][t+1:t+h]

N (yι,τ | µ̂ι,κ,τ σ̂ι,κ,τ )

(6)

The multivariate mixture has advantageous theoretical prop-
erties, proven in Appendix A. It can arbitrarily approximate
univariate distributions and describe the series’ correlations.

HINT’s achieves high computational efficiency, because we
optimize it through composite-likelihood (Lindsay, 1988;
Varin et al., 2011) of the series in the SGD batches approx-
imating the full joint distribution from Equation (6). To
further enhance the prediction’s efficiency we opt for ar-
chitectures using the multi-step forecast strategy (Atiya &
Taieb, 2016; Lim et al., 2021; Challu et al., 2023).

LayerNorm
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TemporalNorm

Figure 3. Temporal normalization (left), layer normalization (cen-
ter) and batch normalization (right). The entries in green show the
components used to compute the normalizing statistics.

We ensure the coherence via bootstrap sample reconciliation.
Figure 1.c shows it restoring the aggregation constraints
into the base samples. Let H be a coherent forecast set,
and SP−1(·) a reconciliation’s inverse image, Appendix A
analytically derives the coherent forecast distribution:

P̃
(
ỹ[i],τ ∈ H| θ̃

)
= P̂

(
ŷ[i],τ ∈ SP−1(H)| θ̂

)
(7)

3.2. Temporal Scale Invariant Networks

Neural networks’ recent success in forecasting follows the
adoption of cross-learning optimization, which enables flex-
ible global models to fit without the risk of overfitting (Smyl,
2019; Semenoglou et al., 2021). However, for hierarchical
forecasting applications with natural scale variability, a ro-
bustified version of cross-learning optimization is necessary.

The TemporalNorm module enhances any architecture to
adapt its inputs to the its non-linearities operating range. Its
global skip-connection reformulates the task into learning a
residual function referenced to the time series level and scale.
The residual-learning framework significantly improves the
network’s accuracy, as Appendix C shows.
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Table 1. Empirical evaluation of probabilistic coherent forecasts. Mean scaled continuous ranked probability score (sCRPS), averaged
over 10 random seeds, overall hierarchy series. The best result is highlighted (lower measurements are preferred).
† The PROFHIT results differ from (Kamarthi et al., 2022), as the only available implementation suffers from significant numerical instability in its optimization.
* Best performing variant of TopDown (avg. proportions, proportions avg.), and MinTrace (ols, wls, shrinkage) reported. ** The PERMBU/TopDown only available for strictly hierarchical datasets.

HINT-GMM (Ours) OTHER BOOTSTRAP PERMBU**

DATASET NHITS TFT TCN HierE2E PROFHIT† BottomUp TopDown* MinTrace* BottomUp TopDown* MinTrace*

sC
R

PS

Labour .0067±.0001 .0089±.0001 .0120±.0001 .0171±.0003 .2138±.0070 .0078±.0001 .0668±.0000 .0073±.0000 .0077±.0001 .0740±.0001 .0069±.0001
Traffic .0589±.0004 .0602±.0004 .0600±.0002 .0426±.0008 .1137±.0022 .0736±.0024 .0741±.0012 .0608±.0014 .0849±.0009 .0708±.0008 .0651±.0008
Tourism .0666±.0007 .0665±.0004 .0536±.0004 .0761±.0007 .1358±.0033 .0682±.0018 .1040±.0014 .0703±.0017 .0649±.0016 .0898±.0012 .0680±.0016
Tourism-L .1176±.0002 .1354±.0005 .1550±.0006 .1424±.0019 .2139±.0014 .1375±.0013 - .1313±.0009 - - -
Wiki2 .3625±.0045 .2447±.0007 .2918±.0015 .2592±.0031 .4009±.0028 .2894±.0038 .3231±.0037 .2808±.0035 .3920±.0044 .4269±.0036 .3821±.0049

re
lM

SE

Labour .5802±.0131 .464±.0148 .801±.0637 .8165±0.0353 6.774 × 103 0.5382±.0000 16.8204±.0000 0.3547±.0000
Traffic .1212±.0051 .1291±.0036 .1226±.0024 .0328±0.0019 0.4536±.0224 0.1392±.0000 0.06144±.0000 0.0744±.0000
Tourism .0898±.0031 .0932±.0018 .0387±.0007 .1471±0.0046 0.9745±.0803 0.1002±.0000 0.1919±.0000 0.1235±.0000
Tourism-L .0577±.0009 .0834±.0017 .1816±.0031 .2449±0.0096 1.0401±.0296 0.3070±.0000 - 0.1375±.0000
Wiki2 1.044±.0531 .1884±.0012 .2183±.0036 .6598±0.0249 0.7901±.0384 1.0163±.0000 1.4482±.0000 1.0068±.0000

4. Experimental Results
Datasets. We follow experimental protocols established
in previous research by Rangapuram et al. (2021), Oli-
vares et al. (2023) and Kamarthi et al. (2022). The bench-
mark datasets are: Monthly Australian Labour (Aus-
tralian Bureau of Statistics, 2019), SF Bay Area daily
Traffic (Dua & Graff, 2017), Quarterly Australian
Tourism visits (Tourism Australia, Canberra, 2005),
Monthly Australian Tourism-L visits (Tourism Australia,
Canberra, 2019), and daily Wiki2 views (Anava et al.,
2018). Appendix B includes a detailed dataset’s exploration.

Evaluation Metrics. To assess the forecast accuracy of our
method, we employ the scaled Continuous Ranked Probabil-
ity Score (sCRPS; Matheson & Winkler 1976; Makridakis
et al. 2022) and the Relative Mean Squared Error (relMSE;
Hyndman & Koehler 2006; Olivares et al. 2023).

sCRPS(P,y[i],τ ) =
2

|[i ]|
∑
i

∫ 1

0
QL(Pi,τ , yi,τ )qdq∑

i |yi,τ |

relMSE(y[i], ŷ[i], y̌[i]) =
MSE(y[i], ŷ[i])

MSE(y[i], y̌[i])

(8)

where QL(P̂i,τ , yi,τ )q denotes the q-level quantile loss1,
and y̌[i] is the Naive forecast relative scaler.

Baselines. In our main experiment, we compare the pre-
dictions of numerous SoTA probabilistic coherent methods.
Neural forecasting baselines include (1) HierE2E (Ran-
gapuram et al., 2021), (2) PROFHIT (Kamarthi et al.,
2022), while statistical baselines include variants of
(3) BOOTSTRAP (Panagiotelis et al., 2023), and (4)
PERMBU probabilistic reconciliation (Ben Taieb et al.,
2017) in combination with BottomUp (Orcutt et al., 1968),
TopDown (Gross & Sohl, 1990), and MinTrace (Wickra-
masuriya et al., 2019) mean reconcilers.

1We use a Riemann approximation to the sCRPS with the
difference dq for quantile intervals of 1 percent.

