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ABSTRACT

Decentralized stochastic minimax optimization has recently attracted significant
attention due to its applications in machine learning. However, existing state-
of-the-art methods use learning rates of different scales for the primal and dual
variables, making them difficult to tune in practice. To address this problem,
this paper proposes a novel doubly smoothed decentralized stochastic minimax
algorithm. Specifically, in terms of algorithm design, we update both the primal
and dual variables using smoothed gradients and introduce novel approaches to
handle the computation and communication of the auxiliary variables introduced
by the smoothing technique. On the theoretical side, for nonconvex-PL problems,
our convergence analysis reveals that the learning rates for the primal and dual
variables are of the same scale. Moreover, the order of the condition number in
our convergence rate is improved to 0(53/ 2). To the best of our knowledge, this
is the first time it has been improved to such a favorable order. Finally, extensive
experimental results validate the effectiveness of our algorithm.

1 INTRODUCTION

In this paper, we focus on the following decentralized stochastic minimax optimization problem:

K
min max f(z,y) 2 %Zf(k)(m,y) ) M

d do
zeRl yeR =1

where = € R? is the primal variable, y € R? is the dual variable, f(*)(z,y) = E[f¥) (x, y; £(*))]
is the loss function on the k-th (where k € {1,--- , K'}) worker, and £ (%) denotes the random sample
on the k-th worker. Throughout this paper, it is assumed that f(x, y) is nonconvex in z and satisfies
the Polyak-Lojasiewicz (PL) condition in y.

Stochastic minimax optimization has attracted increasing attention in the machine learning community
recently because it finds numerous applications, such as generative adversarial networks (Goodfellow.
et al.,|2014), adversarially robust learning (Madry et al.,|2017), distributionally robust learning (Duchi
et al.,|2021)), imbalanced data classification (Ying et al.,|2016), policy evaluation (Zhang et al., 2021)),
etc. Moreover, in real-world machine learning applications, the training data is typically distributed
on different devices. To take advantage of the distributed data to train the aforementioned machine
learning models, decentralized minimax optimization has been actively studied in recent years. For
example, Xian et al.| (2021); Huang & Chen| (2023) proposed decentralized stochastic variance-
reduced gradient descent ascent algorithm based on the STORM gradient estimator (Cutkosky &
Orabonal 2019), while [Zhang et al.| (2021} |2024)) proposed to use the SPIDER gradient estimator
(Fang et al.| 2018; Nguyen et al.,[2017). Recently, Huang et al.| (2024) developed a decentralized
adaptive minimax algorithm and established its convergence rate for nonconvex-strongly-concave
problems.

However, most existing decentralized minimax optimization algorithms suffer from a significant
limitation. Specifically, to ensure convergence, the learning rate for the primal variable is set on a
different scale than that for the dual variable. For example, Xian et al.|(2021); [Zhang et al|(2024);
Chen et al.| (2024); Huang & Chen| (2023) prove that the ratio between the learning rate of the
primal variable and that of the dual variable has to be O(1/x?) for nonconvex-strongly-concave (or
nonconvex-PL) problems, where « > 1 is the condition number. Since x is an unknown parameter, it
is difficult to tune their learning rates to ensure convergence in practice. To address this issue, a recent
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Table 1: The communication complexity (i.e., iteration complexity) of different decentralized stochas-
tic minimax algorithms that using variance-reduced gradients. N-PL: denotes nonconvex-PL prob-
lems. N-SCV: denotes nonconvex-strongly-concave problems. LR Ratio: the ratio between the
learning rate of the primal variable and that of the dual variable. x: denotes condition number. 1 — A:
denotes spectral gap. e: denotes solution accuracy. Note that Smoothed-SAGDA is a single-machine
algorithm without using variance-reduced gradients. DGDA-VR and DREAM depend on the con-
dition number, scaling as x2, in the cost of a large batch size O ( %) DREAM achieves a better
dependence on the spectral gap in the cost of performing multi-round communication in each iteration.

Algorithms ‘Communication Complexity‘BatCh Size‘Problem Class‘LR Ratio
Smoothed-SAGDA (Yang et all 2022)‘ 0 (Lf) ‘ o) ‘ N-PL ‘ o(1)

DM-HSGD (Xian et al 2021) O (e o(1) N-SCV  |0(1/k?)
DGDA-VR (Zhang et al, [2024) O (e O(%) | N-Scv  |O(1/x?)
DREAM (Chen et al!, 2024) o( ma) O(%) | Nscv  |0(1/x?)
DM-GDA (Huang & Chen| 2023) 0 (<1 e 3) o(1) NPL  |O(1/k2)
Ours (Corollary ‘ o) ( e 3) ‘ o) ‘ N-PL ‘ o(1)

work (Yang et al., [2022)) in the single-machine setting demonstrates that the smoothing technique
proposed by |Zhang et al.[(2020) allows primal and dual variables to use learning rates of the same
scale, that is, with a ratio of the order of O(1). However, the convergence rate|'|O(1/¢?) of Yang
et al.| (2022) is inferior to O(1/€3) of Xian et al. (2021); [Huang & Chen| (2023)) because it just uses
the standard stochastic gradient. Then, a natural question arises:

Can we develop a decentralized smoothed minimax optimization algorithm that achieves a better
convergence rate while using same-scale learning rates for the primal and dual variables?

Actually, there are unique challenges when applying the smoothing technique to decentralized
minimax optimization in order to improve the convergence rate, as outlined below.

Challenge-1: How to incorporate the variance reduction technique into the smoothing technique
to achieve a faster convergence rate? Existing minimax optimization algorithms with the smoothing
technique in a single machine setting are based on the deterministic gradient (Zhang et al., 2020) or
the unbiased stochastic gradient (Yang et al.,|2022)). Directly extending their smoothing technique to
decentralized stochastic minimax optimization will lead to a slow convergence rate. For example,
(Yang et al., 2022) can only achieve a O(1/¢*) convergence rate to achieve the e-accuracy solution for
a nonconvex-PL problem, while the existing decentralized minimax optimization algorithm (Huang
& Chenl 2023) can achieve a O(1/¢3) convergence rate for the same problem class by using the
variance reduction technique. However, due to the existence of the auxiliary variable in the smoothing
technique, it is unclear how to leverage the variance reduction technique to accelerate its convergence
rate. For example, it is unclear which component in the smoothed gradient should use variance
reduction and how to control the gradient bias to guarantee the fast convergence rate.

Challenge-2: How to compute and communicate the auxiliary variable in the smoothing
technique and how does it affect the communication complexity? The standard smoothing
technique introduces an auxiliary variable to smooth the loss landscape with respect to the primal
variable to improve the convergence rate. However, in a decentralized setting, it is unclear how to
update and communicate the auxiliary variable. In particular, due to the strong dependence between
the original variable and the auxiliary variable, it remains unclear whether the communication of the
auxiliary variable, especially given that our algorithm introduces auxiliary variables for both the
primal and dual variables, will improve or degrade the communication complexity, for example, by
affecting the dependence on the spectral gap or condition number in the convergence rate.

'In the introduction, we omit other factors in the convergence rate for clarity.
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To answer the aforementioned questions, we develop a novel decentralized algorithm based on the
smoothing technique: the doubly smoothed decentralized stochastic gradient descent ascent with
momentum (Smoothed?-DSGDAM) algorithm, which brings the following contributions:

¢ In terms of algorithm design, we apply the smoothing technique to both the primal and dual
variables. Importantly, we propose a novel and feasible approach to incorporate the variance
reduction technique into the smoothed gradient regarding both the primal and dual variables.
More importantly, our algorithm demonstrates how to update and communicate the auxiliary
variable introduced by the smoothing technique in the decentralized setting. As far as we know,
this is the first time to show how to handle the auxiliary variable and reduced the gradient
variance for the decentralized smoothed minimax algorithm.

* In terms of convergence analysis, we establish the convergence rate of our algorithm for
nonconvex-PL minimax problems. In particular, on the one hand, for a nonconvex-PL minimax
problem, the smoothing technique with a variance-reduced gradient can make the convergence
rate enjoy a better dependence on the condition number « , i.e., in the order of O(n3/ 2), which is
better than the dependence O(x?) in existing decentralized non-smoothed minimax algorithms
(Xian et al., 2021; [Huang & Chen, 2023) and the dependence O(k?) in smoothed minimax
algorithms (Yang et al.,|2022)) in the single-machine setting |} To the best of our knowledge,
this is the first time the dependence on the condition number is improved to O(x°/2). On
the other hand, our convergence analysis shows that the ratio between the learning rate of the
primal variable and that of the dual variable can be improved from O(1/x?) of Xian et al(2021);
Zhang et al.| (2024); [Chen et al.{(2024); Huang & Chen|(2023)) to O(1), and the convergence rate
can be improved from O(1/e?) of |Yang et al.| (2022) to O(1/€?). To the best of our knowledge,
this is the first time that a decentralized stochastic minimax optimization algorithm can
achieve such a fast convergence rate with the same-scale learning rate. A detailed comparison
between our algorithm and existing algorithms can be found in Table|[T}

Finally, the extensive experimental results validate the performance of our proposed algorithm.
2 RELATED WORKS

2.1 STOCHASTIC MINIMAX OPTIMIZATION

Due to the widespread application of stochastic minimax optimization in machine learning, numerous
stochastic optimization algorithms (Lin et al., 2020; [Luo et al., |2020; Huang et al.,|2022; |Qiu et al.,
2020; |Guo et al. 2021} |Yang et al., 2020; 2022; |Chen et al.l [2022)) have been developed recently.
In particular, the nonconvex-strongly-concave and nonconvex-PL problems have been extensively
studied. For the former, |Lin et al.|(2020) established the convergence rate of the stochastic gradient
descent ascent (SGDA) algorithm for nonconvex-strongly-concave problems. Following that, a
couple of variance-reduced gradient methods (Luo et al., 2020; Huang et al., [2022} |Qiu et al.} 2020;
Guo et al.,|2021) have been developed to accelerate its convergence rate. Specifically, Huang et al.
(2022)); |Q1u et al.| (2020) combined the STORM gradient estimator (Cutkosky & Orabona, [2019) with
SGDA and established its convergence rate. |[Luo et al.[(2020) investigated the convergence rate when
incorporating the SPIDER gradient estimator (Fang et al.l [2018) into SGDA. For the latter, Yang
et al.[(2020) investigated the convergence rate for the alternating stochastic gradient descent ascent
(ASGDA) algorithm. [Chen et al.| (2022) studied the convergence rate for the finite-sum minimax
problem when combining the SPIDER gradient estimator with ASGDA.

The smoothing technique for the minimax problem was first studied for nonconvex-concave problems
in|Zhang et al.| (2020). Specifically, it established the convergence rate of the full alternating gradient
(AGDA) descent ascent algorithm when incorporating the smoothing technique. Later,|Yang et al.
(2022)) applied this technique to nonconvex-PL problems and established its convergence rate for
SGDA. In fact, due to the efficacy of the smoothing technique, it has been applied to various settings,
such as nonconvex-nonconcave problems with the one-sided KL condition (Zheng et al., [2023),
constrained optimization problems (Pu et al.l2024), etc, which are beyond the scope of this paper.

