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Abstract

This paper addresses the problem of on-road object importance estimation, which
utilizes video sequences captured from the driver’s perspective as the input. Al-
though this problem is significant for safer and smarter driving systems, the explo-
ration of this problem remains limited. On one hand, publicly-available large-scale
datasets are scarce in the community. To address this dilemma, this paper con-
tributes a new large-scale dataset named Traffic Object Importance (TOI). On
the other hand, existing methods often only consider either bottom-up feature or
single-fold guidance, leading to limitations in handling highly dynamic and diverse
traffic scenarios. Different from existing methods, this paper proposes a model that
integrates multi-fold top-down guidance with the bottom-up feature. Specifically,
three kinds of top-down guidance factors (i.e., driver intention, semantic context,
and traffic rule) are integrated into our model. These factors are important for
object importance estimation, but none of the existing methods simultaneously
consider them. To our knowledge, this paper proposes the first on-road object
importance estimation model that fuses multi-fold top-down guidance factors with
bottom-up feature. Extensive experiments demonstrate that our model outperforms
state-of-the-art methods by large margins, achieving 23.1% Average Precision (AP)
improvement compared with the recently proposed model (i.e., Goal).

1 Introduction

According to the World Health Statistics of WHO (34), road traffic injuries account for a significant
29% of all injury deaths, with nearly 1.3 million people losing their lives in traffic accidents annually.
Accurately estimating the importance of on-road objects can pave the way for safer (e.g., automatic
emergency braking (45; 39)) and smarter driving systems (32; 25; 38; 49; 4; 36; 11), potentially
preventing numerous accidents.

Although on-road object importance estimation presents significant research value, it has not been
widely explored. One main reason is the scarcity of publicly-available large-scale datasets in the
community. Specific for the on-road object importance estimation task, the only one publicly-
available dataset is Ohn-Bar et al. (33), which contains 3,187 frames, 8 scenes, and 16,076 object
importance annotations. Such small-scale dataset supports to train small and less complex models.
However, traffic scenes are dynamic and diverse, asking for complex models to handle various
traffic situations. Some researchers have recognized this dilemma and propose some datasets (8;
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21; 46). Unfortunately, these dataset are not publicly-available, thereby the dilemma has not been
fundamentally addressed. To fundamentally address this dilemma and push forward the advancement
of on-road object importance study, this paper will release a large-scale dataset (named as TOI, Traffic
Object Importance) containing 9,858 frames, 28 scenes, and 44,120 object importance annotations.
Compared to Ohn-Bar (33), TOI achieves a 3.1-fold increase in frames count, a 3.5-fold increase in
scene count, and a 2.7-fold increase in object count.

From the perspective of methodology, some methods have been proposed (21; 8; 50; 33). However,
these methods are relatively simple, exhibiting the low performance when confronting to challenging
traffic scenarios. This motivates us to think about a question: why can not existing methods perform
well? The potential reason is that existing on-road importance estimation methods underestimate the
complexity of traffic scenarios, individual bottom-up mechanism (50) (assuming important objects
are the objects with salient color, texture, size, etc.) or simple top-down guidance mechanism (8; 21)
(fusing the bottom-up information with a certain type of top-down information such as semantics,
ego-car trajectory, driving task (27), etc.) can hardly address dynamic and diverse scenarios.

Figure 1: The crucial factors considered by human drivers when estimating on-road object importance.

Therefore, a smarter model is needed. Inspired by the fact that a human driver can accurately estimate
object importance in challenging situations, this paper attempts to design a model by analysing the
human reasoning mechanism during estimating object importance. To this end, the primary question
is “what essentially crucial factors are considered when a human driver is estimating the importance
of objects?". Firstly, the attributes (e.g., size, color, and texture) of the object is considered. For
example, when a truck with the big size and a car with the small size simultaneously appear in front of
the ego-car, the truck is more important since it imposes bigger impact on the driving. Secondly, the
driver intention is considered. The objects that will riskly collide with the ego-car intention driving
path or the objects locating on the ego-car intention driving path present high importance, as shown in
Fig. 1a. Thirdly, overall semantic context of the whole traffic scene is considered. A human usually
pay more attention on the objects in drivable areas rather than the objects in undrivable areas. As
shown in Fig. 1b, the person riding a bicycle in undrivable areas is unimportant. Fourthly, traffic rule
is considered. Most of traffic participants obey the traffic rule, thus the traffic rule is an critical factor
for a human to estimate object importance. For example, as shown in Fig. 1c, when there exists a lane
marking between the oncoming car and the ego-car, the human driver may consider the oncoming
car as unimportant. In contrast, if there is no lane marking between them, the importance of the
oncoming car significantly increases. The traffic rule is crucial for object importance estimation.
However, none of existing methods utilizes traffic rule to estimate on-road object importance.

