
Under review as a conference paper at ICLR 2024

BIXT: PERCEIVING LONGER SEQUENCES WITH
BI-DIRECTIONAL CROSS-ATTENTION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel bi-directional Transformer architecture (BiXT) for which
computational cost and memory consumption scale linearly with input size, but
without suffering the drop in performance or limitation to only one input modality
seen with other efficient Transformer-based approaches. BiXT is inspired by
the Perceiver architectures but replaces iterative attention with an efficient bi-
directional cross-attention module in which input tokens and latent variables attend
to each other simultaneously, leveraging a naturally emerging attention-symmetry
between the two. This approach unlocks a key bottleneck experienced by Perceiver-
like architectures and enables the processing and interpretation of both semantics
(‘what’) and location (‘where’) to develop alongside each other over multiple
layers – allowing its direct application to dense and instance-based tasks alike. By
combining efficiency with the generality and performance of a full Transformer
architecture, BiXT can processes longer sequences like point clouds or images at
higher feature resolutions. Our tiny model variant achieves accuracies up to 82.0%
for classification on ImageNet1K with no modality-specific internal components,
and performs competitively on semantic image segmentation (ADE20K) and point
cloud part segmentation (ShapeNetPart) even against modality-specific methods.

1 INTRODUCTION

Much of the data we obtain when perceiving our environment can be interpreted via a division into
‘what’ and ‘where’. If we consider for example the image pictured in Figure 1 on the left, we can
easily describe its content via ‘what’ we see – the building, sky and a flag. If we were to draw
conclusions on a more fine-grained level though, we would likely include more specific descriptions
like “lower left corner” referring to their positions within the image – the ‘where’. In other words,
‘where’ denotes the actual geometric location of the individual elements (e.g. pixels) and ‘what’ the
semantic entities (e.g. objects) that collectively describe the data as a whole. Note that this similarly
applies to many other modalities, like point clouds or even language where we form words via letters
that together have a certain meaning.

Thanks to the few structural constraints placed on the input data paired with high performance,
Transformers (Vaswani et al., 2017) have shown great capabilities in extracting both ’what’ and
’where’ for a range of input modalities, giving rise to significant advances across various fields such
as Natural Language Processing (Devlin et al., 2019) and Computer Vision (Dosovitskiy et al., 2021;
Touvron et al., 2021; 2022). However, their success comes at the high cost of scaling quadratically in
memory and time with the input length, practically excluding their use on larger input data like point
clouds or high-resolution images when resources are limited.

Several approaches have since been proposed to increase their efficiency, either by changing how
the computationally expensive self-attention operation is realized (Wang et al., 2020; Shen et al.,
2021) or by exploiting the domain-specific structure of their data input (Parmar et al., 2018; Ho et al.,
2019; Qiu et al., 2020; Tu et al., 2022). However, these approaches have a tradeoff of reducing the
Transformer’s performance or limiting its application to only one specific type of input (El-Nouby
et al., 2021).

In an attempt to preserve the generality by not imposing additional constraints on the input data,
Jaegle et al. (2021) employ a small set of latent vectors as a bottleneck to extract the ‘what’ via
one-sided (iterative) cross-attention – and require an additional decoder to draw conclusions about

1



Under review as a conference paper at ICLR 2024

(a) (b) Seq: lat → tok (c) Seq: lat ← tok (d) Ours: lat←→ tok

Figure 1: Emerging patterns when attending both ways. (a) Input image. (b) depicts the areas of
the image that 4 different latents attend to, while (c) inversely shows which image regions attend to
these latents (transformed into the same coordinate system for ease of interpretation). (d) displays
which areas & latents are symmetrically attended to using our proposed bi-directional cross-attention.

‘where’ (Jaegle et al., 2022). While achieving linear complexity w.r.t. the input length, these ‘Perceiver’
architectures require between 360 - 707 GFLOPs to achieve around 78% accuracy on ImageNet1K
– results that recent ViT variants (Touvron et al., 2021; 2022) are able to obtain at a fraction of
the compute. One possible explanation for this discrepancy is that the effective working memory
of Perceiver architectures is strictly limited to the latents which therefore need to compensate via
increased computation, whereas conventional Transformers like ViTs leverage the (larger) number
of tokens across several layers. This raises an important question: Are the appealing individual
properties of these two methods mutually exclusive, or can we in fact have the best of both worlds?

In this paper, we set out to affirm the latter. We demonstrate that a small set of latent vectors
appropriately combined with layerwise simultaneous refinement of both input tokens and latents
makes it possible to pair the high performance and architectural simplicity of ViTs with the linear
scaling of Perceivers – outperforming both ViT and Perceiver in settings where compute is limited.

We start off by investigating a naïve approach: sequentially applying cross-attention to refine ‘what’
and ‘where’, one after the other. We discover that approximately symmetric attention patterns
naturally emerge between latents and tokens even when both are provided with complete flexibility.
In other words, for most latents (‘what’) that pay attention to particular tokens (‘where’), these
tokens in turn pay attention to exactly these latents (see Figure 1 and Section 3.1). Not only does
this intuitively make sense – objects need to know ‘where’ they are located in the image, and image
locations need to know ‘what’ objects are located there – it more importantly offers us a unique
opportunity to save FLOPs, memory and parameters.

As we will demonstrate in Section 2, this symmetry means we only need to compute the attention
matrix once, reducing the required parameters by ∼ 1/3, to facilitate a symmetric, bi-directional infor-
mation exchange via our proposed bi-directional cross-attention. Integrated into our bi-directional
cross-attention Transformer architecture (BiXT), this forms a flexible and high-performing yet
efficient way to process different input modalities like images and point clouds on a variety of
instance-based (e.g. classification) or dense tasks (e.g. point cloud part segmentation) – all while
scaling linearly w.r.t. the input length.

In summary, our main contributions include the following:

1. We introduce a novel bi-directional cross-attention Transformer architecture (BiXT) that
scales linearly with the input size in terms of computational cost and memory consumption,
allowing to process longer sequences like point clouds or images at higher resolution.

2. We propose bi-directional cross-attention as an efficient way to establish symmetric infor-
mation exchange that requires computation of the attention matrix only once and reduces the
involved parameters by ∼ 1/3, leveraging a naturally emerging symmetry in cross-attention
and showing significant improvements over uni-directional iterative methods.

