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ABSTRACT

Decentralized stochastic minimax optimization has recently attracted significant
attention due to its applications in machine learning. However, existing state-
of-the-art methods use learning rates of different scales for the primal and dual
variables, making them difficult to tune in practice. To address this problem,
this paper proposes a novel doubly smoothed decentralized stochastic minimax
algorithm. Specifically, in terms of algorithm design, we update both the primal
and dual variables using smoothed gradients and introduce novel approaches to
handle the computation and communication of the auxiliary variables introduced
by the smoothing technique. On the theoretical side, for nonconvex-PL problems,
our convergence analysis reveals that the learning rates for the primal and dual
variables are of the same scale. Moreover, the order of the condition number in
our convergence rate is improved to O(κ3/2). To the best of our knowledge, this
is the first time it has been improved to such a favorable order. Finally, extensive
experimental results validate the effectiveness of our algorithm.

1 INTRODUCTION

In this paper, we focus on the following decentralized stochastic minimax optimization problem:

min
x∈Rd1

max
y∈Rd2

f(x, y) ≜
1

K

K∑
k=1

f (k)(x, y) , (1)

where x ∈ Rd1 is the primal variable, y ∈ Rd2 is the dual variable, f (k)(x, y) = E[f (k)(x, y; ξ(k))]
is the loss function on the k-th (where k ∈ {1, · · · ,K}) worker, and ξ(k) denotes the random sample
on the k-th worker. Throughout this paper, it is assumed that f(x, y) is nonconvex in x and satisfies
the Polyak-Lojasiewicz (PL) condition in y.

Stochastic minimax optimization has attracted increasing attention in the machine learning community
recently because it finds numerous applications, such as generative adversarial networks (Goodfellow
et al., 2014), adversarially robust learning (Madry et al., 2017), distributionally robust learning (Duchi
et al., 2021), imbalanced data classification (Ying et al., 2016), policy evaluation (Zhang et al., 2021),
etc. Moreover, in real-world machine learning applications, the training data is typically distributed
on different devices. To take advantage of the distributed data to train the aforementioned machine
learning models, decentralized minimax optimization has been actively studied in recent years. For
example, Xian et al. (2021); Huang & Chen (2023) proposed decentralized stochastic variance-
reduced gradient descent ascent algorithm based on the STORM gradient estimator (Cutkosky &
Orabona, 2019), while Zhang et al. (2021; 2024) proposed to use the SPIDER gradient estimator
(Fang et al., 2018; Nguyen et al., 2017). Recently, Huang et al. (2024) developed a decentralized
adaptive minimax algorithm and established its convergence rate for nonconvex-strongly-concave
problems.

However, most existing decentralized minimax optimization algorithms suffer from a significant
limitation. Specifically, to ensure convergence, the learning rate for the primal variable is set on a
different scale than that for the dual variable. For example, Xian et al. (2021); Zhang et al. (2024);
Chen et al. (2024); Huang & Chen (2023) prove that the ratio between the learning rate of the
primal variable and that of the dual variable has to be O(1/κ2) for nonconvex-strongly-concave (or
nonconvex-PL) problems, where κ > 1 is the condition number. Since κ is an unknown parameter, it
is difficult to tune their learning rates to ensure convergence in practice. To address this issue, a recent
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Table 1: The communication complexity (i.e., iteration complexity) and computation complexity of
different decentralized stochastic minimax algorithms that using variance-reduced gradients. N-PL:
denotes nonconvex-PL problems. N-SCV: denotes nonconvex-strongly-concave problems. LR Ratio:
the ratio between the learning rate of the primal variable and that of the dual variable. κ: denotes
condition number. 1− λ: denotes spectral gap. ϵ: denotes solution accuracy. Note that Smoothed-
SAGDA is a single-machine algorithm without using variance-reduced gradients. DGDA-VR and
DREAM depend on the condition number, scaling as κ2, in the cost of a large batch size O

(
κ
ϵ

)
.

DREAM achieves a better dependence on the spectral gap in the cost of performing multi-round
communication in each iteration.

Algorithms Communication Batch Size Computation Problem Class LR Ratio

Smoothed-SAGDA (Yang et al., 2022) O
(

κ2

ϵ4

)
O(1) O

(
κ2

ϵ4

)
N-PL O(1)

DM-HSGD (Xian et al., 2021) O
(

κ3

(1−λ)2ϵ3

)
O(1) O

(
κ3

(1−λ)2ϵ3

)
N-SCV O(1/κ2)

DGDA-VR (Zhang et al., 2024) O
(

κ2

(1−λ)2ϵ2

)
O
(
κ
ϵ

)
O
(

κ3

(1−λ)2ϵ3

)
N-SCV O(1/κ2)

DREAM (Chen et al., 2024) O
(

κ2
√
1−λϵ2

)
O
(
κ
ϵ

)
O
(

κ3

ϵ3

)
N-SCV O(1/κ2)

DM-GDA (Huang & Chen, 2023) O
(

κ3

(1−λ)2ϵ3

)
O(1) O

(
κ3

(1−λ)2ϵ3

)
N-PL O(1/κ2)

Ours (Corollary 4.3) O
(

κ3/2

(1−λ)2ϵ3

)
O(1) O

(
κ3/2

(1−λ)2ϵ3

)
N-PL O(1)

work (Yang et al., 2022) in the single-machine setting demonstrates that the smoothing technique
proposed by Zhang et al. (2020) allows primal and dual variables to use learning rates of the same
scale, that is, with a ratio of the order of O(1). However, the convergence rate 1 O(1/ϵ4) of Yang
et al. (2022) is inferior to O(1/ϵ3) of Xian et al. (2021); Huang & Chen (2023) because it just uses
the standard stochastic gradient. Then, a natural question arises:

Can we develop a decentralized smoothed minimax optimization algorithm that achieves a better
convergence rate while using same-scale learning rates for the primal and dual variables?

Actually, there are unique challenges when applying the smoothing technique to decentralized
minimax optimization in order to improve the convergence rate, as outlined below.

Challenge-1: How to incorporate the variance reduction technique into the smoothing technique
to achieve a faster convergence rate? Existing minimax optimization algorithms with the smoothing
technique in a single machine setting are based on the deterministic gradient (Zhang et al., 2020) or
the unbiased stochastic gradient (Yang et al., 2022). Directly extending their smoothing technique to
decentralized stochastic minimax optimization will lead to a slow convergence rate. For example,
(Yang et al., 2022) can only achieve a O(1/ϵ4) convergence rate to achieve the ϵ-accuracy solution for
a nonconvex-PL problem, while the existing decentralized minimax optimization algorithm (Huang
& Chen, 2023) can achieve a O(1/ϵ3) convergence rate for the same problem class by using the
variance reduction technique. However, due to the existence of the auxiliary variable in the smoothing
technique, it is unclear how to leverage the variance reduction technique to accelerate its convergence
rate. For example, it is unclear which component in the smoothed gradient should use variance
reduction and how to control the gradient bias to guarantee the fast convergence rate.

Challenge-2: How to compute and communicate the auxiliary variable in the smoothing
technique and how does it affect the communication complexity? The standard smoothing
technique introduces an auxiliary variable to smooth the loss landscape with respect to the primal
variable to improve the convergence rate. However, in a decentralized setting, it is unclear how to
update and communicate the auxiliary variable. In particular, due to the strong dependence between
the original variable and the auxiliary variable, it remains unclear whether the communication of the
auxiliary variable, especially given that our algorithm introduces auxiliary variables for both the
primal and dual variables, will improve or degrade the communication complexity, for example, by
affecting the dependence on the spectral gap or condition number in the convergence rate.

1In the introduction, we omit other factors in the convergence rate for clarity.
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To answer the aforementioned questions, we develop a novel decentralized algorithm based on the
smoothing technique: the doubly smoothed decentralized stochastic gradient descent ascent with
momentum (Smoothed2-DSGDAM) algorithm, which brings the following contributions:

• In terms of algorithm design, we apply the smoothing technique to both the primal and dual
variables. Importantly, we propose a novel and feasible approach to incorporate the variance
reduction technique into the smoothed gradient regarding both the primal and dual variables.
More importantly, our algorithm demonstrates how to update and communicate the auxiliary
variable introduced by the smoothing technique in the decentralized setting. As far as we know,
this is the first time to show how to handle the auxiliary variable and reduced the gradient
variance for the decentralized smoothed minimax algorithm.

• In terms of convergence analysis, we establish the convergence rate of our algorithm for
nonconvex-PL minimax problems. In particular, on the one hand, for a nonconvex-PL minimax
problem, the smoothing technique with a variance-reduced gradient can make the convergence
rate enjoy a better dependence on the condition number κ , i.e., in the order of O(κ3/2), which is
better than the dependence O(κ3) in existing decentralized non-smoothed minimax algorithms
(Xian et al., 2021; Huang & Chen, 2023) and the dependence O(κ2) in smoothed minimax
algorithms (Yang et al., 2022) in the single-machine setting 2. To the best of our knowledge,
this is the first time the dependence on the condition number is improved to O(κ3/2). On
the other hand, our convergence analysis shows that the ratio between the learning rate of the
primal variable and that of the dual variable can be improved from O(1/κ2) of Xian et al. (2021);
Zhang et al. (2024); Chen et al. (2024); Huang & Chen (2023) to O(1), and the convergence rate
can be improved from O(1/ϵ4) of Yang et al. (2022) to O(1/ϵ3). To the best of our knowledge,
this is the first time that a decentralized stochastic minimax optimization algorithm can
achieve such a fast convergence rate with the same-scale learning rate. A detailed comparison
between our algorithm and existing algorithms can be found in Table 1.

Finally, the extensive experimental results validate the performance of our proposed algorithm.

2 RELATED WORKS

2.1 STOCHASTIC MINIMAX OPTIMIZATION

Due to the widespread application of stochastic minimax optimization in machine learning, numerous
stochastic optimization algorithms (Lin et al., 2020; Luo et al., 2020; Huang et al., 2022; Qiu et al.,
2020; Guo et al., 2021; Yang et al., 2020; 2022; Chen et al., 2022) have been developed recently.
In particular, the nonconvex-strongly-concave and nonconvex-PL problems have been extensively
studied. For the former, Lin et al. (2020) established the convergence rate of the stochastic gradient
descent ascent (SGDA) algorithm for nonconvex-strongly-concave problems. Following that, a
couple of variance-reduced gradient methods (Luo et al., 2020; Huang et al., 2022; Qiu et al., 2020;
Guo et al., 2021) have been developed to accelerate its convergence rate. Specifically, Huang et al.
(2022); Qiu et al. (2020) combined the STORM gradient estimator (Cutkosky & Orabona, 2019) with
SGDA and established its convergence rate. Luo et al. (2020) investigated the convergence rate when
incorporating the SPIDER gradient estimator (Fang et al., 2018) into SGDA. For the latter, Yang
et al. (2020) investigated the convergence rate for the alternating stochastic gradient descent ascent
(ASGDA) algorithm. Chen et al. (2022) studied the convergence rate for the finite-sum minimax
problem when combining the SPIDER gradient estimator with ASGDA.

The smoothing technique for the minimax problem was first studied for nonconvex-concave problems
in Zhang et al. (2020). Specifically, it established the convergence rate of the full alternating gradient
(AGDA) descent ascent algorithm when incorporating the smoothing technique. Later, Yang et al.
(2022) applied this technique to nonconvex-PL problems and established its convergence rate for
SGDA. In fact, due to the efficacy of the smoothing technique, it has been applied to various settings,
such as nonconvex-nonconcave problems with the one-sided KŁ condition (Zheng et al., 2023),
constrained optimization problems (Pu et al., 2024), etc, which are beyond the scope of this paper.

2.2 DECENTRALIZED STOCHASTIC MINIMAX OPTIMIZATION

To facilitate decentralized optimization for minimax problems, a great amount of effort (Tsaknakis
et al., 2020; Zhang et al., 2021; Xian et al., 2021; Gao, 2022; Zhang et al., 2024; Chen et al., 2024;

2Here, to make a fair comparison, the existing methods considered use a batch size of O(1), rather than large
batch sizes.
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Xu, 2024) has recently been made. For example, Tsaknakis et al. (2020) developed a decentralized
gradient descent ascent algorithm by using the full gradient for local computation and the gradient
tracking technique for communication. Xian et al. (2021) proposed a decentralized minimax algorithm
based on the STORM gradient estimator and established its convergence rate for the stochastic setting.
Zhang et al. (2021) developed a decentralized minimax algorithm based on the SPIDER gradient
estimator and established its convergence rate for the finite-sum setting. Later, its convergence rate for
the stochastic setting was established in Zhang et al. (2024). Moreover, Gao (2022) incorporated the
ZeroSARAH gradient estimator into the decentralized minimax algorithm and provided convergence
analysis for the finite-sum setting. Recently, Chen et al. (2024) studied the convergence rate of
the decentralized minimax algorithm when using the PAGE gradient estimator (Li et al., 2021).
More recently, Huang et al. (2024) introduced the adaptive learning rate to decentralized minimax
optimization and established the corresponding convergence rate. Note that all these existing methods
restrict their focus to the nonconvex-strongly-concave problem.

Recently, Huang & Chen (2023) developed a decentralized minimax algorithm for nonconvex-PL
problems, where the STORM gradient estimator is used for local updates and the gradient tracking
technique is used for communication between workers. To our knowledge, in the distributed setting,
the smoothing technique has only been studied for federated centralized learning in Shen et al. (2024).
Specifically, each worker uses the standard unbiased stochastic gradient to do local update and the
central server uses the smoothing technique to assist the update of the dual variable. As a result, the
additional variable introduced by the smoothing technique behaves as a single-machine setting. Thus,
it is easy to handle this variable in convergence analysis. All in all, the smoothing technique has
not been studied for decentralized minimax optimization and it is unclear how to apply it from the
algorithm design perspective and how to handle it from the convergence analysis perspective.

3 METHOD

3.1 PROBLEM SETUP

We introduce the following assumptions with respect to the loss function and communication topology,
which have been widely used in the existing literature (Yang et al., 2022; Xian et al., 2021; Huang &
Chen, 2023; Zhang et al., 2021; 2024; Chen et al., 2024).
Assumption 3.1. (Smoothness) For any k ∈ {1, 2, · · · ,K}, the loss function on the k-th
worker satisfies the mean-squared Lipschitz smoothness, i.e., for any (x1, y1) ∈ Rd1 × Rd2 and
(x2, y2) ∈ Rd1 × Rd2 , there exists a constant value L > 0 such that E[∥∇xf

(k)(x1, y1; ξ
(k)) −

∇xf
(k)(x2, y2; ξ

(k))∥2] ≤ L2(∥x1 − x2∥2 + ∥y1 − y2∥2) and E[∥∇yf
(k)(x1, y1; ξ

(k)) −
∇yf

(k)(x2, y2; ξ
(k))∥2] ≤ L2(∥x1 − x2∥2 + ∥y1 − y2∥2).

Assumption 3.2. (PL condition) For any fixed x ∈ Rd1 , the set of solutions of the optimization
problem with respect to y, maxy∈Rd2 f(x, y), is not empty and the optimal value is finite. Furthermore,
for any x ∈ Rd1 , there exists a constant value µ > 0 such that ∥∇yf(x, y)∥2 ≥ 2µ(f(x, y∗) −
f(x, y)), where y∗ = argmaxy∈Rd2 f(x, y).
Assumption 3.3. (Variance) For any k ∈ {1, 2, · · · ,K}, the stochastic gradients with respect to
x and y of the loss function on the k-th worker are unbiased estimators and their variances are
upper bounded as: E[∥∇xf

(k)(x, y; ξ(k)) − ∇xf
(k)(x, y)∥2] ≤ σ2 and E[∥∇yf

(k)(x, y; ξ(k)) −
∇yf

(k)(x, y)∥2] ≤ σ2, where σ > 0 is a constant value.
Assumption 3.4. (Communication graph) The element wij of the adjacency matrix W ∈ RK×K of
the communication graph is non-negative, with a positive value indicating that worker-i is connected
to worker-j, and a value of zero indicating they are disconnected. Moreover, W is doubly stochastic
and symmetric, and its eigenvalues satisfy |λK | ≤ |λK−1| ≤ · · · ≤ |λ2| < |λ1| = 1.

By denoting λ = |λ2|, the spectral gap of the adjacency matrix can by represented by 1−λ. Moreover,
we use Nk to denote the neighboring worker of the k-th worker, and use κ = L/µ to represent
the condition number. In addition, we use āt =

1
K

∑K
k=1 a

(k)
t to denote the average value of any

{a(k)t }Kk=1 in the t-th iteration.

3.2 SMOOTHED2-DSGDAM
The essential idea of the smoothing technique is to introduce a regularization term such that the
original nonconvex function becomes strongly convex. As a result, the update of the primal and dual

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Doubly Smoothed Decentralized Stochastic Gradient Descent Ascent with Momentum
(Smoothed2-DSGDAM)

Input: η > 0 and ρx, ρy, βx, βy, β̂x, β̂y > 0, with ρxη
2, ρyη

2, β̂xη, β̂yη < 1.

Initialization on worker k: x(k)
0 = x0, y(k)

0 = y0, x̂(k)
0 = x̂0, ŷ(k)

0 = ŷ0,
u
(k)
0 = ∇xF

(k)(x
(k)
0 , y

(k)
0 ; x̂

(k)
0 , ŷ

(k)
0 ; ξ

(k)
0 ) , v

(k)
0 = ∇yF

(k)(x
(k)
0 , y

(k)
0 ; x̂

(k)
0 , ŷ

(k)
0 ; ξ

(k)
0 ) ,

p
(k)
0 = u

(k)
0 , q(k)0 = v

(k)
0 .