HINT configurations. We showcase our methodology’s out-
standing modularity by augmenting three well-established
neural forecast architectures NHITS (Oreshkin et al., 2020;
Olivares et al., 2022a; Challu et al., 2023), TFT; (Lim et al.,
2021) and TCN (Bai et al., 2018). We report results from
HINT best configurations, based on Appendix C.2,C.3,C.1’s
validation ablation studies. We provide software and hyper-
parameter details in Appendix D.

4.1. Empirical Results

The HINT achieved the best performance on four datasets,
with the Traffic dataset exception, improving sCRPS by
8.1% (extended results in Appendix E). The results show
how scale-decoupled optimization and a multivariate joint
distribution successfully adapt the latest neural architecture
innovations for hierarchical forecasting tasks. Our ablation
studies confirm improvement origins in the HINT method.
First, the mixture distribution improves performance upon
simpler and more constraining probabilistic output assump-
tions. Second, that scale-decouple optimization is a crucial
enabler of cross-learning under stark scale variations.

5. Discussion and Conclusion
We introduced HINT, a new neural network family for hier-
archically coherent forecasting. Two highly modular nov-
elties define our approach, an accurate and efficient multi-
variate mixture optimized with composite likelihood and
transformed via bootstrap sample reconciliation; and incor-
porating normalized feature extraction and recomposition
of output scales within the network’s architecture. HINT’s
enhancements can be applied to most neural forecasting
architectures enabling their probabilistic coherent forecasts.

We showcase HINT’s accuracy gains in an empirical com-
parison to statistical and state-of-the-art neural forecast mod-
els, improving sCRPS by 8.1% on average across datasets
over the second-best alternative. We conclude with an ex-
ploration of our framework’s theoretical foundations.

https://github.com/AdityaLab/PROFHiT
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A. Hierarchical Multivariate Mixture Properties
A.1. Hierarchical Multivariate Mixture Probability
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Figure 1. HINT’s multivariate joint distribution has advantageous properties that make it uniquely suited for hierarchical forecasting. It is
highly flexible, capable of efficiently modeling series’ relationships, and under minimal restrictions, guarantees probabilistic coherence.

In Section 3, we highlight that HINT boasts a flexible and modular model family that can handle various probabilistic
outputs. We use this flexibility to enhance the networks with a multivariate hierarchical mixture density. Specifically, the
mixture model describes the joint probability of the hierarchical multivariate time series Y[i][t+1:t+h] ∈ RNi×h as follows:

P
(
Y[i][t+1:t+h] = y[i][t+1:t+h]| θ̂

)
=

Nk∑
κ=1

ŵκ

∏
(ι,τ)∈[i][t+1:t+h]

N (yι,τ | µ̂ι,κ,τ σ̂ι,κ,τ )

where the mixture describes individual series through the location µ̂ι,κ,τ and variance parameters σ̂ι,κ,τ . For simplicity we
denote the combined parameters θ̂[i][k][t+1:t+h] = [µ̂[i][k][t+1:t+h] | σ̂[i][k][t+1:t+h]].

Under reasonable assumptions for the underlying probability, the mixture distribution offers arbitrary approximation
guarantees (Titterington et al., 1985; Nguyen & McLachlan, 2018). We can control its flexibility by adjusting the number
of components |[k]| = Nk. Furthermore, the mixture is not limited to Gaussian components; we can extend it to include
discrete variables. Figure A.1 presents an example of its marginal probabilities.

Conditional Independence: A key consequence of the hierarchical mixture probability in Equation (A.1), is the assump-
tion that the modeled series y[i][t+1:t+h] are conditionally independent given the latent parameters µ̂[i][k][t+1:t+h] and
σ̂[i][k][t+1:t+h]. That is for any series and horizons (ι, τ) ̸= (ι′, τ ′), (ι, τ), (ι′, τ ′) ∈ [b][t+ 1 : t+ h] and κ ∈ [k]:

P(Yι,τ , Yι′,τ ′ |θ̂ι,κ,τ , θ̂ι′,κ,τ ′) = P(Yι,τ |θ̂ι,κ,τ )P̂(Yι′,τ ′ , |θ̂ι′,κ,τ ′) (9)

Computational Efficiency: To handle large-scale data scenarios, we explicitly avoid using a multivariate covariance
matrix, which has an O(N2

i ) complexity. Instead, we rely on the mixture latent variables κ and its associated weights
ŵ[k] ∈ [0, 1]Nk , ŵ[k] ≥ 0 and

∑Nk

κ=1 ŵκ = 1 to model the series correlations. We show the relationship between the
mixture components and the covariance in Appendix A.3. Instead of relying on the Markov assumption, we have adopted
a joint multi-step forecasting approach that can significantly enhance the computational efficiency of our algorithm. By
making predictions in a single forward pass, we can avoid the need for recurrent computations.

In the following subsections, we delve into the properties of the hierarchical mixture, such as the analytic version of its
implied marginal probability, the relationship between its covariance and the number of mixture components, the bootstrap
sample reconciled probability, and the optimization strategies that make it well-suited for large-scale applications. The
proofs are inspired on previous work by (Olivares et al., 2023), generalized and extended.
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A.2. Marginal Distributions

We define the joint distribution of all hierarchical time series in Equation (A.1). By integrating the joint probability on the
remaining series and time indices, we can obtain the marginal distribution for a single future horizon τ ∈ [t+ 1 : t+ h] and
series ι ∈ [i]. We express the resulting marginal distribution as follows:

P(Yι,τ = yι,τ | θ̂) =
Nk∑
κ=1

wκN (yι,τ | µ̂ι,κ,τ σ̂ι,κ,τ ) (10)

Proof.

P(Yι,τ = yι,τ | θ̂) =
∫ +∞

−∞
. . .

∫ +∞

−∞
P
(
Y[i][t+1:t+h] = y[i][t+1:t+h]| θ̂

)
δyι′,τ ′ \ δyι,τ

=

∫ +∞

−∞
. . .

∫ +∞

−∞

Nk∑
κ=1

ŵκ P(yι,τ |θ̂ι,κ,τ )×
∏

(ι′,τ ′)∈[i][t+1:t+h]\(ι,τ)

∑
yι′,τ′

P(yι′,τ ′ |θ̂ι′,κ,τ ′)δyι′,τ ′

=

Nk∑
κ=1

ŵκ P(yι,τ |θ̂ι,κ,τ )×
∫ +∞

−∞
. . .

∫ +∞

−∞

∏
(ι′,τ ′)∈[i][t+1:t+h]\(ι,τ)

∑
yι′,τ′

P(yι′,τ ′ |θ̂ι′,κ,τ ′)δyι′,τ ′

=

Nk∑
κ=1

wκ P(yι,τ |θ̂ι,κ,τ ) =
Nk∑
κ=1

wκN (yι,τ | µ̂ι,κ,τ σ̂ι,κ,τ )

By removing all other time series and forecast horizons from the joint probability product, the conditional independence
expressed in Equation A.1 can efficiently generate forecast distributions for individual variables.