Based on the above observations, we propose a model with multi-fold top-down guidance including
driver intention, semantic context, and traffic rule. As far as we know, it is the first on-road object
importance estimation model that fuses multi-fold top-down guidance factors with the bottom-up
feature. The proposed model consists of two kinds of pathways (i.e., bottom-up pathway and top-
down pathway). Bottom-up pathway and top-down pathway are fused to estimate object importance.
Specifically, in the top-down pathway, the top-down guidance factors of driver intention and semantic
context are involved in the proposed Driver Intention and Semantics Guidance (DISG) module, and
traffic rule is modeled in the proposed Traffic Rule Guidance (TRG) module. In the bottom-up
pathway, Object Feature Extraction (OFE) module is proposed to extract object features in both
spatial and temporal dimensions.

A series of comparison and ablation studies are conducted on a public dataset (33) and our TOI
dataset. The comparison experiment results show that our model has a solid advantage over the
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baselines. The ablation study results validate the effectiveness of our proposed interactive bottom-up
& top-down fusion framework and multi-fold top-down guidance modules (i.e., DISG and TRG).

The contributions of this paper are as follows. 1) This paper contributes a new large-scale dataset,
which will be publicly released. This dataset is almost three times larger than the current publicly
available public dataset (33). 2) This paper contributes an object importance estimation model. As
far as we know, it is the first on-road object importance estimation model that integrates multi-fold
top-down guidance factors with the bottom-up feature. 3) The traffic rule is crucial for object
importance estimation. However, none of existing methods utilizes traffic rule to estimate on-road
object importance. This paper considers the effect of traffic rule on object importance and successfully
models this abstract concept by proposing an adaptive object-lane interaction mechanism.

2 Related Works
On-Road Object Importance Estimation Related Datasets. Currently, the primary dilemma of
research on the on-road object importance estimation is the lack of sufficient data. Among existing
datasets relevant to autonomous driving perception tasks, only a few meet the data requirement of
providing images from the driver’s first-person perspective while also including object importance
level labels. Ohn-Bar et al. (33) are the first to define the problem of on-road object importance
estimation, and they propose a small-scale publicly available dataset, which contains 8 scenes. Gao et
al. (8) and Li et al. (21) have significantly increased the number of scenes. However, their datasets
are not publicly available, thus the contributions to the community is limited. Datasets (19; 41; 48)
are with detailed annotations such as ego’s reaction and road topology. They have great potential
to advance the development of on-road object importance estimation. However, currently, they lack
object importance level labels and cannot be directly applied to this task.

On-Road Object Importance Estimation Related Methods. Currently, on-road object importance
estimation methods can be divided into two categories: 1) methods solely utilizing bottom-up feature;
2) methods utilizing single-fold top-down guidance.

The methods solely utilizing bottom-up feature focus on the visual attributes of the objects. The
bottom-up processing method is initially introduced in (44), and Itti et al. (17) propose one of the
first bottom-up mechanism based models. Following this, many researchers are inspired by this
concept (43; 15; 18; 35). Zhang et al. (50) introduce a model, which solely relies on RGB clips for
object importance estimation. This model employs graph convolutions to characterize the interactions
among on-road objects. Nitta et al. (30) develop a model that extracts temporal features from optical
flow images to infer the states of moving objects. The optical flow images are also used in Malla et
al. (26) to assess the states of moving objects. The bottom-up methods can also be found in the
works (33; 52; 47; 23; 14; 24). Although the bottom-up feature is crucial for importance estimation,
the methods solely rely on bottom-up feature can not function well in the complex scenarios.

The importance of an object is influenced by many factors such as driver intention, which cannot
be fully utilized through bottom-up methods. However, current methods are relatively simple and
relies on single-fold guidance. Niu et al. (31) utilize a Transformer with shared weights to identify
high-risk objects and generated semantic warning sentences. Li et al. (21) investigate the impact of
driver intention, employing the action and trajectory data of the ego-car as additional supervisory
signals in auxiliary tasks to enhance model performance. Gao et al. (8) utilize the driver’s goal to
estimate object importance. A cause-effect problem was formulated in (20), which introduced a
model to estimate the risky object by considering its potential impact on the driver’s behavior. Tang et
al. (42) provide a more comprehensive understanding of how driver intentions under different tasks
affect the driver attention. Single-fold top-down guidance can also be found in the works of attention
prediction task (7; 16; 22; 6; 1; 29; 5; 28). However, none of these methods utilizes multi-fold
top-down guidance factors to estimate the on-road object importance.

3 A New Dataset: TOI
We thoroughly review existing datasets for on-road object importance estimation as well as the
datasets for the related tasks, and provide a summary in Tab. 1. The datasets for the related tasks
(e.g., risk assessment (37; 48; 19), accident anticipation (41), and situation awareness (40)) do not
include object importance labels, making them unsuitable for object importance estimation task.
Most datasets (e.g., (21; 8)) for object importance estimation are not publicly available. The only
publicly available dataset is Ohn-Bar (33), but it is a small scale dataset. In response to the scarcity
of publicly-available large-scale datasets for on-road object importance estimation, we contribute
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Table 1: Comparison between the TOI and State-of-the-art Datasets. ‘Impo.’ represents the object
importance annotation.