1: for t = 0, · · · , T − 1, worker k do
2: Update x: x̃(k)

t+1 =
∑

j∈Nk
wkjx

(j)
t − βxp

(k)
t , x

(k)
t+1 = x

(k)
t + η(x̃

(k)
t+1 − x

(k)
t ) ,

3: Update y: ỹ(k)
t+1 =

∑
j∈Nk

wkjy
(j)
t + βyq

(k)
t , y

(k)
t+1 = y

(k)
t + η(ỹ

(k)
t+1 − y

(k)
t ) ,

4: Update x̂: ˜̂x(k)
t+1 =

∑
j∈Nk

wkj x̂
(j)
t + β̂x(x

(k)
t+1 − x̂

(k)
t ) , x̂

(k)
t+1 = x̂

(k)
t + η(˜̂x

(k)
t+1 − x̂

(k)
t ) ,

5: Update ŷ: ˜̂y(k)
t+1 =

∑
j∈Nk

wkj ŷ
(j)
t + β̂y(y

(k)
t+1 − ŷ

(k)
t ) , ŷ

(k)
t+1 = ŷ

(k)
t + η(˜̂y

(k)
t+1 − ŷ

(k)
t ) ,

6: Compute variance-reduced gradient u(k)
t :

u
(k)
t+1 = (1 − ρxη

2)(u
(k)
t − ∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t+1)) +

∇xF
(k)(x

(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ

(k)
t+1; ξ

(k)
t+1) ,

7: Compute variance-reduced gradient v(k)t :
v
(k)
t+1 = (1 − ρyη

2)(v
(k)
t − ∇yF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t+1)) +

∇yF
(k)(x

(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ

(k)
t+1; ξ

(k)
t+1) ,

8: Gradient tracking:
p
(k)
t+1 =

∑
j∈Nk

wkjp
(k)
t + u

(k)
t+1 − u

(k)
t , q

(k)
t+1 =

∑
j∈Nk

wkjq
(k)
t + v

(k)
t+1 − v

(k)
t ,

9: end for

variables can be well coordinated to avoid divergence. Inspired by this, we introduce the doubly
smoothed loss function, which adds the regularization term to both the primal and dual variables such
that the nonconvex-PL loss function becomes strongly-convex-strongly-concave. Specifically, the
doubly smoothed loss function is defined as follows:

F (x, y; x̂, ŷ) =
1

K

K∑
k=1

f (k)(x, y) +
γ1
2
∥x− x̂∥2 − γ2

2
∥y − ŷ∥2︸ ︷︷ ︸

F (k)(x,y;x̂,ŷ)

, (2)

where γ1 > 0 and γ2 > 0 are hyperparameters, and x̂ ∈ Rd1 , ŷ ∈ Rd2 are the auxiliary variables
for the primal and dual variables, respectively. Here, γ1 and γ2 are set such that F (x, y; x̂, ŷ) is
strongly convex with respect to x and strongly concave with respect to y. For example, we can set
γ1 = 2L and γ2 = 2L. Note that most existing works in the single-machine setting, such as (Zhang
et al., 2020; Yang et al., 2022) apply the smoothing technique to a single variable. Only a recent
work (Zheng et al., 2023) uses it for both variables for nonconvex-nonconcave problems. However, it
focuses on the deterministic setting, failing to handle the biased stochastic gradient estimator and the
decentralized communication. Hence, a new algorithm design and convergence analysis are required
to address the challenges caused by them.

Based on the smoothed loss function in Eq. (2), the k-th worker can compute the stochastic gradient
with respect to the primal and dual variables in the t-th iteration as follows:

∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t ) = ∇xf

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t ) + γ1(x

(k)
t − x̂

(k)
t ) ,

∇yF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t ) = ∇yf

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t )− γ2(y

(k)
t − ŷ

(k)
t ) . (3)

In terms of the smoothed loss function in Eq. (2) and the stochastic gradients in Eq. (3), we
develop a novel doubly smoothed decentralized stochastic gradient descent ascent with momentum
(Smoothed2-DSGDAM) algorithm in Algorithm 1. Generally speaking, we apply the variance
reduction technique, STORM (Cutkosky & Orabona, 2019), to the stochastic gradient on each
worker to update the primal and dual variables, and use the gradient tracking technique to conduct
communication between different workers. However, there are two unique challenges when designing
our Smoothed2-DSGDAM algorithm: 1) How to apply the variance reduction technique in the
presence of the smoothing term? 2) How to update and communicate the auxiliary variables x̂
and ŷ to guarantee convergence in the decentralized setting?

5
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As for the first challenge regarding variance reduction, there are actually two ways to apply variance
reduction. Specifically, we can apply it to the original stochastic gradient ∇xf

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t )

or to the smoothed gradient ∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t ). However, computing the variance-

reduced gradient u(k)
t for the original stochastic gradient ∇xf

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t ) will complicate the

convergence analysis, when bounding a critical term ⟨∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt), x̄t+1 − x̄t⟩, where x̄t, ȳt,
¯̂xt, and ¯̂yt denote the averaged variable across workers.

Specifically, when computing the STORM gradient estimator u
(k)
t for the smoothed gradient

∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t ), we can bound it as follows:

⟨∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt), x̄t+1 − x̄t⟩ = −ηβx⟨∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt), ūt⟩

= −ηβx

2
∥ūt∥2 −

ηβx

2
∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2 +

ηβx

2
∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2 . (4)

All three terms in the last step are straightforward to handle.

However, when computing the STORM gradient estimator u(k)
t for the original stochastic gradient

∇xf
(k)(x

(k)
t , y

(k)
t ; ξ

(k)
t ), we have

⟨∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt), x̄t+1 − x̄t⟩
= −ηβx⟨∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt), γ1(x̄t − ¯̂xt)⟩ − ηβx⟨∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt), ūt⟩

≤ ηβx

4
∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2 + 4ηβxγ

2
1∥x̄t − ¯̂xt∥2

− ηβx

2
∥ūt∥2 −

ηβx

2
∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2 +

ηβx

2
∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2 . (5)

Here, the last term should be further handled by ∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2 ≤ 2∥∇xf(x̄t, ȳt)−
ūt∥2 + 2γ2

1∥x̄t − ¯̂xt∥2. Then, it can be seen that this approach introduces an addition term
(marked in blue), which can make it more challenging to select hyperparameters to handle
∥x̄t − ¯̂xt∥2.

In addition to this problem, if STORM is applied to the original stochastic gradient, whenever
∥x̄t+1 − x̄t∥2 appears, it should be decomposed into two terms: ∥ūt∥2 and ∥x̄t − ¯̂xt∥2. In contrast,
the smoothed one only needs to replace ∥x̄t+1 − x̄t∥2 with η2β2

x∥ūt∥2, which is much easier for the
downstream proof. All in all, applying the variance reduction technique to the original stochastic
gradient could significantly complicate the proof. Therefore, we apply it to the smoothed gradient
∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t ), which is shown in Step 6 of Algorithm 1.

Regarding the update and communication of the variable x̂ and ŷ, it has not been studied in the
existing decentralized optimization literature. A straightforward approach is to update x̂ (and ŷ)
locally without communication. However, in convergence analysis, we have to handle the negative
term, −∥¯̂xt+1 − ¯̂xt∥2 (See Lemma C.1), and positive term, ∥x̂(k)

t+1 − x̂
(k)
t ∥2 (See Lemma D.1),

simultaneously. Specifically, we need to convert ∥x̂(k)
t+1 − x̂

(k)
t ∥2 to ∥¯̂xt+1 − ¯̂xt∥2 based on the

consensus error ∥x̂(k)
t − ¯̂xt∥2. If there is no communication operation for x̂, it is difficult to control

the consensus error. In fact, it may be exploding. To address this challenge, we propose the following
approach for the update and communication of x̂ (and ŷ):

˜̂x
(k)
t+1 =

∑
j∈Nk

wkj x̂
(j)
t + β̂x(x

(k)
t+1 − x̂

(k)
t ) , x̂

(k)
t+1 = x̂

(k)
t + η(˜̂x

(k)
t+1 − x̂

(k)
t ) , (6)

where β̂x > 0 and η > 0 are hyperparameters. The first step in Eq. (6) can be viewed as the update
of the communicated variable

∑
j∈Nk

wkj x̂
(j)
t with the local gradient x(k)

t+1 − x̂
(k)
t , and the second

step is a convex combination between the intermediate variable ˜̂x
(k)
t+1 and the local variable x̂

(k)
t .

With such an update and communication strategy, we can bound the consensus error regarding the
auxiliary variable as shown in our Lemma D.3, where the coefficient 1 − η(1−λ2)

4 is important to
shrink the consensus error.

In summary, the smoothing technique brings new challenges for algorithm design in the decentralized
setting. In our algorithm, we develop novel strategies to handle variance reduction and the update
and communication of the auxiliary variables. Therefore, our algorithm design is novel.
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4 CONVERGENCE ANALYSIS

Before presenting the convergence rate of our algorithm, we introduce the following stationary
measures, which were introduced in (Yang et al., 2022).
Definition 4.1. A solution (x, y) is termed the (ϵ1, ϵ2)-stationary solution if ∥∇xf(x, y)∥ ≤ ϵ1
and ∥∇yf(x, y)∥ ≤ ϵ2. A solution x is termed the ϵ-stationary solution if ∥∇Φ(x)∥ ≤ ϵ, where
Φ(x) = f(x, y∗(x)) and y∗(x) = argmaxy∈Rd2 f(x, y).

Based on the assumptions in Section 3, we establish the convergence rate of our Algorithm 1 in the
following theorem.
Theorem 4.2. Given Assumptions 3.1-3.4, when ρx > 0, ρy > 0, γ = O(L), the condition about
η and βx in Eq. (165), and those about βy, β̂x, β̂y in Eq. (55) hold, Algorithm 1 has the following
convergence upper bound:

1

T

T−1∑
t=0

(
E[∥∇xf(x̄t, ȳt)∥2] + κE[∥∇yf(x̄t, ȳt)∥2]

)
≤ O(κρ2xη

4σ2) +O(κρ2yη
4σ2)

+O

(
κP0

βxηT

)
+O

(
κ

T

1

K

K∑
k=1

E[∥∇xf
(k)(x0, y0)∥2]

)
+O

(
κ

T

1

K

K∑
k=1

E[∥∇yf
(k)(x0, y0)∥2]

)

+O

(
κσ2

ρxη2TB

)
+O

(
κσ2

ρyη2TB

)
+O

(
κσ2

T

)
+O

(
κρxη

2σ2

K

)
+O

(
κρyη

2σ2

K

)
. (7)

where P0 = F (x0, y0; x̂0, ŷ0)−2Fd(y0; x̂0, ŷ0)+2q(x̂0), whose definitions can be found in Eq. (12).
Corollary 4.3. Given Assumptions 3.1-3.4, by setting βx = O((1 − λ)2), βy = O((1 − λ)2),

β̂x = O
(

(1−λ)2

κ

)
, β̂y = O((1− λ)2), η = O

(
Kϵ
κ1/2

)
, ρx = O

(
1
K

)
, ρy = O

(
1
K

)
, B = O

(
κ1/2

ϵ

)
,

T = O
(

κ3/2

K(1−λ)2ϵ3

)
, Algorithm 1 can achieve the O(ϵ, ϵ/

√
κ)-stationary solution, where ϵ > 0

denotes the solution accuracy, and B is the batch size in the initial iteration.

Remark 4.4. The actual learning rate of the primal variable is βxη = O
(

K(1−λ)2ϵ
κ1/2

)
, and that

of the dual variable is βyη = O
(

K(1−λ)2ϵ
κ1/2

)
. Obviously, they are on the same scale in terms of

condition number κ, solution accuracy ϵ, and spectral gap 1− λ. In addition, the constant batch size
based methods, including DM-HSGD (Xian et al., 2021) and DM-GDA (Huang & Chen, 2023), use
the learning rate for the primal variable in the order of O

(
K(1−λ)2ϵ

κ3

)
and that for the dual variable

is O
(

K(1−λ)2ϵ
κ1

)
. Apparently, our algorithm can allow a larger learning rate. Moreover, when the

number of workers K = 1, the spectral gap becomes 1− λ = 1. Our learning rates O
(

ϵ
κ1/2

)
are

larger than O( ϵ2

κ1 ) of the single-machine method, Smoothed-SAGDA (Yang et al., 2022).

The primal–dual learning rate ratio is important because the loss function often exhibits distinct
properties for the two variables. When the loss function is nonconvex in the primal variable but
satisfies the PL condition in the dual variable, optimizing the primal variable becomes significantly
more challenging, and a smaller learning rate is commonly used (See Table 1) to maintain stability
and prevent divergence. In contrast, with the smoothing technique, the loss function becomes strongly
convex in the primal variable and strongly concave in the dual variable, resulting a well-behaved loss
landscape that permits a larger primal learning rate.
Remark 4.5. To compare the convergence rate of our algorithm in Corollary 4.3 with existing
algorithms in Table 1, we need to translate the O(ϵ, ϵ/

√
κ)-stationary solution to the O(ϵ)-stationary

solution. In particular, (Yang et al., 2022) shows that we can apply stochastic gradient descent
ascent algorithm to the optimization problem: minx∈Rd1 maxy∈Rd2 f(x, y) + L∥x− x′∥2, where x′

is the output of our Algorithm 1. Since this problem satisfies the PL condition in both x and y, the
iteration complexity for the translation is in the order of Õ( 1

ϵ2 ), which is apparently dominated by

T = O
(

κ3/2

K(1−λ)2ϵ3

)
. Therefore, the iteration complexity to find the O(ϵ)-stationary solution is still

T = O
(

κ3/2

K(1−λ)2ϵ3

)
.

The proof structure and all technical details is provided in Appendix B-E.
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Figure 1: Test AUC vs. Iterations and Gradient Evaluations (Random Graph).

5 EXPERIMENTS

In this section, we conduct extensive experiments on AUC maximization, which is defined in
Appendix A, to verify the performance of our Algorithm 1.

5.1 AUC MAXIMIZATION

Experimental Settings We employ three benchmark datasets: a9a, w8a, and ijcnn1, which can be
found from LIBSVM Data website 3. In our experiments, 80% of samples are used as the training set,
while the remaining 20% are used for testing. The training samples are randomly distributed across
ten workers, where K = 10 in our experiment. To evaluate the performance of our algorithm, we
compare it with the state-of-the-art decentralized optimization algorithms: DSGDA (Tsaknakis et al.,
2020), DM-HSGD 4 (Xian et al., 2021), DGDA-VR (Zhang et al., 2024), and DREAM (Chen et al.,
2024). Notably, for DSGDA, we use the stochastic gradient descent ascent instead of the full gradient
as described in their paper. For DM-HSGD, the STORM gradient estimator is employed. DGDA-VR
leverages the SPIDER gradient estimator in the stochastic setting, while DREAM utilizes the PAGE
estimator.
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Figure 2: Test AUC vs Iterations and Gradient Evaluations (Line Graph).
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4Note that DM-GDA is the same as DM-HSGD; they differ only in their convergence analysis under different

assumptions.
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Specifically, we consider two types of communication networks: 1) an Erdos-Renyi random graph
with an edge probability of 0.5, and 2) a line communication network where each worker is connected
to only two neighboring workers. Throughout all experiments, we fix the solution accuracy ϵ at 0.01
and use a batch size b of 100. For the a9a and ijcnn1 datasets, the step size of all methods is set to
0.01. Specifically, in our method, βx, βy , β̂x, and β̂y are each set to 0.1, while η is set to 0.1, ensuring
that their product equals 0.01. For the w8a dataset, the step size of all methods is set to 0.05. In this
case, βx, βy, β̂x, and β̂y are each set to 0.5, while η remains 0.1, ensuring that their product equals
0.05. Moreover, according to the theoretical results of the baseline methods, the learning rate of the
dual variable in DSGDA, DM-HSGD, and DGDA-VR is scaled by 1/κ, while the learning rate of
the primal variable is scaled by 1/κ3. For DREAM, scaling is 1 for the dual variable and 1/κ2 for
the primal variable. Both learning rates in our method are scaled by 1/κ1/2. In our experiments, we
assume κ = 1.5. Additionally, in our method, γ1 and γ2 are assigned a value of 0.01. For DM-HSGD,
the coefficient of the STORM estimator is set to 0.01. Additionally, DGDA-VR computes the full
gradient every 100 iterations, while for DREAM, the probability of the PAGE estimator is set to

√
b

b
√
K

.

Experimental Results For the random communication graph, we present test AUC versus the
number of iterations and gradient evaluations in Figure 1. As shown in Figure 1, our algorithm
achieves significantly faster convergence than all baseline methods in terms of the number of iterations,
demonstrating its superior efficiency. Furthermore, Figure 1 also indicates that our method also
converges more quickly when measured by the number of gradient evaluations, highlighting its lower
sample complexity. Notably, DGDA-VR and DREAM incur significantly higher computational cost
due to periodic full-gradient computation. These results underscore the efficacy of our algorithm in
optimizing performance while maintaining computational efficiency. For the line communication
graph, we also present test AUC versus the number of iterations and gradient evaluations in Figure 2.
Our method continues to exhibit faster convergence compared to the baseline methods, further
validating its effectiveness.
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Figure 3: Test AUC under hyperparameters (Random Graph, a9a).

Finally, we evaluate the performance of our method under different values of γ, β, β̂, and ρη in
Figure 3, where we set γx = γy = γ, βx = βy = β, β̂x = β̂y = β̂, and ρx = ρy = ρ. Our method is
robust to all hyperparameters except β, so they do not require fine-tuning. Since β only scales the
learning rate, we fix its value, leaving the learning rate η as the only hyperparameter to tune.

5.2 FAIR CLASSIFICATION

We consider the following nonconvex-PL minimax optimization problem (Nouiehed et al., 2019):

min
x

max
y∈Y

1

K

K∑
k=1

C∑
c=1

ycL(k)
c (x)− λ

2
∥y∥2 s.t. Y = {y ∈ RC |yc ≥ 0,

C∑
c=1

yc = 1} . (8)

This task serves as a standard benchmark for reweighting classes to improve worst-class performance
and has been widely evaluated in federated learning algorithms (Sharma et al., 2022). We conduct
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the evaluation in a decentralized setting with eight workers on CIFAR-10 using ResNet-18 (He et al.,
2016). In this setup, L(k)

c represents the cross-entropy loss functions corresponding to class c on
worker k for the C = 10 classes, and x denotes the model parameters of ResNet-18. We consider
three types of communication networks: a random graph, a ring graph, and a torus graph. The
learning rate is tuned via grid search and fixed at 0.1, the per-worker batch size is set to 32, and all
other hyperparameters and baseline settings remain consistent with the earlier experiments.

Figure 4 reports the test accuracy versus the number of iterations and gradient evaluations. Our
algorithm achieves the best overall test accuracy among all baselines and converges faster in terms
of gradient evaluations. Although DREAM appears slightly faster in early iterations, its periodic
large-batch updates substantially increase the total number of gradient computations, leading to a
higher overall computational cost. Overall, our algorithm achieves both superior accuracy and more
efficient convergence.

In addition, we evaluate the sensitivity of our method to the hyperparameters γ and β̂, which are the
only new hyperparameters introduced compared with existing baselines. As shown in Figure 5, our
method remains robust even under this more challenging task, further demonstrating that it does not
require complicated hyperparameter tuning.
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(a) Random Graph
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Figure 4: Testing Accuracy vs Iterations and Gradient Evaluations on CIFAR-10.
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Figure 5: Testing Accuracy under hyperparameters (Random Graph, CIFAR-10).