A.3. Efficient Covariance Matrix Low-Rank Approximation

Due to the computational challenges of estimating high-dimensional covariance matrices, existing multivariate methods
are limited in their ability to handle a large number of series. To overcome this challenge, our method utilizes a low-rank
covariance structure implied by the latent variables of the mixture probability, thereby avoiding the need to compute the
covariance matrix explicitly. By doing so, we significantly reduce the number of parameters and enable the modeling of
time-varying correlations across millions of time series.

Let a multivariate random variable Y[i][t+1:t+h] ∈ RNi×h distribution be described by the mixture from Equation (A.1), the
non-diagonal terms of its implied covariance is the following Nk − 1 rank matrix:

Cov(Y[i],τ ) =

Nk∑
κ=1

ŵκ(µ̂[i],κ,τ − µ̄[i],τ )(µ̂[i],κ,τ − µ̄[i],τ )
⊺ ∈ RNi×Ni (11)

Proof. We will start by showing that for a pair of series the covariance function is given by:

Cov(Yι,τ , Yι′,τ ′) = σι,τ1(ι = ι′)1(τ = τ ′) +

Nk∑
κ=1

ŵκ

(
µ̂ι,κ,τ − µι,τ

) (
µ̂ι′,κ,τ ′ − µι′,τ ′

)
(12)

By the law of total covariance:

Cov(Yι,τ , Yι′,τ ′) = E
[
Cov(Yι,τ , Yι′,τ ′ |θ̂ι,κ,τ , θ̂ι′,κ,τ ′)

]
+Cov

(
E
[
Yι,τ |θ̂ι,κ,τ

]
,E
[
Yι′,τ ′ |θ̂ι′,κ,τ ′

])
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Using the conditional independence from Equation (9). We can rewrite conditional covariance expectation:

E
[
Cov(Yι,τ , Yι′,τ ′ |θ̂ι,κ,τ , θ̂ι′,κ,τ ′)

]
= E

[
Var(Yι,τ |θ̂ι,κ,τ )

]
1(ι = ι′)1(τ = τ ′)

= E [σ̂ι,κ,τ ]1(ι = ι′)1(τ = τ ′)

= σι,τ1(ι = ι′)1(τ = τ ′)

where σι,τ = E [σ̂ι,κ,τ ] =
∑Nk

κ=1 ŵκσ̂ι,κ,τ .

In the second term, because the conditional distributions are Normal we have

E
[
Yι,τ |θ̂ι,κ,τ

]
= µ̂ι,κ,τ and E

[
Yι′,τ ′ |θ̂ι′,κ,τ ′

]
= µ̂ι′,κ,τ ′

Which implies

Cov
(
E
[
Yι,τ |θ̂ι,κ,τ

]
,E
[
Yι′,τ ′ |θ̂ι′,κ,τ ′

])
=

Nk∑
κ=1

ŵκ (µ̂ι,κ,τ − µ̄ι,τ ) (µ̂ι′,κ,τ ′ − µ̄ι′,τ )

Combining the two partial results we recover the pair-wise covariance formula in Equation (12), which can be easily
extended to the multivariate case from Equation (11). The rank of the matrix can be infered by observing that Equation (11)
is the sum of Nk vectors centered around their means.

A.4. Bootstrap Reconciled Probabilities

Let (Ω[i],F[i], P̂(· | θ̂)) be a probabilistic forecast space, with F[i] a σ-algebra on RNi . Let a hierarchical reconciliation
transformation be denoted by SP(·) : Ω[i] 7→ Ω[b] 7→ Ω[i]. Consider ŷs

[i],τ , s = 1, . . . , S samples drawn from an

unconstrained base probability P̂(· | θ̂), and the transformed samples ỹs
[i],τ = SP

(
ŷs
[i],τ

)
.

The probability distribution of the reconciled samples is given by:

P̃
(
ỹ[i],τ ∈ H| θ̃

)
= P̂

(
ŷ[i],τ ∈ SP−1(H)| θ̂

)
(13)

with H be a coherent forecast measurable set, and SP−1(·) the reconciliation’s inverse image.

Proof. This proof makes only minor modifications to the arguments presented in (Panagiotelis et al., 2023).

P̃
(
ỹ[i],τ ∈ H| θ̃

)
= lim

S→∞

1

S

S∑
s=1

1{ỹ[i],τ ∈ H}

= lim
S→∞

1

S

S∑
s=1

1{ŷ[i],τ ∈ SP−1(H)}

= P̂
(
ŷ[i],τ ∈ SP−1(H)| θ̂

)
(14)

The first and final equalities follow from the weak law of large numbers, as by definition the indicator functions are
independent, identically distributed with a finite mean and variance. The second equality follows from the definition of the
inverse image SP−1(H) = {ŷ[i],τ |SP(ŷ[i],τ ) ∈ H}.

A general analytic reconciled probability is derived in Appendix A.5. It is worth noting that the bootstrap reconciliation
induces a tradeoff between reduced inference speed and the requirement for knowledge of the reconciled parameters θ̃.
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A.5. Analytical Reconciled Probabilities

We use the bootstrap sample reconciliation technique (Panagiotelis et al., 2023) to ensure the probabilistic coherence
of HINT. This technique can restore hierarchical aggregation constraints to base samples, regardless of their original
distribution. It enhances HINT’s modularity by ensuring its probabilistic coherence on a wide range of base probabilities,
including non-parametric ones, without requiring any modifications to the original algorithm. In this section we show how a
reconciled probability can be recovered analytically through change of variables and marginalization.

Lemma. Consider the classic reconciliation approach where the entire hierarchy’s forecasts are combined into reconciled
bottom-level forecasts using a composition of linear transformations SP(·) = S[i][b]P[b][i](·). The reconciled probability
for the new bottom-level series is given by:

P̃[b] (b) = |P∗|
∫

P[i]

(
P⊥a+P−b

)
δa (15)

where P̂ (·) is the unconstrained base forecast distribution, P⊥ ∈ RNi×Na , P− ∈ RNi×Nb are the orthogonal complement
of P[i][b] and its Moore-Penrose inverse; matrix P∗ = [P⊥ |P−], and bottom level b and aggregate level a vectors are
obtained through the following variable change:

ŷ[i] = P∗
[
a
b

]
(16)

Proof. Using the change of multivariate change of variables theorem, and properties of the Jacobian of a linear mapping:

P̃(a,b) =

∣∣∣∣∣det
[
dP∗(z)

dz

∣∣∣∣
z=(a,b)

]∣∣∣∣∣P(P∗
[
a
b

])
= |P∗|P[i]

(
P⊥a+P−b

)
(17)

Marginalizing a we obtain the reconciled probability for the bottom level series.