2.2 DECENTRALIZED STOCHASTIC MINIMAX OPTIMIZATION

To facilitate decentralized optimization for minimax problems, a great amount of effort (T'saknakis
et al.| 2020; |Zhang et al.l 2021} |Xian et al., [2021; |Gaol [2022} [Zhang et al.,|2024} |Chen et al.| 2024;

’Here, to make a fair comparison, the existing methods considered use a batch size of O(1), rather than large
batch sizes.
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Xu},2024) has recently been made. For example, [T'saknakis et al.| (2020) developed a decentralized
gradient descent ascent algorithm by using the full gradient for local computation and the gradient
tracking technique for communication. Xian et al.|(2021) proposed a decentralized minimax algorithm
based on the STORM gradient estimator and established its convergence rate for the stochastic setting.
Zhang et al.|(2021) developed a decentralized minimax algorithm based on the SPIDER gradient
estimator and established its convergence rate for the finite-sum setting. Later, its convergence rate for
the stochastic setting was established in|Zhang et al.| (2024). Moreover, (Gao| (2022) incorporated the
ZeroSARAH gradient estimator into the decentralized minimax algorithm and provided convergence
analysis for the finite-sum setting. Recently, |(Chen et al.[(2024) studied the convergence rate of
the decentralized minimax algorithm when using the PAGE gradient estimator (Li et al., 2021).
More recently, [Huang et al.|(2024)) introduced the adaptive learning rate to decentralized minimax
optimization and established the corresponding convergence rate. Note that all these existing methods
restrict their focus to the nonconvex-strongly-concave problem.

Recently, [Huang & Chen! (2023) developed a decentralized minimax algorithm for nonconvex-PL
problems, where the STORM gradient estimator is used for local updates and the gradient tracking
technique is used for communication between workers. To our knowledge, in the distributed setting,
the smoothing technique has only been studied for federated centralized learning in|Shen et al.| (2024).
Specifically, each worker uses the standard unbiased stochastic gradient to do local update and the
central server uses the smoothing technique to assist the update of the dual variable. As a result, the
additional variable introduced by the smoothing technique behaves as a single-machine setting. Thus,
it is easy to handle this variable in convergence analysis. All in all, the smoothing technique has
not been studied for decentralized minimax optimization and it is unclear how to apply it from the
algorithm design perspective and how to handle it from the convergence analysis perspective.

3 METHOD

3.1 PROBLEM SETUP

We introduce the following assumptions with respect to the loss function and communication topology,
which have been widely used in the existing literature (Yang et al.| {2022} | Xian et al., 2021; Huang &
Chenl, 2023} Zhang et al., [2021} 2024} (Chen et al., [2024)).

Assumption 3.1. (Smoothness) For any k € {1,2,--- ,K}, the loss function on the k-th
worker satisfies the mean-squared Lipschitz smoothness, i.e., for any (x1,y1) € R® x R% and
(z2,12) € R4 x R%, there exists a constant value L > 0 such that B[||V, f*) (x1,y1;€F)) —
Vi (@a,y2:6M)1°] < LA(lr — 2ol + g1 — wol®) and E[|[Vyf® (z1,51;6W) —
Vi f ¥ (@2, y2: €P)I1P] < L2(flar — 22 + lyr — w2l).

Assumption 3.2. (PL condition) For any fixed x € R%, the set of solutions of the optimization
problem with respect to y, max, cga, f(2,Y), is not empty and the optimal value is finite. Furthermore,
for any x € RY, there exists a constant value ji > 0 such that |V, f(z,y)||> > 2u(f(z,y*) —
f(z,y)), where y* = arg max, cga, f(z,y).

Assumption 3.3. (Variance) For any k € {1,2,--- , K}, the stochastic gradients with respect to
x and y of the loss function on the k-th worker are unbiased estimators and their variances are
upper bounded as: E[|V, f® (z,y;€®)) — VB (z,9)||2] < 0 and E[||V, f*) (z,y; £F)) —
Vy f® (z,y)||2] < o2, where o > 0 is a constant value.

Assumption 3.4. (Communication graph) The element w;; of the adjacency matrix W € REXK of
the communication graph is non-negative, with a positive value indicating that worker-1 is connected
to worker-j, and a value of zero indicating they are disconnected. Moreover, W is doubly stochastic
and symmetric, and its eigenvalues satisfy | Ak | < [Ag—1] < -+ <|Xo| < M| =1

By denoting A = |\z|, the spectral gap of the adjacency matrix can by represented by 1 — A. Moreover,
we use N}, to denote the neighboring worker of the k-th worker, and use x = L/u to represent

the condition number. In addition, we use a; = % Zszl aﬁk) to denote the average value of any
{a{"}X__ in the ¢-th iteration.

3.2 SMOOTHED?-DSGDAM

The essential idea of the smoothing technique is to introduce a regularization term such that the
original nonconvex function becomes strongly convex. As a result, the update of the primal and dual
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Algorithm 1 Doubly Smoothed Decentralized Stochastic Gradient Descent Ascent with Momentum
(Smoothed?-DSGDAM)

Input: 7 > 0, pz > 0,py > 0, B >0, 8y > 0,82 > 0,8y >0, pan® < 1L, pyn? < 1, By < 1, By < 1.

Initialization on worker k: :Jco M = :p y(k) = Yo, :E(()k) = Zo,
k B) k). 50 o k k k) (k). A NOWEC
= FOGE0 050, Gl | ol = 9, PO a0 50 )
(k) _ (B (k) _ (k)
Do =Uy 54 =TV -
1: fort =0,---,T — 1, worker k do
k k k k k
2:  Update z: m§+>1 =N, wk]x,gj) Bap™ x§+)1 =z 4@ -2y,
_(k k k k k
3: Update y: yz(+>1 = ZJeNk wkjyt JF By q( ) > y§+)1 = yt( ) + 77(?!15-»-)1 yt( )) >
z(k k L (k (K (K k k
4 Update i 29y = e, wisd” + Be(ath — &%) . 2y = & 4@l - 4Y)
k Ao (k NG . (k . (k k . (k
50 Update 72 55 = e, wisdt” + Byt — 9t o 9 = ot +n@ -0t
6:  Compute variance-reduced gradients:

k k k). a(k) ~(k). (K
U1<5+)1 = (1 - PZWQ)(UE ) - VIF(k)(xi 7y§ )7 ( >7 { )7515-9»)1)) +
k k) . A(k) Ak k
VzF(m( ‘ )1:yt(+>1’z§+)1vyt(+>1§§§+)1) )
k k k). a(k) k
Vi) = = )" = VFEW @R g ie gel)  +
k k) . (k) Ak k
va( >(‘r§+)17y§+)17 §+)17y§+)1’§§+)1) >
7:  Gradient tracking:

k k k k k k
p§+)1 = Zje/\/’k wkjpg )+U( ) _“1(: ) s qt(+)1 = de/\/k waqt +U( >1 _Ui ) s

8: end for

variables can be well coordinated to avoid divergence. Inspired by this, we introduce the doubly
smoothed loss function, which adds the regularization term to both the primal and dual variables such
that the nonconvex-PL loss function becomes strongly-convex-strongly-concave. Specifically, the
doubly smoothed loss function is deﬁned as follows:

'Yl ~ Y2 ~
F(x,y; &, 9) KZf““)wy o lle =2l = lly=9l°, 2)

F) (z,y;8,9)

where v; > 0 and 2 > 0 are hyperparameters, and # € R%, § € R? are the auxiliary variables
for the primal and dual variables, respectively. Here, 71 and - are set such that F'(x, y; Z, 9) is
strongly convex with respect to x and strongly concave with respect to y. For example, we can set
v1 = 2L and «9 = 2L. Note that most existing works in the single-machine setting, such as (Zhang
et al., 2020; |Yang et al., [2022) apply the smoothing technique to a single variable. Only a recent
work (Zheng et al.| 2023)) uses it for both variables for nonconvex-nonconcave problems. However, it
focuses on the deterministic setting, failing to handle the biased stochastic gradient estimator and the
decentralized communication. Hence, a new algorithm design and convergence analysis are required
to address the challenges caused by them.

Based on the smoothed loss function in Eq. (2), the k-th worker can compute the stochastic gradient
with respect to the primal and dual variables in the ¢-th iteration as follows:

k k), ~(k ~(k k k k k ~(k
VO (2P, 4 30 g8 ey = 7, f® (@ yF): ey 4y @ — &),
k k k) ~(k ~ (k) k k k (k k ~(k
Vy F® (@ y®5® g® ey = v, f9 @,y e) — ya(y® — i) . 3)

In terms of the smoothed loss function in Eq. and the stochastic gradients in Eq. (3), we
develop a novel doubly smoothed decentralized stochastic gradient descent ascent with momentum
(Smoothed?-DSGDAM) algorithm in Algorithm [1I| Generally speaking, we apply the variance
reduction technique, STORM (Cutkosky & Orabonal 2019), to the stochastic gradient on each
worker to update the primal and dual variables, and use the gradient tracking technique to conduct
communication between different workers. However, there are two unique challenges when designing
our Smoothed?-DSGDAM algorithm: 1) How to apply the variance reduction technique in the
presence of the smoothing term? 2) How to update and communicate the auxiliary variables 2
and ¢ to guarantee convergence in the decentralized setting?

As for the first challenge regarding variance reduction, there are actually two ways to apply variance
reduction. Specifically, we can apply it to the original stochastic gradient V, f (k)( (k) ,5 )
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or to the smoothed gradient V, F%) (z{%) y*). 3(F) 5k}, ¢(k)y

reduced gradient ugk) for the original stochastic gradient V, f (k)( (k) k) f ) will complicate the
convergence analysis, when bounding a critical term (V , F'(Z¢, §¢; xt, yf) Tyr1 — Ty), where Ty, ¥y,

2, and ¢, denote the averaged variable across workers.

However, computing the variance-

Specifically, when computing the STORM gradient estimator ugk) for the smoothed gradient
VIF(k)(xEk’) (k). A(k) (k). t(k)

yUp s ), we can bound it as follows:

(VaF(Ze, Ye; &1, 0e), Tear — L) = —0Be(VaF (Te, Ye; Tt, §e), U)

Wﬁr 7]/87‘ 7]61

= la:]® ~ Vo F (&0, §es B0, Ge) — @) - )

Ve F(Ze, Ge; &, G0 |I” +

All three terms in the last step are straightforward to handle.