6 CONCLUSION

In this paper, we developed a novel decentralized minimax optimization algorithm based on the
smoothing technique. In particular, our algorithm demonstrates how to incorporate the variance-
reduced gradient in the presence of the auxiliary variable and how to perform communication for the
auxiliary variable. Moreover, our algorithm can achieve a better dependence on the condition number
than all existing methods, which confirms the significance of our algorithm. Finally, experimental
results confirm the effectiveness of our algorithm.
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A AUC MAXIMIZATION

Specifically, we focus on the AUC maximization problem (Ying et al., 2016) for the binary classifica-
tion task, which is formulated as the following minimax optimization problem (Note that we have
included the smoothed term γ1/2∥x− x̂∥2, γ2/2∥y − ŷ∥2):

min
x,x̃1,x̃2

max
y

1

K

K∑
k=1

1

n

n∑
i=1

(
(1− p)(xTa

(k)
i − x̃1)

2I
[b

(k)
i =1]

+ 2(1 + y)
(
pxTa

(k)
i I

[b
(k)
i =−1]

− (1− p)xTa
(k)
i I

[b
(k)
i =1]

)
+ p(xTa

(k)
i − x̃2)

2I
[b

(k)
i =−1]

− p(1− p)y2

+ ρ

d∑
j=1

x2
j

1 + x2
j

+
γ1
2
∥x− x̂∥2 − γ2

2
∥y − ŷ∥2

)
, (9)

where x ∈ Rd is the classifier’s parameter, x̃1 ∈ R, x̃2 ∈ R, y ∈ R are the parameters to compute the
AUC loss, x̂ and ŷ are the auxiliary variables. (a(k)i , b

(k)
i ) is the i-th sample’s feature and label on the

k-th worker, p is the prior probability of positive class, I is an indicator function, ρ is a hyperparameter
for the regularization term, and γ1 > 0, γ2 > 0 are hyperparameters for the auxiliary variable. In
our experiments, we set ρ to 0.001. Notably, this optimization problem satisfies the nonconvex-PL
optimization problem, which can be efficiently solved using our proposed Algorithm 1.

To further evaluate the sensitivity of our method to the hyperparameters γ and β̂, we added on ablation
study under the line graph topology, as shown in Figure 6.

#Iterations
0 200 400 600 800

AU
C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

. = 0:1

. = 0:05

. = 0:02

. = 0:01

. = 0:005

(a) different γ

0 2 4 6 8
#Gradient evaluation #104

AU
C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

. = 0:1

. = 0:05

. = 0:02

. = 0:01

. = 0:005

(b) different γ
#Iterations

0 100 200 300 400 500 600

AU
C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

-̂ = 0:1

-̂ = 0:3

-̂ = 0:5

-̂ = 0:7

-̂ = 0:9

(c) different β̂

0 1 2 3 4 5 6
#Gradient evaluation #104

AU
C

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

-̂ = 0:1

-̂ = 0:3

-̂ = 0:5

-̂ = 0:7

-̂ = 0:9

(d) different β̂

Figure 6: Test AUC under hyperparameters (Line Graph, a9a).

B THE STRUCTURE OF THE PROOF FOR THEOREM 4.2

To make our proof easy to follow, we provide an overview diagram in Figure 7.

It is worth noting that the STORM gradient estimator is a biased gradient estimator, so existing
convergence analyzes based on the deterministic gradient (Zhang et al., 2020; Zheng et al., 2023)
and the unbiased gradient estimator (Yang et al., 2022) cannot be applied directly to our algorithm.
Moreover, most existing stochastic smoothing methods typically apply smoothing only to the primal
variable, which makes their analysis insufficient for our algorithm.

In Figure 7, there are actually two key components in our proof: 1) the optimization error related
to doubly smoothing, 2) the consensus error and the gradient estimation error related to the
decentralized setting. In Section C, we provide the lemmas for bounding the optimization error.
This includes:

• descent-ascent update lemmas (Lemma C.1, Lemma C.2, Lemma C.3);

• optimal solution mappings (Lemma C.4, Lemma C.5);

• auxiliary sequences (Lemma C.6, Lemma C.7).

These results are used in a potential function as Eq.(52):

Pt = E[F (x̄t, ȳt; ¯̂xt, ¯̂yt)]− 2E[Fd(ȳt; ¯̂xt, ¯̂yt)] + 2E[q(¯̂xt)] ,
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Primal Descent
Lemma C.1

Dual Ascent
Lemma C.2

Proximal Descent
Lemma C.3

Optimal Solution Mappings
Lemmas C.4, C.5

Auxiliary Sequence
Lemma C.6, C.7

Consensus Error
Section D.1

Optimization Error Pt

Lemma C.8
Gradient Estimation Error

Section D.2

Theorem 4.2
Section E

Figure 7: The structure of the proof for Theorem 4.2

to establish the overall optimization error bound Pt+1 − Pt in Lemma C.8. It is worth noted that
Lemma C.8 demonstrates that optimization error is affected by the consensus error caused by the
decentralized setting and gradient estimation errors. Therefore, in Section D, we address two types of
error in the decentralized setting:

• the consensus error, including that of auxiliary variables introduced by smoothing (Sec-
tion D.1);

• the gradient estimation error from the STORM update (Section D.2).

After establishing all supporting lemmas, we proceed to derive the convergence rate through a novel
potential function Lt, which intergrates the optimization error in Lemma C.8 and the consensus error
and gradient estimation error together as follows:

Lt = Pt︸︷︷︸
optimization error

+c1 E[∥
1

K

K∑
k=1

u
(k)
t − 1

K

K∑
k=1

∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]︸ ︷︷ ︸

gradient estimation error

+ c2 E[∥
1

K

K∑
k=1

v
(k)
t − 1

K

K∑
k=1

∇yF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]︸ ︷︷ ︸

gradient estimation error

+ c3
1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + c4

1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥2] + c5

1

K

K∑
k=1

E[∥¯̂xt − x̂
(k)
t ∥2]︸ ︷︷ ︸

consensus error

+ c10
1

K

K∑
k=1

E[∥¯̂yt − ŷ
(k)
t ∥2] + c6

1

K

K∑
k=1

E[∥p̄t − p
(k)
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1

K
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+ c8
1

K

K∑
k=1

E[∥u(k)
t −∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]︸ ︷︷ ︸

gradient estimation error

+ c9
1

K

K∑
k=1

E[∥v(k)t −∇yF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]︸ ︷︷ ︸

gradient estimation error

.

By selecting appropriate hyperparameters, as detailed in Section E, we establish the convergence
guarantee stated in Theorem 4.2. The construction of this proof framework is both technically
intricate and conceptually non-trivial, underscoring the novelty and difficulty of our analysis.

B.1 TERMINOLOGIES

To establish the convergence rate of Algorithm 1, we introduce the following symbols:

Xt = [x
(1)
t , x

(2)
t , · · · , x(K)

t ] ∈ Rd1×K , X̃t = [x̃
(1)
t , x̃

(2)
t , · · · , x̃(K)

t ] ∈ Rd1×K ,

Yt = [y
(1)
t , y

(2)
t , · · · , y(K)

t ] ∈ Rd2×K , Ỹt = [ỹ
(1)
t , ỹ

(2)
t , · · · , ỹ(K)

t ] ∈ Rd2×K ,

X̂t = [x̂
(1)
t , x̂

(2)
t , · · · , x̂(K)

t ] ∈ Rd1×K ,
˜̂
Xt = [˜̂x

(1)
t , ˜̂x

(2)
t , · · · , ˜̂x(K)

t ] ∈ Rd1×K ,

Ŷt = [ŷ
(1)
t , ŷ

(2)
t , · · · , ŷ(K)

t ] ∈ Rd2×K ,
˜̂
Yt = [˜̂y

(1)
t , ˜̂y

(2)
t , · · · , ˜̂y(K)

t ] ∈ Rd2×K ,

Ut = [u
(1)
t , u

(2)
t , · · · , u(K)

t ] ∈ Rd1×K , Vt = [v
(1)
t , v

(2)
t , · · · , v(K)

t ] ∈ Rd2×K ,

Pt = [p
(1)
t , p

(2)
t , · · · , p(K)

t ] ∈ Rd1×K , Qt = [q
(1)
t , q

(2)
t , · · · , q(K)

t ] ∈ Rd2×K ,

X̄t =
1

K
Xt11

T , Ȳt =
1

K
Yt11

T ,
¯̂
Xt =

1

K
X̂t11

T ,
¯̂
Yt =

1

K
Ŷt11

T ,

Ūt =
1

K
Ut11

T , V̄t =
1

K
Vt11

T , P̄t =
1

K
Pt11

T , Q̄t =
1

K
Qt11

T , (10)

where 1 = [1, 1, · · · , 1]T ∈ RK . Based on these terminologies, the update of x, y, x̂, ŷ, p, and q in
Algorithm 1 is represented as follows:

X̃t+1 = XtW − βxPt , Xt+1 = Xt + η(X̃t+1 −Xt) ,

Ỹt+1 = YtW + βyQt , Yt+1 = Yt + η(Ỹt+1 − Yt) ,

˜̂
Xt+1 = X̂tW + β̂x(Xt+1 − X̂t) , X̂t+1 = X̂t + η(

˜̂
Xt+1 − X̂t) ,

˜̂
Yt+1 = ŶtW + β̂y(Yt+1 − Ŷt) , Ŷt+1 = Ŷt + η(

˜̂
Yt+1 − Ŷt) ,

Pt+1 = PtW + Ut+1 − Ut , Qt+1 = QtW + Vt+1 − Vt ,

X̄t+1 = X̄t − βxηŪt , Ȳt+1 = Ȳt + βyηV̄t ,

¯̂
Xt+1 =

¯̂
Xt + β̂xη(X̄t+1 − ¯̂

Xt) ,
¯̂
Yt+1 =

¯̂
Yt + β̂yη(Ȳt+1 − ¯̂

Yt) . (11)

Note that P̄t = Ūt and Q̄t = V̄t.

Moreover, following (Yang et al., 2022; Zheng et al., 2023), we introduce the following auxiliary
functions and variables for convergence analysis:

Fd(y; x̂, ŷ) = min
x∈Rd1

F (x, y; x̂, ŷ) , dual function

Fp(x; x̂, ŷ) = max
y∈Rd2

F (x, y; x̂, ŷ) , primal function

g(x̂, ŷ) = min
x∈Rd1

max
y∈Rd2

F (x, y; x̂, ŷ) ,

p(ŷ) = min
x̂∈Rd1

g(x̂, ŷ) , q(x̂) = max
ŷ∈Rd2

g(x̂, ŷ) ,

x∗(y; x̂, ŷ) = arg min
x∈Rd1

F (x, y; x̂, ŷ) ,
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y∗(x; x̂, ŷ) = arg max
y∈Rd2

F (x, y; x̂, ŷ) ,

x∗(x̂, ŷ) ≜ x∗(y∗(x̂, ŷ); x̂, ŷ) = arg min
x∈Rd1

Fp(x; x̂, ŷ) ,

y∗(x̂, ŷ) ≜ y∗(x∗(x̂, ŷ); x̂, ŷ) = arg max
y∈Rd2

Fd(y; x̂, ŷ) ,

x̂∗(ŷ) = arg min
x̂∈Rd1

g(x̂, ŷ) , ŷ∗(x̂) = arg max
ŷ∈Rd2

g(x̂, ŷ) ,

y+(x̂t, ŷt) = yt + βyη∇yFd(yt; x̂t, ŷt) ,

ŷ+(x̂t+1) = ŷt + β̂yη(y
∗(x̂t, ŷt)− ŷt) . (12)

B.2 FUNCTION PROPERTIES

Lemma B.1. (Zheng et al., 2023) Given Assumptions 3.1-3.4, then F (x, y; x̂, ŷ) is (γ1 + L)-smooth
and (γ1−L)-strongly convex with respect to x. F (x, y; x̂, ŷ) is (γ2+L)-smooth and (γ2−L)-strongly
concave with respect to y.

Lemma B.2. (Zheng et al., 2023) Given Assumptions 3.1-3.4, the following inequality holds:

∥x∗(y1; x̂, ŷ)− x∗(y2; x̂, ŷ)∥ ≤ Cx1
yx̂ŷ

∥y1 − y2∥ ,

∥x∗(y; x̂1, ŷ)− x∗(y; x̂2, ŷ)∥ ≤ Cx2
yx̂ŷ

∥x̂1 − x̂2∥ ,

∥x∗(x̂1, ŷ)− x∗(x̂2, ŷ)∥ ≤ Cx1
x̂ŷ
∥x̂1 − x̂2∥ ,

∥y∗(x1; x̂, ŷ)− y∗(x2; x̂, ŷ)∥ ≤ Cy1
xx̂ŷ

∥x1 − x2∥ ,

∥y∗(x; x̂, ŷ1)− y∗(x; x̂, ŷ2)∥ ≤ Cy3
xx̂ŷ

∥ŷ1 − ŷ2∥ ,

∥y∗(x̂1, ŷ)− y∗(x̂2, ŷ)∥ ≤ Cy1
x̂ŷ
∥x̂1 − x̂2∥ ,

∥y∗(x̂, ŷ1)− y∗(x̂, ŷ2)∥ ≤ Cy2
x̂ŷ
∥ŷ1 − ŷ2∥ , (13)

where

Cx1
yx̂ŷ

=
γ1

γ1 − L
, Cx2

yx̂ŷ
=

γ1
γ1 − L

, Cx1
x̂ŷ

=
γ1

γ1 − L
,

Cy1
xx̂ŷ

=
γ2

γ2 − L
, Cy3

xx̂ŷ
=

γ2
γ2 − L

, Cy1
x̂ŷ

=
γ1

γ2 − L
Cx1

yx̂ŷ
+ 1 , Cy2

x̂ŷ
=

γ2
γ2 − L

. (14)

Lemma B.3. (Zheng et al., 2023) Given Assumptions 3.1-3.4, then Fd(y; x̂, ŷ) is Ld-smooth, where
Ld = LCx1

yx̂ŷ
+ L+ γ2.

Lemma B.4. Given Assumptions 3.1-3.4, by defining y+(x̂t, ŷt) = yt + βyη∇yFd(yt; x̂t, ŷt), the
following inequality holds:

∥yt − y∗(x̂t, ŷt)∥ ≤ 1

βyη(γ2 − L)
∥yt − y+(x̂t, ŷt)∥ . (15)

Proof. Due to y∗(x̂t, ŷt) = argmaxy∈Rd2 Fd(y; x̂t, ŷt), for any y ∈ Rd2 , we have

⟨y − y∗(x̂t, ŷt),∇yFd(y
∗(x̂t, ŷt); x̂t, ŷt)⟩ ≤ 0. (16)

By taking y = yt, we have

⟨yt − y∗(x̂t, ŷt),∇yFd(y
∗(x̂t, ŷt); x̂t, ŷt)⟩ ≤ 0 . (17)

In addition, because Fd(y; x̂, ŷ) is (γ2 − L)-strongly concave with respect to y, we have

⟨yt − y∗(x̂t, ŷt),∇yFd(yt; x̂t, ŷt)−∇yFd(y
∗(x̂t, ŷt); x̂t, ŷt)⟩+ (γ2 − L)∥yt − y∗(x̂t, ŷt)∥2 ≤ 0 .

(18)

By combining the above two inequalities, we have

⟨yt − y∗(x̂t, ŷt),∇yFd(yt; x̂t, ŷt)⟩+ (γ2 − L)∥yt − y∗(x̂t, ŷt)∥2 ≤ 0 . (19)
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Then, we can obtain

(γ2 − L)∥yt − y∗(x̂t, ŷt)∥2 ≤ ⟨y∗(x̂t, ŷt)− yt,∇yFd(yt; x̂t, ŷt)⟩

≤ ∥yt − y∗(x̂t, ŷt)∥∥∇yFd(yt; x̂t, ŷt)∥ = ∥yt − y∗(x̂t, ŷt)∥∥
y+(x̂t, ŷt)− yt

βyη
∥ . (20)

As a result, we have

∥yt − y∗(x̂t, ŷt)∥ ≤ 1

βyη(γ2 − L)
∥y+(x̂t, ŷt)− yt∥ . (21)

Lemma B.5. Given Assumptions 3.1-3.4, then

∥xt − x∗(yt; x̂t, ŷt)∥ ≤ 1

γ1 − L
∥∇xF (xt, yt; x̂t, ŷt)∥. (22)

Proof. Due to x∗(yt; x̂t, ŷt) = argminx∈Rd1 F (x, yt; x̂t, ŷt), for any x ∈ Rd1 , we have

⟨x− x∗(yt; x̂t, ŷt),−∇xF (x∗(yt; x̂t, ŷt), yt; x̂t, ŷt)⟩ ≤ 0. (23)

By taking x = xt, we have

⟨xt − x∗(yt; x̂t, ŷt),∇xF (x∗(yt; x̂t, ŷt), yt; x̂t, ŷt)⟩ ≥ 0. (24)

In addition, because F (x, y; x̂, ŷ) is (γ1 − L)-strongly convex with respect to x, we have

⟨xt − x∗(yt; x̂t, ŷt),∇xF (xt, yt; x̂t, ŷt)−∇xF (x∗(yt; x̂t, ŷt), yt; x̂t, ŷt)⟩
≥ (γ1 − L)∥xt − x∗(yt; x̂t, ŷt)∥2 . (25)

By combing the above two inequalities, we have

(γ1 − L)∥xt − x∗(yt; x̂t, ŷt)∥2 ≤ ⟨xt − x∗(yt; x̂t, ŷt),∇xF (xt, yt; x̂t, ŷt)⟩
≤ ∥xt − x∗(yt; x̂t, ŷt)∥∥∇xF (xt, yt; x̂t, ŷt)∥ . (26)

As a result, we have

∥xt − x∗(yt; x̂t, ŷt)∥ ≤ 1

γ1 − L
∥∇xF (xt, yt; x̂t, ŷt)∥. (27)

C OPTIMIZATION ERRORS

Lemma C.1. Given Assumptions 3.1-3.4 and η ≤ 1
2βx(γ1+L) , the following inequality holds:

E[F (x̄t+1, ȳt+1; ¯̂xt+1, ¯̂yt+1)]− E[F (x̄t, ȳt; ¯̂xt, ¯̂yt)]

≤ −βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] +

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] + (4βyηβ

2
xη

2L2 − βxη

4
)E[∥ūt∥2]

+ (
3βyη

4
+

β2
yη

2(γ2 + L)

2
)E[∥v̄t∥2] +

βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2]

− γ1(2− β̂xη)

2β̂xη
E[∥¯̂xt+1 − ¯̂xt∥2]−

γ2(β̂yη − 2)

2β̂yη
E[∥¯̂yt+1 − ¯̂yt∥2] . (28)

Proof. Because F (x, y; x̂, ŷ) is (L+ γ1)-smooth with respect to x, we have

E[F (x̄t+1, ȳt; ¯̂xt, ¯̂yt)]
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≤ E[F (x̄t, ȳt; ¯̂xt, ¯̂yt)] + E[⟨∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt), x̄t+1 − x̄t⟩] +
L+ γ1

2
E[∥x̄t+1 − x̄t∥2]

= E[F (x̄t, ȳt; ¯̂xt, ¯̂yt)]− βxηE[⟨∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt), ūt⟩] +
β2
xη

2(L+ γ1)

2
E[∥ūt∥2]

= E[F (x̄t, ȳt; ¯̂xt, ¯̂yt)]−
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βxη

2
E[∥ūt∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2] +

β2
xη

2(L+ γ1)

2
E[∥ūt∥2]

≤ E[F (x̄t, ȳt; ¯̂xt, ¯̂yt)]−
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βxη

4
E[∥ūt∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2] , (29)

where the last step holds due to η ≤ 1
2βx(γ1+L) .