Theorem. Consider the classic reconciliation approach where the entire hierarchy’s forecasts are combined into reconciled
bottom-level forecasts using a composition of linear transformations SP(·) = S[i][b]P[b][i](·). The reconciled probability
for the entire hierarchical series is given by:

P̃
(
y[i]

)
= |S∗|P̃[b]

(
S−y[i]

)
1{y[i] ∈ H} (18)

where P̃[b](·) is the reconciled bottom forecast distribution, 1(ỹ[i] ∈ H) indicates if realization belongs in the Nb-dimensional
hierarchically coherent subspace H, S− ∈ RNb×Ni is S[i][b] Moore-Penrose inverse and S⊥ ∈ RNi×Na its orthogonal
complement.

Proof. This proof follows closely that provided in (Panagiotelis et al., 2023). Given bottom level forecast distribution from
the Lemma, one can create a degenerate distribution for the entire hierarchy by adding additional dimensions u ∈ RNa .

P̃[i](u,b) = P̃[b] (b)1{u = 0} (19)

Let S = S[i][b] and S⊺
⊥ its orthogonal complement, and S− and S−

⊥ the respective Moore-Penrose inverses. Using the
following change of variables b = S−y[i] and u = S⊺

⊥y[i] we obtain

y[i] =
[
S−
⊥ |S

] [u
b

]
⇐⇒ S∗y[i] =

[
S⊺
⊥

S−

]
y[i] =

[
u
b

]
(20)

P̃
(
y[i]

)
= |S∗|P̃[b]

(
S⊺
⊥0+ S−y[i]

)
1{S⊺

⊥y[i] = 0} = |S∗|P̃[b]

(
S−y[i]

)
1{y[i] ∈ H} (21)

By definition of the orthogonal complement if S⊺
⊥y[i] = 0, that means that y[i] ∈ span(S), that matches the definition of

the hierarchically coherent subspace H.

As mentioned earlier, the analytical version of reconciled probabilities can provide highly efficient inference times, depending
on the properties of the reconciliation and the base forecast distributions. For instance, recent studies have utilized Gaussian
distributions (Panagiotelis et al., 2023; Wickramasuriya, 2023), and Poisson Mixtures (Olivares et al., 2022b).
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Figure 2. Estimation methods’ comparison. The first row displays the total Australian tourist visits, followed by rows showing the
North-South Wales state visits (A), visits in the metropolitan area of New South Wales (AA), visits to Sydney (AAA), and holiday visits to
Sydney. Light and dark blue represent the forecast distributions and 99% and 75% prediction intervals. Modeling the series’ correlations
can play an important role in the reconciled forecast distributions sharpness.

A.6. HINT Parameter Estimation

Maximum Likelihood Estimation

To estimate the parameters of HINT, we can use maximum likelihood estimation for the multivariate probability as shown
in Equation (6). Specifically, we denote as ω the neural network parameters that condition the the probabilistic output layer
parameters. Then, we express the negative log-likelihood function as follows:

L(ω) = −log

 Nk∑
κ=1

ŵκ(ω)
∏

(ι,τ)∈[i][t+1:t+h]

(
1

σ̂ι,κ,τ (ω)
√
2π

exp
{
−1

2

(
yι,κ,τ − µ̂ι,κ,τ (ω)

σ̂ι,κ,τ (ω)

)2 }) (22)

Although standard maximum likelihood estimation can model relationships between multiple time series across the
forecast horizon, a scalability challenge arises when the number of series and forecast horizon increase significantly.
Since its computation requires access to the entire multivariate series, MLE can become computationally intensive and
time-consuming. For this reason, MLE is only effective for hierarchical time series with a small number of series.

Maximum Composite Likelihood Estimation

Composite likelihood provides a computationally efficient alternative to maximum likelihood estimation for optimizing the
parameters of HINT. Unlike MLE, which computes the whole multivariate likelihood, composite likelihood decomposes the
hierarchical variable high-dimensional space support into sub-spaces and optimizes the weighted product of the subspaces’
marginal likelihood. When defining the sub-spaces in composite likelihood, the probabilistic model is restricted to learning
relationships within each sub-space while assuming independence across non-overlapping sub-spaces. These sub-spaces
can be defined based on the user’s application needs. For instance, they can be guided by the geographic proximity of the
time series data. In order to simplify the HINT algorithm, we randomly assign each series to the sub-spaces defined by the
stochastic gradient batches. Let B = {[bi]} be time-series SGD batches, then HINT’s negative log composite likelihood is:

CL(ω) = −
∑

[bi]∈B

log

 Nk∑
κ=1

ŵκ(ω)
∏

(ι,τ)∈[bi][t+1:t+h]

(
1

σ̂ι,κ,τ (ω)
√
2π

exp
{
−1

2

(
yιτ − µ̂ι,κ,τ (ω)

σ̂ι,κ,τ (ω)

)2 }) (23)

For the composite likelihood’s independence assumptions, sub-spaces can be defined as each series forecast, leading to the
univariate estimation approach. Figure 2 compares univariate and composite likelihood estimation.
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B. Hierarchical Dataset’s Exploration
In this Appendix we complement the description of the benchmark datasets from Section 4.

Table A1. Summary, of experiment hierarchical datasets.
DATASET TOTAL AGGREGATE BOTTOM FREQUENCY. H LEVELS

LABOUR 57 25 32 MONTH 8 4
TRAFFIC 207 7 200 DAILY 7 3
TOURISM 89 33 56 QUARTERLY 4 4
TOURISM-L 555 175 76 / 304 MONTH 12 4/5
WIKI2 199 49 150 DAILY 7 5

Labour reports monthly Australian employment from February 1978 to December 2020. It contains a structure built by
the labour categories (Australian Bureau of Statistics, 2019). Traffic measures the occupancy of 963 traffic lanes in
the Bay Area, the data is grouped into a year of daily observations and organized into a 207 hierarchical structure (Dua &
Graff, 2017). Tourism consists of 89 Australian location quarterly visits series; it covers from 1998 to 2006. Several
studies have used this dataset in the past (Tourism Australia, Canberra, 2005). Tourism-L summarizes an Australian
visitor survey managed by the Tourism Research Australia, the dataset contains 555 monthly series from 1998 to 2016, and
it is organized into geographic and purpose of travel (Tourism Australia, Canberra, 2019). Wiki2 contains the daily views
of 145,000 Wikipedia articles from July 2015 to December 2016. The dataset is filtered and processed into 150 bottom
series and 49 aggregate series (Anava et al., 2018). Figure 4 shows each dataset’s most aggregated series along with its
training methodology partition. Figure 3 shows each dataset’s hierarchical aggregation constraint matrices.
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Figure 3. Dataset’s hierarchical constraints. (a) Labour groups 32 occupation series by gender and geography. (b) Traffic groups
200 highways’ occupancy series into quarters, halves and total. (c) Tourism groups 56 quarterly Australian tourist visits by geographic
levels. (d) Tourism-L groups its 555 monthly Australian regional visit series, into a combination travel purpose, zones, states and
country geographical aggregations. (e) Wiki2 groups 150 daily visits to Wikipedia articles by language and article categorical taxonomy.
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Figure 4. Datasets’ partition into train, validation, and test sets used in our experiments. All use the last horizon window as defined in
Table A1 (marked by the second dotted line), and the previous window preceding the test set as validation (between the first and second
dotted lines). Validation provides the signal for hyperparameter optimization.
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C. Ablation Studies
In this Appendix, we perform ablation studies on the validation set of five hierarchical datasets Labour, Traffic,
Tourism, Tourism-L, and Wiki2. For these experiments, we change minimally the HINT settings defined in Table A4,
removing the Temporal Normalization, varying the number of Mixture components, and exploring different hierarchical
reconciliation strategies to understand their contribution to the performance of the method.