3. We analyse BiXT’s advantage of processing longer sequences across a number of tasks
using different input modalities and output structures in settings with limited computational
resources – achieving e.g. accuracies up to 82% for classification on ImageNet1K with tiny
models and no modality-specific internal components, and performing competitively for se-
mantic image segmentation on ADE20K and point cloud part segmentation on ShapeNetPart
even among modality-specific approaches.

2



Under review as a conference paper at ICLR 2024

4. We further provide insights into BiXT’s extendibility: Thanks to its simple and flexible
design, modality-specific components can easily be incorporated in a plug-and-play fashion
should the need arise – further improving results while trading off generality.

2 PERCEPTION VIA BI-DIRECTIONAL CROSS-ATTENTION

We start this section by briefly revisiting the concept of attention before moving on to presenting our
proposed bi-directional cross-attention methodology, followed by its use within our BiXT architecture
(Figure 2). Please note that we define the concepts using single-head attention for brevity instead of
the actually employed multi-head attention (MHA), and all methods directly generalize to MHA.

2.1 BACKGROUND: THE ATTENTION MECHANISM AND ITS COMPLEXITY

While self-attention has recently gained great popularity through its use in the Transformer archi-
tecture (Vaswani et al., 2017), we will start from a slightly more general point of view: Given a
source sequence S ∈ RN×DS and a target sequence T ∈ RM×DT, attention aims to refine T by
exhaustively discovering pairwise correlations between all elements of both sequences and integrating
information from the source components of interest into the target.

Formally, S is linearly projected into two D-dimensional representations using learnable matrices –
yielding a key KS ∈ RN×D and value VS ∈ RN×D – while T is projected into one D-dimensional
representation to obtain the query QT ∈ RM×D. These representations are then used to compute the
attention-based target refinement as

∆attn
T = attn (QT ,KS ,VS) = softmax

(
QT K

T
S√

D

)
· VS , (1)

with the scaled dot product ĀT,S = 1/
√
D (QT K

T
S) ∈ RM×N representing the scaled pairwise

similarity between target and source elements. This concept is commonly referred to as cross-
attention between target T and source S. If a representation itself is to be refined given the context
within, i.e. source and target are identical (S = T ), Equation (1) reduces to the well-known self-
attention where the triplet key, query and value are all generated as a function of the same sequence.

Note that computing the similarity matrix ĀT,S has computational complexity O(NM). For self-
attention used in Transformers where T =S and hence M =N , this yields quadratic complexity
O(N2) w.r.t. the input sequence length N , prohibiting its use on longer sequences when computational
resources are limited. On the other hand, if cross-attention is employed with a fixed sequence length
M=const, the complexity becomes linear O(N).

2.2 BI-DIRECTIONAL CROSS-ATTENTION

Reducing the complexity of attention from quadratic to linear without impairing performance or
adding constraints w.r.t. input modalities is one of the main aspects of this work. We build our
approach on the previously introduced notion that most perceptual data can be interpreted as ‘what’
and ‘where’ – and both need to pay attention to the other for optimal information exchange. We
represent the ‘what’ via a small set of M learnable latent vectors and the ‘where’ via an input-
dependent sequence of N tokens, respectively denoted via the subscripts lat and tok in the following
and with M ≪ N . Naïvely, one could simply apply two individual cross-attention operations
sequentially – first querying information from one side and then the other by creating two query-key-
value triplets. However, our analyses presented in Section 3.1 show that symmetric tendencies in
the attention patterns between latents and tokens naturally emerge during training, offering a chance
to further reduce the computational requirements and to increase efficiency via our bi-directional
cross-attention as follows.

We start by creating reference-value pairs Rlat ∈ RM×D,Vlat ∈ RM×D and Rtok ∈ RN×D,Vtok ∈
RN×D via learnable linear projection from the latent vectors and tokens, respectively. Leveraging
symmetry to create bi-directional information exchange, pairwise similarities between latents and
tokens are then computed via a scaled dot product as

Ālat,tok =

(
RlatR

T
tok√

D

)
= ĀT

tok,lat, (2)

3



Under review as a conference paper at ICLR 2024

(optional) Input Tokenizer

Latent
Self-Attention

(optional) Token
Refinement

×L

Learnable latent vectors (tokenized) input data

Images Point Clouds

…

‘What?’ ‘Where?’

Bi-Directional
Cross-Attention

Bi-Directional 
Cross-

Attention

Learnable latent vectors (tokenized) input data

*

…

𝑁

𝑀

+ +

Norm Norm
MLP MLP

+ +

Row-wise 
Softmax

Column-wise 
Softmax

Norm Norm

*

Figure 2: BiXT architecture. (left) Input data passing through one layer of our Bi-Directional Cross-
Attention Transformer. (right) Internal structure of proposed efficient bi-directional cross-attention.

which is in turn used to obtain the attention-based refinement for the both latents and tokens via

∆attn
lat = softmax

(
Ālat,tok

)
· Vtok and ∆attn

tok = softmax
(
Ātok,lat

)
· Vlat. (3)

Note that in addition to providing linear scaling w.r.t. to the input length N , Equation (2) requires
evaluating the most computationally-expensive operation, namely the similarity matrix (O(MN)),
only once and allows simultaneous refinement of latents and tokens as defined in Equation (3). The
implicit reuse of the references as both query and key further reduces the parameter count of the linear
projection matrices by 1/3 compared to naïve sequential cross-attention.

2.3 BIXT – BI-DIRECTIONAL CROSS-ATTENTION TRANSFORMERS

Figure 2 (left) illustrates the individual components that make up our BiXT architecture. BiXT is
designed in a simple symmetric, ladder-like structure allowing ‘what’ (latent vectors) and ‘where’
(tokens) to simultaneously attend to and develop alongside each other – making it equally-well suited
for instance-based tasks like classification and dense tasks like semantic segmentation on a variety of
input modalities. We start this section with a brief overview, followed by more detailed descriptions
of the individual components.

General overview. The raw input data is first passed through a tokenization module which projects
the data into an embedding sequence of length N and optionally adds positional encodings, depending
on the input modality and data structure. These tokens together with a fixed set of M learnable latent
vectors are then passed to the first layer’s bi-directional cross-attention module for efficient refinement
(details depicted in Figure 2 (right) and explained below). The latents are then further refined via
latent self-attention, while the tokens are either directly passed on to the next layer (default) or
optionally refined by a token refinement module which could include modality-specific components.
The simultaneous ladder-like refinement of ‘what’ and ‘where’ is repeated for L layers, before the
result is passed to task-specific output head(s). For instance-based tasks like classification, we simply
average the set of latent vectors and attach a classification head to the output, while for tasks like
segmentation that require outputs resembling the input data structure, the refined tokens are used.