In addition, because F (x, y; x̂, ŷ) is (L+ γ1)-smooth with respect to y, we have

E[F (x̄t+1, ȳt+1; ¯̂xt, ¯̂yt)]

≤ E[F (x̄t+1, ȳt; ¯̂xt, ¯̂yt)] + E[⟨∇yF (x̄t+1, ȳt; ¯̂xt, ¯̂yt), ȳt+1 − ȳt⟩] +
γ2 + L

2
E[∥ȳt+1 − ȳt∥2]

= E[F (x̄t+1, ȳt; ¯̂xt, ¯̂yt)] + βyηE[⟨∇yF (x̄t+1, ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt), v̄t⟩]

+ βyηE[⟨∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt), v̄t⟩] +
β2
yη

2(γ2 + L)

2
E[∥v̄t∥2]

≤ E[F (x̄t+1, ȳt; ¯̂xt, ¯̂yt)] + 4βyηE[∥∇yF (x̄t+1, ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] +
βyη

4
E[∥v̄t∥2]

+
βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] +

βyη

2
E[∥v̄t∥2] +

β2
yη

2(γ2 + L)

2
E[∥v̄t∥2]

≤ E[F (x̄t+1, ȳt; ¯̂xt, ¯̂yt)] +
βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+ 4βyηβ
2
xη

2L2E[∥ūt∥2] +

(
3βyη

4
+

β2
yη

2(γ2 + L)

2

)
E[∥v̄t∥2] , (30)

where the last step holds due to the following inequality.

E[∥∇yF (x̄t+1, ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]
= E[∥∇yf(x̄t+1, ȳt) + γ2(ȳt − ¯̂yt)−∇yf(x̄t, ȳt)− γ2(ȳt − ¯̂yt)∥2]
≤ L2E[∥x̄t+1 − x̄t∥2] ≤ β2

xη
2L2E[∥ūt∥2] . (31)

By combining Eq. (29) and Eq. (30), we have

E[F (x̄t+1, ȳt+1; ¯̂xt, ¯̂yt)]

≤ E[F (x̄t, ȳt; ¯̂xt, ¯̂yt)]−
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] +

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2]

+ (4βyηβ
2
xη

2L2 − βxη

4
)E[∥ūt∥2] + (

3βyη

4
+

β2
yη

2(γ2 + L)

2
)E[∥v̄t∥2] . (32)

Moreover, according to the definition of F (x, y; x̂, ŷ), we have

F (x̄t+1, ȳt+1; ¯̂xt, ¯̂yt)− F (x̄t+1, ȳt+1; ¯̂xt+1, ¯̂yt)

= f(x̄t+1, ȳt+1) +
γ1
2
∥x̄t+1 − ¯̂xt∥2 −

γ2
2
∥ȳt+1 − ¯̂yt∥2

− f(x̄t+1, ȳt+1)−
γ1
2
∥x̄t+1 − ¯̂xt+1∥2 +

γ2
2
∥ȳt+1 − ¯̂yt∥2

=
γ1
2

(
∥x̄t+1 − ¯̂xt∥2 − ∥x̄t+1 − ¯̂xt+1∥2

)
18
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=
γ1
2

(
∥x̄t+1 − ¯̂xt∥2 − ∥(1− β̂xη)(x̄t+1 − ¯̂xt)∥2

)
=

γ1(1− (1− β̂xη)
2)

2
∥x̄t+1 − ¯̂xt∥2

=
γ1(1− (1− β̂xη)

2)

2β̂2
xη

2
∥¯̂xt+1 − ¯̂xt∥2

=
γ1(2− β̂xη)

2β̂xη
∥¯̂xt+1 − ¯̂xt∥2 , (33)

where the third and fifth steps hold due to ¯̂xt+1 = ¯̂xt + β̂xη(x̄t+1 − ¯̂xt).

Similarly, we have

F (x̄t+1, ȳt+1; ¯̂xt+1, ¯̂yt)− F (x̄t+1, ȳt+1; ¯̂xt+1, ¯̂yt+1)

= f(x̄t+1, ȳt+1) +
γ1
2
∥x̄t+1 − ¯̂xt+1∥2 −

γ2
2
∥ȳt+1 − ¯̂yt∥2

− f(x̄t+1, ȳt+1)−
γ1
2
∥x̄t+1 − ¯̂xt+1∥2 +

γ2
2
∥ȳt+1 − ¯̂yt+1∥2

=
γ2
2
∥ȳt+1 − ¯̂yt+1∥2 −

γ2
2
∥ȳt+1 − ¯̂yt∥2

=
γ2(β̂yη − 2)

2β̂yη
∥¯̂yt+1 − ¯̂yt∥2 . (34)

By combining the above three inequalities, we have

E[F (x̄t+1, ȳt+1; ¯̂xt+1, ¯̂yt+1)]− E[F (x̄t, ȳt; ¯̂xt, ¯̂yt)]

= E[F (x̄t+1, ȳt+1; ¯̂xt+1, ¯̂yt+1)− F (x̄t+1, ȳt+1; ¯̂xt+1, ¯̂yt)

+
(
F (x̄t+1, ȳt+1; ¯̂xt+1, ¯̂yt)− F (x̄t+1, ȳt+1; ¯̂xt, ¯̂yt)

)
+
(
F (x̄t+1, ȳt+1; ¯̂xt, ¯̂yt)− F (x̄t, ȳt; ¯̂xt, ¯̂yt)]

)
≤ −βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] +

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2]

+ (4βyηβ
2
xη

2L2 − βxη

4
)E[∥ūt∥2] + (

3βyη

4
+

β2
yη

2(γ2 + L)

2
)E[∥v̄t∥2]

− γ1(2− β̂xη)

2β̂xη
E[∥¯̂xt+1 − ¯̂xt∥2]−

γ2(β̂yη − 2)

2β̂yη
E[∥¯̂yt+1 − ¯̂yt∥2] . (35)

Lemma C.2. Given Assumptions 3.1-3.4, the following inequality holds:

E[Fd(ȳt+1; ¯̂xt+1, ¯̂yt+1)]− E[Fd(ȳt; ¯̂xt, ¯̂yt)]

≥ βyηE[⟨∇yFd(ȳt; ¯̂xt, ¯̂yt), v̄t⟩]−
β2
yη

2Ld

2
E[∥v̄t∥2] +

γ2(2− β̂yη)

2β̂yη
E[∥¯̂yt+1 − ¯̂yt∥2]

+
γ1
2
E[⟨¯̂xt+1 − ¯̂xt, ¯̂xt+1 + ¯̂xt − 2x∗(ȳt+1; ¯̂xt+1, ¯̂yt)⟩] . (36)

Proof. According to the definition of Fd(y; x̂, ŷ), we have

Fd(ȳt+1; ¯̂xt+1, ¯̂yt+1)− Fd(ȳt+1; ¯̂xt+1, ¯̂yt)

= F (x∗(ȳt+1; ¯̂xt+1, ¯̂yt+1), ȳt+1; ¯̂xt+1, ¯̂yt+1)− F (x∗(ȳt+1; ¯̂xt+1, ¯̂yt), ȳt+1; ¯̂xt+1, ¯̂yt)

≥ F (x∗(ȳt+1; ¯̂xt+1, ¯̂yt+1), ȳt+1; ¯̂xt+1, ¯̂yt+1)− F (x∗(ȳt+1; ¯̂xt+1, ¯̂yt+1), ȳt+1; ¯̂xt+1, ¯̂yt)

=
γ2
2
(∥ȳt+1 − ¯̂yt∥2 − ∥ȳt+1 − ¯̂yt+1∥2)

19
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=
γ2(2− β̂yη)

2β̂yη
∥¯̂yt+1 − ¯̂yt∥2 , (37)

where the second step holds due to x∗(ȳt+1; ¯̂xt+1, ¯̂yt) = argminx∈Rd1 F (x, ȳt+1; ¯̂xt+1, ¯̂yt), the last
step holds as Eq. (34).

In addition, according to the definition of Fd(y; x̂, ŷ), we have

Fd(ȳt+1; ¯̂xt+1, ¯̂yt)− Fd(ȳt+1; ¯̂xt, ¯̂yt)

= F (x∗(ȳt+1; ¯̂xt+1, ¯̂yt), ȳt+1; ¯̂xt+1, ¯̂yt)− F (x∗(ȳt+1; ¯̂xt, ¯̂yt), ȳt+1; ¯̂xt, ¯̂yt)

≥ F (x∗(ȳt+1; ¯̂xt+1, ¯̂yt), ȳt+1; ¯̂xt+1, ¯̂yt)− F (x∗(ȳt+1; ¯̂xt+1, ¯̂yt), ȳt+1; ¯̂xt, ¯̂yt)

=
γ1
2
(∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− ¯̂xt+1∥2 − ∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− ¯̂xt∥2)

=
γ1
2
⟨x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− ¯̂xt+1 − (x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− ¯̂xt),

x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− ¯̂xt+1 + (x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− ¯̂xt)⟩

=
γ1
2
⟨¯̂xt+1 − ¯̂xt, ¯̂xt+1 + ¯̂xt − 2x∗(ȳt+1; ¯̂xt+1, ¯̂yt)⟩ , (38)

where the second step holds due to x∗(ȳt+1; ¯̂xt, ¯̂yt) = argminx∈Rd1 F (x, ȳt+1; ¯̂xt, ¯̂yt), the fourth
step holds due to the fact a2 − b2 = (a− b)(a+ b).

Moreover, because Fd(y; x̂, ŷ) is Ld-smooth, we have

Fd(ȳt+1; ¯̂xt, ¯̂yt) ≥ Fd(ȳt; ¯̂xt, ¯̂yt) + ⟨∇yFd(ȳt; ¯̂xt, ¯̂yt), ȳt+1 − ȳt⟩ −
Ld

2
∥ȳt+1 − ȳt∥2

= Fd(ȳt; ¯̂xt, ¯̂yt) + βyη⟨∇yFd(ȳt; ¯̂xt, ¯̂yt), v̄t⟩ −
β2
yη

2Ld

2
∥v̄t∥2 . (39)

By combining the above three inequalities, we have

E[Fd(ȳt+1; ¯̂xt+1, ¯̂yt+1)]− E[Fd(ȳt; ¯̂xt, ¯̂yt)]

= E[Fd(ȳt+1; ¯̂xt+1, ¯̂yt+1)− Fd(ȳt+1; ¯̂xt+1, ¯̂yt)

+
(
Fd(ȳt+1; ¯̂xt+1, ¯̂yt)− Fd(ȳt+1; ¯̂xt, ¯̂yt)

)
+
(
Fd(ȳt+1; ¯̂xt, ¯̂yt)− Fd(ȳt; ¯̂xt, ¯̂yt)]

)
≥ βyηE[⟨∇yFd(ȳt; ¯̂xt, ¯̂yt), v̄t⟩]−

β2
yη

2Ld

2
E[∥v̄t∥2] +

γ2(2− β̂yη)

2β̂yη
E[∥¯̂yt+1 − ¯̂yt∥2]

+
γ1
2
E[⟨¯̂xt+1 − ¯̂xt, ¯̂xt+1 + ¯̂xt − 2x∗(ȳt+1; ¯̂xt+1, ¯̂yt)⟩] . (40)

Lemma C.3. Given Assumptions 3.1-3.4, the following inequality holds:

q(¯̂xt+1)− q(¯̂xt) ≤
γ1
2
⟨¯̂xt+1 − ¯̂xt, ¯̂xt+1 + ¯̂xt − 2x∗(¯̂xt, ŷ

∗(¯̂xt+1))⟩ . (41)

Proof.

q(¯̂xt+1)− q(¯̂xt)

= g(¯̂xt+1, ŷ
∗(¯̂xt+1))− g(¯̂xt, ŷ

∗(¯̂xt))

= Fp(x
∗(¯̂xt+1, ŷ

∗(¯̂xt+1)); ¯̂xt+1, ŷ
∗(¯̂xt+1))− Fp(x

∗(¯̂xt, ŷ
∗(¯̂xt)); ¯̂xt, ŷ

∗(¯̂xt))

≤ Fp(x
∗(¯̂xt+1, ŷ

∗(¯̂xt+1)); ¯̂xt+1, ŷ
∗(¯̂xt+1))− Fp(x

∗(¯̂xt, ŷ
∗(¯̂xt+1)); ¯̂xt, ŷ

∗(¯̂xt+1))

≤ Fp(x
∗(¯̂xt, ŷ

∗(¯̂xt+1)); ¯̂xt+1, ŷ
∗(¯̂xt+1))− Fp(x

∗(¯̂xt, ŷ
∗(¯̂xt+1)); ¯̂xt, ŷ

∗(¯̂xt+1))

= F (x∗(¯̂xt, ŷ
∗(¯̂xt+1)), y

∗(x∗(¯̂xt, ŷ
∗(¯̂xt+1)); ¯̂xt+1, ŷ

∗(¯̂xt+1)); ¯̂xt+1, ŷ
∗(¯̂xt+1))

− F (x∗(¯̂xt, ŷ
∗(¯̂xt+1)), y

∗(x∗(¯̂xt, ŷ
∗(¯̂xt+1)); ¯̂xt, ŷ

∗(¯̂xt+1)); ¯̂xt, ŷ
∗(¯̂xt+1))

≤ F (x∗(¯̂xt, ŷ
∗(¯̂xt+1)), y

∗(x∗(¯̂xt, ŷ
∗(¯̂xt+1)); ¯̂xt+1, ŷ

∗(¯̂xt+1)); ¯̂xt+1, ŷ
∗(¯̂xt+1))
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− F (x∗(¯̂xt, ŷ
∗(¯̂xt+1)), y

∗(x∗(¯̂xt, ŷ
∗(¯̂xt+1)); ¯̂xt+1, ŷ

∗(¯̂xt+1)); ¯̂xt, ŷ
∗(¯̂xt+1))

=
γ1
2
(∥x∗(¯̂xt, ŷ

∗(¯̂xt+1))− ¯̂xt+1∥2 − ∥x∗(¯̂xt, ŷ
∗(¯̂xt+1))− ¯̂xt∥2)

=
γ1
2
⟨x∗(¯̂xt, ŷ

∗(¯̂xt+1))− ¯̂xt+1 − (x∗(¯̂xt, ŷ
∗(¯̂xt+1))− ¯̂xt),

x∗(¯̂xt, ŷ
∗(¯̂xt+1))− ¯̂xt+1 + (x∗(¯̂xt, ŷ

∗(¯̂xt+1))− ¯̂xt)⟩

=
γ1
2
⟨¯̂xt+1 − ¯̂xt, ¯̂xt+1 + ¯̂xt − 2x∗(¯̂xt, ŷ

∗(¯̂xt+1))⟩ , (42)

where the second step holds due to g(x̂, ŷ) = minx∈Rd1 Fp(x; x̂, ŷ), the three inequalities hold due
to y∗(x; x̂, ŷ) = argmaxy F (x, y; x̂, ŷ) and Fp(x; x̂, ŷ) = F (x, y∗(x; x̂, ŷ); x̂, ŷ), the second to last
step holds due to the fact a2 − b2 = (a− b)(a+ b).

Lemma C.4. Given Assumptions 3.1-3.4, the following inequality holds:

∥x∗(¯̂xt+1, ŷ
+(¯̂xt+1))− x∗(¯̂xt+1, ŷ

∗(¯̂xt+1))∥2

≤ 2

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ
∥¯̂xt+1 − ¯̂xt∥2 +

2

γ1 − L

2γ2
2

µ

(
C2

y2
x̂ŷ

+
(1− β̂yη)

2

β̂2
yη

2

)
∥¯̂yt − ŷ+(¯̂xt+1)∥2 .

(43)

Proof.

γ1 − L

2
∥x∗(¯̂xt+1, ŷ

+(¯̂xt+1))− x∗(¯̂xt+1, ŷ
∗(¯̂xt+1))∥2

≤ Fp(x
∗(¯̂xt+1, ŷ

+(¯̂xt+1)); ¯̂xt+1, ŷ
∗(¯̂xt+1))− Fp(x

∗(¯̂xt+1, ŷ
∗(¯̂xt+1)); ¯̂xt+1, ŷ

∗(¯̂xt+1))

≤ max
ŷ∈Rd2

Fp(x
∗(¯̂xt+1, ŷ

+(¯̂xt+1)); ¯̂xt+1, ŷ)− Fp(x
∗(¯̂xt+1, ŷ

∗(¯̂xt+1)); ¯̂xt+1, ŷ
∗(¯̂xt+1))

≤ max
ŷ∈Rd2

Fp(x
∗(¯̂xt+1, ŷ

+(¯̂xt+1)); ¯̂xt+1, ŷ)− Fp(x
∗(¯̂xt+1, ŷ

+(¯̂xt+1)); ¯̂xt+1, ŷ
+(¯̂xt+1))

≤ 1

2µ
∥∇ŷFp(x

∗(¯̂xt+1, ŷ
+(¯̂xt+1)); ¯̂xt+1, ŷ

+(¯̂xt+1))∥2

=
γ2
2

2µ
∥y∗(x∗(¯̂xt+1, ŷ

+(¯̂xt+1)); ¯̂xt+1, ŷ
+(¯̂xt+1))− ŷ+(¯̂xt+1)∥2

=
γ2
2

2µ
∥y∗(x∗(¯̂xt+1, ŷ

+(¯̂xt+1)); ¯̂xt+1, ŷ
+(¯̂xt+1))− ¯̂yt − β̂yη(y

∗(¯̂xt, ¯̂yt)− ¯̂yt)∥2

≤ γ2
2

µ
∥y∗(¯̂xt+1, ŷ

+(¯̂xt+1))− y∗(¯̂xt, ¯̂yt)∥2 + (1− β̂yη)
2 γ

2
2

µ
∥¯̂yt − y∗(¯̂xt, ¯̂yt)∥2

≤ 2γ2
2

µ
∥y∗(¯̂xt+1, ŷ

+(¯̂xt+1))− y∗(¯̂xt, ŷ
+(¯̂xt+1))∥2 +

2γ2
2

µ
∥y∗(¯̂xt, ŷ

+(¯̂xt+1))− y∗(¯̂xt, ¯̂yt)∥2

+ (1− β̂yη)
2 γ

2
2

µ
∥¯̂yt − y∗(¯̂xt, ¯̂yt)∥2

≤
2γ2

2C
2
y1
x̂ŷ

µ
∥¯̂xt+1 − ¯̂xt∥2 +

2γ2
2C

2
y2
x̂ŷ

µ
∥ŷ+(¯̂xt+1)− ¯̂yt∥2 +

γ2
2

µ

(1− β̂yη)
2

β̂2
yη

2
∥ŷ+(¯̂xt+1)− ¯̂yt∥2

≤
2γ2

2C
2
y1
x̂ŷ

µ
∥¯̂xt+1 − ¯̂xt∥2 +

2γ2
2

µ

(
C2

y2
x̂ŷ

+
(1− β̂yη)