However, when computing the STORM gradient estimator ug ) for the original stochastic gradient

Vi fk)(xt ,yt(k), t(k)),wehave

<VIF(ftvﬂt§«’Et7§t),5?t+1 — Tt)
= 777,81<sz(£“gt;ét’gt)”yl(zt - ‘%t)> - n/Bl'(vZF(:Ef?gt;-%tvﬁt)yﬂt)

< nﬁz IV P (Ze, Ges Ee, G ) I” + AnBart | Ze — &e|”

o lal® -

5 IVaF (T4, Je; %0, 00) |I” + 5 IVaF (Ze, §e &1, §e) — e o)
Here, the last term should be further handled by ||V, F(Z¢, Ut; 2, Ut) — tt]|® < 2|V f (T4, §2) —
a||* + 271 |Z; — &¢]|?. Then, it can be seen that this approach introduces an addition term
(marked in blue), which can make it more challenging to select hyperparameters to handle
[Ze — @[>

In addition to this problem, if STORM is applied to the original stochastic gradient, whenever
||Z:11 — 7¢||* appears, it should be decomposed into two terms: ||i¢||? and ||Z; — 2¢||. In contrast,
the smoothed one only needs to replace ||z, 1 — Z¢||* with n?32||1||?, which is much easier for the
downstream proof. All in all, applying the variance reduction technique to the original stochastic
gradient could significantly complicate the proof. Therefore, we apply it to the smoothed gradient
Vo F® (28 8500 50, ) Which is shown in Step 6 of Algorithm

Regarding the update and communication of the variable & and ¢, it has not been studied in the
existing decentralized optimization literature. A straightforward approach is to update & (and %)
locally without communication. However, in convergence analysis, we have to handle the negative
term, — |41 — &¢||* (See Lemma , and positive term, ||§3§i)1 — &2

simultaneously. Spemﬁcally, we need to convert ||$L’§f_)1 ;%Ek)||2

(See Lemma ,
to |41 — 2¢||* based on the

consensus error ||:1:t — &¢||%. If there is no communication operation for &, it is difficult to control
the consensus error. In fact, it may be exploding. To address this challenge, we propose the following
approach for the update and communication of & (and ¢):

Z(k ~(7 A k ~(k ~(k ~(k k ~(k
B = T w0, A =a G ), @
JEN

where (3, > 0 and 1 > 0 are hyperparameters. The first step in Eq. (@) can be viewed as the update
of the communicated variable ) . JeN, Wkj x? ) with the local gradient 955,@1 - j“,(fk) and the second

step is a convex combination between the intermediate variable ‘%Ei)l and the local variable @E’“).

With such an update and communication stratery, we can bound the consensus error regarding the

p— 2 . .
auxiliary variable as shown in our Lemma , where the coefficient 1 — w is important to
shrink the consensus error.

In summary, the smoothing technique brings new challenges for algorithm design in the decentralized
setting. In our algorithm, we develop novel strategies to handle variance reduction and the update
and communication of the auxiliary variables. Therefore, our algorithm design is novel.
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4 CONVERGENCE ANALYSIS

Before presenting the convergence rate of our algorithm, we introduce the following stationary
measures, which were introduced in (Yang et al., 2022).

Definition 4.1. A solution (x,y) is termed the (€1, €2)-stationary solution if |V f(z,y)| < e
and |V f(z,y)|| < €. A solution x is termed the e-stationary solution if |[V®(x)|| < € where
O(z) = f(x,y"(x)) and y*(x) = arg max, g, f(2,y)-

Based on the assumptions in Section [3] we establish the convergence rate of our Algorithm|[I]in the
following theorem.

Theorem 4.2. Given Assumptions[3.1}3.4 when p, > 0, p, > 0, v = O(L), the condition about

n and B, in Eq. , and those about By, Ba ﬂy in Eq. hold, Algorlthmlhas the following
convergence upper bound:

T—1
% Z (E[|Vaf(@e, 50)|I7] + KE[|Vy f(@e, 50)11%]) < O(rpan‘c”) + O(rpin*o®)
t=0
KPo k1 *)( R *)(
+0 BT T? E[||Vaf™ (zo, y0)]?] T? E[|Vy f™ (20, y0)|1?]
: =1 k=1
:‘4/0'2 K,O'Q KZO’Q K/pz’l’] o Kp 7’] o
e (W) <0 (Grm) ~o () + ( Jro(m). o

where Py = F(x0,Y0; Zo, §0) — 2Fa(yo; Lo, Jo) +2q(Z0), whose definitions can be found in Eq. .

Corollary 4.3. Given Assumptions |3.113.4) by setting 3, = O((1 — N\)?), B, = O((1 — \)?),

~ 32 ~ L1/2

B =0 (U22), B, = O((1= N2 1 = O (&8), pe =0 (£). py = O (%), B=0 (=),
13/2

T=0 (W) Algorlthm can achieve the O(e, €/\/k)-stationary solution, where ¢ > 0
denotes the solution accuracy, and B is the batch size in the initial iteration.

Remark 4.4. The actual learning rate of the primal variable is B,n = O (K(i%)%), and that

of the dual variable is S,n = O (K(i%)ze) Obviously, they are on the same scale in terms of

condition number k, solution accuracy €, and spectral gap 1 — \. In addition, the constant batch size
based methods, including DM-HSGD (Xian et al.||2021) and DM-GDA (Huang & Chen, |2023|), use

the learning rate for the primal variable in the order of O (}((1){;?:\)%> and that for the dual variable

is O (M) Apparently, our algorithm can allow a larger learning rate. Moreover, when the

number ofworkers K =1, the spectral gap becomes 1 — \ = 1. Our learning rates O (ﬁ) are
larger than O (& ) of the single-machine method, Smoothed-SAGDA (Yang et al.| |2022|).

The primal—-dual learning rate ratio is important because the loss function often exhibits distinct
properties for the two variables. When the loss function is nonconvex in the primal variable but
satisfies the PL condition in the dual variable, optimizing the primal variable becomes significantly
more challenging, and a smaller learning rate is commonly used (See Table[I)) to maintain stability
and prevent divergence. In contrast, with the smoothing technique, the loss function becomes strongly
convex in the primal variable and strongly concave in the dual variable, resulting a well-behaved loss
landscape that permits a larger primal learning rate.

Remark 4.5. To compare the convergence rate of our algorithm in Corollary d.3| with existing
algorithms in Table[l} we need to translate the O (e, €//k)-stationary solution to the O(€)-stationary
solution. In particular, (Yang et al| 2022) shows that we can apply stochastic gradtent descent
ascent algorithm to the optimization problem: min, cga, max,cga, f(7,y) 2 where z'

is the output of our Algorithm[l| Since this problem satlsﬁes the PL condition in both x and vy, the
iteration complexity for the translation is in the order of O( == ), which is apparently dominated by

o
T:O(K(ffi/;’)w).

The proof structure and all technical details is provided in Appendix

). Therefore, the iteration complexity to find the O(e)-stationary solution is still

7
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Figure 1: Test AUC vs. Iterations and Gradient Evaluations (Random Graph).

5 EXPERIMENTS

In this section, we conduct extensive experiments on AUC maximization, which is defined in
Appendix[A] to verify the performance of our Algorithm|[T]

5.1 EXPERIMENTAL SETTINGS

We employ three benchmark datasets: a9a, w8a, and ijcnnl, which can be found from LIBSVM
Data websiteﬂ In our experiments, 80% of samples are used as the training set, while the remaining
20% are used for testing. The training samples are randomly distributed across ten workers, where
K =10 in our experiment. To evaluate the performance of our algorithm, we compare it with the
state-of-the-art decentralized optimization algorithms: DSGDA (Tsaknakis et al., 2020), DM-HSGD
Fl (Xian et al, 2021), DGDA-VR (Zhang et al.,[2024), and DREAM (Chen et al.| 2024). Notably, for
DSGDA, we use the stochastic gradient descent ascent instead of the full gradient as described in
their paper. For DM-HSGD, the STORM gradient estimator is employed. DGDA-VR leverages the
SPIDER gradient estimator in the stochastic setting, while DREAM utilizes the PAGE estimator.
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Figure 2: Test AUC vs Iterations and Gradient Evaluations (Line Graph).

*https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
“Note that DM-GDA is the same as DM-HSGD; they differ only in their convergence analysis under different
assumptions.
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Specifically, we consider two types of communication networks: 1) an Erdos-Renyi random graph
with an edge probability of 0.5, and 2) a line communication network where each worker is connected
to only two neighboring workers. Throughout all experiments, we fix the solution accuracy € at 0.01
and use a batch size b of 100. For the a9a and ijenn1 datasets, the step size of all methods is set to
0.01. Specifically, in our method, 3., By, BAI, and By are each set to 0.1, while 7 is set to 0.1, ensuring
that their product equals 0.01. For the w8a dataset, the step size of all methods is set to 0.05. In this
case, B, By, Bz, and By are each set to 0.5, while 7 remains 0.1, ensuring that their product equals
0.05. Moreover, according to the theoretical results of the baseline methods, the learning rate of the
dual variable in DSGDA, DM-HSGD, and DGDA-VR is scaled by 1/x, while the learning rate of
the primal variable is scaled by 1/x3. For DREAM, scaling is 1 for the dual variable and 1/x? for
the primal variable. Both learning rates in our method are scaled by 1/x'/2. In our experiments, we
assume x = 1.5. Additionally, in our method, 1 and v, are assigned a value of 0.01. For DM-HSGD,
the coefficient of the STORM estimator is set to 0.01. Additionally, DGDA-VR computes the full

gradient every 100 iterations, while for DREAM, the probability of the PAGE estimator is set to %.

5.2 EXPERIMENTAL RESULTS

For the random communication graph, we present test AUC versus the number of iterations and
gradient evaluations in Figure[I] As shown in Figure[l] our algorithm achieves significantly faster
convergence than all baseline methods in terms of the number of iterations, demonstrating its superior
efficiency. Furthermore, Figure|[T]also indicates that our method also converges more quickly when
measured by the number of gradient evaluations, highlighting its lower sample complexity. Notably,
DGDA-VR and DREAM incur significantly higher computational cost due to periodic full-gradient
computation. These results underscore the efficacy of our algorithm in optimizing performance while
maintaining computational efficiency. For the line communication graph, we also present test AUC
versus the number of iterations and gradient evaluations in Figure 2} Our method continues to exhibit
faster convergence compared to the baseline methods, further validating its effectiveness.
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0.7 0.7 0.7
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2 2 E

0.6 0.6 0.6

T=01 5=01
05 —7=005 05 —s=03l o5
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04 = 0.005] 0.4 —p5=09]{ 04
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#Gradient evaluation «10* #Gradient evaluation «10% #Gradient evaluation «10% #Gradient evaluation x10*

(a) different (b) different 8 (©) differentB (d) different pn2
Figure 3: Test AUC under hyperparameters (Random Graph, a9a).

Finally, we evaluate the performance of our method under different values of ~, 3, B, and pn in
Figure where we set v, =y, =, Bz = By = B, By = By = 3, and Pz = py = p. Our method is
robust to all hyperparameters except (3, so they do not require fine-tuning. Since 3 only scales the
learning rate, we fix its value, leaving the learning rate 7 as the only hyperparameter to tune.