Dataset Task Public Impo. Extra-Information Objects Frames Scenes FPS YearGPS/IMU Lidar 3D-Labels
HDD (37) risk assessment ! % ! ! % - - - 30 2018
1361-honda (48) risk assessment ! % % % % - - 1,361 - 2020
RiskBench (19) risk assessment ! % % % % - - 6,916 - 2024
NIDB (41) accident anticipation ! % % % % - 499,500 4,995 - 2018
A-SASS (46) situation awareness % ! % % % - - 10 30 2022
ROAD (40) situation awareness ! % ! ! ! 560,000 122,000 22 12 2023
Ohn-Bar (33) on-road object importance estimation ! ! ! ! ! 16,076 3,187 8 10 2017
Goal (8) on-road object importance estimation % ! ! % % - 244,980 743 30 2019
Li (21) on-road object importance estimation % ! ! ! ! - - - 2 2022
TOI on-road object importance estimation ! ! ! ! ! 44,120 9,858 28 10 2024

a large-scale dataset named TOI (Traffic Object Importance). TOI is built by re-annotating the
authoritative KITTI (9) dataset. While there are many datasets (e.g., nuScenes (2; 40; 37)) that be
used for object importance annotations, we select KITTI dataset for the following reason: KITTI
is the worldwide benchmark in the field of autonomous driving. In addition, KITTI is collected in
diverse real traffic scenes including rural areas and on highways with rich date formats, making the
dateset friendly for various tasks.

Annotation Procedure. The criterion of object importance might be ambiguous as different drivers
usually hold different opinions on the importance judgment. Currently, object-level importance labels
are annotated without checking mechanism. Although multiple annotators perform the annotations,
the annotations finished by the certain annotator are not checked by others, leading to the unreliable
and ambiguous annotations. To generate reliable annotations, we adopt two mechanisms: the
double-checking annotation mechanism and the triple-discussing annotation mechanism.

The double-checking annotation mechanism operates as follows. Initially, the first annotator (an
experienced driver) labels the object importance at every 10 frames. To guarantee the reliability of
annotations, the first annotator only selects one object as the important object at each time of observing
the whole 10 frames. The annotation for these 10 frames is finished until all important objects are
annotated, then the annotator moves to the next set of 10 frames for annotation. Subsequently, the
annotation results are checked by the second annotator (who is also an experienced driver). When the
second annotator finds a disputed annotation, the first and second annotators discuss together to reach
an agreement. If they are unable to reach an agreement, the triple-discussion annotation mechanism
is activated. In this case, the third annotator is invited to discuss the final annotations.

Statistics and Comparison. Totally, 9,858 image frames are annotated, generating 44,120 objects with
the importance or unimportance annotations, among which 5,052 objects are annotated as important.
The annotated data are randomly split into training/testing datasets with a ratio of 8,121 : 1,737. The
comparison between TOI and existing on-road object importance estimation datasets and similar
task datasets are presented in Tab. 1. Compared to the publicly available Ohn-Bar (33) dataset, TOI
represents the significant advantages in following three aspects. Frame quantity: TOI exhibits a
substantial increase in the number of frames, with 9,858 frames compared to 3,187 frames in the
Ohn-Bar dataset. Object quantity: the number of annotated objects is 44,120 compared to 16,076
in the Ohn-Bar dataset. Scene diversity: while Ohn-Bar contains only 8 scenes, TOI covers 28
scenes. Compared to Goal (8) dataset, TOI has rich annotations such as Lidar and 3D tracklet labels.
The abundance of multimodal annotations enables TOI to support the research on on-road object
importance estimation using multimodal learning methods in the future. Though Goal (8) presents
the advantage in terms of frame number and scene diversity, it is not publicly available. Compared
to Li dataset (21), TOI offers the frame rate of 10 FPS. This high temporal resolution is critical for
capturing the dynamic changes of on-road object importance.

Annotation Challenges. Compared to datasets for other tasks, TOI may not be considered large-
scale, it is relatively large-scale compared to existing publicly available datasets for on-road object
importance estimation. However, annotating object importance at this scale is challenging. Each
annotation requires multiple annotators and undergoes rigorous checking to achieve satisfactory
results. In addition, to generate reliable annotations, only one object is annotated at each time
observing the whole video sequence, a complete re-observation of the whole video sequence is
required for the annotation of the next object. Moreover, object importance is affected by multiple
factors, which imposes difficulties on the annotation.
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4 Approach

4.1 Overview

Figure 2: The overview of multi-fold top-down guidance aware model.

Consider a traffic scenario with N on-road objects in T time steps, the goal of this work is to estimate
on-road object importance (A) at the final time step (i.e., t = T ) using the video sequence (V )
captured from the driving perspective over T time step and ego-car velocity information (E) at the
first time step (i.e., t = 1), which is formulated as:

A = N (V , E), (1)

where N represents an on-road object importance estimation network, V ={Vt}Tt=1, and A={Ai}Ni=1.

In order to effectively fuse multi-fold top-down guidance factors (i.e., semantic context, driver
intention, and traffic rule) with bottom-up object visual feature, we propose a multi-fold top-down
guidance aware model, the overview of which is illustrated in Fig. 2. Our model is composed of four
key modules: Object Feature Extraction (OFE) module detailed in § 4.2, Driver Intention and
Semantics Guidance (DISG) module described in § 4.3, Traffic Rule Guidance (TRG) module
explained in § 4.4, and Object Importance Estimation module introduced in § 4.5.