2

β̂2
yη

2

)
∥¯̂yt − ŷ+(¯̂xt+1)∥2 , (44)

where the first step holds because Fp(x; x̂, ŷ) is (γ1 − L)-strongly convex with respect to x, the
fourth step holds due to Theorem 5.2 of (Yu et al., 2022) with PL property being a special KL
property, the fifth step holds due to the definition of Fp, the sixth step and the last step hold due to the
definition ŷ+(¯̂xt+1) = ¯̂yt + β̂yη(y

∗(¯̂xt, ¯̂yt)− ¯̂yt).
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Lemma C.5. Given Assumptions 3.1-3.4, the following inequality holds:
E[∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt+1, ŷ

+(¯̂xt+1))∥2]
≤ 10β2

yη
2C2

x1
yx̂ŷ

E[∥v̄t −∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] + 10β2
yη

2L2C2
x1
yx̂ŷ

E[∥x̄t − x∗(ȳt; ¯̂xt, ¯̂yt)∥2]

+ 5C2
x1
yx̂ŷ

(
1 +

1

β2
yη

2(γ2 − L)2

)
E[∥y+(¯̂xt, ¯̂yt)− ȳt∥2]

+ 5C2
x1
yx̂ŷ

C2
y1
x̂ŷ
E[∥¯̂xt − ¯̂xt+1∥2] + 5C2

x1
yx̂ŷ

C2
y2
x̂ŷ
E[∥¯̂yt − ŷ+(¯̂xt+1)∥2] . (45)

Proof.
E[∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt+1, ŷ

+(¯̂xt+1))∥2]
≤ C2

x1
yx̂ŷ

E[∥ȳt+1 − y∗(¯̂xt+1, ŷ
+(¯̂xt+1))∥2]

= C2
x1
yx̂ŷ

E[∥ȳt+1 − y+(¯̂xt, ¯̂yt) + y+(¯̂xt, ¯̂yt)− ȳt + ȳt − y∗(¯̂xt, ¯̂yt)

+ y∗(¯̂xt, ¯̂yt)− y∗(¯̂xt+1, ¯̂yt) + y∗(¯̂xt+1, ¯̂yt)− y∗(¯̂xt+1, ŷ
+(¯̂xt+1))∥2]

≤ 5C2
x1
yx̂ŷ

E[∥ȳt+1 − y+(¯̂xt, ¯̂yt)∥2] + 5C2
x1
yx̂ŷ

E[∥y+(¯̂xt, ¯̂yt)− ȳt∥2] + 5C2
x1
yx̂ŷ

E[∥ȳt − y∗(¯̂xt, ¯̂yt)∥2]

+ 5C2
x1
yx̂ŷ

E[∥y∗(¯̂xt, ¯̂yt)− y∗(¯̂xt+1, ¯̂yt)∥2] + 5C2
x1
yx̂ŷ

E[∥y∗(¯̂xt+1, ¯̂yt)− y∗(¯̂xt+1, ŷ
+(¯̂xt+1))∥2]

≤ 10β2
yη

2C2
x1
yx̂ŷ

E[∥v̄t −∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] + 10β2
yη

2L2C2
x1
yx̂ŷ

E[∥x̄t − x∗(ȳt; ¯̂xt, ¯̂yt)∥2]

+ 5C2
x1
yx̂ŷ

(
1 +

1

β2
yη

2(γ2 − L)2

)
E[∥y+(¯̂xt, ¯̂yt)− ȳt∥2]

+ 5C2
x1
yx̂ŷ

C2
y1
x̂ŷ
E[∥¯̂xt − ¯̂xt+1∥2] + 5C2

x1
yx̂ŷ

C2
y2
x̂ŷ
E[∥¯̂yt − ŷ+(¯̂xt+1)∥2] , (46)

where the last step holds due to the following inequality:
E[∥ȳt+1 − y+(¯̂xt, ¯̂yt)∥2]

= E[∥ȳt + βyηv̄t − ȳt − βyη∇yF (x∗(ȳt; ¯̂xt, ¯̂yt), ȳt; ¯̂xt, ¯̂yt)∥2]
= β2

yη
2E[∥v̄t −∇yF (x∗(ȳt; ¯̂xt, ¯̂yt), ȳt; ¯̂xt, ¯̂yt)∥2]

≤ 2β2
yη

2E[∥v̄t −∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]
+ 2β2

yη
2E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)−∇yF (x∗(ȳt; ¯̂xt, ¯̂yt), ȳt; ¯̂xt, ¯̂yt)∥2]

≤ 2β2
yη

2E[∥v̄t −∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] + 2β2
yη

2L2E[∥x̄t − x∗(ȳt; ¯̂xt, ¯̂yt)∥2] . (47)

Lemma C.6. Given Assumptions 3.1-3.4, the following inequality holds:

E[∥¯̂yt − ŷ+(¯̂xt+1)∥2] ≤ 2E[∥¯̂yt+1 − ¯̂yt∥2] + 4β̂2
yη

2β2
yη

2E[∥v̄t∥2]

+
4β̂2

y

β2
y(γ2 − L)2

E[∥ȳt − y+(¯̂xt, ¯̂yt)∥2] . (48)

Proof.
1

2
E[∥¯̂yt − ŷ+(¯̂xt+1)∥2]

≤ E[∥¯̂yt+1 − ¯̂yt∥2] + E[∥¯̂yt+1 − ŷ+(¯̂xt+1)∥2]
≤ E[∥¯̂yt+1 − ¯̂yt∥2] + E[∥¯̂yt + β̂yη(ȳt+1 − ¯̂yt)− ¯̂yt − β̂yη(y

∗(¯̂xt, ¯̂yt)− ¯̂yt)∥2]
= E[∥¯̂yt+1 − ¯̂yt∥2] + β̂2

yη
2E[∥ȳt+1 − y∗(¯̂xt, ¯̂yt)∥2]

≤ E[∥¯̂yt+1 − ¯̂yt∥2] + 2β̂2
yη

2E[∥ȳt+1 − ȳt∥2] + 2β̂2
yη

2E[∥ȳt − y∗(¯̂xt, ¯̂yt)∥2]

≤ E[∥¯̂yt+1 − ¯̂yt∥2] + 2β̂2
yη

2β2
yη

2E[∥v̄t∥2] +
2β̂2

y

β2
y(γ2 − L)2

E[∥ȳt − y+(¯̂xt, ¯̂yt)∥2] . (49)
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Lemma C.7. Given Assumptions 3.1-3.4, the following inequality holds:
E[∥ȳt − y+(¯̂xt, ¯̂yt)∥2] ≤ 4β2

yη
2L2E[∥x∗(ȳt; ¯̂xt, ¯̂yt)− x̄t∥2]

+ 4β2
yη

2E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2] + 2β2
yη

2E[∥v̄t∥2] . (50)

Proof.
E[∥y+(¯̂xt, ¯̂yt)− ȳt∥2]

≤ 2E[∥y+(¯̂xt, ¯̂yt)− ȳt+1∥2] + 2E[∥ȳt+1 − ȳt∥2]
= 2E[∥ȳt + βyη∇yFd(ȳt; ¯̂xt, ¯̂yt)− ȳt − βyηv̄t∥2] + 2β2

yη
2E[∥v̄t∥2]

= 2β2
yη

2E[∥∇yFd(ȳt; ¯̂xt, ¯̂yt)− v̄t∥2] + 2β2
yη

2E[∥v̄t∥2]
≤ 4β2

yη
2E[∥∇yFd(ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+ 4β2
yη

2E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2] + 2β2
yη

2E[∥v̄t∥2] (51)

≤ 4β2
yη

2L2E[∥x∗(ȳt; ¯̂xt, ¯̂yt)− x̄t∥2] + 4β2
yη

2E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2] + 2β2
yη

2E[∥v̄t∥2] .

Lemma C.8. Given Assumptions 3.1-3.4, by defining
Pt = E[F (x̄t, ȳt; ¯̂xt, ¯̂yt)]− 2E[Fd(ȳt; ¯̂xt, ¯̂yt)] + 2E[q(¯̂xt)] , (52)

by setting η ≤ 1
β̂x

, η ≤ 1
β̂y

, and βx ≤ min{ L2

120γ3
1
,

√
µ(γ1−L)3(γ2−L)2

512
√

6γ1cβ̂x
γ2cβ̂y

}, then the following inequality

holds:

Pt+1 − Pt ≤ −βxη

4
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2] +A3E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]

+

(
4βyηβ

2
xη

2L2 − βxη

4

)
E[∥ūt∥2]

+

(
β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2
+ 4A1β̂

2
yη

2β2
yη

2 + 2A2β
2
yη

2 − 7

8
βyη

)
E[∥v̄t∥2]

+

(
2γ1Cx1

x̂ŷ
+

γ1

6β̂xη
+ 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y1
x̂ŷ

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ

)
− γ1(2− β̂xη)

2β̂xη

)
E[∥¯̂xt+1 − ¯̂xt∥2]

+

(
2A1 −

γ2(2− β̂yη)

2β̂yη

)
E[∥¯̂yt+1 − ¯̂yt∥2] , (53)

where

A1 = 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y2
x̂ŷ

+
4

γ1 − L

2γ2
2

µ

(
C2

y2
x̂ŷ

+
(1− β̂yη)

2

β̂2
yη

2

))
,

A2 = 60γ1β̂xηC
2
x1
yx̂ŷ

(
1 +

1

β2
yη

2(γ2 − L)2

)
+A1

4β̂2
y

β2
y(γ2 − L)2

,

A3 = βyη + 120γ1β̂xηβ
2
yη

2C2
x1
yx̂ŷ

+ 4A2β
2
yη

2 . (54)

and

βy = βx
(γ1 − L)2

64L2︸ ︷︷ ︸
cβy=O(1)

, β̂x = βx
(γ1 − L)4(γ2 − L)2µ

24× 642γ1L2
(
5γ2

1µ+ 16γ2
2(γ1 − L)

)
︸ ︷︷ ︸

cβ̂x
=O(1/κ)

,

β̂y = βx
(γ1 − L)4(γ2 − L)4

642 × 480γ3
1γ

2
2L

2︸ ︷︷ ︸
cβ̂y

=O(1)

. (55)
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Proof. Based on Lemmas C.1, C.2, C.3, we have

Pt+1 − Pt ≤ −βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] +

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2] +

(
4βyηβ

2
xη

2L2 − βxη

4

)
E[∥ūt∥2]

+

(
β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2

)
E[∥v̄t∥2] +

(
−γ1(2− β̂xη)

2β̂xη

)
E[∥¯̂xt+1 − ¯̂xt∥2]

+

(
−γ2(2− β̂yη)

2β̂yη

)
E[∥¯̂yt+1 − ¯̂yt∥2]− 2βyηE[⟨∇yFd(ȳt; ¯̂xt, ¯̂yt), v̄t⟩]

+ 2γ1E[⟨¯̂xt+1 − ¯̂xt, x
∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt, ŷ

∗(¯̂xt+1))⟩] . (56)

For −2βyηE[⟨∇yFd(ȳt; ¯̂xt, ¯̂yt), v̄t⟩], we have

− 2βyηE[⟨∇yFd(ȳt; ¯̂xt, ¯̂yt), v̄t⟩]
= −2βyηE[⟨∇yFd(ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt), v̄t⟩]− 2βyηE[⟨∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt), v̄t⟩]
= −2βyηE[⟨∇yFd(ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt), v̄t⟩]
− βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]− βyηE[∥v̄t∥2] + βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]

≤ βyη
1

ν
E[∥∇yFd(ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] + νβyηE[∥v̄t∥2]

− βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]− βyηE[∥v̄t∥2] + βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]

= βyη
1

ν
E[∥∇yFd(ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

− βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]− (1− ν)βyηE[∥v̄t∥2] + βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]

= βyη
1

ν
E[∥∇yF (x∗(ȳt; ¯̂xt, ¯̂yt), ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

− βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]− (1− ν)βyηE[∥v̄t∥2] + βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]

≤ βyηL
2 1

ν
E[∥x∗(ȳt; ¯̂xt, ¯̂yt)− x̄t∥2]

− βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]− (1− ν)βyηE[∥v̄t∥2] + βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2] ,
(57)

where the third step holds due to Young’s inequality 2aT b ≤ 1
ν ∥a∥

2 + ν∥b∥2 with ν > 0 being a
constant, and the last step holds due to the following inequality:

E[∥∇yF (x∗(ȳt; ¯̂xt, ¯̂yt), ȳt; ¯̂xt, ¯̂yt)−∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]
= E[∥∇yf(x

∗(ȳt; ¯̂xt, ¯̂yt), ȳt)−∇yf(x̄t, ȳt)∥2] ≤ L2E[∥x∗(ȳt; ¯̂xt, ¯̂yt)− x̄t∥2] . (58)

For 2γ1E[⟨¯̂xt+1 − ¯̂xt, x
∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt, ŷ

∗(¯̂xt+1))⟩], we have

2γ1E[⟨¯̂xt+1 − ¯̂xt, x
∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt, ŷ

∗(¯̂xt+1))⟩]
= 2γ1E[⟨¯̂xt+1 − ¯̂xt, x

∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt+1, ŷ
∗(¯̂xt+1))⟩]

+ 2γ1E[⟨¯̂xt+1 − ¯̂xt, x
∗(¯̂xt+1, ŷ

∗(¯̂xt+1))− x∗(¯̂xt, ŷ
∗(¯̂xt+1))⟩]

≤ γ1

6β̂xη
E[∥¯̂xt+1 − ¯̂xt∥2] + 6γ1β̂xηE[∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt+1, ŷ

∗(¯̂xt+1))∥2]

+ 2γ1E[∥¯̂xt+1 − ¯̂xt∥∥x∗(¯̂xt+1, ŷ
∗(¯̂xt+1))− x∗(¯̂xt, ŷ

∗(¯̂xt+1))∥]

≤ γ1

6β̂xη
E[∥¯̂xt+1 − ¯̂xt∥2] + 6γ1β̂xηE[∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt+1, ŷ

∗(¯̂xt+1))∥2]

+ 2γ1Cx1
x̂ŷ
E[∥¯̂xt+1 − ¯̂xt∥2] , (59)

where the second step holds due to Young’s inequality 2aT b ≤ 1
ν ∥a∥

2 + ν∥b∥2 with ν = 6β̂xη and
aT b ≤ ∥a∥∥b∥, and the last step holds due to Lemma B.2.
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Then, by plugging Eq. (57) and Eq. (59) into Eq. (56) with ν = 1
8 , we have

Pt+1 − Pt ≤ −βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2] + βyηE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]

+

(
4βyηβ

2
xη

2L2 − βxη

4

)
E[∥ūt∥2] +

(
β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2
− 7

8
βyη

)
E[∥v̄t∥2]

+

(
2γ1Cx1

x̂ŷ
+

γ1

6β̂xη
− γ1(2− β̂xη)

2β̂xη

)
E[∥¯̂xt+1 − ¯̂xt∥2] +

(
−γ2(2− β̂yη)

2β̂yη

)
E[∥¯̂yt+1 − ¯̂yt∥2]

+ 8βyηL
2E[∥x∗(ȳt; ¯̂xt, ¯̂yt)− x̄t∥2] + 6γ1β̂xηE[∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt+1, ŷ

∗(¯̂xt+1))∥2] .
(60)

For E[∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt+1, ŷ
∗(¯̂xt+1))∥2], we have

E[∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt+1, ŷ
∗(¯̂xt+1))∥2]

≤ 2E[∥x∗(ȳt+1; ¯̂xt+1, ¯̂yt)− x∗(¯̂xt+1, ŷ
+(¯̂xt+1))∥2]

+ 2E[∥x∗(¯̂xt+1, ŷ
+(¯̂xt+1))− x∗(¯̂xt+1, ŷ

∗(¯̂xt+1))∥2]
≤ 20β2

yη
2C2

x1
yx̂ŷ

E[∥v̄t −∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] + 20β2
yη

2L2C2
x1
yx̂ŷ

E[∥x̄t − x∗(ȳt; ¯̂xt, ¯̂yt)∥2]

+ 10C2
x1
yx̂ŷ

(
1 +

1

β2
yη

2(γ2 − L)2

)
E[∥y+(¯̂xt, ¯̂yt)− ȳt∥2]

+ 10C2
x1
yx̂ŷ

C2
y1
x̂ŷ
E[∥¯̂xt − ¯̂xt+1∥2] + 10C2

x1
yx̂ŷ

C2
y2
x̂ŷ
E[∥¯̂yt − ŷ+(¯̂xt+1)∥2]

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ
E[∥¯̂xt+1 − ¯̂xt∥2] +

4

γ1 − L

2γ2
2

µ

(
C2

y2
x̂ŷ

+
(1− β̂yη)

2

β̂2
yη

2

)
E[∥¯̂yt − ŷ+(¯̂xt+1)∥2]

= 20β2
yη

2C2
x1
yx̂ŷ

E[∥v̄t −∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] + 20β2
yη

2L2C2
x1
yx̂ŷ

E[∥x̄t − x∗(ȳt; ¯̂xt, ¯̂yt)∥2]

+ 10C2
x1
yx̂ŷ

(
1 +

1

β2
yη

2(γ2 − L)2

)
E[∥y+(¯̂xt, ¯̂yt)− ȳt∥2]

+
(
10C2

x1
yx̂ŷ

C2
y1
x̂ŷ

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ

)
E[∥¯̂xt − ¯̂xt+1∥2]

+

(
10C2

x1
yx̂ŷ

C2
y2
x̂ŷ

+
4

γ1 − L

2γ2
2

µ

(
C2

y2
x̂ŷ

+
(1− β̂yη)

2

β̂2
yη

2

))
E[∥¯̂yt − ŷ+(¯̂xt+1)∥2] . (61)

where the second step holds due to Lemma C.4 and Lemma C.5.