6 CONCLUSION

In this paper, we developed a novel decentralized minimax optimization algorithm based on the
smoothing technique. In particular, our algorithm demonstrates how to incorporate the variance-
reduced gradient in the presence of the auxiliary variable and how to perform communication for the
auxiliary variable. Moreover, our algorithm can achieve a better dependence on the condition number
than all existing methods, which confirms the significance of our algorithm. Finally, experimental
results confirm the effectiveness of our algorithm.
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A AUC MAXIMIZATION

Specifically, we focus on the AUC maximization problem (Ying et al.,|2016) for the binary classifica-
tion task, which is formulated as the following minimax optimization problem (Note that we have
included the smoothed term 71 /2||x — 2|2, v2/2|ly — 9/?):

(1 =p)e"a® = 70)Tym_,

+ p(xTagk) — fz)zﬂ[bws-):,l] —p(1—=py

d 2
€T Y1 12 2 Ag)
|z — — Zly = 8
o)+ e al = Pl =il ®)

where 2 € R? is the classifier’s parameter, 1 € R, 22 € R, y € R are the parameters to compute the
AUC loss, £ and g are the auxiliary variables. (az(.k), bl(»k)) is the i-th sample’s feature and label on the
k-th worker, p is the prior probability of positive class, I is an indicator function, p is a hyperparameter
for the regularization term, and y; > 0, 2 > 0 are hyperparameters for the auxiliary variable. In
our experiments, we set p to 0.001. Notably, this optimization problem satisfies the nonconvex-PL

optimization problem, which can be efficiently solved using our proposed Algorithm [I]

B THE STRUCTURE OF THE PROOF FOR THEOREM

To make our proof easy to follow, we provide an overview diagram in Figure [

Primal Descent Dual Ascent Proximal Descent
Lemma Lemma Lemma
Optimal Solution Mappings Auxiliary Sequence
Lemmas[C4] [C3)| Lemma[C.6}[C.7]
Consensus Error Optimization Error P; Gradient Estimation Error
Section[D.]] Lemma Section

Theorem
Section

Figure 4: The structure of the proof for Theorem

It is worth noting that the STORM gradient estimator is a biased gradient estimator, so existing
convergence analyzes based on the deterministic gradient (Zhang et al., [2020; Zheng et al., [2023)

12
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and the unbiased gradient estimator (Yang et al.,|2022) cannot be applied directly to our algorithm.
Moreover, most existing stochastic smoothing methods typically apply smoothing only to the primal
variable, which makes their analysis insufficient for our algorithm.

In Figure 4] there are actually two key components in our proof: 1) the optimization error related
to doubly smoothing, 2) the consensus error and the gradient estimation error related to the
decentralized setting. In Section[C] we provide the lemmas for bounding the optimization error.
This includes:

* descent-ascent update lemmas (Lemma Lemma|[C.2} Lemma|[C.3);
* optimal solution mappings (Lemma|C.4] Lemma|C.5);
» auxiliary sequences (Lemma|[C.6| Lemmal[C.7).

These results are used in a potential function as Eq.(5T):
Pi = E[F (T4, Yt; %1, §e)] — 2E[Fa(Ge; &1, 9e)] + 2E[q(24)]

to establish the overall optimization error bound P, ; — P, in Lemma It is worth noted that
Lemma [C.8|demonstrates that optimization error is affected by the consensus error caused by the
decentralized setting and gradient estimation errors. Therefore, in Section[D] we address two types of
error in the decentralized setting:

* the consensus error, including that of auxiliary variables introduced by smoothing (Sec-
tion[D.T);
* the gradient estimation error from the STORM update (Section[D.2).
After establishing all supporting lemmas, we proceed to derive the convergence rate through a novel

potential function £, which intergrates the optimization error in Lemma [C.8]and the consensus error
and gradient estimation error together as follows:

K K
_ ! # _ 1 ®) (500, 50 50)
L= P teBllg > w? - 2 3 VeFO gl gl
optimization error k=1 k=

gradient estimation error

+ e E Hiz (k) _ 7Zv Jal (k)vyt ). A(k)’ A(k))HQ]

gradient estimation error

K
k 1 = L (k
ez ZEM—%W+@ ZEM u " 1P+ o5z Y Ellde - (7|7
k=1

consensus error

K K K
1 — (K 1 _ k
0z D Ellge — 3 1P+ cogz D Ellpe — Rl Z Elllg — ™|
k=1 k=1 =1
consensus error
1 K
k k k) ~(k) ~(k
+os 7= Y Elllu® = Vo PO @ a0 5P
k=1

gradient estimation error

K
1 k R), (K) o(k)
o7z > Ellof =V, F® @y a5 -
k=1

gradient estimation error

By selecting appropriate hyperparameters, as detailed in Section [E] we establish the convergence
guarantee stated in Theorem £.2] The construction of this proof framework is both technically
intricate and conceptually non-trivial, underscoring the novelty and difficulty of our analysis.
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B.1 TERMINOLOGIES

To establish the convergence rate of Algorithm [T} we introduce the following symbols:

X, = [x)(fl) xEQ)’“_ ,CL’%K)} c RdlxK’ Xt _ [igl),i'?),-“ ,iEK)] E]RdlxK7
o 0, ) € R = 0,0, ) €,
X, = 2 - (1) AE )’ . A(K)} c RdlxK X [A( )’ A(2)7 .. ’égK)] € RU*K
Vo= 00,92, 980 e REK Y, = [ GO O] e RAK
U, = [u ,El) (2)’”. ’ugK)] RdlxK Vi =[v ,51) (2),”. ’,UiK)] ERdeK,
Po=p P p e ROK Q= gV, ¢, gl e REXE

_ _ 1 = = 1 -
X, = ?thlT VY = ?Y;HT X, = EthlT LY = EYtllT ,

_ 1 _ 1 _ 1 1
U= 201", V= 2ViI1T, Po= P11, Q= Q117 ©)

where 1 = [1,1,---, 1]T € R¥X. Based on these terminologies, the update of z, y, , ¢, p, and ¢ in
Algorithm [I]is represented as follows:

Xt+1 =X W = B, Xyp1 = Xy + 77(Xt+1 - X)),
Vi1 =Y, W+ 8,Q¢, Y1 =Y, + (Y1 — Y2)
Xt+1 = XtW + Ba:(XH»l - Xt) ) Xt+1 = Xt + U(Xt+1 - Xt) )

Vi1 = VW + By(Yt+1 —Y2), Y1 = Vi + (Vg — Ya)

Py *PtW+Ut+1 U, Qi1 =QiW + Vi1 = Vi,

Xt+1 - 69:77(716 s }_/;HLI = }_/;6 + 51/77‘_/; s

Xt+1 Xt + ﬁxﬁ(XtH Xt) ,Ytﬂ =Y, + Byn(YtH - ?t) . (10)

Note that P, = U, and Q; =V}

Moreover, following (Yang et al., [2022}; |[Zheng et al.l [2023), we introduce the following auxiliary
functions and variables for convergence analysis:

Fy(y; 2,9) = rélﬂg}l F(z,y;2,9) , dual function
x

Fy(z;%,9) = max F(z,y;%,9), primal function

yER2

Z,9) = min max F(z,y;z,
g( y) z€RI yeRI2 ( Y y)

p(y) = win g(&9),  a(¥) = max ¢(&,7),
2" (y;

arg min F(z,y;2,9) ,
zERU

9) =
,9) = arg max F(x,y;2,9) ,
yeRI2

&)
Nad

o*(2,9) = 2*(y*(2,9); &,9) = arg min Fy(z;2,9) ,

rERYL
Y (&, 9) = y*(2*(2,9); 2,9) = arg max Fy(y; &,9) ,
yeRI2
() = arg min g(1.5),  §"(7) = arg max g(,7),
geR2
Y ( JUt) = yr + BynVyFa(ys; Te, Je)
G (@) = 9+ Byn(y* (e, 5e) — e) - (1)
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B.2 FUNCTION PROPERTIES

Lemma B.1. (Zheng et al.||2023) Given Assumptions then F(x,y; &,9) is (y1 + L)-smooth
and (~1 — L)-strongly convex with respect to x. F(x,y; Z,4) is (y2+ L)-smooth and (~o — L)-strongly
concave with respect 1o y.

Lemma B.2. (Zheng et al| 2023) Given Assumptions[3.13.4} the following inequality holds:

o™ (v2:.9) — 2" (v 2. D) < Cix, 12 — w2

[2"(y; 21, 9) — 2" (y; &2, 9)|| < Cm§£?§||x1 — 2|,
[ (21, 9) — 2% (22, )| < Cpy_[l21 — 2l ,
Iy (018,5) = e DI < Cp, i =l
ly*(21,9) — y" (22 ,Q)II Cyr 121 — Zal|
1y (%, 91) = y* (2, 92) | < Cyz_llon — Dl , (12)
where
- n N N
“hs =5 10 T T 5L c%_% L
_ e D2 M
Cyﬂlﬂfﬂifyg—[/’ Cyzig—’yz_[/, Cy;g - L C;Iy+1 Cz 7'72—[/' (13)

Lemma B.3. (Zheng et al.| |2023) Given Assumptions then Fy(y; &, 9) is Lqg-smooth, where
Ly = LCIIM + L + 2.

Lemma B.4. Given Assumptions by defining y* (Z+,9t) = yr + BynVyFa(ye; Te, ), the
following inequality holds:

lye — y* (&, 9e)|| < ﬁw(l)llyt =y (@90 - (14)
Proof. Due to y* (I, 9;) = arg max, cga, Fa(y; T¢, Ut), for any y € R?, we have
(v =y (@, 9t), Vy Fa(y" (2, §¢); T4, 9¢)) < 0. (15)
By taking y = y;, we have
(e —y" (2, 0¢), Vy Fa(y™ (2, 0¢); 24, 9¢)) < 0. (16)

In addition, because Fy(y; &, 9) is (72 — L)-strongly concave with respect to y, we have

<yt - y*(@t7@t), Vde(yt;it»Qt) - Vde(y*(ftaﬁt); Tt Qt)) + (“/2 - L)Hyt - y*(i"t?@t)HQ S(lo )
7

By combining the above two inequalities, we have
(e — y* (@4, Ge)s VyFa(ye; . 90)) + (v2 — L)|lye — y* (&4, G0)I> < 0. (18)
Then, we can obtain
(v2 = D)llye = y* (@, §I* < (y* (20, 9e) = ye, Vi Fa(yes &, 52))
Y (@, 9e) =y I

< ||yt - y*(ftaﬁt)HHVde(yt;it»ﬂt)” = ||yt - y*(ftaﬁt)HH B (19)
y
As a result, we have
1
—y* (@ 0| < ——lyT (@4, 90) — el - 20
||yt Yy (xuyt)H = 5y77(’72 —L)Hy (mtayt) yt” ( )
]
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Lemma B.5. Given Assumptions then

||55t —x*(yt;ft»gt)n < HVzF(ft,yt%i%tvgt)||~ 2D

y1—L

Proof. Due to x*(yy; 34, §) = arg ming cga, F(w,ys; &4, §¢), for any # € R4, we have

(= 2" (ye; Tt, Ut ), — Ve F (2 (Ye5 Te, ), Ye5 Lo, §2)) < 0. (22)
By taking = = x;, we have
(Tt — 2" (Ye; T4, Gt), Ve (2" (Ye5 T4, 9e), Ye5 Tt, Ge)) > 0. (23)