Firstly, OFE extracts object spatial feature fo,s and object temporal feature fo,t from V . Then,
DISG takes E, V , and fo,s as inputs, and outputs object-intention-semantics interaction feature
fo-i-s. Meanwhile, in TRG, the lane feature fl and fo,t are processed by adaptive object-lane
interaction mechanism to produce the object-lane interaction feature fo-l. Finally, fo-i-s and fo-l
are used to estimate object importance A.

4.2 Object Feature Extraction

The goal of Object Feature Extraction (OFE) module is to extract object features in both temporal
and spatial dimensions. The input of OFE is a RGB video sequence V ∈ RT×3×W×H , and the
outputs are object temporal feature fo,t and object spatial feature fo,s.

To begin with, OFE takes V and M (M denote optical flow images derived from V ) as inputs to
extract the object visual feature fv ∈ RN×T×C×W ′×H′

(reflecting the appearance of the object)
and the object motion feature fm ∈ RN×T×C×W ′×H′

(reflecting the movement of the object). This
procedure is formulated as:

fv = Roi(NV (V )), fm = Roi(NM (M)), (2)

where NV and NM represent the two ResNet18 (12), Roi denotes the ROI pooling (10), C represents
the number of channels, W ′ and H ′ denote the width and height obtained through ROI pooling.

Subsequently, object spatial feature fo,s ∈ RN×2C×W ′×H′
is obtained based on fv and fm. The

goal of fo,s is to focus on the spatial information of objects. Therefore, an average pooling is applied
on the time dimension (i.e., the dimension of T ) of fv and fm, and a self-attention mechanism is
utilized to emphasize the spatial information (i.e., the dimensions of W ′ and H ′), which is denoted
as follows:

fo,s = Nmhsa(Concat(Avg(fv),Avg(fm))), (3)
where Avg denotes average pooling, Concat is concatenation. Nmhsa represents the multi-head
self-attention mechanism, and it has the same meaning in the following parts.
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Meanwhile, object temporal feature fo,t ∈ RN×C′
is also extracted based on fv and fm. The goal of

fo,t is to focus on the temporal feature of objects. Therefore, the dimensions of fv and fm are firstly
reshaped from N × T ×C ×W ′ ×H ′ to N × T × (C ×W ′ ×H ′), and then two LSTM networks
are applied to extract the temporal feature. Finally, to subsequently fuse fo,t with fl ∈ RN×C′

, it is
necessary to transform the channel number of fo,t, hence a Linear layer is required. This procedure
is formulated as:

fo,t = Linear(Nmhsa(Concat(Nlstm(fv),Nlstm(fm)))), (4)

where Nlstm is the LSTM network (13), which outputs features for T time steps, and fo,t is computed
by indexing the information at the T -th time step.

4.3 Driver Intention and Semantics Guidance

The driver intention and semantic context significantly affect the on-road object importance in a
top-down manner, thus we propose the Driver Intention and Semantics Guidance (DISG) module.
DISG consists of two components, namely semantic feature extraction and object-intention-
semantics interaction. The former extracts the semantic guiding feature (i.e., fs in Eq. (5)) from
driving scenarios, and the latter uses fs and intention guiding mask (i.e., m in Eq. (7)) to guide the
refinement of fo,s. In the following part, we will sequentially introduce the calculation processes for
semantic guiding feature and intention guiding mask.

Semantic guiding feature. The goal of fs ∈ R1×2C×W ′×H′
is to guide the model to be aware of the

semantic context of on-road objects, which is extracted by:

fs = NG(G), (5)

where NG denotes a ResNet18 backbone network and G represents semantic segmentation maps
obtained from VT .

Intention guiding mask. The goal of m ∈ RW ′×H′
is making the model be aware of the region that

is consistent with the driver intention. However, it is difficult to realize since the driver intention is an
abstract concept and the limited information regarding the driver intention is known. Additionally,
it is not reasonable to assume the driver intention is known in advance. Therefore, we use three
common intention behaviors in driving to reflect the driver intention (i.e., turning left, going straight,
and turning right). Intention behaviors are formulated as the corresponding intention guiding masks:

ml =


a . . . a b . . . b
a . . . a b . . . b
...

...
...

...
...

...
a . . . a b . . . b


(W ′×H′)

, ms =


a . . . a b . . . b a . . . a
a . . . a b . . . b a . . . a
...

...
...

...
...

...
...

...
...

a . . . a b . . . b a . . . a


(W ′×H′)

, mr =


b . . . b a . . . a
b . . . b a . . . a
...

...
...

...
...

...
b . . . b a . . . a


(W ′×H′)

(6)

where ml, ms, and mr are manually engineered masks to emphasize the information in the right,
center, and left regions of the images in the video sequence, respectively. Their sizes are aligned
with the size of fs. a and b represent pre-determined low and high values, respectively. We note
that ml representing turning left behavior is allocated with higher value at the right part, which is
inspired by the finding of Tang et al. (42) demonstrating that when a car is turning left, the driver
pays more attention to the right side. Before proposing this predefined intention guiding mask, we
design a learnable mask with random initialization to make the model automatically learn the mask
to reflect intention behaviors. However, this strategy does not work. The potential reason is that the
intention is abstract to learn.