By plugging the above inequality into Eq. (60), we have

Pt+1 − Pt ≤ −βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2] +

(
βyη + 120γ1β̂xηβ

2
yη

2C2
x1
yx̂ŷ

)
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]

+

(
4βyηβ

2
xη

2L2 − βxη

4

)
E[∥ūt∥2] +

(
β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2
− 7

8
βyη

)
E[∥v̄t∥2]

+

(
2γ1Cx1

x̂ŷ
+

γ1

6β̂xη
+ 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y1
x̂ŷ

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ

)
− γ1(2− β̂xη)

2β̂xη

)
E[∥¯̂xt+1 − ¯̂xt∥2]

+
(
− γ2(2− β̂yη)

2β̂yη

)
E[∥¯̂yt+1 − ¯̂yt∥2] +

(
8βyηL

2 + 120γ1β̂xηβ
2
yη

2L2C2
x1
yx̂ŷ

)
E[∥x∗(ȳt; ¯̂xt, ¯̂yt)− x̄t∥2]

+ 60γ1β̂xηC
2
x1
yx̂ŷ

(
1 +

1

β2
yη

2(γ2 − L)2

)
E[∥y+(¯̂xt, ¯̂yt)− ȳt∥2]
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+ 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y2
x̂ŷ

+
4

γ1 − L

2γ2
2

µ

(
C2

y2
x̂ŷ

+
(1− β̂yη)

2

β̂2
yη

2

))
E[∥¯̂yt − ŷ+(¯̂xt+1)∥2] . (62)

Furthermore, based on Lemma C.6, we have

Pt+1 − Pt ≤ −βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2] +

(
βyη + 120γ1β̂xηβ

2
yη

2C2
x1
yx̂ŷ

)
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]

+

(
4βyηβ

2
xη

2L2 − βxη

4

)
E[∥ūt∥2]

+

(
β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2
+ 4A1β̂

2
yη

2β2
yη

2 − 7

8
βyη

)
E[∥v̄t∥2]

+

(
2γ1Cx1

x̂ŷ
+

γ1

6β̂xη
+ 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y1
x̂ŷ

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ

)
− γ1(2− β̂xη)

2β̂xη

)
E[∥¯̂xt+1 − ¯̂xt∥2]

+
(
2A1 −

γ2(2− β̂yη)

2β̂yη

)
E[∥¯̂yt+1 − ¯̂yt∥2]

+
(
8βyηL

2 + 120γ1β̂xηβ
2
yη

2L2C2
x1
yx̂ŷ

)
E[∥x∗(ȳt; ¯̂xt, ¯̂yt)− x̄t∥2]

+

(
60γ1β̂xηC

2
x1
yx̂ŷ

(
1 +

1

β2
yη

2(γ2 − L)2

)
+A1

4β̂2
y

β2
y(γ2 − L)2

)
E[∥y+(¯̂xt, ¯̂yt)− ȳt∥2] , (63)

where A1 = 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y2
x̂ŷ

+ 4
γ1−L

2γ2
2

µ

(
C2

y2
x̂ŷ

+
(1−β̂yη)

2

β̂2
yη

2

))
.

Moreover, based on Lemma C.7, we have

Pt+1 − Pt ≤ −βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2]

+
(
βyη + 120γ1β̂xηβ

2
yη

2C2
x1
yx̂ŷ

+ 4A2β
2
yη

2
)
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]

+

(
4βyηβ

2
xη

2L2 − βxη

4

)
E[∥ūt∥2]

+

(
β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2
+ 4A1β̂

2
yη

2β2
yη

2 + 2A2β
2
yη

2 − 7

8
βyη

)
E[∥v̄t∥2]

+

(
2γ1Cx1

x̂ŷ
+

γ1

6β̂xη
+ 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y1
x̂ŷ

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ

)
− γ1(2− β̂xη)

2β̂xη

)
E[∥¯̂xt+1 − ¯̂xt∥2]

+
(
2A1 −

γ2(2− β̂yη)

2β̂yη

)
E[∥¯̂yt+1 − ¯̂yt∥2]

+
(
8βyηL

2 + 120γ1β̂xηβ
2
yη

2L2C2
x1
yx̂ŷ

+ 4A2β
2
yη

2L2
)
E[∥x∗(ȳt; ¯̂xt, ¯̂yt)− x̄t∥2] , (64)

where A2 = 60γ1β̂xηC
2
x1
yx̂ŷ

(
1 + 1

β2
yη

2(γ2−L)2

)
+A1

4β̂2
y

β2
y(γ2−L)2 .

Finally, based on Lemma B.5, we have

Pt+1 − Pt ≤
(
(A3 + 7βyη)L

2

(γ1 − L)2
− βxη

2

)
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

+
βxη

2
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2] +A3E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2]
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+

(
4βyηβ

2
xη

2L2 − βxη

4

)
E[∥ūt∥2]

+

(
β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2
+ 4A1β̂

2
yη

2β2
yη

2 + 2A2β
2
yη

2 − 7

8
βyη

)
E[∥v̄t∥2]

+

(
2γ1Cx1

x̂ŷ
+

γ1

6β̂xη
+ 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y1
x̂ŷ

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ

)
− γ1(2− β̂xη)

2β̂xη

)
E[∥¯̂xt+1 − ¯̂xt∥2]

+
(
2A1 −

γ2(2− β̂yη)

2β̂yη

)
E[∥¯̂yt+1 − ¯̂yt∥2] , (65)

where A3 = βyη + 120γ1β̂xηβ
2
yη

2C2
x1
yx̂ŷ

+ 4A2β
2
yη

2.

Then, for E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2], we set

(A3 + 7βyη)L
2

(γ1 − L)2
− βxη

2

=
1

(γ1 − L)2

(
8βyηL

2 + 120γ1β̂xηβ
2
yη

2L2C2
x1
yx̂ŷ

+ 4A2β
2
yη

2L2

)
− βxη

2
≤ −βxη

4
. (66)

Specifically, we enforce

8βyηL
2

(γ1 − L)2
≤ βxη

8
,

120γ1β̂xηβ
2
yη

2L2C2
x1
yx̂ŷ

(γ1 − L)2
≤ βxη

32× 16
,

4β2
yη

2L2

(γ1 − L)2
A2 ≤ βxη

32× 16
. (67)

For the first inequality in Eq. (67), we set

βy = βx
(γ1 − L)2

64L2︸ ︷︷ ︸
cβy=O(1)

. (68)

For the last inequality in Eq. (67), from the definition of A1 and A2, we enforce

4β2
yη

2L2

(γ1 − L)2
60γ1β̂xηC

2
x1
yx̂ŷ

≤ βxη

32× 64
,

4L2

(γ1 − L)2

60γ1β̂xηC
2
x1
yx̂ŷ

(γ2 − L)2
+

4β̂2
yη

2

(γ2 − L)2
24γ1β̂xη

γ1 − L

2γ2
2

µ

(1− β̂yη)
2

β̂2
yη

2

 ≤ βxη

32× 64
,

4L2

(γ1 − L)2
60γ1β̂xηC

2
x1
yx̂ŷ

C2
y2
x̂ŷ

4β̂2
yη

2

(γ2 − L)2
≤ βxη

32× 64
,

4L2

(γ1 − L)2
6γ1β̂xη

4

γ1 − L

2γ2
2

µ
C2

y2
x̂ŷ

4β̂2
yη

2

(γ2 − L)2
≤ βxη

32× 64
. (69)

To solve the first inequality in Eq. (69), since β̂xη ≤ 1 and η < 1, from Cx1
yx̂ŷ

= γ1

γ1−L , we obtain

βx ≤ L2

120γ3
1

. (70)

Here, we have also shown that the second inequality in Eq. (67) holds.
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Then, to address the second inequality in Eq. (69), note that since β̂yη ≤ 1, it follows that 1−β̂yη ≤ 1.
Consequently, we obtain

β̂x = βx
(γ1 − L)4(γ2 − L)2µ

24× 642γ1L2
(
5γ2

1µ+ 16γ2
2(γ1 − L)

)
︸ ︷︷ ︸

cβ̂x
=O(1/κ)

. (71)

Similarly, for the third inequality in Eq. (69), from Cy2
x̂ŷ

= γ2

γ2−L , we obtain

β̂y = βx
(γ1 − L)4(γ2 − L)4

642 × 480γ3
1γ

2
2L

2︸ ︷︷ ︸
cβ̂y

=O(1)

. (72)

Moreover, to solve the last inequality in Eq. (69), we obtain

βx ≤
√
µ(γ1 − L)3(γ2 − L)2

512
√

6γ1cβ̂x
γ2cβ̂y

= O(1) . (73)

Finally, by plugging Eq. (66) into Eq. (65), the proof is complete.

D KEY LEMMAS RELATED TO THE DECENTRALIZED SETTING

D.1 CONSENSUS ERRORS

Lemma D.1. Given Assumptions 3.1-3.4, the following inequality holds:

1

K

K∑
k=1

E[∥p̄t+1 − p
(k)
t+1∥2]

≤ λ
1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥2] + 3ρ2xη

4 1

1− λ

1

K

K∑
k=1

E[∥u(k)
t −∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+
9(L2 + γ2

1)

1− λ

1

K

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥2] + 9L2

1− λ

1

K

K∑
k=1

E[∥y(k)t+1 − y
(k)
t ∥2]

+
9γ2

1

1− λ

1

K

K∑
k=1

E[∥x̂(k)
t+1 − x̂

(k)
t ∥2] + 3ρ2xη

4σ2 1

1− λ
. (74)

Proof.

1

K

K∑
k=1

E[∥p̄t+1 − p
(k)
t+1∥2]

=
1

K
E[∥P̄t+1 − Pt+1∥2F ]

=
1

K
E[∥P̄t − Ūt + Ūt+1 − PtW + Ut − Ut+1∥2F ]

≤ (1 + a)
1

K
E[∥P̄t − PtW∥2F ] + (1 + 1/a)

1

K
E[∥ − Ūt + Ūt+1 + Ut − Ut+1∥2F ]

≤ (1 + a)λ2 1

K
E[∥P̄t − Pt∥2F ] + (1 + 1/a)

1

K
E[∥Ut − Ut+1∥2F ]

≤ λ
1

K
E[∥P̄t − Pt∥2F ] +

1

1− λ

1

K
E[∥Ut − Ut+1∥2F ] , (75)
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where a = 1−λ
λ . Then, we have the following inequality to complete the proof:

1

K
E[∥Ut − Ut+1∥2F ]

=
1

K

K∑
k=1

E[∥u(k)
t+1 − u

(k)
t ∥2]

=
1

K

K∑
k=1

E[∥(1− ρxη
2)(u

(k)
t −∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t+1))

+∇xF
(k)(x

(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ

(k)
t+1; ξ

(k)
t+1)− u

(k)
t ∥2]

≤ 3
1

K

K∑
k=1

E[∥ − ρxη
2u

(k)
t + ρxη

2∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+ 3
1

K

K∑
k=1

E[∥ − ρxη
2∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ) + ρxη

2∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t+1)∥2]

+ 3
1

K

K∑
k=1

E[∥ − ∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
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(k)
t ; ξ

(k)
t+1) +∇xF

(k)(x
(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ

(k)
t+1; ξ

(k)
t+1)∥2]

≤ 3ρ2xη
4 1

K

K∑
k=1

E[∥u(k)
t −∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
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4σ2

+ 3
1

K

K∑
k=1

E[∥ − ∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t+1) +∇xF

(k)(x
(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ

(k)
t+1; ξ

(k)
t+1)∥2]

≤ 3ρ2xη
4 1

K

K∑
k=1

E[∥u(k)
t −∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2] + 3ρ2xη

4σ2

+ 9(L2 + γ2
1)

1

K

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥2] + 9L2 1

K

K∑
k=1

E[∥y(k)t+1 − y
(k)
t ∥2]

+ 9γ2
1

1

K

K∑
k=1

E[∥x̂(k)
t+1 − x̂

(k)
t ∥2] , (76)

where the last step holds due to the following inequality:

E[∥ − ∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t ; ξ

(k)
t+1) +∇xF

(k)(x
(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ

(k)
t+1; ξ

(k)
t+1)∥2]

= E[∥ − ∇xf
(k)(x

(k)
t , y

(k)
t ; ξ

(k)
t+1)− γ1(x

(k)
t − x̂

(k)
t )

+∇xf
(k)(x

(k)
t+1, y

(k)
t+1; ξ

(k)
t+1) + γ1(x

(k)
t+1 − x̂

(k)
t+1)∥2]

≤ 3E[∥∇xf
(k)(x

(k)
t+1, y

(k)
t+1; ξ

(k)
t+1)−∇xf

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t+1)∥2]

+ 3γ2
1E[∥x

(k)
t+1 − x

(k)
t ∥2] + 3γ2

1E[∥x̂
(k)
t+1 − x̂

(k)
t ∥2]

≤ 3(L2 + γ2
1)E[∥x

(k)
t+1 − x

(k)
t ∥2] + 3L2E[∥y(k)t+1 − y

(k)
t ∥2] + 3γ2

1E[∥x̂
(k)
t+1 − x̂

(k)
t ∥2] . (77)

Lemma D.2. Given Assumptions 3.1-3.4, the following inequality holds:

1

K

K∑
k=1

E[∥q̄t+1 − q
(k)
t+1∥2]

≤ λ
1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥2] + 3ρ2yη

4 1

1− λ

1

K

K∑
k=1

E[∥v(k)t −∇yF
(k)(x

(k)
t , y

(k)
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(k)
t , ŷ

(k)
t )∥2]
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+
9L2

1− λ

1

K

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥2] + 9(L2 + γ2

2)

1− λ

1

K

K∑
k=1

E[∥y(k)t+1 − y
(k)
t ∥2]

+
9γ2

2

1− λ

1

K

K∑
k=1

E[∥ŷ(k)t+1 − ŷ
(k)
t ∥2] + 3ρ2yη

4σ2 1

1− λ
. (78)

This lemma can be proved by following Lemma D.1. Thus, we omit its proof.

Lemma D.3. Given Assumptions 3.1-3.4, when β̂x ≤ 1−λ
4 , the following inequality holds:

E[∥X̂t+1 − ¯̂
Xt+1∥2F ] ≤

(
1− η(1− λ2)

4

)
1

K

K∑
k=1

E[∥¯̂xt − x̂
(k)
t ∥2]

+
4ηβ̂2

x

1− λ2

1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + 4ηβ̂2

x

1− λ2

2ηβ2
x

1− λ2

1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥2] . (79)

Proof.

∥X̂t+1 − ¯̂
Xt+1∥2F

= ∥X̂t + η(
˜̂
Xt+1 − X̂t)− ¯̂

Xt − ηβ̂x(X̄t+1 − ¯̂
Xt)∥2F

= ∥X̂t + η(X̂tW + β̂x(Xt+1 − X̂t)− X̂t)− ¯̂
Xt − ηβ̂x(X̄t+1 − ¯̂

Xt)∥2F
= ∥(1− η)(X̂t − ¯̂

Xt) + η(X̂tW − ¯̂
Xt) + ηβ̂x(Xt+1 − X̂t)− ηβ̂x(X̄t+1 − ¯̂

Xt)∥2F
≤ (1− η)∥X̂t − ¯̂

Xt∥2F + η∥X̂tW − ¯̂
Xt + β̂x(Xt+1 − X̂t)− β̂x(X̄t+1 − ¯̂

Xt)∥2F
≤ (1− η)∥X̂t − ¯̂

Xt∥2F + (1 + c)η∥X̂tW − ¯̂
Xt∥2F + (1 + 1/c)ηβ̂2

x∥(Xt+1 − X̂t)− (X̄t+1 − ¯̂
Xt)∥2F

≤ (1− η)∥X̂t − ¯̂
Xt∥2F + (1 + c)ηλ2∥X̂t − ¯̂

Xt∥2F + 2(1 + 1/c)ηβ̂2
x∥Xt+1 − X̄t+1∥2F

+ 2(1 + 1/c)ηβ̂2
x∥X̂t − ¯̂

Xt∥2F

≤
(
1− η(1− λ2)

4

)
∥X̂t − ¯̂

Xt∥2F +
4ηβ̂2

x

1− λ2
∥Xt+1 − X̄t+1∥2F

≤
(
1− η(1− λ2)

4

)
1

K

K∑
k=1

E[∥¯̂xt − x̂
(k)
t ∥2]

+
4ηβ̂2

x

1− λ2

1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + 4ηβ̂2

x

1− λ2

2ηβ2
x

1− λ2

1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥2] , (80)

where c = 1−λ2

2λ2 the second to last inequality holds due to β̂x ≤ 1−λ
4 , and the last step holds due to

Lemma D.5.

Lemma D.4. Given Assumptions 3.1-3.4, when βŷ ≤ 1−λ
4 , the following inequality holds:

E[∥Ŷt+1 − ¯̂
Yt+1∥2F ] ≤

(
1− η(1− λ2)

4

)
1

K

K∑
k=1

E[∥¯̂yt − ŷ
(k)
t ∥2]

+
4ηβ̂2

y

1− λ2

1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥2] +

4ηβ̂2
y

1− λ2

2ηβ2
y

1− λ2

1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥2] . (81)

This lemma be proved by following Lemma D.3. Thus, we omit its proof.
Lemma D.5. Given Assumptions 3.1-3.4, the following inequality holds:

1

K

K∑
k=1

E[∥x̄t+1 − x
(k)
t+1∥2] =

1

K
E[∥X̄t+1 −X

(k)
t+1∥2F ]
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≤
(
1− η(1− λ2)

2

)
1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + 2ηβ2

x

1− λ2

1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥2] . (82)

This lemma can be proved by following Lemma D.3. Thus, we omit its proof.
Lemma D.6. Given Assumptions 3.1-3.4, the following inequality holds:

1

K

K∑
k=1

E[∥ȳt+1 − y
(k)
t+1∥2] (83)

≤
(
1− η(1− λ2)
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2ηβ2
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1− λ2

1

K
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E[∥q̄t − q
(k)
t ∥2] . (84)

This lemma can be proved by following Lemma D.3. Thus, we omit its proof.

D.2 GRADIENT ESTIMATION ERRORS

Lemma D.7. Given Assumptions 3.1-3.4, when η ≤ 1√
ρx

, the following inequality holds:
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Proof.
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(k)
t+1; ξ

(k)
t+1)−∇xF

(k)(x
(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ
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+ 2
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where the last step holds due to the following inequality:
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(k)
t )−∇xf(x

(k)
t , y

(k)
t ; ξ

(k)
t+1)

+∇xf(x
(k)
t+1, y

(k)
t+1; ξ

(k)
t+1)−∇xf(x

(k)
t+1, y

(k)
t+1)∥2]

≤ E[∥∇xf(x
(k)
t+1, y

(k)
t+1; ξ

(k)
t+1)−∇xf(x

(k)
t , y

(k)
t ; ξ

(k)
t+1)∥2]

≤ 2L2E[∥x(k)
t+1 − x

(k)
t ∥2] + 2L2E[∥y(k)t+1 − y

(k)
t ∥2] . (87)

Lemma D.8. Given Assumptions 3.1-3.4, when η ≤ 1√
ρx

, the following inequality holds:

1

K

K∑
k=1

E[∥u(k)
t+1 −∇xF

(k)(x
(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ

(k)
t+1)∥2]

≤ (1− ρxη
2)

1

K

K∑
k=1

E[∥u(k)
t −∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+ 4L2 1

K

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥2] + 4L2 1

K

K∑
k=1

E[∥y(k)t+1 − y
(k)
t ∥2] + 2ρ2xη

4σ2 . (88)

This lemma can be proved by following Lemma D.7. Thus, we omit its proof.