Efficient bi-directional information exchange. We use bi-directional cross-attention introduced
in Section 2.2 to enable M latents and N tokens to simultaneously attend to each other in a time and
memory efficient way, provided M ≪ N . The detailed internal structure of our module is depicted in
Figure 2(right) and defined via Equations (2) and (3). Apart from the efficient bi-directional attention
computation, it follows the common Transformer-style multi-head attention in terms of normalization,
activations and processing via feed-forward networks (FFN) introduced by Vaswani et al. (2017) and
can thus be easily implemented in modern deep learning frameworks.

Three aspects are particularly worth noting here: 1) While bi-directional attention imposes a ‘hard’
structural constraint of symmetry on the information exchange between tokens and latents per
layer, i.e. latents and tokens symmetrically attend to each other, the actual information that is
transferred is created via individual value projection matrices and thus offers flexibility in terms of
content. 2) While tokens cannot directly communicate with each other as is possible when using

4



Under review as a conference paper at ICLR 2024

computationally expensive self-attention, this communication can still take place over two layers in
our structure by using a latent vector as temporary storage in a token-latent-token sequence. Since
the total number of latents is usually larger than the semantic concepts required to describe one
data sample, we can expect this to be possible without impairing performance. 3) Compared to the
naïve approach of sequential cross-attention, we empirically find that our bi-directionally-constrained
architectures are more stable in training and more robust w.r.t. hyperparameter choice (also see
Section 3.1).

Latent vector refinement. After gathering information from the tokens, we use one multi-head
self-attention operation (Vaswani et al., 2017) to further refine the information stored in the latents and
provide direct information exchange with a global receptive field across latents. Note that since the
number of latents M is significantly smaller than the input sequence and fixed, this operation is input-
length independent and not particularly resource intensive. This step is similar to Perceiver (Jaegle
et al., 2021; 2022), but we only use one instead of several self-attention operations at each layer.

Optional token refinement. In the majority of experiments presented in this paper, we simply pass
the tokens returned by the bi-directional cross-attention to the next layer. However, our architectural
structure also allows to easily include additional (e.g. data-specific) modules for further refinement
in a plug-n-play manner. We will demonstrate examples of this in Section 3, where we add a local
refinement component exploiting grid-shaped data for image classification (El-Nouby et al., 2021)
and a data-specific hierarchical grouping module for point cloud shape classification (Ma et al., 2022).

Positional encodings. We use additive sinusoidal positional encodings (Vaswani et al., 2017) to
represent the structure of input data, which is more efficient than learnt encodings for variable input
size. For simplicity, we follow previous works like El-Nouby et al. (2021) and create the encodings
in 32 dimensions per input axis followed by a linear projection into the model’s token dimension D.
Note that this method is applicable independent of the raw data’s dimensions and thus easily handles
data ranging from 2D images to 3D or 6D point clouds.

Input tokenization. Tokenization can be performed in various ways and is the only input modality-
specific component in our architecture, akin to Perceiver-IO’s input adapters (Jaegle et al., 2022). For
classification experiments on image datasets like ImageNet1K (Russakovsky et al., 2015), we follow
common practice and use simple linear projection to embed image patches. For point cloud data, we
simply encode the 3D or 6D points directly into embedding space using our positional encoder. Note
that we do not see any reason why BiXT should not be applicable to data beyond the scope of our
paper, and any data processing module that outputs a set or sequence of embeddings could be used.

3 EXPERIMENTAL EVALUATION

The purpose of our investigations presented in the following is twofold: 1) To provide qualitative
and quantitative insights into our proposed bi-directional cross-attention and the underlying intuition
of symmetry, and 2) to demonstrate how BiXT’s ability to efficiently and effectively process longer
sequences positively affects various tasks. We focus the majority of our experiments around efficient
architectures in the low FLOP and parameter regime, and unless otherwise stated, we use BiXT with
64 latent vectors, embedding dimension 192 and 3 heads for all attention modules – aka ‘BiXT-tiny’.

Note that where indicative results are presented, every architecture was only run once, whereas
distributional results present mean and (unbiased) std-dev of 3 randomly seeded training runs.

3.1 SYMMETRIC TENDENCIES EMERGE WHEN ATTENDING BOTH WAYS

We start by investigating the intuition underlying our work: When describing data like an image by
asking ‘what’ is in it and ‘where’ things are, it intuitively makes sense that these two components
are tightly interconnected, and that they will inform aka pay attention to each other. To this end,
we set up a naïve architecture where latent vectors first query the tokens via cross-attention (CA),
followed by the tokens querying the latents (i.e. using independent query-key-value triplets), before
a further refinement step of the latent information via one self-attention operation – repeated over
multiple layers and trained on ImageNet1K (Russakovsky et al., 2015). When looking at the resulting
attention patterns depicted in Figure 1, we discover that most latents pay attention to parts of the
image representing one specific ‘entity’ like a building ((b), top-left), a flag ((b), top-right) or parts

5



Under review as a conference paper at ICLR 2024

Table 1: Bi-directional vs. iterative attention. (a) Classification accuracy on ImageNet1K. All
architectures use 64 latent vectors and have been trained for 120 epochs with hyperparameters
individually optimized. Architectural configurations noted in brackets. †indicates sharing of all, ‡of
all but the 1st layer’s cross-attention parameters. Results reported as mean and (unbiased) standard
deviation over 3 randomly seeded training runs (see appendix for complete results & details). (b)
Point cloud shape classification on ModelNet40. BiXT without (naïve) and with modality-specific
components in comparison to other works (Qi et al. (2017a;b); Jaegle et al. (2021); Ma et al. (2022)).

(a) ImageNet1K @ 120epochs.

Attention Top-1 Acc. FLOPs Mem. #Param

Iterative attention (Perceiver-like)
Iter.‡ (sa5-d8) 58.26 ± 2.34 1.58G 7.17M 19.05M
Iter.‡ (sa6-d7) 54.94 ± 5.96 1.59G 7.23M 19.94M
Iter.† (sa6-d8) 60.61 ± 1.11 1.82G 8.25M 22.16M
Iter.† (sa4-d12) 56.03 ± 1.02 1.99G 9.10M 22.16M
Iter.† (sa1-d24) 55.92 ± 0.67 1.79G 8.39M 11.93M

Cross-attention variants
Seq. (2-way, d11) 71.64 ± 0.45 1.66G 7.52M 14.60M
Bi-Dir. (d12) 72.48 ± 0.31 1.68G 7.23M 15.11M

(b) ModelNet40.