To automatically select the m of corresponding driving behavior, we design the following logic based
on the angular velocity E of ego-car:

m =


ml, if E > β

mr, if E < −β

ms, otherwise
, (7)

where β represents the driver turning threshold.

After obtaining fs and m, DISG module fuses them and uses the fused feature to guide the refinement
of fo,s. This procedure is implemented by the object-intention-semantics interaction component.
The first task of object-intention-semantics interaction is to fuse fs and m, and generate the
intention-semantics interaction feature fi-s ∈ R1×2C×W×H , which is denoted as follow:

fi-s = fs ×m. (8)
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where the operator × makes the model pay more attention to the semantic context in the driver
intention regions.

The second task of object-intention-semantics interaction is to refine fo,s by interacting with fi-s,
which is formulated as follow:

fo-i-s = Nmhca(fo,s,fi-s) + fo,s, (9)

where Nmhca denotes the multi-head cross-attention mechanism, fo,s serves as the query while fi-s
serves as the key and value, and fo-i-s ∈ RN×2C×W ′×H′

.

4.4 Traffic Rule Guidance

On-road object importance is also closely related with traffic rule, but it is often overlooked in previous
works. To effectively leverage the traffic rule, we propose the Traffic Rule Guidance (TRG) module,
which consists of two components: lane feature extraction and adaptive object-lane interaction.

Lane feature extraction is to make the preparation for adaptive object-lane interaction. In detail,
a linear transformation and an activation are applied on lane information L:

fl = Relu(Linear(L)), (10)

where L are the coordinates of lane marking points, which are derived from VT via a lane marking
detector, Relu is the rectified linear unit activation, and fl ∈ RN×C′

.

Adaptive object-lane interaction is the core of TRG, and it contains two steps: object-lane
interaction and object-lane interaction weighting. In the first step, lane feature fl and fo,t are fused
through a multi-head cross-attention mechanism and a residual mechanism, which can be denoted as:

fm
o-l = Nmhca(fl,fo,t) + fo,t, (11)

where fm
o-l ∈ RN×C′

denotes initial object-lane interaction feature, and fl serves as the query while
fo,t serves as the key and value,

Factually, fm
o-l has considered the traffic rule factor by modeling the relation between lane markings

and on-road objects. However, the influence of lane markings on on-road object importance estimation
might not be universally-effective in all scenarios, thus we propose the object-lane interaction
weighting mechanism to realize adaptive object-lane interaction.

The goal of object-lane interaction weighting is to adaptively penalize the cases in which object-lane
relation is weak (e.g., static roadside cars weakly interacts with lane markings). To this end, a
MLP network is applied on fm

o-l to compute a score p, and this score is then used to compute the
corresponding penalizing coefficient pc, which is denoted as:

p = Sigmoid(Nmlp(f
m
o-l)), (12)

pc =

{
1, if p < 0.5

α, if p ≥ 0.5
, (13)

where α is a very small value.

Based on pc, the object-lane interaction feature fo-l ∈ RN×C′
is obtained by weighting fm

o-l in
Eq. (11), which is denoted as:

fo-l = fm
o-l × pc. (14)

We note that object-lane interaction weighting is the core of adaptive object-lane interaction, which
is significant for object importance estimation (30.4% improvement on AP).

4.5 Object Importance Estimation

Taking fo-i-s in Eq. (9) and fo-l in Eq. (14) as the inputs, object importance A ∈ RN is estimated.
This procedure is formulated as:

A = Softmax(Nmlp(Linear(fo-i-s) + fo-l)), (15)

where A signifies the importance for each object. The Linear layer transforms the dimensions of
fo-i-s from N × 2C ×W ′ ×H ′ to N × C ′ so that it can be added to fo-l.
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5 Experiments

Metrics. For performance evaluation, two classical metrics are chosen: Average Precision (AP) and
F1 Score (F1). AP is computed by calculating the area under the precision-recall curve at various
thresholds, thus it is a compressive metric to indicate both the precision and recall of a model. F1 is
computed by precision and recall at a fixed threshold, thus it indicates the balance between precision
and recall. Both metrics follow the principle that higher values indicate better performance.

Loss Function. The loss function is defined as follow:
L(Â,A) = BCELoss(Â,A) + FocalLoss(Â,A), (16)

where A is the predicted object importance, Â is the ground-truth.

5.1 Comparison Experiment

Baselines. Our model is compared with seven models. Ohn-Bar (33), Goal (8), Zhang (50), and
Li (21) are representative works for on-road object importance estimation. In addition, considering
that the salient object detection indicates important objects to the certain extent, three recently-
proposed salient object detection models, namely MENet (23), A2S (52), and PGNet (47), are also
selected as baselines.

Table 2: Quantitative comparison with baselines on TOI and Ohn-Bar (33) datasets. The ‘Video’
signifies the usage of RGB video sequence, ‘Velocity’ denotes the incorporation of vehicle velocity
information, and ‘3D-Object’ indicates the utilization of 3D object properties information.