In addition, because F'(x,y; Z,9) is (71 — L)-strongly convex with respect to x, we have
(Tt — 2" (Y; T, Ut), Vi (00, Y13 T, Ut) — Vo (2 (Yes Bey 9t )5 o5 Tt Ge))
> (71 = D)l — 2% (ye; &4, 90) |1 - (24
By combing the above two inequalities, we have
(1 = D)l|we = 2™ (ye; &0, §)|* < (w0 — 2 (Ys5 &0, Ge), Vo F (@0, Y25 84, 51 )
< oy — 2" (yes T, ) Va F (e, o5 B, 9e) || - (25)

As a result, we have

5l a o 1 -
lze — 2™ (ye; Tt, Ge) || < Vo F (e, ye; Tt Ge) |- (26)
n-—L
O
C OPTIMIZATION ERRORS
Lemma C.1. Given Assumptions andn < m the following inequality holds:

E[F (141, Yet15 Beg1, Ger1)] — BIF (B¢, Ge; &4, 1))
< B F G 0 5 5012 + PLEY P (5, s B 50 2] + (48,m8202 L2 — P2 VR g2
S IV F'(Zt, Ue; T, 9e)||7] + > VY F(Ze, Ge; T, ) |17] + (4B8ynBen JE[][]]]

4
36,1 Bon?(v2 + L)

+ (P 2 el + P2 R s 00— )
2 - A:n = = 3 - 2 = =
- B i~ ) - 2O P . @

Proof. Because F(x,y;Z,9) is (L + ~y1)-smooth with respect to x, we have

E[F (%11, 765 Tt, U]

< EF (30,5 30, 30)] + BV F oo s 1), B — 30] 4 2 V[ — 7))
= ELF (@013 31,50] — BBl F @, .. )] + L2 g 2
= B[P 0]~ U, F g )| - )
+ (19, P s i) — )+ L T g 2
< BP0 0 1)) — DBV F s 0,07 — 2B
+ %nE[IlvxF(ft,@t;:ﬁt,ﬁt) — ] (28)

16
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where the last step holds due to n < m

In addition, because F'(x, y; &, ) is (L + 71 )-smooth with respect to y, we have

E[F(Zi41, Yet15 2o, Gt)]

_ - 2 = _ _ x = _ _ Y2 + L
S E[F(Zig1, Yt &, 0)) + ELV Y F(Zeg1, Ut Tt Ot), Yer1 — Ye)] + 5

= E[F (Zt41, §t5 B¢, Gt)] + BynBU(Vy F (Zeg1, s Be, G¢) — Vy F (Te, Ges Be, Ge), r)]

4 BB P e s o) + 2202 Dy

E[|| @41 — 7))

— — ~ ~ — — ~ ~ — — ~ ~ /B —
SlﬂFﬁm+hyuxuy9]+4ﬁyﬂﬂHVyF%m+hyﬁwuy0-—VyFﬁm,%;m,wNP]+‘iﬂEmvﬂﬂ

2,2 + L
+ P19, P37+ L) + 20 D g

SMH%%%%@WEﬂWVﬂ%%%MN}

) 38y Ban*(e+ L)\
me%%%wwﬂ+<j"+y 2 ) ) 29)
where the last step holds due to the following inequality.

E[|Vy F(Zti1, G5 T4, 9t) — Vo F(Te, G T4, 91) ||
=E[|Vyf(@es1.5e) + 2@ — Ge) — Vo f (@, 5e) — 12 (e — 9)17]
< LPE[|Z41 — )] < Bon® LB )] - (30)

By combining Eq. (28) and Eq. (29), we have

E[F(Zt11,Gev1; 1, Ge)]

< B[P, 508, 50)) ~ 2BV F B 2,50 ) + B9, F (R 5B, 0]
+ BgnE[vaF(Etvgt;%tagt) — @]
, 3 o7 (2 + L
+ szt - g+ 20 L A0 Dy aD

Moreover, according to the definition of F'(z, y; &, ), we have
F(Zt11, G415 20, ) = F(Zg1, Gerr; Tegr, Ge)
= (@41, Ye11) + %”@H —&? - %Hﬂtﬂ — 9e]l?
_ _ M= = Y2 - =
— f(Zeg1,Yer1) — §||$t+1 — T |? + 5||yt+1 — G?
Y1 _ =
) (||$t+1 — &)? = [T - 9Ct+1||2)
= 2 (Ners = &l = (1 = Bom) @en — 30)]2)
(1= (1= Bm)?)

= 2441 — &4

2
1-(1- A;L' 2 = =
_ 71( 2(Bgn2ﬁ 7]) )”-Tt-',-l o xt”Q
1.(2 = Ban)

= " |1 — &7 (32)
2B:m

where the third and fifth steps hold due to Z41 = & + Son(Tep1 — &4).

17
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Similarly, we have
F(Ze1, Gost; B, o) — F(Zrpr, Gors B, Gorr)
= (@1, Gee1) + g 1201 = Eal” = 1501 — Gl
— f@ein,Ge1) = o [Fen = Fea P+ Gl — e P
= Sl = Gea|? = 1 — Gl

B -2 ~ ~

S R (33)
26yn

By combining the above three inequalities, we have

E[F (Zt+1, Yig15 Be41, Ge1)] — BIF (T, Ge; T4, 1)
= E[F(Zt41, Y15 o1 Uer1) — F(Tegr, Yer1; o1, Ue)

+ (F(fﬁtﬂ, Yr1; Be1, Ot) — F(Zes1, Uerrs T ﬁt)) + (F(ft+1’§t+1; T, Gt) — F@u?]t@u@)])
= _%E[vaF(ft@t;étvﬁt)HQ] + ﬂynE[”V F(Z4, Ge; 2, 1) |1?]

+ %E[HVEF(jt,gt;%taét) — )%

Bw i} 36,1 Bom*(va+ L) .
+ (4BynBan*L* — =)E[[|ae]|*] + ( y . 5 VE[||5e]1]
Y 2 - Bz = = Y2 ﬁ - 2 = =
- ME[H%H —E - Mmuytﬂ P (34)
281 25747]
O
Lemma C.2. Given Assumptions[3.1\3.4} the following inequality holds:
E[Fy(Je41; L1415 Ge41)] — E[Fd@ﬁ%t,ﬁt)]
_ X = _ ﬂz 2 2 2 73 77 = =
> Byl Fals 50,50, 5] — L2l 2] + 22O gz g
2ﬂy7)
+ %E[@Hl — By, Bpy1 + Ty — 2$*(ﬂt+1;£t+17§t)>] . (35
Proof. According to the definition of Fy(y; &, ), we have
Fa(Ge41; Beg1, Ge1) — Fa(Gegrs Begrs Ge)
= F(&" (Y415 Tt415 Yt41), Yot 15 Tep1, Yep1) — F (@ (Gep1s Te1, U¢), U1 T, Ue)
> F (2" (Ge1; Bty Ge1)s Y13 Te 1 1) — F (@ (Ge13 Bty Ge1)s Y13 Te1, U
Y2 _ = _ =
= 3(||yt+1 - ytH2 = |e41 — yt+1||2)
2 - 3 = =
_22C B ya e, 36)
2ﬁy77

where the second step holds due to z* (4 1; %141, J) = arg mingcga, F (2, Jit1; #4411, 0¢), the last
step holds as Eq. (33).

In addition, according to the definition of Fy(y; Z, §), we have

Fu(Ge+1; T141, 9t) — Fa(Gesr; Te, 0t)
= F(2" (U415 Te41, Ut ) Yt 15 T 15 Ue) — F (@ (G153 Te5 D) Jep1: e, Ye)
> F(2" (Yeg15 Te1: Ut )s Yot 13 Tieg 15 Ue) — F (@ (Ueg15 Top1, Ue)s Yot 1 Tt Ut)

18
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'Yl _ =~ ~ = %/ — = ~ =
= 5(||$*(yt+1;$t+17yt) - $t+1||2 — |2 (Geg15 Te1, Ue) — Jﬂt\|2)

&>

71 %/ — = = = _ = =
= (@ (Fe415 Te41,9¢) — Tegr — (@7 (Ueg1; Teg1, Ue) —

2 ) 3 ) ) 3 _t)a
T (o1 Teg1, Ue) — Togr + (@ (Geg1s Tog1, Ut) — 2t))
= %@Hl — &4, Bpq1 + B — 20" (Peg1s Begr, Be)) (37

where the second step holds due to x* (Fpi1; T, ) = argmingega, F (2, Jey1; 1, Ue), the fourth
step holds due to the fact a? — b? = (a — b)(a + b).

Moreover, because Fy(y; Z, ) is Lg-smooth, we have
_ < = _ X = _ x = _ _ Ld _ _
Fa(Gev1; 26, 9e) = Fa(Ge; 2o, 9¢) + (Vo Fa¥e; T, 9e), Yer1 — o) — *||Z/t+1 — ge||?
o o BQ 2
= Fg(Js; Tt, Ut) + Byn{NVyFa(Je; Tt, Ut), V) — 5 || o? . (38)
By combining the above three inequalities, we have
E[Fu(Ji41; Te115 Ge41)] — E[Fa(Ge; Te, 9¢)]
= E[Fa(Ye41; Tor1, De1) — Fa(Ger1; Tev1, Oe)
+ (Fd@t+1;5€t+1,§t) - Fd(ﬂt+1;3§t7§t)) + (Fd(yt-i-l?%tvﬁt) - Fd(?ﬁﬂét,@t)])
YRR 7 ﬂ2 2 2(2_B 77) ~ =
> ﬁwE[(Vde(yt;xt,yt)mtﬂ [|| tH |+ TﬂyE[”ytH - yt||2]
y

+ %EK%HA — By B1 + By — 2$*(?]t+1;§?t+17?§t)>] . (39

Lemma C.3. Given Assumptions the following inequality holds:

q(Fe1) — q(F) < %<§t+1 — By, Beg1 + Ty — 227 (B0, 97 (Be41))) - (40)

Proof.

Q(£t+1) - (J(ﬂ:?t)

= 9(&r41, 9 (Fr41)) — 984, 97 (21))

= Fp(a* (Ze41, 9" (Z041)); B0, 7 (B141)) — Fp(a®

< Fy(z (j t+1, ($t+1)) z +1».79*(§ t

< B (&4, 9" (2641)); Bo1, 7 (T441)) — Fp(a (@7ﬁ*(§t+1));3§t7y*(9§t+1))

= F(@" (&6, 5" (2041)), ¥ (2 (@4, " (T041)); To41, 97
— F(a™ (&4, G (2141)), 4" (2" (20, 9" (Z441)); B4,

< P (&, G (2041)), Y (€ (20, 97 (Fe11)); Berr, 57 (
— F (2" (4,9 (2641)), 4" (2% (26, 0" (Z41)); 41, 0

|\I*(5t,z] ($t+1)) i +1||2 |z* (xtvy (§t+1))*§t||2)

Y
Yy

= L lirs = dos et + 80— 207 (3,5 (F141))) (41

where the second step holds due to g(, g) = mmweRdl Fp(z; 2,
to y*(z; 2, J) = argmax, F(m y; &, 9) and Fp(x; &,9) = F(:c,y
step holds due to the fact a® — b? = (a — b)(a +b).