Lemma D.9. Given Assumptions 3.1-3.4, when η ≤ 1√
ρy

, the following inequality holds:

E[∥ 1

K

K∑
k=1

∇yF
(k)(x

(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ

(k)
t+1)−

1

K

K∑
k=1

v
(k)
t+1∥2]

≤ (1− ρyη
2)E[∥ 1

K

K∑
k=1

v
(k)
t − 1

K

K∑
k=1

∇yF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+ 4L2 1

K2

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥2] + 4L2 1

K2

K∑
k=1

E[∥y(k)t+1 − y
(k)
t ∥2] + 2ρ2yη

4σ2 1

K
. (89)

This lemma can be proved by following Lemma D.7. Thus, we omit its proof.

Lemma D.10. Given Assumptions 3.1-3.4, when η ≤ 1√
ρy

, the following inequality holds:

1

K

K∑
k=1

E[∥∇yF
(k)(x

(k)
t+1, y

(k)
t+1; x̂

(k)
t+1, ŷ

(k)
t+1)− v

(k)
t+1∥2]

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

≤ (1− ρyη
2)

1

K

K∑
k=1

E[∥v(k)t −∇yF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+ 4L2 1

K

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥2] + 4L2 1

K

K∑
k=1

E[∥y(k)t+1 − y
(k)
t ∥2] + 2ρ2yη

4σ2 . (90)

Similarly, this lemma can be proved by following Lemma D.7. Thus, we omit its proof.

D.3 OTHER AUXILIARY LEMMAS

Lemma D.11. Given Assumptions 3.1-3.4, the following inequality holds:

1

K

K∑
k=1

E[∥x̂(k)
t+1 − x̂

(k)
t ∥2] ≤ 3E[∥¯̂xt+1 − ¯̂xt∥2] + 6

1

K

K∑
k=1

E[∥¯̂xt − x̂
(k)
t ∥2]

+
12ηβ̂2

x

1− λ2

1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + 12ηβ̂2

x

1− λ2

2ηβ2
x

1− λ2

1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥2] . (91)

Proof.

1

K

K∑
k=1

E[∥x̂(k)
t+1 − x̂

(k)
t ∥2]

=
1

K
E[∥X̂t+1 − X̂t∥2F ]

≤ 3
1

K
E[∥X̂t+1 − ¯̂

Xt+1∥2F ] + 3
1

K
E[∥X̂t − ¯̂

Xt∥2F ] + 3
1

K
E[∥ ¯̂

Xt+1 − ¯̂
Xt∥2F ]

≤ 3E[∥¯̂xt+1 − ¯̂xt∥2] + 6
1

K

K∑
k=1

E[∥¯̂xt − x̂
(k)
t ∥2]

+
12ηβ̂2

x

1− λ2

1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + 12ηβ̂2

x

1− λ2

2ηβ2
x

1− λ2

1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥2] , (92)

where the last step holds due to Lemma D.3.

Lemma D.12. Given Assumptions 3.1-3.4, the following inequality holds:

1

K

K∑
k=1

E[∥ŷ(k)t+1 − ŷ
(k)
t ∥2] ≤ 3E[∥¯̂yt+1 − ¯̂yt∥2] + 6

1

K

K∑
k=1

E[∥¯̂yt − ŷ
(k)
t ∥2]

+
12ηβ̂2

y

1− λ2

1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥2] +

12ηβ̂2
y

1− λ2

2ηβ2
y

1− λ2

1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥2] . (93)

This lemma can be proved by following Lemma D.11. Thus, we omit its proof.
Lemma D.13. Given Assumptions 3.1-3.4, the following inequality holds:

1

K

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥2] ≤ 12η2

1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2]

+ 3β2
xη

2 1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥2] + 3β2

xη
2E[∥ūt∥2] . (94)

Lemma D.14. Given Assumptions 3.1-3.4, the following inequality holds:

1

K

K∑
k=1

E[∥y(k)t+1 − y
(k)
t ∥2] ≤ 12η2

1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥2]
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+ 3β2
yη

2 1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥2] + 3β2

yη
2E[∥v̄t∥2] . (95)

Lemmas D.13, D.14 can be proved by following (Gao, 2022).

E PROOF OF THEOREM 4.2

We first propose a novel potential function as follows:

Lt = Pt + c1E[∥
1

K

K∑
k=1

u
(k)
t − 1

K

K∑
k=1

∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+ c2E[∥
1

K

K∑
k=1

v
(k)
t − 1

K

K∑
k=1

∇yF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+ c3
1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + c4

1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥2] + c5

1

K

K∑
k=1

E[∥¯̂xt − x̂
(k)
t ∥2]

+ c10
1

K

K∑
k=1

E[∥¯̂yt − ŷ
(k)
t ∥2] + c6

1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥2] + c7

1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥2]

+ c8
1

K

K∑
k=1

E[∥u(k)
t −∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+ c9
1

K

K∑
k=1

E[∥v(k)t −∇yF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2] , (96)

where the coefficient {ci}9i=1 are positive.

Since

E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)− ūt∥2]

≤ 2E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)−
1

K

K∑
k=1

∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+ 2E[∥ 1

K

K∑
k=1

∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )− ūt∥2]

≤ 2L2 1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + 2L2 1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥2]

+ 2E[∥ 1

K

K∑
k=1

∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )− 1

K

K∑
k=1

u
(k)
t ∥2] ,

(97)

and

E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)− v̄t∥2] ≤ 2L2 1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + 2L2 1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥2]

+ 2E[∥ 1

K

K∑
k=1

∇yF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )− v̄t∥2] , (98)

we obtain

Lt+1 − Lt ≤ −βxη

4
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]
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+ (βxη − c1ρxη
2)E[∥ 1

K

K∑
k=1

∇xF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )− 1

K

K∑
k=1

u
(k)
t ∥2]

+
(
2A3 − ρyη

2c2
)
E[∥ 1

K

K∑
k=1

∇yf
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
t ∥2]

+

(
4βyηβ

2
xη

2L2 − βxη

4

)
E[∥ūt∥2]

+

(
β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2
+ 4A1β̂

2
yη

2β2
yη

2 + 2A2β
2
yη

2 − 7

8
βyη

)
E[∥v̄t∥2]

+

(
2γ1Cx1

x̂ŷ
+

γ1

6β̂xη
+ 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y1
x̂ŷ

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ

)
− γ1(2− β̂xη)

2β̂xη

)
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+
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γ2(2− β̂yη)

2β̂yη
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E[∥¯̂yt+1 − ¯̂yt∥2]

+

(
4L2c1
K
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K
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9(L2 + γ2

1)c6
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1

K

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥2]

+

(
4L2c1
K
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4L2c2
K

+
9L2c6
1− λ

+
9(L2 + γ2

2)c7
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+ 4L2c8 + 4L2c9

)
1

K

K∑
k=1

E[∥y(k)t+1 − y
(k)
t ∥2]

+

(
9γ2

1
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c6

)
1

K
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(k)
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(
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2
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c7
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1

K
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t ∥2]
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1

K
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E[∥x̄t − x
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)
1

K
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E[∥ȳt − y
(k)
t ∥2]

+

(
2ηβ2

x
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8η2β2
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2
x
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1

K
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y
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1

K
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4 1
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xη

4σ2 1
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xη
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4σ2 + 2c9ρ
2
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(99)

By setting

X =
4L2c1
K

+
4L2c2
K

+
9(L2 + γ2

1)c6
1− λ

+
9L2c7
1− λ
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Y =
4L2c1
K

+
4L2c2
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9L2c6
1− λ

+
9(L2 + γ2

2)c7
1− λ

+ 4L2c8 + 4L2c9 , (100)

and due to λ < 1, we obtain 1
1−λ2 ≤ 1

1−λ , and further derive

Lt+1 − Lt ≤ −βxη

4
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βyη

2
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K

K∑
k=1

E[∥q̄t − q
(k)
t ∥2]

+

(
54γ2

1

1− λ
c6 −

η(1− λ2)

4
c5

)
1

K

K∑
k=1

E[∥¯̂xt − x̂
(k)
t ∥2] +

(
54γ2

2

1− λ
c7 −

η(1− λ2)

4
c10

)
1

K

K∑
k=1

E[∥¯̂yt − ŷ
(k)
t ∥2]

+

(
3ρ2xη

4

1− λ
c6 − ρxη

2c8

)
1

K

K∑
k=1

E[∥u(k)
t −∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+

(
3ρ2yη

4

1− λ
c7 − ρyη

2c9

)
1

K

K∑
k=1

E[∥v(k)t −∇yF
(k)(x

(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2]

+ 2c1ρ
2
xη

4σ2 1

K
+ 2c2ρ

2
yη

4σ2 1

K
+ 3c6ρ

2
xη

4σ2 1

1− λ
+ 3c7ρ

2
yη

4σ2 1

1− λ
+ 2c8ρ

2
xη

4σ2 + 2c9ρ
2
yη

4σ2 .

(101)

To cancel out E[∥ 1
K

∑K
k=1 ∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )− 1

K

∑K
k=1 u

(k)
t ∥2], i.e.,

βxη − ρxη
2c1 ≤ 0 . (102)
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Then, we set

c1 =
βx

ρxη
. (103)

To cancel out E[∥ 1
K

∑K
k=1 ∇yf

(k)(x
(k)
t , y

(k)
t )− 1

K

∑K
k=1 v

(k)
t ∥2], i.e.,

2βyη + 240γ1β̂xηβ
2
yη

2C2
x1
yx̂ŷ

+ 8A2β
2
yη

2 − ρyη
2c2 ≤ 0 . (104)

Specifically, since the second and last inequality in Eq. (67) holds, we have

240γ1β̂xηβ
2
yη

2C2
x1
yx̂ŷ

≤ 2βxη

32× 16

(γ1 − L)2

L2
,

8A2β
2
yη

2 ≤ 2βxη

32× 16

(γ1 − L)2

L2
. (105)

Then, by the definition of cβy
, i.e., cβy

= (γ1−L)2

64L2 , we set

240γ1β̂xηβ
2
yη

2C2
x1
yx̂ŷ

≤ 2βxη

32× 16
64cβy

=
1

4
βyη ,

8A2β
2
yη

2 ≤ 2βxη

32× 16
64cβy =

βyη

4
. (106)

Therefore, we obtain

c2 =
5βy

2ρyη
. (107)

To cancel out 1
K

∑K
k=1 E[∥u

(k)
t −∇xF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2], i.e.,

3ρ2xη
4

1− λ
c6 − ρxη

2c8 ≤ 0 . (108)

Here, because ρxη
2 < 1, we set

c6 = βxη(1− λ) , c8 = 3βxη . (109)

Similarly, to cancel out 1
K

∑K
k=1 E[∥v

(k)
t −∇yF

(k)(x
(k)
t , y

(k)
t ; x̂

(k)
t , ŷ

(k)
t )∥2], i.e.,

3ρ2yη
4

1− λ
c7 − ρyη

2c9 ≤ 0 . (110)

Because ρyη
2 < 1, we set

c7 = βyη(1− λ) , c9 = 3βyη . (111)

To cancel out 1
K

∑K
k=1 E[∥¯̂xt − x̂

(k)
t ∥2], i.e.,

54γ2
1

1− λ
c6 −

η(1− λ2)

4
c5 ≤ 0 , (112)

we set

c5 =
216βxγ

2
1

(1− λ)
. (113)

To cancel out 1
K

∑K
k=1 E[∥¯̂yt − ŷ

(k)
t ∥2], i.e.,

54γ2
2

1− λ
c7 −

η(1− λ2)

4
c10 ≤ 0 , (114)
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we set

c10 =
216βyγ

2
2

(1− λ)
. (115)

To cancel out 1
K

∑K
k=1 E[∥x̄t − x

(k)
t ∥2], i.e.,

βxηL
2 + 2L2A3 +

4ηβ̂2
x

1− λ
c5 +

108ηβ̂2
xγ

2
1

(1− λ)2
c6 + 12η2X − η(1− λ2)

2
c3 ≤ 0 . (116)

Firstly, from the definition of X , we have

X =
4L2c1
K

+
4L2c2
K

+
9(L2 + γ2

1)c6
1− λ

+
9L2c7
1− λ

+ 4L2c8 + 4L2c9 ,

=
4L2

K

βx

ρxη
+

4L2

K

5βy

2ρyη
+ 9(L2 + γ2

1)βxη + 9L2βyη + 12L2βxη + 12L2βyη ,

=
4L2

K

βx

ρxη
+

10L2

K

βy

ρyη
+ (21L2 + 9γ2

1)βxη + 21L2βyη . (117)

Moreover, from the definition of A3 and Eq. (104), we have

βyη + 120γ1β̂xηβ
2
yη

2C2
x1
yx̂ŷ

+ 4A2β
2
yη

2 ≤ 5

4
βyη (118)

Therefore, we set

βxηL
2 + 2L2A3 +

4ηβ̂2
x

1− λ
c5 +

108ηβ̂2
xγ

2
1

(1− λ)2
c6 + 12η2X

≤ βxηL
2 +

5

2
βyηL

2 +
4ηβ̂2

x

1− λ

216βxγ
2
1

(1− λ)
+

108γ2
1ηβ̂

2
x

(1− λ)
βxη

+ 12η2
(
4L2

K

βx

ρxη
+

10L2

K

βy

ρyη
+ (21L2 + 9γ2

1)βxη + 21L2βyη

)
≤ βxηL

2 + βxηL
2 5βy

2βx
+ βxηβ̂

2
x

864γ2
1

(1− λ)2
+ βxηβ̂x

108γ2
1

(1− λ)

+ 12η

(
4L2

ρxK
βx +

10L2

ρyK
βy + (21L2 + 9γ2

1)βx + 21L2βy

)
= βxηL

2 + βxηL
2 5

2
cβy

+ β3
xηc

2
β̂x

864γ2
1

(1− λ)2
+ β2

xηcβ̂x

108γ2
1

(1− λ)

+ 12βxη

(
4L2

ρxK
+

10L2

ρyK
cβy

+ (21L2 + 9γ2
1) + 21L2cβy

)
≤ η(1− λ)

2
c3 , (119)

where the second step holds due to β̂xη < 1 and η < 1, the fourth step holds due to Eq. (55) . By
solving this inequality, we obtain

c3 ≥ 2βx

(1− λ)

(
48L2

ρxK
+

120L2

ρyK
cβy

+ 253L2 + 108γ2
1 + 255L2cβy

+ β2
xc

2
β̂x

864γ2
1

(1− λ)2
+ βxcβ̂x

108γ2
1

(1− λ)

)
.

(120)

Then, we set

c3 =
2βx

(1− λ)

(
48L2

ρxK
+

120L2

ρyK
cβy

+ 253L2 + 108γ2
1 + 302L2cβy︸ ︷︷ ︸

c3,1

)
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+
2β3

x

(1− λ)3
864γ2

1c
2
β̂x︸ ︷︷ ︸

c3,2

+
2β2

x

(1− λ)2
108γ2

1cβ̂x︸ ︷︷ ︸
c3,3

. (121)

Here, it is easy to know that c3,1 = O(1) when ρx = O(1/K) and ρy = O(1/K), c3,2 = O(1/κ2)
and c3,3 = O(1/κ) due to cβ̂x

= O(1/κ).

To cancel out 1
K

∑K
k=1 E[∥ȳt − y

(k)
t ∥2], i.e.,

βxηL
2 + 2L2A3 +

4ηβ̂2
y

1− λ
c10 +

108ηβ̂2
yγ

2
2

(1− λ)2
c7 + 12η2Y − η(1− λ2)

2
c4 ≤ 0 . (122)

Firstly, from the definition of Y , we have

Y =
4L2c1
K

+
4L2c2
K

+
9L2c6
1− λ

+
9(L2 + γ2

2)c7
1− λ

+ 4L2c8 + 4L2c9

=
4L2

K

βx

ρxη
+

10L2

K

βy

ρyη
+ 21L2βxη + (9L2 + 21γ2

2)βyη . (123)

Therefore, we set

βxηL
2 + 2L2A3 +

4ηβ̂2
y

1− λ
c10 +

108ηβ̂2
yγ

2
2

(1− λ)2
c7 + 12η2Y

≤ βxηL
2 + βxηL

2 5

2
cβy

+ β3
xηcβy

c2
β̂x

864γ2
2

(1− λ)2
+ β2

xηcβy
cβ̂x

108γ2
2

(1− λ)

+ 12βxη

(
4L2

ρxK
+

10L2

ρyK
cβy

+ 21L2 + (21L2 + 9γ2
2)cβy

)
≤ η(1− λ)

2
c4 , (124)

where the second step holds due to β̂yη < 1 and η < 1, the fourth step holds due to Eq. (55). By
solving this inequality, we set

c4 =
2βx

(1− λ)

(
48L2

ρxK
+

120L2

ρyK
cβy + 253L2 + 255L2cβy + 108γ2

2cβy︸ ︷︷ ︸
c4,1

)

+
2β3

x

(1− λ)3
864γ2

2cβyc
2
β̂x︸ ︷︷ ︸

c4,2

+
2β2

x

(1− λ)2
108γ2

2cβycβ̂x︸ ︷︷ ︸
c4,3

. (125)

Similarly, it is easy to know that c4,1 = O(1) when ρx = O(1/K) and ρy = O(1/K), c4,2 =
O(1/κ2) and c4,3 = O(1/κ) due to cβ̂x

= O(1/κ).

To cancel out 1
K

∑K
k=1 E[∥p̄t − p

(k)
t ∥2], i.e.,

2ηβ2
x

1− λ
c3 +

8η2β2
xβ̂

2
x

(1− λ)2
c5 +

216η2β2
xβ̂

2
xγ

2
1

(1− λ)3
c6 + 3β2

xη
2X − (1− λ)c6 ≤ 0 . (126)

Firstly, we enforce

216η2β2
xβ̂

2
xγ

2
1

(1− λ)3
c6 ≤ (1− λ)

4
c6 . (127)

Then, based on Eq. (55) , we obtain

βx ≤ (1− λ)

6√γ1cβ̂x

. (128)
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Then, we enforce

c3
2ηβ2

x

1− λ
≤ βxη

4
(1− λ)2 ,

c5
8η2β2

xβ̂
2
x

(1− λ)2
≤ βxη

4
(1− λ)2 , (129)

3β2
xη

2X ≤ βxη

16
(1− λ)2 .

To solve the first inequality in Eq. (129), we enforce

2ηβ2
x

1− λ

2βx

(1− λ)
c3,1 ≤ βxη

12
(1− λ)2 ,

2ηβ2
x

1− λ

2β3
x

(1− λ)3
c3,2 ≤ βxη

12
(1− λ)2 , (130)

2ηβ2
x

1− λ

2β2
x

(1− λ)2
c3,3 ≤ βxη

12
(1− λ)2 .