Method Inputs TOI Ohn-Bar Speed
(ms/clip)

Video Velocity 3D-Object AP↑ F1↑ Acc↑ AP↑ F1↑ Acc↑

Yolo 5 9 14 25 48 34 278
Ohn-Bar (33) PR’2017 ! ! ! 19 28 74 39 14 62 100
Goal (8) ICRA’2019 ! ! 50 49 90 52 26 65 155
Zhang (50) ICRA’2020 ! 16 0 91 28 10 54 200
Li (21) ICRA’2022 ! ! 23 0 91 41 0 64 202
MENet (23) CVPR’2023 ! - 26 76 - 12 62 122
A2S (52) CVPR’2023 ! - 9 78 - 18 61 120
PGNet (47) CVPR’2022 ! - 30 84 - 27 55 130
Ours ! ! 60 54 92 64 53 69 115

Quantitative Comparison. Tab. 2 shows the comparison results on TOI and Ohn-Bar (33) datasets.
We can observe that our model outperforms all seven baselines. On the Ohn-Bar (33) dataset, our
model achieves 23.1% and 96.3% performance improvements on AP and F1 metrics compared with
the second-best result, respectively. On the TOI dataset, compared with the second-best result on AP
and F1 metrics, our model achieves 20.0% (i.e., (60-50)/50) and 10.2% performance improvements,
respectively. The results of MENet (23), A2S (52), and PGNet (47) are not reported on AP metric due
to the lack of confidence scores in salient object detection outputs, making it impossible to calculate
precision-recall curves for different thresholds. The F1 results for Zhang (50) and Li (21) are both 0
because they predict all objects as unimportant.

5.2 Ablation Studies

Top-down and Bottom-up Framework. To validate the effectiveness of our model that inter-
actively integrates multi-fold top-down guidance mechanisms with bottom-up features, we con-
duct four experiments: #1: only the bottom-up module is enabled; #2: the bottom-up module
is combined with TRG module; #3: the bottom-up module is combined with DISG module;

Table 3: Ablation study on top-
down and bottom-up framework.

Method BU TRG DISG AP↑ F1↑
#1 ✓ 20 25
#2 ✓ ✓ 31 35
#3 ✓ ✓ 52 39
#4 ✓ ✓ ✓ 60 54

#4: the bottom-up module is combined with both TRG module
and DISG module. The experimental results are reported in Tab. 3.
Compared with #1, #2 achieves 55% and 40% performance im-
provements on AP and F1, respectively. Similarly, #3 obtains
160% and 56% performance improvements on AP and F1, respec-
tively. When both modules are enabled (#4), our model exhibits
the best performance. These results validate both TRG and DISG
modules are effective.
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Driver Intention and Semantics Guidance (DISG). To verify the effectiveness of semantic context
guidance and driver intention guidance, we conduct three experiments: #1: the model without seman-
tic guiding feature and intention guiding mask; #2: the model only with semantic guiding feature;

Table 4: Ablation study on DISG.
Method Seman. Intent. AP↑ F1↑

#1 31 35
#2 ✓ 49 48
#3 ✓ 35 39
#4 ✓ ✓ 60 54

#3: the model only with intention guiding mask; #4: the model
with both semantic guiding feature and intention guiding mask.
The results are shown in Tab. 4. Compared to #1, #2 yields 58.1%
and 37.1% performance improvements on AP and F1 metrics,
respectively. This enhancement is attributed to the usage of the
semantic guiding feature, which enables the model to learn the
semantic relation between objects and the whole scene. Meanwhile, #3 achieves 15.4% and 11.4%
performance improvements on AP and F1 metrics, respectively. The effectiveness of our intention
guiding mask accounts for this advancement. #4 exhibits the best performance, demonstrating the
effectiveness of our proposed semantic guiding feature and intention guiding mask.

Traffic Rule Guidance (TRG). To analyze the effects of object-lane interaction and object-lane
interaction weighting, we conduct three experiments: #1: the model without object-lane inter-
action and object-lane interaction weighting; #2: only the object-lane interaction is enabled;

Table 5: Ablation study on TRG.
Method Interac. Weight. AP↑ F1↑

#1 52 39
#2 ✓ 46 45
#3 ✓ ✓ 60 54

#3: both the object-lane interaction and the object-lane interaction
weighting are enabled. The corresponding results are summarized
in Tab. 5. Compared to #1, #3 obtains 15.4% and 38.5% im-
provements on the AP and F1 metrics, respectively. These results
demonstrate the significance of both object-lane interaction and
the object-lane interaction weighting mechanisms. The reason is explainable. When lane information
is not utilized, the implicit traffic rule conveyed by the lane is not used. The absence of the traffic rule
results in a reduced ability of the model.

It comes as a surprise that the individual usage of object-lane interaction (#2) leads to the perfor-
mance decreasing on the AP metric compared to #1. This is due to the fact that not all on-road
objects are influenced by lanes. Without object-lane interaction weighting, individual object-lane
interaction generates a uniform object-lane interaction feature, which could not adaptively extend
to diverse scenarios. This result potentially proves the significance of our object-lane interaction
weighting, which enables the model to adaptively disable the object-lane interaction feature when
object importance weakly rely on object-lane interaction (e.g., static cars on the roadside).