C.1. Scaled Decoupled Optimization

In Section 3.2, we introduced HINT’s scale decouple optimization strategy along with the Temporal Normalization transform.
Here we study the effects of different temporal normalization strategies on the forecast accuracy performance of the model,
measured with the overall sCRPS. For simplicity consider a network with only temporal input xh

[i][:t][c], with [i] batch, [: t]
time, and [c] feature channel indexes, we consider normalization transformations that follow the general form:

x̌h
[i][:t+h][c] = TemporalNorm(xh

[i][:t+h][c]) =
xh
[i][:t][c] − a

b

θ̂(x̌h
[i][:t+h][c]) = TemporalNorm−1(ω(x̌[i][:t+h][c])) = bω[i][t+h] + a

(24)

where a,b ∈ R(Na+Nb)×Nc is the shift and the scale of the historic inputs. In this experiment we augment NHITS, NBEATS,
TFT, TCN, and LSTM with TemporalNorm and measure its effects using four different types of normalization schemes:

minmax :
(xh

[i][:t][c] −min(xh
[i][:t][c])[i][c])

(max(xh
[i][:t][c])[i][c] −min(xh

[i][:t][c])[i][c])
standard :

(xh
[i][:t][c] − X̄[i][c])

σ̂[i][c]

robust :
(xh

[i][:t][c] −median(xh
[i][:t][c])

mad(xh
[i][:t][c])[i][c]

None : Identity(xh
[i][:t][c])

Figure C.1 shows that incorporating scale-decoupled optimization into models significantly improves their accuracy across
various datasets and architectures. In contrast, the performance improvements of different temporal normalization types
are varied. In cases where signals are smooth, the type of normalization used makes little difference. However, the robust
normalization strategy using median shift and mad scale is preferred when signals are noisy or volatile. We chose robust
Temporal Normalization as the default for all subsequent experiments based on these observations.
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Figure 5. Validation scaled Continuous Ranked Probability Score (sCRPS) curves on five different hierarchical datasets. We show the
accuracy for NHITS,NBEATS, TFT, TCN, and LSTM with and without scaled-decoupled optimization. Scale-Decouple Optimization
offers substantial accuracy improvements across architectures and datasets, with its robust variant being preferred with noisy datasets.
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C.2. Mixture Size Exploration

As mentioned in Section 3.1 and proven in Appendix A, our multivariate mixture probability model is capable of capturing
the relationships among the hierarchical series and its expressivity directly determined by the number of components in
the Gaussian mixture. Here we conduct a study to compare the accuracy effects of different mixture sizes. We vary the
number of components monotonically and follow the model’s performance. An NHITS model configuration is automatically
selected as defined from Table A4.

During our Labour, Traffic, and Tourism-L experiments, we observed a bias-variance trade-off relationship between
the number of mixture components and the validation sCRPS. If we set the number of components to 1, the sCRPS score is
the highest, but as the number of components increases, the sCRPS improves. However, if there are too many components,
the CRPS score worsens again after a certain point. Our theory is that if the mixture has too few components, the probability
does not have enough parameters to accurately depict the data’s correlations; this leads to a high bias and reflects in a poor
sCRPS. On the other hand, if the mixture has too many components, the model becomes too complicated and quickly
overfits the training data, resulting in high variance and poor performance on the validation data. The results of this ablation
experiment show a clear benefit of using a flexible multivariate mixture distribution, contrasting it to the simpler approach of
using a single component (Gaussian/Poisson regression). We explain these improvements from the flexibility of the mixture
approach that operates as a Kernel density estimation and can arbitrarily approximate a wide variety of target distributions.
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Figure 6. Validation scaled Continuous Ranked Probability Score (sCRPS) for Labour, Traffic, and Tourism-L. We show
performance curves for NHITS as a function of the number of Mixture Components. We observe a bias-variance tradeoff, where initially,
the sCRPS decreases as the number of components increases and reaches an optimal value at K=10 components. From there, after that,
we see the sCRPS worsening, thus giving us the classic U-shaped tradeoff pattern.
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C.3. Probabilistic Reconciliation Exploration

As mentioned in Section 3.1 and proven in Appendix A, the flexibility of the multivariate mixture probability model is
compatible with most probabilistic reconciliation techniques. In this ablation study, we compare the accuracy effect of
different reconciliation strategies. The reconciliation strategies considered are BottomUp (Orcutt et al., 1968; Dunn et al.,
1976), TopDown (Gross & Sohl, 1990; Fliedner, 1999), and MinTrace (Hyndman et al., 2011; Wickramasuriya et al.,
2019) variants. We describe them in detail below.

Consider the base forecasts ŷ[i],τ ∈ RNa+Nb , a reconciliation process uses a matrix P[b][i] ∈ RNb×(Na+Nb) that collapses
the original base forecasts into bottom-level forecast that are later aggregated for the upper levels of the hierarchy into the
reconciled forecasts ỹ[i],τ . Here we use the convenient representation of the reconciliation strategies introduced in Section 2.