1), the three inequalities hold due
*(z;2,7); &, 7), the second to last

O
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Lemma C.4. Given Assumptions[3.1}3.4] the following inequality holds:

2% (Zea1, 07 (B41)) — 2% (Fea1, 07 (Feg1)) I

272C?, 2 3 )2
2 2"i 2, 2 2y 2 (1—8yn) i 2
< — ||z —Z —= | C% + — T
Mm—L & C &1 — &l” + m—L & V2, 22 19: = 47 (Zer0)
42)
Proof.
Y1 L w /= ~ w2 Ak [N
B) [ ($t+1,y+(a?t+1)) — 2" (Te41, U (Ze41)) |
< Fp(2" (Zeg1, 07 (£041)); Zeg1, 0 (Be41)) — Fp(2™ (Zea1, §F (Ze41)); g1, 07 (£441))
< max Fp(@™ (Ze41, 07 (#041)); Be41,9) — Fp (2™ (Ze41, 97 (T441)); o1, 07 (Fe41))
Y
< max Fo(a* (B0, 7 (£041)); Br4159) — Fp(@™ (Beg1, 7 (8041)); Zea1, 7 (£141))
Yy
1 ~
< ﬁHVpr(@“ (Te+1, 0 (F141)); Teg1, U7 (Te42)) |
B b G LE . gt -
= ﬂ”?/*(f*(@wh I (8441)); g1, 07 (Beg1)) — 91 (T ||
2
’Y * x /A~ A~ ~ ~ ~ ~ ~ A x /A ~ ~
= ﬁ”y (SU ($t+17y+(xt+1))§$t+17y+(l‘t+1)) — Yt — 5;;77(19 (%4, 0¢) — yt)||2
Bn ohs R T Py
< 7||y*(£t+1a?)+(it+1)) =y (@, 917 + (1 = Byn) 7”@1& =y (Z¢, Ue) |
<% s At Kk (E At (5 Qﬁ*?hk? KR V2
= 1" (Zeg1, 0" (Teg1)) = Y™ (Te, 97 (B441)) |7 + ly™ (@6, 97 (Teg1)) — ¥ (T, 9e) |
1 _ S Qﬁ A ax (A 2
+ (L= Byn) . 196 — ™ (T4, 9o |
2v3C?, 726’2 2 52
Y29 1= =~ 2 29 =112 (1_/821177) At =112
< Fpgy = Eel? G (@) — Gel® + 2P g (Feg) — e
M M Ko Bin?
202 2 5 \2
i 24 273 2 (1-— Byn) + 2
< TH%H — & + o <Cy§g + W 19 — 9% (Ze10) 12 (43)

where the first step holds because F},(x;&,7) is (y1 — L)-strongly convex with respect to z, the
fourth step holds due to Theorem 5.2 of (Yu et al. 2022) with PL property being a special KL
property, the fifth step holds due to the definition of F,, the sixth step and the last step hold due to the

definition §* (Z141) = §¢ + Byﬁ(y*(;ﬂt, 9t) — D)

O
Lemma C.5. Given Assumptions[3.1}3.4] the following inequality holds:
Elll2* (Ge115 &41,96) — 2" (Fo41, 57 (Fe11)[I]
< 10@37720%@“3[“@ — VyF(Zy, Ur; iUt»yt)H 1+ 1055772LQC§;%E[”@ - x*(ﬂﬁfuﬁt)HQ]
1 _
5C? 1+ ———  VE[llyT(Z, 0:) — G|
+ uw( + BQ ( L)Q) [”y (xtvyt) yt“ ]
+5C Cp Ellde — 2o |*] +5C5 O Ellge — 47 (Fe0)[°] - (44)
Proof.
Elll2* (Fe+15 Zo41, 9¢) — & (Zg1, 07 (Ze40)]17]

<Ch Elllgies =y @y, 5 (@er)|]

20
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= C El|Ge1 — v @) +yT @, ) — T+ G — v (8, 0e)

)+y

+y (l‘t’yt) Y (T41,9) +y (1't+1,yt) Y (@1, 01 (Ee40)) )17

<5C% Ell|ges1 — y* (24, 90)]1%) +502 Ellly* (2, 9:) — w:ll ]+5021 Elllge — y* (24, 00)|I°]
+5C§;M (Y™ (e, e) _y*(xt+1ayt)” ]+5CE;ME[HZI*(§H1»?§0—ZJ ($t+1, F(&er1))11?]

< 10/357720%3%]1‘:[”@ — VyF(Zy, 55 20, 90)°] + 1055772L2O§;ME[”@ — 2" (Ye; T4, 90 ||?]

#502,, (14 gy ) Elly* G -l
£5C2% O Elllf — G lP) 4505 C2 Bl —* G @s)
where the last step holds due to the following inequality:
ElllFe41 — y* (&4, 90)1]
= Elg: + Bynve — G — BynVy F (& (G5 &1, 0t), §e 26, 5e)|1*)
= 6§U2E[Ilﬂt — Yy F(@* (Ge; &4, Gt ), G Bo, 00) 1]
< 2B20°E[||vy — Vy F (4, §e; &1, 5e) |I]
+ 2557721}3[“va(@7ﬂt;ﬂét,ﬁt) — Yy F(@* (Ge; &e, Gt ), Ge Te, 0e) |17
< 25577215[\@ = VyF (@, 6 20, 00) |17 + 25ZU2L2E[H@ — 2 (s &, )| 1% - (46)

Lemma C.6. Given Assumptions[3.1\3.4} the following inequality holds:
Elllg: — 97 (@e4 )1 < 2E[|[Ge11 — 9el1%] + 4820° B2 E[ || v )]
2
4p2 .

I _ ~ = 2
52( L)2 E[”yt T, 9e) ||I7] - 47)

Proof.

*]E[Hyt gt (@)

<E[[gr1 = Gel*] + Elllges1 — 9 (E040)|1%)

< E[ge1 — 9P + Elge + Byn(@esr — 6) — G — Byn(y™ (Ze,9¢) — 90) 1)
=E[ ]+ j

< E| J

[Ge41 = Gell?) + B BlllGesr — v (Be, 50) 1)
IGe41 — Gell?] + 2820° Bl Fer1 — Gell*] + 2820°Ell|7: — v* (Ze, 5017

= = A _ 262 _ =~ =
Elllger1 — 9%+ 28507 By Ell|0el*] + =55 Elllge — v (@0, 90)7] . (48)

5(r2 — L)
O
Lemma C.7. Given Assumptions[3.1}3.4] the following inequality holds:
Elllg: — y* (&0, 90) 7] < 453772112]53[\\55*(175@7350 — &)’
+ 4B B[V y F (Ze, Gt Tty Ge) — 0el%] + 28007 E[]|5]|?] - (49)

Proof.
Ellly* (%4, 0¢) — 5:lI°]
< 2E[[ly* (£, 9¢) — Ger I1P] + 2E [ Fegr — Gell?]
= 2B[||7: + BynVyFa(Gs; &e, 9e) — Gs — Bynve||*] + 28,0 E[||5:]1%)
= 2620°E[||Vy Fa(Fe; &1, 0e) — e)1*] + 26507 E[[|9:]|%]
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< 4ﬂ§"72E[Hvad(yt§%t7§t) — Vy F(Z¢, §1; &e, 1))
+ 4B RV y F (e, s &1, 9e) — 0ell?] + 2820 E[[|¢ ][] (50)
< 4B50° L*E[[|2* (563 %1, §e) — Tl|*] + 4850 B[V F (T4, §e; 1, G2) — 0e1%] + 28507 E||0]|] -

O
Lemma C.8. Given Assumptions[3.13.4} by defining
Py = E[F(Z¢, §1; B¢, 01)] — 2E[Fa(Ge; 24, 9 )] + 2E[q(d4)] (5D

by setting < < < < and Bz < min{ 120273, VSIZ:}GWLI/C;’Y')ZCL) }, then the following inequality

holds:
Prsr— Py < —@E[|\VIF<@,@;@7@)|| = ﬁy”E[uv F(Z4, 5 &0, 00) %)
* 6;nE[||VxF(ft7 Gos Be, 0¢) — Uel|*] + AE[[|Vy F (T4, Ge; 1, G2) — 0e%]

+ (18,022 - 1) B

Byn*(v2 + L) . 7 5
( weLas 200 BITOR D) A s + 2008207 Ly ) Ellou?)
2,7202 PN
4 20y 71(2 = B21) o =2
271C,1 + +6 10()2 02+ i - . E[|Z441 — &
( Y - WW( b ) |l =
2 - ~ ~
+ (24, - M Eflfis — 0] (52)
2Byn
where
. 4 272 (1— Byn)?
Ay = 6718,m | 10C2,  C2 2 (02 4y
1 71577< a2, T -1 g (yiJ+ Barp? ’
) 1 432
Ay = 607y BonC? (1+>+Ay,
2 Y1B2m @l 55772('72 — L) 153(72 —L)?
As = Byn + 1200 BByt Cly 4+ 4AaByn” . (53)
and
(m-L? 5 (= L)*(v2 = L)*u
By =P Bo=hs ;
, 24 x 642+, L2 (5712;4 + 1673 (11 — L))
Cﬁy:O(l)

cs, =O(1/x)
(11— L)* (e — L)*
642 x 480733 L2

CBy :O(l)

By = Ba (54)

Proof. Based on Lemmas[C.1} [C:2} [C:3] we have

Pris — Pu < =PRI, P s B0 GO + PRIV, F i )

+ P9 (1 o) — )+ (%nﬁQ 22 6“7) Efja

2 2
+<ﬂin2Ld+3iy”+ﬂ SR )E o] ( T jw)>E[”§7t+15tQ]
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T <_M> Elllfes1 — el12) — 28,mEN(V, Fa(Gii e, ), 90)

252/77
+ 2% E[(E141 — oy 2 (Yer1; Teg1, 9¢) — 25 (E0, 9 (F11)))] - (55)
For —28,nE[(V, F4(Yi; %4, 9t ), Ut)], we have
— 2B, mE[(V y Fa(§s; T4, 9t ), Ur)]
= =208, NE(VyFa(Us; T4, 9¢) — VyF (Te, Yt Tt, Ut ), V)] — 2BynE[(V y F (T, Ut T4, 1), Ut))
= _Z/BynEKv Fd(ytv'rtvgj) v F(xtvgt;'%h?jt))@tﬂ
- BynE[HV F(Zt, §e; 24, 90) 7] = BynBl|0:)1*] + BynBUIV y F(Ze, Gt; &1, G2) — 0]

< By IV, Fafi: 30 50) — VP @, s G0 + v, mE 50

— Byl F @ 513 31, 50)112) — BynElloel?] + BBV F (@1, 5s 80, ) — w1l1)
= By BV Falfis B0 50) — Vy F @ s )