Method OA mAcc

Naïve, point-based
PointNet 89.2 86.0
Perceiver 85.7 –
BiXT (naïve) 89.6 86.4

Hierarchical, point grouping, etc.
PointNet++ 90.7 –
PointMLP 94.1 91.3
BiXT (+ group) 92.5 89.7
BiXT (+ group & hier.) 93.1 90.6

of the sky ((b), lower-right) – supporting the notion that latent vectors represent ‘things’. More
interestingly however, we discover in (c) that most of these image regions (tokens) are in turn also
paying attention to exactly these latent vectors – showing a roughly symmetric information exchange
and providing a qualitative indication that our idea of enforcing symmetry via our bi-directional
architecture might be well justified. We additionally visualize the attention patterns after replacing
the naïve sequential CA through our efficient bi-directional cross-attention in (d), and the results look
surprisingly similar – clearly indicating that our symmetrically constrained approach can achieve
similar information exchange while being significantly more efficient.

3.2 ATTENTION – ITERATIVE, SEQUENTIAL OR BI-DIRECTIONAL?

We aim to provide conclusive insights about the two major advantages of our proposed bi-directional
attention compared to Perceiver’s iterative attention: 1) Higher performance for comparable numbers
of FLOPs, and 2) Ability to optionally extend the architecture via modality-specific components. We
therefore choose two tasks to do so that have also been investigated in the Perceiver paper: Image
classification on ImageNet1K (Russakovsky et al., 2015) and point cloud shape classification on
ModelNet40 (Wu et al., 2015).

ImageNet classification. To provide a fair basis for comparison, we create a range of architectural
configurations with iterative attention based on the insights reported by Jaegle et al. (2021). Targeting
a comparable FLOP count as our BiXT tiny, we experiment with different numbers of layers, varying
numbers of self-attention operations per block and with sharing all CA parameters as well as all but
the first layer’s (for details, see Perceiver paper and our appendix) – yielding a total of 10 architectures
based on Perceiver’s iterative attention. Having optimized the hyperparameters (learning rate and
schedule) for each individually, we run 3 randomly seeded training runs for the best 5 configurations
and report their results after training for 120 epochs in Table 1 (a). BiXT’s bidirectional cross-attention
outperforms all iterative variants by a significant margin at comparable FLOP counts and proves more
robust during training as indicated by the smaller std-dev, and also beats the naïve sequential CA
variant. Interestingly, we find the configuration with 8 blocks and 6 self-attention layers per block
(sa6-d8) to achieve best performance among the iterative variants, which aligns exactly with the ‘best’
configuration reported by Jaegle et al. (2021) (albeit at a much smaller scale).

Point cloud shape classification. To gain further quantitative insights how bi-directional attention
affects processing of other modalities, we evaluate our approach on the ModelNet40 dataset (Wu
et al., 2015). BiXT again clearly outperforms Perceiver in terms of overall accuracy (OA) and is
even competitive to other point-based methods like the seminal PointNet (Qi et al., 2017a) (Fig-
ure 2 (b)). In contrast to iterative attention that gathers information exclusively in the latents, BiXT’s
simultaneous refinement of latents and tokens allows us to easily integrate data-specific modules for
token refinement. To gauge the effect, we add the ‘affine grouping’ module from PointMLP (Ma

6



Under review as a conference paper at ICLR 2024

et al., 2022) without and with creating a hierarchical structure (i.e. point reduction). While BiXT is
still outperformed by the point cloud specific PointMLP method, these optional modules help to
significantly boost the accuracy by up to 3.9% while trading off generality.

3.3 IMAGE CLASSIFICATION

Table 2: Classification on ImageNet1K using
‘few-FLOP’ Transformers. Note that we focus
here on efficient models in the low FLOP and/or
parameter regime. Perceiver architectures are
included as contrast to our bi-directional atten-
tion. All methods have been trained on input
resolutions of 2242, and ↑384 further fine-tuned
on 3842. Note that different models may have
received a different optimization effort. ∗result
reproduced as not reported in original work.

Architecture FLOPs #Param Acc.

‘Generalists’ – no tokenizer, no vision-specific internals
Perceiver (Jaegle et al., 2021) 707G 45M 78.0
Perceiver v2 (Jaegle et al., 2022) 404G 42M 78.6
Perceiver-IO (Jaegle et al., 2022) 407G 48M 79.0

‘Vanillas’ – tokenizer, but no vision-specific internals
Perceiver v2 (conv) (Jaegle et al., 2022) 367G 42M 77.4
Perceiver-IO (conv) (Jaegle et al., 2022) 369G 49M 82.1
DeiT-Ti/16 (Touvron et al., 2021) 1.3G 6M 72.2
DeiT3-Ti/16∗ (Touvron et al., 2022) 1.3G 6M 75.4

BiXT-Ti/16 1.7G 15M 79.1

Vision-specific derivatives, incl. multi-scale
PiT-Ti (Heo et al., 2021) 0.7G 5M 73.0
PiT-XS (Heo et al., 2021) 1.4G 11M 78.1
ViL-Ti-APE (Zhang et al., 2021) 1.3G 7M 76.3
ViL-Ti-RPB (Zhang et al., 2021) 1.3G 7M 76.7
PVTv1-Ti (Wang et al., 2021) 1.9G 13M 75.1
PVTv2-B1 (Wang et al., 2022) 2.1G 13M 78.7
BiFormer (Zhu et al., 2023) 2.2G 13M 81.4
XCiT-T12 (El-Nouby et al., 2021) 1.2G 7M 77.1
XCiT-T24 (El-Nouby et al., 2021) 2.3G 12M 79.4

BiXT-Ti/16 (+LPI from XCiT) 1.7G 15M 79.9

Going finer w/ BiXT – smaller patches, larger images
BiXT-Ti/8 4.7G 15M 80.8
BiXT-Ti/4 16.8G 15M 81.2

BiXT-Ti/16 ↑384 3.6G 15M 81.0
BiXT-Ti/8 ↑384 12.5G 15M 81.8
BiXT-Ti/4 ↑384 48.1G 15M 82.0

Comparison to SOTA. Note that we focus here
on efficient models in the low FLOP and/or pa-
rameter regime, with results reported in Table 2.
BiXT performs favourably in its default configura-
tion against the other ‘vanilla’ Transformers, out-
performing both versions of DeiT by a significant
margin while being significantly more efficient
than Perceiver (IO). BiXT further shows strong
performance when including the ‘local patch inter-
action’ module from XCiT as modality-specific to-
ken refinement – outperforming the original work
as well as most other methods including more ar-
chitecturally complex pyramidal architectures.