To further analyze object-lane interaction weighting, we visualize its output (i.e., pc in Eq. (13)). Some
examples are illustrated in Fig. 3 where objects with blue masks are penalized (i.e., object-lane inter-
action is disabled, pc=α) and objects with yellow masks are not penalized (i.e., object-lane interaction
is enabled, pc=1). In Fig. 3a and Fig. 3b, the object-lane interaction weighting penalizes the cars

Figure 3: Visualization of object-lane interaction
weighting.

on both sides of the road. The results make sense
since the static cars on roadsides are factually
not interacting with lanes. In Fig. 3c and Fig. 3d,
oncoming cars from the opposite direction and
the car on the current lane are not penalized,
since these cars are interacting with lanes. We
note the yellow mask do not signal the important
object. Instead, it indicates that the object-lane
interaction is enabled.

6 Conclusion

On-road object importance estimation is significant for various applications in the fields of assisted
driving and autonomous driving. The dilemmas of current research are two fold: 1) the scarcity
of large-scale publicly available datasets hinder the development of on-road object importance
estimation, and 2) existing methods are relatively simple to handle complex and diverse traffic
scenarios. In response to the dilemmas, this paper contributes a new dataset and proposes a model
with multi-fold top-down guidance. A large range of experiments demonstrate the superiority of our
proposed model. The main conclusion is that building up the model that comprehensively considers
multi-fold top-down guidance (e.g., driver intention, semantic context, and traffic rule) and bottom-up
feature (e.g., size, distance, and speed) is a promising way to remarkably push forward the study of
on-road object importance estimation.
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Appendix

This appendix provides specialized terms explanation, additional experimental results, limitations,
and experimental details, which are organized as follows:

• § A Explanation of Specialized Terms;
• § B Additional Experimental Results;
• § C Limitations;
• § D Experimental Details.

A Explanation of Specialized Terms

1) Bottom-up feature: the low-level information extracted directly from the input images or video
frames using backbone networks.

2) Top-down guidance: the high-level information including semantic understanding, prior knowl-
edge, specific goals, etc.

3) Ego-car: the car capturing video sequences that are used as the input of the model.

4) Intention driving path: the path from the ego-car current position to the intention destination.

5) Intention behaviors: the actions that the driver intends to perform based on their goals (e.g.,
turning left, going straight, and turning right).

B Additional Experimental Results

B.1 Qualitative Comparison

Figure 4: Qualitative comparison with baselines (i.e., Goal (8), Ohn-Bar (33), and Zhang (50)). Red
boxes represent important objects and green boxes denote unimportant objects.

Four scenarios (a)-(d) are illustrated in Fig. 4. In regular scenarios such as Fig. 4a, most methods
function well. However, in complex scenarios, our method exhibits significant superiority. For
example, in Fig. 4b, the white car on the opposite lane poses no immediate threat since it should obey
the traffic rule to not drive across the solid lane marking. Baselines falsely predict it as an important
object as they neglect the influence of traffic rule on object importance, while our method provides the
correct estimation by considering the object-lane interaction relation in TRG. In Fig. 4c, the ego-car
is turning left, and the vehicle on the right side is important because its driving path will risky collide
with the intention driving path of ego-car. Our method successfully predicts the important object
under the guidance of driver intention, while other methods fail. In Fig. 4d, a pedestrian is waiting to
cross the road. Her intention walking path collides with ego-car’s intention driving path, thus the
pedestrian is important. Our model correctly classifies her as important thanks to the consideration of
bottom-up feature and top-down guidance.
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B.2 Ablation Study on Object Feature Extraction (OFE)

To validate the rationality of OFE, we conduct three experiments, #1: only object spatial fea-
ture is used; #2: only object temporal feature is used; #3: both object features are used.

Table 6: Ablation study on OFE.
Method Spat. Temp. AP↑ F1↑

#1 ✓ 34 35
#2 ✓ 14 15
#3 ✓ ✓ 60 54

The results in Tab. 6 indicate that both spatial and temporal feature
of objects serve as valid foundations for accurately evaluating
object importance. Removing either of them will lead to the
performance decreasing, validating the reasonableness of OFE
module. The reasons are self-evident, traffic scenarios are highly
dynamic and diverse, thus object temporal feature, which reflects motions and behaviors, is significant
for object importance estimation. At the same time, object spatial feature conveys rich information
such as size, distance, and orientation, thus it is also significant for object importance estimation.

B.3 Hyperparameter Selection

We perform the experiments on hyperparameter selection, and the results are reported in Tab. 7. In
the hyperparameter selection for parameters a and b, we choose the optimal values, a = 1, b = 1.5,
as the hyperparameters for our model. In the experiments for selecting the hyperparameter α, it is
observed that the impact of α is minimal across the three tested values, indicating that our method is
robust.

Table 7: Ablation studies on hyperparameter selection.