AN, Ploe e BOIF) = (1 = BB+ BB i) = o
= Byn B[V, F

(
(" (3 B¢, 9t ) U T, Ge) — va(i'tvyt;étv?jt)”?]
- ﬁynE[HV F (e, 55 3,90 1*) = (1 = ) BynBl[0]%] + BynEl|Vy F (24, Ge; T, Ge) — vel|’]
(@
(7

mt»?jt) —ftHz]

G &, 90 17] = (1= ) BynE[l|0:]1?] + BynE[||Vy F (Z4, §e; Te, 9t) — T]t”gé)

< 5yﬂL2 Eff|=*
- 5y77E[IIVyF

where the third step holds due to Young’s inequality 2a”b < 1||a[|? + v||b]|* with v > 0 being a
constant, and the last step holds due to the following inequality:

E[|V,F(x *@ﬁ%uﬁt) QtZiit,ﬁt) -V F(jtagt;étagt)”Q]
= E[|Vy f (@ Ge; Z1: 9e)s Ge) — Vo f (@, ) 1P] < LBz (§2; &, 50) — 24]|?] - (57

H>I
\_/
S—"
=~
£
(¢
=
jav)
<
a

For 211 E[(Z111 — &4, 2% (Jeg1; Togr, §1) — 2% (80, 07 (T0y

2’)’1E[<§C xt, z (yt+1;mt+1,yt) - x*(%hg*(%t+1))>]

= 2N E[(Zeq1 — To, @ (g1 Teg1, ) — 2

+ 271 (Zep1 = T, 2" (2141, 9" (Feg1)) —
E[

Gﬂ |41 — &)%) + 6713zﬁ]E[||$ (Yeg1; Tes1, Ot) —

+ 2 E[| 41 — el l2* (Beg1, 9 (Beg1)) — (B, 7 (2440)) ]

’7 = = A %/ — = ~
: ﬁﬂz[”l‘tﬂ — &4||?] + 671 BonE[l|2* (1 Tet1, Be) — 2 (Eag1, T (Ze41)) |17
7]

+ 271G, ElllZe41 — 3], (58)

where the second step holds due to Young’s inequality 2a”'b < %HaH2 + v||b]|? with v = 63,7 and
a”b < ||| [|b]|, and the last step holds due to Lemma|[B.2}

Then, by plugging Eq. and Eq. into Eq. With v = é, we have

B(L‘ — — ~ ~ ﬁ
STE| V. F (@0, 53 &1, 50) |IP) = “5 BNV, (@1, 55 &, 50) )

Py =P < —

Bz

+ B E[|VoF (%, 13 &t Gt) — ﬂtHQ] + BBV F(Zt, Gi; T, 9¢) — 17t||2]

. 3 s (e +L) 7
+ (8o - B0 s + (ﬂjn%d b, BrCath) Sﬂyn> El?

4 2
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+ (271@;@ v 2L nEF “”) E[lve — 507+ (—“2‘“)> Ellfss — el

68:m 2Bm 2/6y
+ 88, LBl 2" (23 1, G¢) — Ze)|*] + 631 BBl @™ (Ges1s Tesrs ) — 2 (Fagr, 97 (F41)) 7] -
(59)
For E[[|2*(s+1; Ze11,0¢) — 2 (Z41, 9% (£441)) ][], e have
Ell|lz* (Ger1; Bev1,9¢) — 2% (Zeg1, 97 (Z041)) ]
< 2E[[|* (Feg1; Begr, ) — 2 (Fegr, 91 (o)) [|7]
+ 2B [ (&4 1, 01 (141)) — 2" (Feq1, 0 (B110)) 7]
< 2055772051}/&@]&”@ VyF (2, 5e; &1, 00)11°] + 2082 2L202 [||l’t — 2" (3 &, ) |?]
1 _
1002 (14 ———— | Elly" (@, 9¢) — 3:)?
+00t, ( *anm_w) lly* Ger i) — ]
+ 10051 Ch E[H%t = Z[”] + 1003; [Ilyt 9t (@) 11°]
C’2 2 A N2
4 Yig 4 27 2 (1 _/Byn)
o P E e — 7 g (0 e ) Bl @)
= 205577205;ng[||@ — VyF(Zy, Ur; T, 90))1°] + 2035772LQC§;ME[||@ — 2" (Ge; &, Ge) ||?]
1 o
1002 1+ —— VE[llyT (T, %) — 5%
272 C?
4 2L - -
2 2 &g S A2
+ (1002, O3 g Pl — e
4 293 (1 - Byn)?
2 2 292 | 2 y
(100 1 Ch o (Oy + e Elllg: — 9% (Zes0)II7] - (60)

where the second step holds due to Lemma[C.4]and Lemma [C.5]
By plugging the above inequality into Eq. (59), we have
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Furthermore, based on Lemmal[C.6] we have

Pris ~ Pu < =BT, P (G s B 50— DBV, F e i )
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Moreover, based on Lemma|[C.7} we have
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Finally, based on Lemma|[B.5] we have
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where A3 = B,n + 120713307755112051 4B
Then, for E[HVIF({Et, gtv %t, ﬁt)HQ], we set
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For the first inequality in Eq. (66), we set
(11— L)?
s, =0(1)
For the last inequality in Eq. (66)), from the definition of A; and A5, we enforce
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To solve the first inequality in Eq. 1@| since an <landn <1, fromC,1 = -, we obtain
y&g Y1
L2
< —. 69
B < 12097 (69)

Here, we have also shown that the second inequality in Eq. (66) holds.

Then, to address the second inequality in Eq. , note that since Byn < 1, it follows that 1 — Byn <1
Consequently, we obtain

b= (v — L)*(v2 — L)?p
24 x 642~, L2 (57%/1 + 1673 (71 — L))

(70)

=0(1/k)

CB(E
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Similarly, for the third inequality in Eq. , from C\2 = 12, we obtain

642 X 480'}/137%[/2 '

c5,=0(1)

By = Ba

Moreover, to solve the last inequality in Eq. (68), we obtain

iy — L)3(y2 — L)?

=0(1). 72
512, /671¢5 263, (1) 72)

Ba <

Finally, by plugging Eq. (63) into Eq. (64), the proof is complete. O

D KEY LEMMAS RELATED TO THE DECENTRALIZED SETTING

D.1 CONSENSUS ERRORS

Lemma D.1. Given Assumptions the following inequality holds:
K
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K K
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where a = % Then, we have the followmg inequality to complete the proof:
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where the last step holds due to the following inequality:
Bl = VoM @, o4 97650 + VoW @y ui a2 a8 60 1P
=E[| - Vo ® (" ,yﬁ’” &)~ ma” — )
+ Vo ™ <$t+1> yt+17 §t+1) + 71(9C§+1 - 53&?1)” ]

k k k k
< B[V, f® @),y 68 — Vo P @y 612
k k k k
+3VE[|lz) — 2P |12 + 32E[|12) — 27|12

t+1
k (k k (k k (K
< 3(L2 + DE[lh — 217 + 3L2Ellyity — v 1P + 33BN, — 2717 . (76)
O
Lemma D.2. Given Assumptions the following inequality holds:
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This lemma can be proved by following Lemma [D.I] Thus, we omit its proof.
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Lemma D.3. Given Assumptions when Bz < %, the following inequality holds:

. 1=\ 1 -
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bl ZE _ a4 A 200 L ZE I~ o).
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X0

(79

where ¢ = /\2 > the second to last inequality holds due to ﬁw < 1— , and the last step holds due to

Lemma[D:3l
Lemma D.4. Given Assumptions|3. when By < 1= )‘ , the following inequality holds:

E[[| Vi1 — Yt+1||F] (1_ nl ~ ) Z]EHyt oM |

47752 1 2 4775 27}52 1 ()2
/\2KZEH% 7] + T )\QKZEH —q |7

This lemma be proved by following Lemma[D.3] Thus, we omit its proof.
Lemma D.5. Given Assumptions the following inequality holds:

1 o k
E Ell|#1 — 21 17 = 2Bl Xen — X3

MO 2082 1 q~p 2
ZE 11+ Tz 7 2 Elloe —pt”17].
k=1

This lemma can be proved by following Lemma[D.3] Thus, we omit its proof.
Lemma D.6. Given Assumptions the following inequality holds:
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This lemma can be proved by following Lemma[D.3] Thus, we omit its proof.

D.2 GRADIENT ESTIMATION ERRORS

Lemma D.7. Given Assumptions|3. when n < \ﬁ the following inequality holds:
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where the last step holds due to the following inequality:
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Lemma D.8. Given Assumptions|3. when n < f the following inequality holds:
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This lemma can be proved by following Lemma [D.7] Thus we omit its proof.
Lemma D.9. Given Assumptions|3. when n < \ﬁ the following inequality holds:

K K
1 k k) A (k k 1 k
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This lemma can be proved by following Lemma [D.7] Thus we omit its proof.

Lemma D.10. Given Assumptions|3. when n < W the following inequality holds:

K
1 (k) (K k
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Similarly, this lemma can be proved by following Lemma[D.7] Thus, we omit its proof.
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D.3 OTHER AUXILIARY LEMMAS

Lemma D.11. Given Assumptions the following inequality holds:
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where the last step holds due to Lemma[D.3]

Lemma D.12. Given Assumptions the following inequality holds:

K
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This lemma can be proved by following Lemma[D.T1] Thus, we omit its proof.
Lemma D.13. Given Assumptions the following inequality holds:
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Lemma D.14. Given Assumptions the following inequality holds:
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Lemmas can be proved by following (Gaol, [2022).
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E PROOF OF THEOREM

We first propose a novel potential function as follows:
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Lip1 — Ly < — 4 E[llvwF(jtagt§=%ta§t)||2] ﬁynE[HV F(xt,yt,xt7yt)|| ]
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( -\ (1— )2 2 K &
Anp? 108152+3 1— A2 1
+ (anQ +2L% A5 + —c10 + = i)j cr +1202Y — ¥c4 ?ZE[Hy 12
k=1
2 8n2ﬁ262 2161232322 2 1 o )2
. 382024 — (1— Neg | — > Elpr —
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K
nﬂ; ﬂ2 216772625272 2 92 1 (k)2
3 “Ner | = STE[|lg —
+< et gyt g ge o Y — (1= Xer KkZ:l (g — g™
542 1—>\2) 1 & (K)o 5492 (1= A2) 1 &
+< — - ?Z [|&: — 2;]1%] + T RZ]E[H% 9117
k=1 k=1
3p2n* 1 () (F) (0, 50 5
+ (1 )\CG _pmn Ccg E; [Hut VmF ( 7yt ;T )H ]
3p2nt 1 & k B) (k) (k) (K
+ or = pynPes | == > Bl = vy F® @y 5 5i0))12)
1—\ K &
1
+ 2c1p20* ZE + 2c2p2m QE + 306p§774021 — 3C7p§774021 — 2espin’ o’ + 2copin’to” .
(100)
k ~(k) ~(k k
To cancel out E[|| & Y1, Vo F®) (2™ y;2(M 5y — L0 w2 ie
Ben — pen®c1 < 0. (101)
Then, we set
¢ = Be (102)
Pz1]
To cancel out E[|| & S5 . v, f®) (! (k) ¢ ) Ly K ! ||]
K k=1 Yy » It K k=1 "t
26,1+ 280 BenByn*Co  +8A2fyn® — pyife2 0. (103)
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Specifically, since the second and last inequality in Eq. (66) holds, we have

26,n (11 — L)?
= 32x16 L2

251:77 (’71 - L)2
=39%x16 Lz

240 BBy 20 ;

8A252772

Then, by the definition of cg,, i.e., c3, = (754%%), we set

26, 1
2409 BB Ch < S bdes, = 1By,

ﬁw ﬁyn
deg = Pv
S 3o 160%e T 7y

8A28.m* <

Therefore, we obtain

by

Cy = .
2pyn

To cancel out & Y/, Eff|uf” — V. F® (2 ;2" {")|2).i.