Increasing feature resolution and input size.
We keep the patch size fixed to 162 while reducing
the stride of our linear patch projector to increase
feature resolution (see appendix for ablation on
patch sizes vs. stride). Note that our BiXT/4
model can process 3364 tokens per 2242 image
thanks linear scaling, boosting the top-1 accuracy
to 81.2%. Linear scaling also lets us process larger
input images more efficiently – which we investi-
gate by fine-tuning the 2242-trained models on
3842 for 30 epochs to reduce required compu-
tational resources. Increasing the input size al-
lows us to further notably improve the accuracy by
around 1.0−2.4% across architectures, however at
the expense of higher FLOP counts. Nevertheless,
BiXT shows that it is possible to achieve 82.0%
on ImageNet using only 15M parameters and no
vision-specific internal components.

3.4 SEMANTIC IMAGE SEGMENTATION

We investigate the transferability of our meth-
ods onto semantic image segmentation on the
ADE20K dataset (Zhou et al., 2017). We follow common practice and integrate BiXT pretrained on
ImageNet1K together with SemanticFPN (Kirillov et al., 2019) as decoder, train for 80k iterations
with learning rate 6e−5 and weight decay 0.01 following El-Nouby et al. (2021) and others. We
choose a batch size of 32 due to the efficiency of our model on the 5122 images. Our vanilla BiXT per-
forms competitively against other methods with similar FLOP counts, while the more vision-specific
version BiXT+LPI is on par with even the improved PvTv2 and outperforms the others (Table 3).

Criticism on decoders & a potential alternative. Decoders like SemFPN were originally introduced
for CNN-like architectures and use feature maps at multiple resolutions. Non-hierarchical Transformer
architectures like BiXT thus need to downsample and up-convolve their feature maps at various
stages – raising the question how this affects performance and to which extent results are caused by
backbone, decoder and the compatibility of the two. To provide insights unaffected by these potential
influences, we take inspiration from the recently published DINOv2 (Oquab et al., 2023) and simply
use a linear layer to directly predict a segmentation map at feature resolution from the last layer’s
tokens, which we then upsample using bilinear interpolation. Interestingly, our naive approach even
outperforms our SemFPN variant, indicating that more research into the suitability of these decoders
with non-hierarchical architectures might be needed.

7



Under review as a conference paper at ICLR 2024

3.5 BEYOND 2D GRID-BASED IMAGE DATA: POINT CLOUD PART SEGMENTATION

Table 3: Semantic Segmentation on ADE20K.
We again focus here on efficient models in the
low FLOP and/or parameter regime. All methods
have been trained on 5122 images.

Backbone FLOPs #Param mIoU.

Using the Semantic FPN decoder (Kirillov et al., 2019)
PVTv2-B0 (Wang et al., 2022) 25.0G 8M 37.2
ResNet18 (He et al., 2016) 32.2G 16M 32.9
PVTv1-Ti (Wang et al., 2021) 33.2G 17M 35.7
PVTv2-B1 (Wang et al., 2022) 34.2G 18M 42.5
XCiT-T12 (El-Nouby et al., 2021) − 8M 38.1

BiXT-Ti/16 31.8G 19M 37.9
BiXT-Ti/16 (+LPI from XCiT) 32.4G 19M 42.4

Simple linear predictor
BiXT-Ti/16 6.4G 15M 38.4
BiXT-Ti/8 23.2G 15M 40.8

Since BiXT provides a similar generality to Per-
ceiver regarding its input data structure but ad-
ditionally allows the use of the dense, local to-
ken information, we run experiments to deter-
mine its suitability regarding the segmentation
of sub-parts of a point cloud – commonly re-
ferred to as point cloud part segmentation – on
the ShapeNetPart (Yi et al., 2016). With recent
methods like PointMLP (Ma et al., 2022) achiev-
ing a class mIoU of up to 84.6% (instance mIoU
of 86.1%), the naive application of BiXT with a
linear classifier directly applied to the last layer’s
tokens achieves a class mIoU of 83.5% (instance
mIoU of 85.2%). Note, however, that methods in
this space are usually highly specialized encoder-
decoder structures. As in previous experiments, in-
cluding a modality-specific token-refinement (’ge-

ometric affine grouping’) and passing the encoded information to PointMLP’s decoder (Ma et al.,
2022) lets BiXT obtain a highly competitive class mIoU of 84.7% (instance mIoU 86.0%) – as always
trading off performance and generality.

Table 4: Point cloud part segmentation on ShapeNetPart (Yi et al., 2016). Reported are the class
IoU and instance IoU for BiXT and PointMLP (Ma et al., 2022). Note that we only compare to
PointMLP due to investigating the use of their grouping module and decoder within BiXT.

Method Cls. Inst. aero- bag cap car chair ear- guitar knife lamp laptop motor- mug pistol rocket skate- tablemIoU mIoU plane phone bike board

PointNet 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointMLP 84.6 86.1 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3

BiXT (naïve) 83.5 85.1 83.9 81.4 91.5 79.0 89.5 76.2 91.9 87.3 79.3 95.8 73.1 95.0 84.2 63.7 80.4 83.5
BiXT (EncDec) 84.7 86.0 84.4 82.7 86.3 80.9 90.2 80.1 92.1 87.8 82.3 95.9 78.1 95.9 84.9 67.0 82.4 83.9

3.6 SCALING UP – NUMBER OF LATENTS VS. LATENT DIMENSION

The majority of this paper is concerned with tiny efficient models – however, it is interesting to see
whether our models follow previous Transformers in terms of scaling. BiXT offers an additional
degree of freedom in the number of latents. We therefore provide some insights into BiXT’s
ImageNet1K performance for 32, 64 and 128 latents paired with ‘tiny’ (D = 192) and ‘small’
(D = 384) configurations (Table 5). As expected, accuracy increases with both larger embedding
dimension and number of latents – while it is worth noting that increasing the number of latents
scales quadratically due to the self-attention based latent refinement. Note that while we chose not to
run excessive hyperparameter optimisation and refrain from translating to very large architectures due
to the large computational requirements involved, we did not observe any signs why BiXT should
not behave like other Transformer architectures in terms of scaling and performance. We therefore
anticipate to see similar tendencies for larger architectural variants, following the trend reported in
related attention-based architectures, but leave this to future work.