ỹ[i],τ = S[i][b]P[b][i]ŷ[i],τ = SP
(
ŷ[i],τ

)
Bottom-Up. The most basic hierarchical reconciliation consists of simply aggregating the bottom-level base forecasts ŷ[b],τ .
By construction, it satisfies the hierarchical aggregation constraints. Here the reconciliation matrix is given by:

P[b][i] = [0[b][a] | I[b][b]] (25)

Top-Down. The TopDown strategy distributes an aggregate level forecast into the bottom-level forecasts using proportions
p[b]. Proportions can be historical values, or they can be forecasted. Its reconciliation matrix is given by:

P[b][i] = [p[b] | 0[b][a,b −1]] (26)

MinTrace. Newer reconciliation strategies use all the information available throughout the hierarchy optimally. In particular,
the MinTrace reconciliation is proven to be the optimizer of a mean squares error objective that transforms base predictions
into hierarchically coherent predictions under an unbiasedness assumption. Its reconciliation matrix is given by:

P[b][i] =
(
S⊺Σ̂τS

)−1

S⊺Σ̂
−1

τ (27)

We summarize the ablation study results for the different reconciliation strategies in Table A2. We report the overall sCRPS
across five datasets for the NHITS, TCN, and TFT architectures. We obtain the probabilistic predictions using bootstrap
(Panagiotelis et al., 2023). We observe clear advantages from adopting novel reconciliation techniques such as MinTrace
as it improves accuracy over BottomUp by 20 to 30 percent margins across well-established neural forecast architectures.
We find that post processing reconciliation is capable of improving complex end-to-end approaches that integrate the
hierarchical constraints into the training procedure Rangapuram et al. 2021; Kamarthi et al. 2022; Han et al. 2021. Based
on the results of these ablation studies, we conducted the main experiments of this work with the MinTrace and the
BottomUp reconciliation techniques. To include TopDown as an alternative we need to robustify its implementation.

Table A2. Empirical evaluation of probabilistic coherent forecasts. Mean scaled continuous ranked probability score (sCRPS), averaged
over 10 random seeds, at each aggregation level. The best result is highlighted (lower measurements are preferred).
* The TopDown reconciliation is only available for strictly hierarchical datasets.

DATASET Base MinTrace-ols MinTrace-wls TopDown-ap* TopDown-pa* BottomUp

N
H
I
T
S

Labour 0.0082 0.0082±0.0001 0.0084±0.0001 0.0092±0.0001 0.0091±0.0000 0.0094±0.0001
Traffic 0.0629 0.0635±0.0011 0.0643±0.0010 0.0651±0.0010 0.0650±0.0013 0.0660±0.0008
Tourism 0.0791 0.0806±0.0011 0.0771±0.0014 0.0920±0.0010 0.0913±0.0014 0.0756±0.0012
Tourism-L 0.1274 0.1281±0.0004 0.1261±0.0006 - - 0.1351±0.0005
Wiki2 1.4531 1.3165±0.0302 1.8399±0.0904 0.5165±0.0159 0.5178±0.0088 3.3351±0.1690

T
C
N

Labour 0.0213 0.0243±0.0004 0.0202±0.0003 0.0237±0.0003 0.0237±0.0004 0.0187±0.0004
Traffic 0.0566 0.0569±0.0007 0.0577±0.0007 0.0605±0.0010 0.0605±0.0009 0.0623±0.0008
Tourism 0.0664 0.0660±0.0009 0.0641±0.0011 0.0803±0.0012 0.0807±0.0015 0.0678±0.0018
Tourism-L 0.1632 0.1638±0.0010 0.1640±0.0008 - - 0.1677±0.0007
Wiki2 2.7345 2.0942±0.0539 2.9305±0.1247 1.6188±0.0374 1.6232±0.0476 4.2341±0.1338

T
F
T

Labour 0.0073 0.0071±0.0001 0.0074±0.0000 0.0084±0.0001 0.0084±0.0001 0.0087±0.0001
Traffic 0.0632 0.0641±0.0007 0.0638±0.0008 0.0650±0.0015 0.0646±0.0011 0.0658±0.0009
Tourism 0.0944 0.1015±0.0010 0.0895±0.0007 0.0834±0.0008 0.0832±0.0006 0.0922±0.0013
Tourism-L 0.1360 0.1364±0.0007 0.1362±0.0008 - - 0.1442±0.0010
Wiki2 0.2609 0.2608+0.0010 0.2641±0.0025 0.2560±0.0016 0.2560±0.0013 0.2755±0.0041
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D. Software and Training Methodology
D.1. Hyperaparameters and Training Methodology

Table A3. HINT fixed hyperparameters.
HYPERPARAMETER FIXED VALUES

Architecture NHITS TFT TCN
Activation ReLU ReLU ReLU
Encoder units 256 256 256
Encoder layers* 4 3 4
Encoder type MLP LSTM Conv1D
Train Objective Comp.Lik. Comp.Lik. Comp.Lik.

Table A4. HINT optimized hyperparameters.
HYPERPARAMETER CONSIDERED VALUES

Initial learning rate. {1e-3,5e-4,1e-4}
Number of learning rate decays. {None, 3}
Training steps. {.5e3, 1e3, 1.5e3, 2e3, 2.5e3, 3e3}
Input size multiplier (L=m*H). m ∈ {2, 3, 4}
Reconciliation strategy. {BottomUp,

MinTraceOLS, MinTraceWLS }

Training HINT and the benchmark models involves dividing the data into training, validation, early stopping, and test sets,
as shown in Figure 4. The training set consists of the observations before the last two horizon windows; validation is the
window between the train and test sets, with test being the last window. The model’s performance on the validation set
guides the exploration of the hyperparameter space (HYPEROPT, Bergstra et al. 2011). During the recalibration phase, we
retrain the models to incorporate new information before being tested.

We followed a standard two-stage approach for hyperparameter selection. In the first stage, based on validation ablation
studies from Appendix C, we fixed the architecture and the probability distribution to be estimated; Table A3 describes the
hyperparameters. Then, in the second stage, we optimized the training procedure of the architecture, optimally exploring the
space defined in Table A4 with HYPEROPT. This approach allowed us to explore the hyperparameter space while keeping it
computationally tractable. It also demonstrated the HINT’s robustness, broad applicability, and potential to achieve high
accuracy with only slight adjustments.

We train HINT to maximize the composite likelihood from Equation (23) using the ADAM (Kingma & Ba, 2014) stochastic
gradient algorithm. An early stopping strategy (Yao et al., 2007) is employed to halt training if there is no improvement in
loss on the validation set.

D.2. Software Implementation

All statistical baselines use StatsForecast’s AutoARIMA (Hyndman & Khandakar, 2008; Garza et al., 2022) and
HierarchicalForecast’s reconciliation methods implementations (Olivares et al., 2022b). We created a unified
Python re implementation of various widely-used hierarchical forecasting techniques that we make publicly available in
the HierarchicalForecast library (Olivares et al., 2022b). The shared implementation allows us to standardize the
comparison of the methods, controlling for experimental details and guaranteeing the quality of statistical baselines. The
code is publicly available in a dedicated repository to support reproducibility and related research.

Regarding the hierarchical neural forecast baselines, HierE2E (Rangapuram et al., 2021) is available in the GluonTS
library, while PROFHIT (Kamarthi et al., 2022) is available in a PROFHIT dedicated repository. As mentioned earlier the
only available implementation for PROFHIT suffers from significant numerical instability in its optimization. We use the
optimal configurations reported in HierE2E and PROFHIT repositories.