3p2n*

1_)\06_pz772€8§0~

Here, because p,n? < 1, we set
e =PBn(1—N), cg=38.1.
Similarly, to cancel out 2 74| E[||v{¥) — va<k>(m§k),y§’“>; 20 5y)12, 4.

3p2n
1—X\

C7—Py77 g 0.

Because p,n? < 1, we set

Cr = Byn(l - )‘) , Cg = 36y77 .

To cancel out 4 Zle E[||Z; — i"z(sk) 1], i.e

St - n(l-N)
1—)\°

we set

K = k
To cancel out%zkzl E[l|g: — 9 )H ], i.

5472 n(l— )‘2)

T~ 4 =0,
we set
216,73
C10 = 7(1 _)\) .

To cancel out & S5 E[||z, — M2, ie.,

432 108n6271

12n°Xx —
TS T o)z

BanL? + 207 As +
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Firstly, from the definition of X, we have

4L%¢ N 4L%y (L2 + i) 9L%cr
K K 1—A 1—-A

412 B 412 508y

=——x+— L+ 9(L? +77)Ben + 9L Byn + 12L7 B, + 1217 Byn
_AL? ﬁm 10L% B,

= + — L Q1L + 99 B + 21 L% 6, . (116)
K pan K pyn ( v v

Moreover, from the definition of A3 and Eq. (I03), we have

+4L%cs +4L%¢y ,

X =

. 5
Byn + 1200 BemByn*Cly -+ 442B5m* < S By (117)

Therefore, we set
np? 108775m

Cc5 +
1— A (1—=A)2
Anp? 2168,77 | 108yin52
I—x(1=X) " (1=-)
4I% B, 10L? B
+ 12n? ( + LY (21L% + 998 Ban + 21L2B n)

K p.n K pyn ( ! v
508y A2 864’71 3 108’71
+ BenB; 5 T BaenBe i~

4172 10L2
+ 127 (p Br + ——= By + + (21L% + 992) B, + 21L25y>

6 +120°X

BenL? 4+ 2L% A3 +

5
< BunL® + iﬂyan + ~ B.en

< BuenL? + BonL?

647 | g 10897

5
_ 2 29 3,2

2 Bz (1—N)2
417 10L2

128,
120 (pr M py K

Yy
< @cg, (118)

where the second step holds due to an < landn < 1, the fourth step holds due to Eq. l) . By
solving this inequality, we obtain

cp, + (21L* + 977) + 21L2cﬁy>

28, (48L% 120L? ) 9 9 2.2 8647 1082
3 > 253L% + 108 255L — 1B, )
Cs(l_/\)<me+pyKCﬁy+ Mt T Iﬁ(l A)? e 6( - )
(119)
Then, we set
28, 48L% 120L%2
=7 b % ( K T T 253L% + 1087 +302L2%>
— - ,
C3,1
2 3 2
+ = B 8642 2 + 25 108v7c;, - (120)
(1- /\) %/—’ (1- )‘) \‘,—/
c3,2 C3,3

Here, it is easy to know that c3.; = O(1) when p, = O(1/K) and p, = O(1/K), c32 = O(1/K?)
and ¢33 = O(1/k) duetocy = O(1/k).

To cancel out Zi;l E[l|g: — (k) %], ie.,

32 10813273

BuanL? +2L% A3 + . 1 <0. (121)

by (1= N?)
)\10 1= cr +12n°Y — 3
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Firstly, from the definition of ), we have

4L%c;  4L%cy  9L%c (L% +~3)er ) )
= 4L 4L
Y % + % + T + T\ + cg +4L"co

412 8 1022 B,
=—" 4 +21L2B,n + (9L? + 2173) 3,1 . (122)
K pon K pyn ( 2)0y

Therefore, we set

Anp? 10815243

Y C1o+ TESNE cr +121°Y

BanL? +2L% A3 + -

1083

5 864.
< Bl + L S, + B20en, 5, o5z + a1

2

4L?  10L?

+126.n ( +
padC py K

< M&; : (123)

where the second step holds due to Byn < 1 and n < 1, the fourth step holds due to Eq. . By
solving this inequality, we set

cp, +21L% + (21L% + 9722)%)

cg, + 253L% + 255L%cs, + 10875, )

2B 48127  120L%
Cq = 4+
1=\ pK pyK
c4,1
3 2 2
+ a ﬁ)\) 8647205y 5. —1—(163)2 1087305ycBT . (124)
_ _ w

Cq,2 Cq.3

Similarly, it is easy to know that ¢, 1 = O(1) when p, = O(1/K) and p, = O(1/K), cs2 =
O(1/k?)and ¢y 3 = O(1/k) dueto cg = O(1/k).

To cancel out = Y"1 E[l|p, — pi*'|?]. i.e
2087 8n?BaB | 2160782527
177_6)\034- (;7_)\)205 (717_/\) n c6 +30m° X — (1= N)ee <0 (125)

Firstly, we enforce
2160820577 _ (1—-A)
s C6 <
(1—X)3 4
Then, based on Eq. (54)) , we obtain

C6 - (126)

(127)

Then, we enforce
27762 BTU 2
1—)\ - 4 (T=2%,
. 81° B2 32 < Pam
PA=X2 ~ 4

(1- 22, (128)

3PP X < ==
To solve the first inequality in Eq. (IZ8)), we enforce

27753 261 ﬁxn 2
1—A(1-)) e TR
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Bz 283 Ban
T—A(1—)F@2= 13
mB; 263 Bw(
oA A28 =g

1-X7,

— 2.

Therefore, we obtain

8, < min (1=X)2 (1-=XN%2 (1-))>3 .
T 4\/3cz1 2(3c32) /% 7 2(6es 3)1/3

To solve the second inequality in Eq. (I28), we obtain

8, < (1— )%/
= yme
To solve the last inequality in Eq. (I28), we enforce

412 B 1 10L% 8 1
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Firstly, we enforce
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Then, based on Eq. (54)), we obtain

Cr .

Then, we enforce

To solve the first inequality in Eq. (I37), we enforce
277ﬂ§ 205 c 6y77
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27)5 2ﬂ2 cas < By'r]
1—A (1 A)2 - 12

(1—N)2.

Therefore, we obtain

1— )2 1— )32 1—X)5/3
B < min ( ) , ( ) , ( ) . (139)
4 3057/0471 2(30,3346472)1/4 2(66/32164,3)1/3

To solve the second inequality in Eq. (I37), we obtain
(1 _ )\)5/4

e — (140)
B 12 ’}/QCByCBy
To solve the last inequality in Eq. (I37), we enforce
412 B 1 10L? B 1
3 - 1-X)?, 3 2 < 1—))?
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21L2B,m < 1-))? 2117 5 < 1—N)?. 141
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21 Cy, + 631 fm (1002 C2 420, 207 N N (143)
;vl,AJ'_ x + 2 + Cg — = S— — .
e S S T A TN 80 T 4ha

Specifically, we enforce

1
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~ 4 V2 1 Y1
671 0m(10C% €2 + )<
s Y m—L 36021

2’710 1 <

27
’71 6 < 7} .
I-A 3669:77

(144)

1 — M —_ M —
Since Czég =55 CQELM =52 i, = L, we obtain

8, < min{ y1—L (m— L)(w —L)\/ﬁ 1 } (145

T2¢5 711 6y1cs \/6(107in + 831 — L)) 18,/3cp
For E[||§:41 — 9¢]|?], by setting

2 2
oA, L 22, Y2 7 (146)
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Specifically, from the definition of A;, we enforce
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(147)
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To solve the second inequality, we use the second inequality in Eq. (68) to obtain the following:

4 2B 203 (1-Bym)® _ Ben (0 — L)

_ < (148)
(e—L? m—L u  p2p2 32x 64 AL2
Then, it is easy to derive
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Ban (M / )2 (2 — L) < ? (150)
32x64 4L 2 168,n
and we obtain
32L
Bz < (151)

e - L) — L)
Finally, to solve the first and last inequality in Eq. 1| JfromCpn = PrandCpp = 2

Y1—L y2—L~
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—L —L 1
5, < min Vi(n = L)(y2 — L) 7 } (152)
8\/ 3cg, c5 M712(100F 1 + 893 (1 — L)) 6\/ 6y2cs,c5,
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+ (18 + 62 = 22 )l

3By Byn*(y2 + L)

. 7 _
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2. 272 2.2 Bzn Bzn
4BynBin L" + 38 n° X — o S g - (155)
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Specifically, we enforce

A L? < 2
38202X < 511677 . (156)
To solve the first inequality, we obtain
Ba < ! (157)
= 8L, /Ca,

To solve the last inequality, we use the last inequality in Eq. (I28) along with the fact that 1 — A < 1,
from which it is straightforward to show that the inequality holds.
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38,m  Byn’(ve+ L) ; 7 1
Byn*La+ ==+ = +AA B B + 2408007 + BBV = B0 < =5 By
(158)
Firstly, from Eq. |j and the definition of Ay, we obtain 2A453217* < fiz, and
4 52
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r S 1IN 5
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To solve the last inequality, we use the last inequality in Eq. (I37) along with the fact that 1 — A < 1,
from which it is straightforward to show that the inequality holds.

In summary, by setting
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By setting 1 = O(L), 72 = O(L), we obtain
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and
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we have
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k=1

By O 5By o
< J— T T E s
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1 K
+68y122 > BV, " (w0, o) 1] - (171)
k=1

Then, we have

LS BV £, 0)IF] + KBV 30l

t=0
<0(’”’0)+o 5 LS BV £ (g7 ) + O (5L S BV £ (o, o))
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1
ko ko ko? /-@pzn o? IipyT] o?
+0( 575 )+ et ) O +0
= Y

'ﬂ

+O(kpan'o®) + O(kpyn'o®) . (172)
By setting B, = O((1 — A)2), n = O(L%), p, = O(£), p, = O(%), B = O(£2), T =
0(1{(1'{—3712)2&)’“’6 have

Z IV f (@ Go)lI1P) + KE[[V f (24, 50) 7)) < O(e2) . (173)

t=0
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