3.7 LIMITATIONS

Our results obtained from the investigation of iterative vs. bi-directional attention in Section 3.2
clearly indicate that bi-directional attention is advantageous in a number of settings with ‘medium’ to
‘large’ input sequence length, including finely tokenized images of up to 7056 tokens. However, it is
worth noting that by simultaneously refining the tokens alongside the latents, BiXT does not decouple
the model’s depth from the input and output, unlike Perceiver models (Jaegle et al., 2021). Therefore,
very deep BiXT variants might face difficulties in settings of attending to extremely long sequences
like raw pixels of large images paired with limited compute and memory. However, we suspect most
such scenarios to benefit from some form of preprocessing via a modality-specific input tokenizer,

8



Under review as a conference paper at ICLR 2024

Table 5: Scaling up. Top-1 classification results on ImageNet1k for varying numbers of latents and
embedding dimension. All models have been trained for 300 epochs.

#Latents tiny (D=192) small (D=384)
Acc. (%) FLOPs Mem #Param Acc. (%) FLOPs Mem #Param

32 76.68 1.30G 5.53M 15.11M 80.60 5.02G 11.07M 59.57M
64 78.13 1.68G 7.23M 15.11M 81.20 6.43G 14.53M 59.59M

128 78.80 2.47G 10.95M 15.13M 81.87 9.32G 21.90M 59.61M

similar to the input-adapter-based concept used in Jaegle et al. (2022) – shifting most applications
again into domains where BiXT performs effectively and efficiently.

4 RELATED WORK

The introduction of Transformers by Vaswani et al. (2017) has helped self-attention to significantly
gain in popularity, despite its caveat of scaling quadratically in computational time and memory with
input length. Their flexibility regarding input modality and success in Natural Language Processing
(NLP) (Devlin et al., 2019) and Computer Vision (CV) (Dosovitskiy et al., 2021; Touvron et al., 2021;
2022) has recently attracted interest in more efficient versions, prompting a series of works.

Approximating the attention matrix via low-rank factorization has been employed across NLP
(Katharopoulos et al., 2020; Wang et al., 2020; Song et al., 2021), CV (Chen et al., 2018; Zhu
et al., 2019; Li et al., 2019) and others (Choromanski et al., 2021), essentially avoiding the explicit
computation through associativity, estimating a set of bases or using sampling – usually at the expense
of performance. Others proposed to use tensor formulations (Ma et al., 2019; Babiloni et al., 2020) or
exploit the input data structure (Parmar et al., 2018; Ho et al., 2019; Qiu et al., 2020; El-Nouby et al.,
2021) under the umbrella of sparsity, however limiting their use to only one specific input modality.

The line of work closest related to ours are ‘memory-based approaches’ which employ some form
of global memory to allow indirect interaction between local tokens. Beltagy et al. (2020) propose
to compose various local windowed patterns (sliding, dilated) with global attention on few ‘pre-
selected’ and task-specific input locations for NLP tasks, while its vision derivative (Zhang et al.,
2021) provides global memory as tokens within a vision-pyramid architecture and employs four
different pairwise attention operations combined with several sets of global tokens that are discarded
at certain stages, introducing rather high architectural complexity. Ainslie et al. (2020) follow a
similar strategy but additionally investigate the encoding of structured NLP inputs, whereas Zaheer
et al. (2020) propose a hand-crafted mix of random, window and global attention to sparsify and thus
reduce attention complexity. While their idea of indirect local token communication via a shared
global memory aligns with ours, BiXT realizes this goal in a much simpler and modality-independent
manner when compared to the mix of highly modality-specific components, attention patterns and
strategies involved in these works. Preserving generality w.r.t. to input, Lee et al. (2019) use a set
of learnable ‘inducing points’ via cross-attention to query input data, while the recent Perceiver
architectures (Jaegle et al., 2021; 2022) similarly a fixed set of latents to query input data – yet none
offers the efficient simultaneous refinement of latents and tokens realized in our BiXT.

5 CONCLUSION

In this paper, we have presented a novel bi-directional cross-attention Transformer architecture
(BiXT) for which computational cost and memory consumption scale linearly with input size, by
leveraging a naturally emerging symmetry in two-way cross-attention that aligns with common
intuition and has been empirically validated in this work. By allowing the ‘what’ (latent variables)
and ‘where’ (input tokens) to attend to each other simultaneously and develop alongside throughout
the architectural stages, BiXT combines Perceiver’s linear scaling with full Transformer architectures’
high performance in a best-of-both-worlds approach. The ability to process longer sequences paired
with the ease to integrate further domain-specific token refinement modules helps BiXT to perform
competitively on a number of point cloud and vision tasks, and to outperform comparable methods
on ImageNet1K in the low-FLOP regime, both in its ‘vanilla’ and ‘vision-specific’ form.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. Etc: Encoding long and structured
inputs in transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 268–284, 2020.

Francesca Babiloni, Ioannis Marras, Gregory Slabaugh, and Stefanos Zafeiriou. Tesa: Tensor element
self-attention via matricization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13945–13954, 2020.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, and Jiashi Feng. Aˆ 2-nets: Double
attention networks. Advances in Neural Information Processing Systems, 31, 2018.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2021.

MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and
benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Alaaeldin El-Nouby, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand
Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, and Herve Jegou. XCiT:
Cross-covariance image transformers. In Advances in Neural Information Processing Systems,
2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon
Oh. Rethinking spatial dimensions of vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 11936–11945, 2021.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers. arXiv preprint arXiv:1912.12180, 2019.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International Conference on Machine
Learning, pp. 4651–4664. PMLR, 2021.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. In International Conference on Learning
Representations, 2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning, pp. 5156–5165. PMLR, 2020.

10

https://github.com/open-mmlab/mmsegmentation


Under review as a conference paper at ICLR 2024

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6399–6408, 2019.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
Conference on Machine Learning, pp. 3744–3753. PMLR, 2019.

Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin, and Hong Liu. Expectation-
maximization attention networks for semantic segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9167–9176, 2019.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei Song.
A tensorized transformer for language modeling. Advances in Neural Information Processing
Systems, 32, 2019.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. In International Conference on
Learning Representations, 2022.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International Conference on Machine Learning, pp. 4055–4064.
PMLR, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pp. 8024–8035. 2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in Neural Information Processing Systems, 30,
2017b.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise self-
attention for long document understanding. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 2555–2565, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 3531–3539, 2021.

Kyungwoo Song, Yohan Jung, Dongjun Kim, and Il-Chul Moon. Implicit kernel attention. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9713–9721, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In European Conference
on Computer Vision, pp. 516–533. Springer, 2022.

11



Under review as a conference paper at ICLR 2024

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxvit: Multi-axis vision transformer. In European Conference on Computer Vision, pp.
459–479, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
568–578, 2021.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. Computational
Visual Media, 8(3):415–424, 2022.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1912–1920, 2015.

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33:17283–17297, 2020.

Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng Gao.
Multi-scale vision longformer: A new vision transformer for high-resolution image encoding.
arXiv preprint arXiv:2103.15358, 2021.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 633–641, 2017.

Lei Zhu, Xinjiang Wang, Zhanghan Ke, Wayne Zhang, and Rynson W.H. Lau. Biformer: Vision
transformer with bi-level routing attention. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10323–10333, June 2023.

Zhen Zhu, Mengde Xu, Song Bai, Tengteng Huang, and Xiang Bai. Asymmetric non-local neural
networks for semantic segmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 593–602, 2019.

A BIXT – GENERAL ASPECTS AND INSIGHTS

A.1 CODE AND REPRODUCIBILITY

We implemented our models in PyTorch (Paszke et al., 2019) using the timm library, and will release
all code and pretrained models. We further made use of the mmsegmentation library (Contributors,
2020) for the semantic segmentation experiments. Point cloud experiments were built on the publicly
released code base from (Ma et al., 2022).

12



Under review as a conference paper at ICLR 2024

A.2 COMPLEXITY ANALYSIS.

The complexity of BiXT is dominated by the bi-directional cross-attention, in particular by a) the
matrix multiplication to compute the similarity matrix and b) the two matrix multiplications to
compute the refined outputs. Using the previously specified embedding dimension D, N tokens and
M latent vectors, multiplication a) involves matrices of shape M×D,D×N with result M×N ,
and the two multiplications b) involve matrices of shape M×N,N×D with result M×D and
N×M,M×D with result N×D. The overall complexity per layer is thus O(MND) = O(N) and
linear in the size of the input N .

A.3 TYPES OF ATTENTION – ADDITIONAL RESULTS

An extended list of the results stated in Section 3.2 are presented in Table A1. Note that we performed
an individual sweep over a set of learning rates for each individual architecture – usually starting
at 4e−3 and lowering until stable training occurred. We then used these results to pick the best 5
architectural variants and training schemes, and ran them for an additional 2 random seeds. Note that
all architectural variants, including BiXT and the sequential one have only been run in this setup for
a total of maximum 3 runs, and no cherry-picking of results occurred for either of the architectures.
Note that we have also tried stepped schedulers with the schedule proposed in the original Perceiver
paper (Jaegle et al., 2021), but resorted back to using the cosine since it showed equal or superior
results.

To contrast the sequential attention to our default BiXT with 12 layers (d12) on a matching FLOP
level, the sequential version uses only 11 layers (d11) due to its higher complexity per layer. This is
due to the fact that our bi-directional cross-attention only requires 4 instead of 6 projection matrices
(2×[R, V ] vs. 2×[Q,K, V ]) and only computes the attention matrix once (instead of twice). The
hereby saved FLOPs (as well as parameters and memory) can then be spent on additional layers,
further improving results by another ∼ 1.2%. Architectures with 1 more layer each show the same
trend.

In other words, by holding FLOP and/or memory requirements constant, we consistently observe a
net benefit with our bi-directional attention in terms of accuracy throughout our experiments. We
empirically found that it additionally improved robustness/consistency across different parameter
initializations (seeds), which can be seen by the smaller standard deviations of the bi-directional
variants.

B FURTHER DETAILS ON IMAGENET1K EXPERIMENTS

This section outlines further details regarding our image classification experiments conducted on the
ImageNet dataset (Russakovsky et al., 2015).

B.1 MODEL CONFIGURATIONS AND TRAINING DETAILS

Hyperparameter choice for the default ImageNet experiments: BiXT with 64 latents, 12 layers –
learning rate 2.5e−3, weight decay 0.05 and lambc optimizer, as well as cosine learning rate scheduler;
stochastic dropout on self-attention and cross-attention 0.05 for all tiny models. Apart from these,
we directly apply the augmentation and training proposed by Touvron et al. (2022). Our models
have been trained between 300 and 800 epochs on one or several A100 GPUs. Note that we did not
conduct an extensive hyperparameter search, and expect results to potentially improve if done so.
Finetuning was performed for 30 epochs using an initial learning rate of 4e−5 with cosine decline.

For the experiments where we investigate the scaling properties of ‘small’ architectures, we follow
the same strategy but increase the stochastic path drop rate for self- and cross-attention to between
0.1− 0.2 to prevent overfitting of the architectures.

B.2 ABLATING PATCH SIZE FOR FIXED SEQUENCE LENGTH IN IMAGE CLASSIFICATION

In this section, we investigate whether lowering the patch size to increase the resolution of the
resulting feature maps is actually the most-suited way – or whether simply reducing the stride and

13



Under review as a conference paper at ICLR 2024

Table A1: Architectural variants using iterative attention & cross-attention parameter sharing.
Classification accuracy on the ImageNet1K dataset for varying types of attention. All architectures use
64 latent vectors and have been trained for 120 epochs with hyperparameters individually optimized.
Cross-attention parameter sharing schemes: †indicates sharing of all, ‡of all but the 1st layer’s cross-
attention parameters. Architectural configurations noted in brackets. Three randomly seeded runs
were performed for the ‘best’ architectures (judged by their performance on seed = 42), and mean
and (unbiased) standard deviation are reported. One randomly seeded run reported for all other
architectures.