The HINT model family is implemented in PyTorch (Paszke et al., 2019) and can be run on both CPUs and GPUs. We
have made the HINT source code available, along with all the experiments in the following HINT dedicated repository.

https://github.com/rshyamsundar/gluonts-hierarchical-ICML-2021
https://github.com/rshyamsundar/gluonts-hierarchical-ICML-2021
https://github.com/AdityaLab/PROFHiT
https://github.com/kdgutier/hint
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E. Extended Main Results
Table 1 reports the overall probabilistic and point forecast accuracy complying with the page restrictions. In this section,
we present accuracy measurements for different hierarchy levels of aggregation. The results follow the same training and
hyperparameter selection methodologies described in Appendix D. The top row of each panel reports the overall sCRPS or
relMSE. One can observe that the forecast errors increase when moving from aggregate levels toward disaggregate levels.

HINT improves on the second-best alternative overall sCRPS by an average of 8.14% across datasets. With specific
improvements of 8.2% on Labour, 17.4% on Tourism, 10.9% on Tourism-L, and 15.5% on Wiki2. Regarding
Traffic we observed HierE2E outperforming HINT by -11.3% due to the clear Granger causalities in the dataset that
merit the use of HierE2E’s VAR approach. The results for the relative MSE are highly correlated.

Table A5. Empirical evaluation of probabilistic coherent forecasts. Mean scaled continuous ranked probability score (sCRPS) and mean
relative squared error (relMSE), averaged over 10 random seeds, at each aggregation level. The best result is highlighted.
† The PROFHIT results differ from (Kamarthi et al., 2022), as the only available implementation suffers from significant numerical instability in its optimization.
* Best performing variant of TopDown (avg. proportions, proportions avg.), and MinTrace (ols, wls, shrinkage) reported. ** The PERMBU/TopDown only available for strictly hierarchical datasets.

HINT-GMM (Ours) OTHER BOOTSTRAP PERMBU**

DATASET LEVEL NHITS TFT TCN HierE2E PROFHIT† BottomUp TopDown* MinTrace* BottomUp TopDown* MinTrace*

sC
R

PS

L
a
b
o
u
r

Overall .0067±.0000 .0089±.0000 .0120±.0001 .0171±.0003 .2138±.0007 .0078±.0001 .0668±.0000 .0073±.0000 .0077±.0001 .0623±.0001 .0069±.0001
Country .0017±.0000 .0038±.0001 .0071±.0001 .0052±.0003 .2097±.0038 .0021±.0001 .0012±.0001 .0013±.0001 .0026±.0001 .0014±.0001 .0016±.0001
Region .0047±.0001 .0067±.0000 .0103±.0001 .0181±.0003 .2150±.0028 .0058±.0001 .0458±.0000 .0045±.0001 .0060±.0001 .0420±.0001 .0045±.0001
Region/Gender .0075±.0000 .0097±.0000 .0128±.0001 .0188±.0003 .2161±.0012 .0088±.0001 .0798±.0001 .0087±.0001 .0084±.0001 .0739±.0001 .0078±.0001
Region/Gender/Empl. .0128±.0000 .0152±.0001 .0179±.0000 .0262±.0004 .2142±.0027 .0145±.0001 .1403±.0000 .0148±.0001 .0137±.0001 .1320±.0002 .0137±.0001

T
r
a
f
f
i
c

Overall .0589±.0004 .0602±.0004 .0600±.0002 .0426±.0008 .1137±.0022 .0736±.0024 .0741±.0012 .0608±.0014 .0849±.0009 .0708±.0008 .0651±.0008
Level1 .0340±.0008 .0357±.0006 .0353±.0003 .0276±.0011 .0899±.0059 .0468±.0031 .0301±.0020 .0299±.0020 .0651±.0012 .0373±.0011 .0367±.0011
Level2 .0347±.0006 .0357±.0005 .0359±.0002 .0287±.0009 .0879±.0034 .0483±.0030 .0329±.0017 .0323±.0017 .0622±.0013 .0367±.0009 .0357±.0008
Level3 .0392±.0005 .0403±.0007 .0391±.0004 .0297±.0009 .0926±.0032 .0530±.0025 .0360±.0013 .0385±.0014 .0614±.0010 .0383±.0009 .0405±.0010
Level4 .1275±.0002 .1290±.0003 .1295±.0003 .0845±.0003 .1842±.0014 .1463±.0017 .1975±.0017 .1424±.0015 .1507±.0004 .1709±.0010 .1473±.0004

T
o
u
r
i
s
m

Overall .0666±.0007 .0665±.0004 .0536±.0004 .0761±.0007 .1358±.0033 .0682±.0018 .1040±.0014 .0703±.0017 .0649±.0016 .0898±.0012 .0680±.0016
Country .0233±.0009 .0157±.0004 .0147±.0004 .0400±.0009 .0941±.0151 .0290±.0028 .0333±.0025 .0335±.0026 .0267±.0023 .0329±.0021 .0333±.0025
Purpose .0513±.0007 .0468±.0006 .0360±.0004 .0609±.0012 .1300±.0069 .0490±.0027 .0782±.0017 .0507±.0023 .0450±.0017 .0697±.0021 .0497±.0018
State/Purpose .0851±.0007 .0891±.0007 .0709±.0006 .0914±.0008 .1323±.0076 .0828±.0016 .1399±.0010 .0845±.0016 .0793±.0014 .1176±.0013 .0806±.0014
Region/Purpose .1068±.0008 .1143±.0006 .0929±.0006 .1122±.0007 .1867±.0031 .1118±.0012 .1646±.0010 .1124±.0013 .1087±.0017 .1390±.0014 .1085±.0016

T
o
u
r
i
s
m
-
L

Overall .1176±.0002 .1354±.0005 .1550±.0006 .1424±.0019 .2139±.0014 .1375±.0013 - .1313±.0009 - - -
Country .0325±.0006 .0493±.0008 .0714±.0011 .0698±.0029 .1353±.0090 .0622±.0026 - .0471±.0018 - - -
State .0606±.0006 .0704±.0006 .0955±.0005 .0936±.0019 .1610±.0020 .0820±.0019 - .0723±.0011 - - -
Zone .1025±.0004 .1164±.0007 .1352±.0006 .1260±.0017 .1893±.0034 .1207±.0010 - .1143±.0007 - - -
Region .1457±.0003 .1597±.0003 .1797±.0007 .1653±.0016 .2277±.0022 .1646±.0007 - .1591±.0006 - - -
Purpose .0706±.0006 .0868±.0008 .1122±.0009 .0996±.0028 .1845±.0071 .0788±.0018 - .0723±.0014 - - -
State/Purpose .1088±.0003 .1252±.0007 .1508±.0007 .1317±.0021 .2160±.0031 .1268±.0017 - .1243±.0014 - - -
Zone/Purpose .1772±.0003 .1989±.0005 .2147±.0006 .1926±.0015 .2679±.0019 .1949±.0010 - .1919±.0008 - - -
Region/Purpose .2426±.0005 .2766±.0005 .2804±.0005 .2606±.0017 .3296±.0010 .2698±.0008 - .2694±.0006 - - -