Therefore, we obtain

βx ≤ min

{
(1− λ)2

4
√

3c3,1
,
(1− λ)3/2

2(3c3,2)1/4
,
(1− λ)5/3

2(6c3,3)1/3

}
. (131)

To solve the second inequality in Eq. (129), we obtain

βx ≤ (1− λ)5/4

12√γ1cβ̂x

. (132)

To solve the last inequality in Eq. (129), we enforce

3βxη
4L2

K

βx

ρxη
≤ 1

16× 4
(1− λ)2 , 3βxη

10L2

K

βy

ρyη
≤ 1

16× 4
(1− λ)2 ,

3βxη(21L
2 + 9γ2

1)βxη ≤ 1

16× 4
(1− λ)2 , 3βxη21L

2βyη ≤ 1

16× 4
(1− λ)2 . (133)

We obtain

βx ≤

{√
ρxK(1− λ)

16
√
3L

,

√
ρyK(1− λ)

8L
√
30cβy

,
(1− λ)

8
√

3(21L2 + 9γ2
1)

,
(1− λ)

24L
√
7cβy

}
. (134)

To cancel out 1
K

∑K
k=1 E[∥q̄t − q

(k)
t ∥2], i.e.,

2ηβ2
y

1− λ
c4 +

8η2β2
y β̂

2
y

(1− λ)2
c10 +

216η2β2
y β̂

2
yγ

2
2

(1− λ)3
c7 + 3β2

yη
2Y − (1− λ)c7 ≤ 0 . (135)

Firstly, we enforce

216η2β2
y β̂

2
yγ

2
2

(1− λ)3
c7 ≤ (1− λ)

6
c7 . (136)

Then, based on Eq. (55), we obtain

βx ≤ (1− λ)

6
√
γ2cβycβ̂y

. (137)

Then, we enforce

c4
2ηβ2

y

1− λ
≤ βyη

4
(1− λ)2 ,
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c10
8η2β2

y β̂
2
y

(1− λ)2
≤ βyη

4
(1− λ)2 , (138)

3β2
yη

2Y ≤ βyη

96
(1− λ)2 .

To solve the first inequality in Eq. (138), we enforce

2ηβ2
y

1− λ

2βx

(1− λ)
c4,1 ≤ βyη

12
(1− λ)2 ,

2ηβ2
y

1− λ

2β3
x

(1− λ)3
c4,2 ≤ βyη

12
(1− λ)2 , (139)

2ηβ2
y

1− λ

2β2
x

(1− λ)2
c4,3 ≤ βyη

12
(1− λ)2 .

Therefore, we obtain

βx ≤ min

{
(1− λ)2

4
√
3cβyc4,1

,
(1− λ)3/2

2(3cβy
c4,2)1/4

,
(1− λ)5/3

2(6cβy
c4,3)1/3

}
. (140)

To solve the second inequality in Eq. (138), we obtain

βx ≤ (1− λ)5/4

12
√
γ2cβycβ̂y

. (141)

To solve the last inequality in Eq. (138), we enforce

3βyη
4L2

K

βx

ρxη
≤ 1

96× 4
(1− λ)2 , 3βyη

10L2

K

βy

ρyη
≤ 1

96× 4
(1− λ)2 ,

3βyη21L
2βxη ≤ 1

96× 4
(1− λ)2 , 3βyη(21L

2 + 9γ2
2)βyη ≤ 1

96× 4
(1− λ)2 . (142)

We obtain

βx ≤

{√
ρxK(1− λ)

48
√
2cβyL

,

√
ρyK(1− λ)

48cβy
L
√
5

,
(1− λ)

24L
√
42cβy

,
(1− λ)

24cβy

√
2(21L2 + 9γ2

2)

}
. (143)

For E[∥¯̂xt+1 − ¯̂xt∥2], by setting

2γ1Cx1
x̂ŷ

+ 6γ1β̂xη

(
10C2

x1
yx̂ŷ

C2
y1
x̂ŷ

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ

)
+

27γ2
1

1− λ
c6 −

γ1

3β̂xη
≤ − γ1

4β̂xη
. (144)

Specifically, we enforce

2γ1Cx1
x̂ŷ

≤ γ1

36β̂xη
,

6γ1β̂xη
(
10C2

x1
yx̂ŷ

C2
y1
x̂ŷ

+
4

γ1 − L

2γ2
2C

2
y1
x̂ŷ

µ

)
≤ γ1

36β̂xη
,

27γ2
1

1− λ
c6 ≤ γ1

36β̂xη
. (145)

Since Cx1
x̂ŷ

= γ1

γ1−L , Cx1
yx̂ŷ

= γ1

γ1−L , and Cy1
x̂ŷ

= γ1

γ2−L , we obtain

βx ≤ min

{
γ1 − L

72cβ̂x
γ1

,
(γ1 − L)(γ2 − L)

√
µ

6γ1cβ̂x

√
6(10γ2

1µ+ 8γ2
2(γ1 − L))

,
1

18
√
3cβ̂x

γ1

}
. (146)
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For E[∥¯̂yt+1 − ¯̂yt∥2], by setting

2A1 +
27γ2

2

1− λ
c7 −

γ2

2β̂yη
≤ − γ2

4β̂yη
(147)

Specifically, from the definition of A1, we enforce

12γ1β̂xηC
2
y2
x̂ŷ

(
10C2

x1
yx̂ŷ

+
8γ2

2

(γ1 − L)µ

)
≤ γ2

16β̂yη
,

12γ1β̂xη
8γ2

2

(γ1 − L)µ

(1− β̂yη)
2

β̂2
yη

2
≤ γ2

16β̂yη
,

27γ2
2

1− λ
c7 ≤ γ2

8β̂yη
. (148)

To solve the second inequality, we use the second inequality in Eq. (69) to obtain the following:

4

(γ2 − L)2
24γ1β̂xη

γ1 − L

2γ2
2

µ

(1− β̂yη)
2

β̂2
yη

2
≤ βxη

32× 64

(γ1 − L)2

4L2
. (149)

Then, it is easy to derive

12γ1β̂xη
8γ2

2

(γ1 − L)µ

(1− β̂yη)
2

β̂2
yη

2
≤ βxη

32× 64

(γ1 − L)2

4L2

(γ2 − L)2

2
(150)

Therefore, it leads us to solve

βxη

32× 64

(γ1 − L)2

4L2

(γ2 − L)2

2
≤ γ2

16β̂yη
(151)

and we obtain

βx ≤ 32L√
cβ̂y

(γ1 − L)(γ2 − L)
(152)

Finally, to solve the first and last inequality in Eq. (148), from Cx1
yx̂ŷ

= γ1

γ1−L and Cy2
x̂ŷ

= γ2

γ2−L ,
we obtain

βx ≤ min
{ √

µ(γ1 − L)(γ2 − L)

8
√
3cβ̂x

cβ̂y
γ1γ2(10γ2

1µ+ 8γ2
2(γ1 − L))

,
1

6
√

6γ2cβy
cβ̂y

}
(153)

By setting

c1 =
βx

ρxη
, c2 =

5βy

2ρyη
,

c3 ≜
2βx

(1− λ)
c3,1 +

2β3
x

(1− λ)3
c3,2 +

2β2
x

(1− λ)2
c3,3 ,

c4 ≜
2βx

(1− λ)
c4,1 +

2β3
x

(1− λ)3
c4,2 +

2β2
x

(1− λ)2
c4,3 ,

c5 =
216βxγ

2
1

(1− λ)
, c10 =

216βyγ
2
2

(1− λ)

c6 = βxη(1− λ) , c7 = βyη(1− λ) , c8 = 3βxη , c9 = 3βyη , (154)

we obtain

Lt+1 − Lt ≤ −βxη

4
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βyη

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]
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+

(
4βyηβ

2
xη

2L2 + 3β2
xη

2X − βxη

4

)
E[∥ūt∥2]

+

(
β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2
+ 4A1β̂

2
yη

2β2
yη

2 + 2A2β
2
yη

2 + 3β2
yη

2Y − 7

8
βyη

)
E[∥v̄t∥2]

− γ1

4β̂xη
E[∥¯̂xt+1 − ¯̂xt∥2]−

γ2

4β̂yη
E[∥¯̂yt+1 − ¯̂yt∥2]

+ 2c1ρ
2
xη

4σ2 1

K
+ 2c2ρ

2
yη

4σ2 1

K
+ 3c6ρ

2
xη

4σ2 1

1− λ
+ 3c7ρ

2
yη

4σ2 1

1− λ
+ 2c8ρ

2
xη

4σ2 + 2c9ρ
2
yη

4σ2 .

(155)

For E[∥ūt∥2], we enforce

4βyηβ
2
xη

2L2 + 3β2
xη

2X − βxη

4
≤ −βxη

8
. (156)

Specifically, we enforce

4βyηβ
2
xη

2L2 ≤ βxη

16

3β2
xη

2X ≤ βxη

16
. (157)

To solve the first inequality, we obtain

βx ≤ 1

8L
√
cβy

(158)

To solve the last inequality, we use the last inequality in Eq. (129) along with the fact that 1− λ < 1,
from which it is straightforward to show that the inequality holds.

For E[∥v̄t∥2], we enforce

β2
yη

2Ld +
3βyη

4
+

β2
yη

2(γ2 + L)

2
+ 4A1β̂

2
yη

2β2
yη

2 + 2A2β
2
yη

2 + 3β2
yη

2Y − 7

8
βyη ≤ − 1

32
βyη .

(159)

Firstly, from Eq. (106) and the definition of A2, we obtain 2A2β
2
yη

2 ≤ βyη
4×4 , and

2β2
yη

2A1

4β̂2
y

β2
y(γ2 − L)2

≤ βyη

4× 4

(160)

By reformulating the above inequality, we obtain

4A1β̂
2
yη

2β2
yη

2 ≤
β3
yη

3(γ2 − L)2

4× 8
(161)

Therefore, we enforce

β2
yη

2Ld +
β2
yη

2(γ2 + L)

2
+

β3
yη

3(γ2 − L)2

32
+ 3β2

yη
2Y ≤ 1

32
βyη (162)

Specifically, we enforce

β2
yη

2Ld +
β2
yη

2(γ2 + L)

2
≤ 1

96
βyη ,

β3
yη

3(γ2 − L)2

32
≤ 1

96
βyη ,

3β2
yη

2Y ≤ 1

96
βyη ,

(163)
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To solve the first and second inequality, we obtain

βx ≤ min
{ 1

48cβy
(2Ld + γ2 + L)

,
1√

3cβy (γ2 − L)

}
(164)

To solve the last inequality, we use the last inequality in Eq. (138) along with the fact that 1− λ < 1,
from which it is straightforward to show that the inequality holds.

In summary, by setting

βx ≤ min
{ (1− λ)

6√γ1cβ̂x

,
(1− λ)2

4
√
3c3,1

,
(1− λ)3/2

2(3c3,2)1/4
,
(1− λ)5/3

2(6c3,3)1/3
,
(1− λ)5/4

12√γ1cβ̂x

,

√
ρxK(1− λ)

16
√
3L

,√
ρyK(1− λ)

8L
√
30cβy

,
(1− λ)

8
√
3(21L2 + 9γ2

1)
,

(1− λ)

6
√

γ2cβycβ̂y

,
(1− λ)2

4
√

3cβyc4,1
,

(1− λ)3/2

2(3cβy
c4,2)1/4

,

(1− λ)5/3

2(6cβy
c4,3)1/3

,
(1− λ)5/4

12
√

γ2cβycβ̂y

,

√
ρxK(1− λ)

48
√
2cβyL

,

√
ρyK(1− λ)

48cβy
L
√
5

,
(1− λ)

24L
√
42cβy

,

(1− λ)

24cβy

√
2(21L2 + 9γ2

2)
,
γ1 − L

72cβ̂x
γ1

,
(γ1 − L)(γ2 − L)

√
µ

6γ1cβ̂x

√
6(10γ2

1µ+ 8γ2
2(γ1 − L))

,
1

18
√
3cβ̂x

γ1
,

4L√
cβ̂y

(γ1 − L)(γ2 − L)
,

√
µ(γ1 − L)(γ2 − L)

8
√
3cβ̂x

cβ̂y
γ1γ2(10γ2

1µ+ 8γ2
2(γ1 − L))

,
1

6
√

6γ2cβy
cβ̂y

,

L2

120γ3
1

,

√
µ(γ1 − L)3(γ2 − L)2

512
√
6γ1cβ̂x

γ2cβ̂y

,
1

8L
√
cβy

,
1

48cβy
(2Ld + γ2 + L)

,
1√

3cβy (γ2 − L)

}
η ≤ min

{
1

√
ρx

,
1

√
ρy

,
1

β̂x

,
1

β̂y

,
1

2βx(γ1 + L)

}
, (165)

we obtain

Lt+1 − Lt ≤ −βxη

4
E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]−

βxcβy
η

2
E[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2]

− γ1cβ̂x

βxη

4
E[∥x̄t+1 − ¯̂xt∥2]− γ2cβ̂y

βxη

4
E[∥ȳt+1 − ¯̂yt∥2]

+ 2βxρxη
3σ2 1

K
+ 5βxcβy

ρyη
3σ2 1

K
+ 9βxρ

2
xη

5σ2 + 9cβy
βxρ

2
yη

5σ2 . (166)

Because

∥∇xf(x̄t, ȳt)∥2 ≤ 2∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2 + 2γ2
1∥x̄t+1 − ¯̂xt∥2 ,

∥∇yf(x̄t, ȳt)∥2 ≤ 2∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2 + 2γ2
2∥ȳt+1 − ¯̂yt∥2 , (167)

we obtain

1

T

T−1∑
t=0

(
E[∥∇xf(x̄t, ȳt)∥2] + κE[∥∇yf(x̄t, ȳt)∥2]

)
≤ 1

T

T−1∑
t=0

(
2E[∥∇xF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] + 2κE[∥∇yF (x̄t, ȳt; ¯̂xt, ¯̂yt)∥2] + 2γ2

1E[∥x̄t+1 − ¯̂xt∥2]

+ 2κγ2
2E[∥ȳt+1 − ¯̂yt∥2]

)
≤ max

{
8

βxη
,

8κ

βxηcβy

,
8γ1

βxηcβ̂x

,
8κγ2
βxηcβ̂y

}(
L0 − LT

T
+ 2βxρxη

3σ2 1

K
+ 5βxcβy

ρyη
3σ2 1

K

+ 9βxρ
2
xη

5σ2 + 9cβy
βxρ

2
yη

5σ2

)
. (168)
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By setting γ1 = O(L), γ2 = O(L), we obtain

cβy
= O(1) , cβ̂x

= O

(
1

L2κ

)
, cβ̂y

= O(1) . (169)

Because

1

K

K∑
k=1

E[∥p̄0 − p
(k)
0 ∥2]

=
1

K

K∑
k=1

E[∥ 1

K

K∑
j=1

∇xF
(j)(x0, y0; x̂0, ŷ0; ξ

(j)
0 )−∇xF

(k)(x0, y0; x̂0, ŷ0; ξ
(k)
0 )∥2]

≤ 3
1

K

K∑
k=1

E[∥ 1

K

K∑
j=1

∇xF
(j)(x0, y0; x̂0, ŷ0; ξ

(j)
0 )− 1

K

K∑
j=1

∇xF
(j)(x0, y0; x̂0, ŷ0)∥2]

+ 3
1

K

K∑
k=1

E[∥ 1

K

K∑
j=1

∇xF
(j)(x0, y0; x̂0, ŷ0)−∇xF

(k)(x0, y0; x̂0, ŷ0)∥2]

+ 3
1

K

K∑
k=1

E[∥∇xF
(k)(x0, y0; x̂0, ŷ0)−∇xF

(k)(x0, y0; x̂0, ŷ0; ξ
(k)
0 )∥2]

≤ 6σ2 + 6
1

K

K∑
k=1

E[∥∇xf
(k)(x0, y0)∥2] , (170)

and

1

K

K∑
k=1

E[∥q̄0 − q
(k)
0 ∥2] ≤ 6σ2 + 6

1

K

K∑
k=1

E[∥∇yf
(k)(x0, y0)∥2] , (171)

we have

L0 = P0 +
βx

ρxη
E[∥ 1

K

K∑
k=1

u
(k)
0 − 1

K

K∑
k=1

∇xF
(k)(x

(k)
0 , y

(k)
0 ; x̂

(k)
0 , ŷ

(k)
0 )∥2]

+
5βy

2ρyη
E[∥ 1

K

K∑
k=1

v
(k)
0 − 1

K

K∑
k=1

∇yF
(k)(x

(k)
0 , y

(k)
0 ; x̂

(k)
0 , ŷ

(k)
0 )∥2]

+ βxη(1− λ)
1

K

K∑
k=1

E[∥p̄0 − p
(k)
0 ∥2] + βyη(1− λ)

1

K

K∑
k=1

E[∥q̄0 − q
(k)
0 ∥2]

+ 3βxη
1

K

K∑
k=1

E[∥u(k)
0 −∇xF

(k)(x
(k)
0 , y

(k)
0 ; x̂

(k)
0 , ŷ

(k)
0 )∥2]

+ 3βyη
1

K

K∑
k=1

E[∥v(k)0 −∇yF
(k)(x

(k)
0 , y

(k)
0 ; x̂

(k)
0 , ŷ

(k)
0 )∥2]

≤ P0 +
βx

ρxη

σ2

B
+

5βy

2ρyη

σ2

B
+ 9βxησ

2 + 9βyησ
2 + 6βxη

1

K

K∑
k=1

E[∥∇xf
(k)(x0, y0)∥2]

+ 6βyη
1

K

K∑
k=1

E[∥∇yf
(k)(x0, y0)∥2] . (172)

Then, we have

1

T

T−1∑
t=0

(
E[∥∇xf(x̄t, ȳt)∥2] + κE[∥∇yf(x̄t, ȳt)∥2]

)
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≤ O

(
κP0

βxηT

)
+O

(
κ

T

1

K

K∑
k=1

E[∥∇xf
(k)(x0, y0)∥2]

)
+O

(
κ

T

1

K

K∑
k=1

E[∥∇yf
(k)(x0, y0)∥2]

)

+O

(
κσ2

ρxη2TB

)
+O

(
κσ2

ρyη2TB

)
+O

(
κσ2

T

)
+O

(
κρxη

2σ2

K

)
+O

(
κρyη

2σ2

K

)
+O(κρ2xη

4σ2) +O(κρ2yη
4σ2) . (173)

By setting βx = O((1 − λ)2), η = O( Kϵ
κ1/2 ), ρx = O( 1

K ), ρy = O( 1
K ), B = O(κ

1/2

ϵ ), T =

O( κ3/2

K(1−λ)2ϵ3 ), we have

1

T

T−1∑
t=0

(
E[∥∇xf(x̄t, ȳt)∥2] + κE[∥∇yf(x̄t, ȳt)∥2]

)
≤ O(ϵ2) . (174)
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