Attention type Acc.@1 (%) Acc.@5 (%) FLOPs Mem. #Param

Iterative† (sa5-d8) 57.51 80.61 1.58G 7.17M 18.61M
Iterative† (sa6-d7) 58.86 81.53 1.59G 7.23M 19.50M
Iterative† (sa6-d8) 60.61 ± 1.11 82.75 ± 0.68 1.82G 8.25M 22.16M
Iterative† (sa4-d12) 56.03 ± 1.02 79.38 ± 0.80 1.99G 9.10M 22.16M
Iterative† (sa1-d22) 56.09 79.36 1.64G 7.70M 11.04M
Iterative† (sa1-d24) 55.92 ± 0.67 79.33 ± 0.52 1.79G 8.39M 11.93M

Iterative‡ (sa5-d8) 58.26 ± 2.34 81.02 ± 1.76 1.58G 7.17M 19.05M
Iterative‡ (sa6-d7) 54.94 ± 5.96 78.39 ± 4.69 1.59G 7.23M 19.94M
Iterative‡ (sa6-d8) 58.23 80.95 1.82G 8.25M 22.61M
Iterative‡ (sa4-d12) 56.35 79.64 1.99G 9.10M 22.61M

Sequential (2-way, d11) 71.64 ± 0.45 90.39 ± 0.41 1.66G 7.52M 14.60M
Sequential (2-way, d12) 72.72 ± 0.76 90.95 ± 0.44 1.81G 8.19M 15.92M

Bi-Directional (d12) 72.48 ± 0.31 90.83 ± 0.19 1.68G 7.23M 15.11M
Bi-Directional (d13) 73.61 ± 0.34 91.42 ± 0.19 1.82G 7.89M 16.38M

Table A2: Varying patch sizes for fixed sequence lengths. ImageNet1k classification results for
varying patch sizes are presented for three fixed sequence lengths (realised via stride). All models
have been trained for 300 epochs using the same (default) hyperparameters and input images of size
224× 224. Best results for each sequence length is highlighted in bold.

Seq. length 196 (14× 14) 784 (28× 28) 3136 (56× 56)
Patch size 32× 32 16× 16 32× 32 16× 16 8× 8 16× 16 8× 8 4× 4

Acc. (%) 77.50 78.13 79.90 79.92 79.36 80.95 80.75 79.56
FLOPs 1.77G 1.68G 5.05G 4.71G 4.62G 16.81G 16.46G 16.38G
Mem 7.27M 7.23M 20.25M 20.25M 20.25M 72.18M 72.18M 72.18M

#Param 15.56M 15.11M 15.56M 15.12M 15.01M 15.12M 15.01M 14.98M

thus creating tokens that originate from overlapping patches yield better results. Our experiments
on image classification using the ImageNet1k (Russakovsky et al., 2015) dataset with models using
varying patch sizes and strides to keep the sequence lengths fixed show that the originally introduced
and commonly used patch size of 16× 16 pixels seems to be a good fit when using no overlapping
patches (Table A2). Interestingly, we find that even when we increase the feature resolution and thus
choose smaller strides, a patch size of 16× 16 still yields best results across our experiments. One
potential reason is that patch boundaries are randomly chosen and objects in images do naturally not
match these boundaries, so that information has to be exchanged – whereas slight overlaps might
ease this to some extent. Another potential reason for this behaviour is that significantly decreasing
the patch size reduces the input information per patch, with an 82 RGB patch having a total of 192
channels, exactly matching the tiny embedding dimension. Lower patches however would create a
significant null space, which might be an additional reason for better performance when using larger
patches.

14



Under review as a conference paper at ICLR 2024

B.3 TOKEN REFINEMENT VIA LOCAL PATCH INTERACTION (XCIT)

We integrate the ‘LPI’ module from El-Nouby et al. (2021) together with their convolutional tokenizer
for our vision-specific experiments. The LPI module consists of two depth-wise convolutional layers
(3x3) with Batch Normalization and a GELU non-linearity in between. For further details, please
refer to the original paper.

C FURTHER DETAILS ON POINT CLOUD EXPERIMENTS

Note that we do not use any voting strategy or other multi-scale augmentation and simply follow
the training regime of PointMLP (Ma et al., 2022) for most of our experiments. We use a standard
BiXT architecture for the ‘naive’ point cloud experiments as well as the ones using simple grouping
– and reduce our architecture to 4 layers when using the decoder for part segmentation and the
hierarchical approach for shape classification – paired with 32 and 24 neighbours, respectively
(default values used in other works like PointMLP).

D VISUALIZATION OF LATENT-TOKEN ATTENTION

To provide some additional qualitative insights into the bi-directional attention that is cast within
BiXT, we provide three sets of attention maps overlaid onto the input image:

• Figure A1: The attention maps of the four latent vectors presented in Figure 1(d) for all
layers throughout the BiXT tiny architecture (layer 1, top-left to layer 12, bottom-right).

• Figure A2 The attention maps of all latent vectors (64 in this case) for the final layer of our
BiXT tiny architecture.

• Figure A3 The attention maps of all latent vectors (64 in this case) for the second-last layer
of our BiXT tiny architecture.

15



Under review as a conference paper at ICLR 2024

Figure A1: Attention across layers. Bi-directional attention maps for the four selected tokens
presented in Figure 1(d) across all layers: Starting with first layer on top left, ending with last layer
(layer 12) on the bottom right. Displayed are the mean attention maps averaged across the 3 heads of
BiXT tiny with 64 latents.

16



Under review as a conference paper at ICLR 2024

Figure A2: Attention maps of final layer. Bi-directional cross-attention maps of all 64 latent vectors
of the final layer (layer 12) of our BiXT tiny architecture.

17



Under review as a conference paper at ICLR 2024

Figure A3: Attention maps of penultimate layer. Bi-directional cross-attention maps of all 64 latent
vectors of the second-last layer (layer 11) of our BiXT tiny architecture.

18


	Introduction
	Perception via bi-directional cross-attention
	Background: The attention mechanism and its complexity
	Bi-directional cross-attention
	BiXT – Bi-directional cross-attention transformers

	Experimental Evaluation
	Symmetric tendencies emerge when attending both ways
	Attention – iterative, sequential or bi-directional?
	Image classification
	Semantic image segmentation
	Beyond 2d grid-based image data: Point cloud part segmentation
	Scaling up – Number of latents x灲搠䁎硴 瘀猀⸀ 氀愀琀攀渀琀 搀椀洀攀渀猀椀漀�
	Limitations

	Related work
	Conclusion
	BiXT – General aspects and insights
	Code and reproducibility
	Complexity analysis.
	Types of Attention – Additional results

	Further details on ImageNet1K experiments
	Model configurations and training details
	Ablating patch size for fixed sequence length in image classification
	Token refinement via Local Patch Interaction (XCiT)

	Further details on point cloud experiments
	Visualization of latent-token attention