W
i
k
i
2

Overall .3625±.0045 .2447±.0007 .2918±.0015 .2592±.0031 .4009±.0028 .2894±.0038 .3231±.0037 .2808±.0035 .3920±.0044 .4269±.0036 .3821±.0049
World .3715±.0118 .1247±.0016 .1209±.0028 .1007±.0046 .1244±.0085 .1796±.0069 .1777±.0084 .1793±.0067 .1777±.0125 .1945±.0109 .1801±.0123
Country .3512±.0059 .1805±.0011 .1935±.0021 .1963±.0037 .2775±.0141 .2392±.0047 .2437±.0058 .2232±.0043 .2778±.0073 .3036±.0029 .2684±.0066
Access .3461±.0020 .2546±.0010 .3124±.0022 .2784±.0038 .4405±.0034 .2966±.0032 .3379±.0026 .2781±.0028 .4196±.0059 .4621±.0071 .4006±.0059
Agent .3529±.0023 .2699±.0010 .3345±.0018 .2900±.0043 .4526±.0084 .3036±.0033 .3427±.0026 .2855±.0029 .4255±.0058 .4669±.0070 .4073±.0060
Topic .3905±.0021 .3938±.0016 .4975±.0016 .4307±.0039 .7094±.0109 .4282±.0038 .5134±.0037 .4379±.0029 .6595±.0060 .7074±.0049 .6540±.0058

re
lM

SE

L
a
b
o
u
r

Overall .5802±.0131 1.4644±.0148 2.8013±.0637 .5667±.0265 6.774 × 103 .5382±.0000 16.8204±.0000 .3547±.0000
Country .1032±.0130 .8613±.0171 2.6597±.0724 .1536±.0284 9.424 × 102 .2362±.0000 .0542±.0000 .0729±.0000
Region .6502±.0276 1.6251±.0231 2.8514±.1074 1.1486±.0413 6.635 × 102 .8281±.0000 14.6118±.0000 .3740±.0000
Region/Gender 1.6870±.0241 3.0355±.0271 3.6567±.0730 1.1206±.0395 4.113 × 102 .9021±.0000 35.6038±.0000 .7519±.0000
Region/Gender/Empl. 1.8103±.0131 2.7969±.0270 2.7274±.0389 1.4491±.0361 1.664 × 102 .8069±.0000 5.6047±.0000 .8041±.0000

T
r
a
f
f
i
c

Overall .1212±.0051 .1291±.0036 .1226±.0024 .0340±.0051 .4536±.0224 .1394±.0000 .0614±.0000 .0744±.0000
Level1 .1004±.0057 .1073±.0036 .1047±.0023 .0253±.0057 .4591±.0413 .1296±.0000 .0491±.0000 .0634±.0000
Level2 .1156±.0051 .1230±.0034 .1195±.0027 .0302±.0050 .4291±.0336 .1342±.0000 .0625±.0000 .0690±.0000
Level3 .1602±.0041 .1736±.0079 .1510±.0028 .0529±.0038 .4612±.0240 .1582±.0000 .0730±.0000 .0958±.0000
Level4 .8893±.0042 .8879±.0033 .8032±.0047 .4206±.0048 .7709±.0081 .6457±.0000 .6525±.0000 .6194±.0000

T
o
u
r
i
s
m

Overall .0898±.0031 .0932±.0018 .0387±.0007 .1471±.0046 .9745±.0803 .1002±.0000 .1919±.0000 .1235±.0000
Country .0577±.0036 .0257±.0015 .0200±.0013 .1821±.0094 1.2240±.1474 .0841±.0000 .1328±.0000 .1233±.0000
Purpose .0945±.0027 .1197±.0026 .0342±.0009 .1038±.0040 .8208±.0487 .0778±.0000 .1669±.0000 .0957±.0000
State/Purpose .1409±.0049 .1725±.0020 .0750±.0020 .1550±.0032 .8511±.0489 .1563±.0000 .3482±.0000 .1620±.0000
Region/Purpose .1525±.0051 .2022±.0030 .0928±.0015 .1772±.0027 .7227±.0942 .2000±.0000 .3628±.0000 .2007±.0000

T
o
u
r
i
s
m
-
L

Overall .0577±.0009 .0834±.0017 .1816±.0031 .2449±.0096 1.0401±.0296 .3070±.0000 - .1375±.0000
Country .0336±.0009 .0477±.0022 .1545±.0032 .2918±.0194 1.3473±.1430 .4399±.0000 - .1268±.0000
State .0598±.0012 .0716±.0017 .1767±.0031 .2850±.0107 1.0854±.0358 .3504±.0000 - .1564±.0000
Zone .1263±.0019 .1656±.0018 .2659±.0051 .3620±.0087 1.0821±.0397 .3950±.0000 - .2664±.0000
Region .1777±.0024 .2214±.0016 .3213±.0062 .3594±.0055 .9447±.0300 .3996±.0000 - .3211±.0000
Purpose .0478±.0006 .0872±.0024 .1721±.0029 .1581±.0086 .8257±.0758 .1624±.0000 - .0759±.0000
State/Purpose .0752±.0009 .1131±.0020 .2054±.0035 .1884±.0055 .7839±.0491 .1860±.0000 - .1332±.0000
Zone/Purpose .1638±.0017 .2025±.0013 .2959±.0048 .2872±.0049 .8178±.0187 .2932±.0000 - .2550±.0000
Region/Purpose .2296±.0016 .2772±.0014 .3628±.0052 .3360±.0047 .8013±.0215 .3661±.0000 - .3464±.0000

W
i
k
i
2

Overall 1.0445±.0531 .1884±.0012 .2183±.0036 .6598±.0249 .7901±.0384 1.0163±.0000 1.4482±.0000 1.0068±.0000
World 3.2761±.1790 .1955±.0037 .2220±.0094 .2738±.0301 .3274±.0798 .9245±.0000 1.6135±.0000 .9883±.0000
Country .7750±.0356 .1648±.0015 .1841±.0048 .7427±.0430 .9150±.0886 1.0204±.0000 1.3529±.0000 1.0252±.0000
Access .4384±.0226 .1921±.0012 .2365±.0032 .9575±.0331 1.1538±.0429 1.1267±.0000 1.4159±.0000 1.0267±.0000
Agent .4308±.0222 .1972±.0010 .2367±.0021 .9384±.0381 1.1312±.0695 1.1008±.0000 1.3562±.0000 1.0047±.0000
Topic .2640±.0191 .1923±.0010 .2122±.0015 1.0305±.0145 1.1881±.0492 1.0603±.0000 1.2282±.0000 1.0182±.0000

https://github.com/AdityaLab/PROFHiT