Parameter AP↑ F1↑ Parameter AP↑ F1↑
a = 1, b = 2.5 51 41 α = 0.1 57 45
a = 1, b = 2 56 51 α = 0.01 55 52
a = 1, b = 1.5 60 54 α = 0.001 60 54
a = 1, b = 1 49 48

C Limitations

Figure 5: Failure examples. Top row is GT and bottom row is object importance estimation.

Poor lane marking detection results will limit the performance of our model. In the experiments,
we find two kinds of failures. First, as shown in Fig. 5a, lane markings of current lane are falsely
detected, thus the white car on the right side is supposed to locate in front of ego-car, leading to the
false estimation for the white car. Second, as shown in Fig. 5b, the ego-car moves at a slow speed
and lane markings are no detected, thus the model estimates the car in front of the ego-car as an
unimportant parking car. Additionally, considering the effect of lane markings on on-road object
importance is a small but important step towards modeling the traffic rule for this task. In the future,
more traffic rule needs to be considered.

Currently, our model only considers the effect of three types of driver intentions (i.e., turning left,
turning right, going straight) on object importance estimation. However, real-world driving scenarios
are much more complex. In future work, fine-grained intentions need to be modeled.
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D Experimental Details

D.1 Model Structure Details

Specific details of our model components are introduced in Tab. 8.

Table 8: Network architecture of our model. For Region of Interest pooling layer (ROI pooling), we
list the output shape. For average pooling (Avg pooling), we list pooling scale. For Long Short-Term
Memory network (LSTM), we list input and output dimension and layer number. For multi-head self-
attention layer (MHSA), we list the hidden size and the head number. For multi-head cross-attention
layer (MHCA), we list the hidden size and the head number. For linear layer (Linear), we list the
input and output dimension. For Layer Normalization layer (LN), we list the channel dimension. For
multi-layer perceptron network (MLP), we list the input channel dimension and each hidden channel
dimension. Note that we use different background colors in the table to distinguish between different
modules in our model, where orange represents the OFE module, blue represents the DISG module,
green represents the TRG module, and gray represents the OIE module.

Layer Details
1-17 ResNet18(The last FC layer is removed)

18-34 ResNet18(The last FC layer is removed)
35 ROI pooling(10)
36 Avg pooling(16)
37 ROI pooling(10)
38 Avg pooling(16)

39-40 LSTM(512×10×10, 256, 2)
41 MHSA(1024, 8)

42-43 LSTM(512×10×10, 256, 2)
44 MHSA(512, 8)
45 Linear(512, 256), LN(256), ReLU
46 MHCA(1024, 8)
47 Linear(1024×10×10, 256), LN(256), ReLU
48 Linear(20×4, 256), LN(256), ReLU
49 MHCA(256, 8)
50 MLP(256, {1}), Sigmoid

51-52 MLP(256, {128, 2}), Softmax

D.2 Implementation Details

Before the training and inference stages, we utilize CLRNet (51) model with backbone of ResNet101
and pretrained on the CULane dataset to get the L in Eq. (10), and the G in Eq. (5) are generated by
applying DeepLabv3 (3). We use OpenCV libary to get the M in Eq. (2). During the training and
inference stages, we resize V and M in Eq. (2), and G in Eq. (5) to 320×320 (i.e., W×H=320×320).
We set the W ′=10, H ′=10, C=512, and C ′=256. The a and b in Eq. (6) are set as 1 and 1.5,
respectively. Then, the β in Eq. (7) is set as 2.2 since the ego-car undergoes steering when the angular
velocity is around ± 2.2 based on the statistical analysis of the IMU data. In addition, the size of ml,
ms, and mr is 10× 10 (excluding the channel dimension), which is targeted to align with the size of
fs (Eq. (8)). The length of video clip is set as 16. We use SDG optimizer with a weight decay of
5e−4 and a momentum of 0.9. We set the batch size as 8, and use the cosine learning strategy with an
initial learning rate of 1e−4. Our model implementation is based on PyTorch, and experiments are
conducted using an NVIDIA RTX3090 GPU.

D.3 Object Bounding Boxes Are Assumed Known

We assume the ground truth of object bounding boxes are given. The purpose is to focus on the
on-road object importance estimation while minimizing the influencing factors from the upstream
object detection task. This setup is consistent with the existing on-road object importance estimation
method (21). Additionally, this setup is reasonable since current object detection models are highly
advanced and capable of detecting most objects on the road.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contribution 1) we claimed is reflected in § 3; The contribution 2) we
claimed is reflected in § 5.2; The contribution 3) we claimed is reflected in § 5.2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We dicuss the limitations of our work in § C.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly describe our model in § 4, and the model details can be found in
§ D.1. The dataset we proposed is fully described in § 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: This paper contributes a new dataset and a model, which will be publicly
released in https://github.com/CQU-ADHRI-Lab/TOI

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details is specified in § D.2 and § B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources we used are provided in § D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research we conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our research on-road object importance estimation focuses only on improving
the accuracy of importance estimation for road safety purposes. As such, it does not have
direct societal impacts beyond the scope of enhancing these technical capabilities.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: We are unable to find the license for the dataset and code we used, but they are
all open source, and we cite them in the original paper correctly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The dataset we proposed is well documented and is the documentation provided
alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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