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ABSTRACT

Decentralized stochastic minimax optimization has recently attracted significant
attention due to its applications in machine learning. However, existing state-
of-the-art methods use learning rates of different scales for the primal and dual
variables, making them difficult to tune in practice. To address this problem,
this paper proposes a novel doubly smoothed decentralized stochastic minimax
algorithm. Specifically, in terms of algorithm design, we update both the primal
and dual variables using smoothed gradients and introduce novel approaches to
handle the computation and communication of the auxiliary variables introduced
by the smoothing technique. On the theoretical side, for nonconvex-PL problems,
our convergence analysis reveals that the learning rates for the primal and dual
variables are of the same scale. Moreover, the order of the condition number in
our convergence rate is improved to 0(53/ 2). To the best of our knowledge, this
is the first time it has been improved to such a favorable order. Finally, extensive
experimental results validate the effectiveness of our algorithm.

1 INTRODUCTION

In this paper, we focus on the following decentralized stochastic minimax optimization problem:

K
min max f(z,y) 2 %Zf(k)(m,y) ) M

d do
zeRl yeR =1

where = € R? is the primal variable, y € R? is the dual variable, f(*)(z,y) = E[f¥) (x, y; £(*))]
is the loss function on the k-th (where k € {1,--- , K'}) worker, and £ (%) denotes the random sample
on the k-th worker. Throughout this paper, it is assumed that f(x, y) is nonconvex in z and satisfies
the Polyak-Lojasiewicz (PL) condition in y.

Stochastic minimax optimization has attracted increasing attention in the machine learning community
recently because it finds numerous applications, such as generative adversarial networks (Goodfellow.
et al.,|2014), adversarially robust learning (Madry et al.,|2017), distributionally robust learning (Duchi
et al.,|2021)), imbalanced data classification (Ying et al.,|2016), policy evaluation (Zhang et al., 2021)),
etc. Moreover, in real-world machine learning applications, the training data is typically distributed
on different devices. To take advantage of the distributed data to train the aforementioned machine
learning models, decentralized minimax optimization has been actively studied in recent years. For
example, Xian et al.| (2021); Huang & Chen| (2023) proposed decentralized stochastic variance-
reduced gradient descent ascent algorithm based on the STORM gradient estimator (Cutkosky &
Orabonal 2019), while [Zhang et al.| (2021} |2024)) proposed to use the SPIDER gradient estimator
(Fang et al.| 2018; Nguyen et al.,[2017). Recently, Huang et al.| (2024) developed a decentralized
adaptive minimax algorithm and established its convergence rate for nonconvex-strongly-concave
problems.

However, most existing decentralized minimax optimization algorithms suffer from a significant
limitation. Specifically, to ensure convergence, the learning rate for the primal variable is set on a
different scale than that for the dual variable. For example, Xian et al.|(2021); [Zhang et al|(2024);
Chen et al.| (2024); Huang & Chen| (2023) prove that the ratio between the learning rate of the
primal variable and that of the dual variable has to be O(1/x?) for nonconvex-strongly-concave (or
nonconvex-PL) problems, where « > 1 is the condition number. Since x is an unknown parameter, it
is difficult to tune their learning rates to ensure convergence in practice. To address this issue, a recent
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Table 1: The communication complexity (i.e., iteration complexity) and computation complexity of
different decentralized stochastic minimax algorithms that using variance-reduced gradients. N-PL:
denotes nonconvex-PL problems. N-SCV: denotes nonconvex-strongly-concave problems. LR Ratio:
the ratio between the learning rate of the primal variable and that of the dual variable. x: denotes
condition number. 1 — \: denotes spectral gap. e: denotes solution accuracy. Note that Smoothed-
SAGDA is a single-machine algorithm without using variance-reduced gradients. DGDA-VR and
DREAM depend on the condition number, scaling as 2, in the cost of a large batch size O (f)
DREAM achieves a better dependence on the spectral gap in the cost of performing multi-round
communication in each iteration.

Algorithms ‘Communication‘BatCh Size‘ Computation ‘Problem Class‘LR Ratio
Smoothed-SAGDA (Yang et all 2022)‘ o) (%) ‘ o(1) ‘ o) (%) ‘ N-PL ‘ o(1)

DM-HSGD (Xian et al] 2021) 0 (1*;3)“3 o) [0(qts)| Nscv o |o(/s?)
DGDA-VR (Zhang et al} 2024) O(atgzz) | 0(5) |0(ases)| N-SCV  |O(1/k?)
DREAM (Chen et alll 2024) 0 ( 1*;162) o= | o (%) N-SCV  |0(1/x2)
DM-GDA (Huang & Chenl2023) | O (= omn |o (#) N-PL  |O(1/k2)

o) ‘O(L)‘ N-PL ‘0(1)

(1-=X)2e3

Ours (Corollary ‘ (0]

work (Yang et al.| 2022) in the single-machine setting demonstrates that the smoothing technique
proposed by |Zhang et al.[(2020) allows primal and dual variables to use learning rates of the same
scale, that is, with a ratio of the order of O(1). However, the convergence rate ['|O(1/¢*) of [Yang
et al.[(2022) is inferior to O(1/€3) of [Xian et al.[(2021); Huang & Chen|(2023) because it just uses
the standard stochastic gradient. Then, a natural question arises:

Can we develop a decentralized smoothed minimax optimization algorithm that achieves a better
convergence rate while using same-scale learning rates for the primal and dual variables?

Actually, there are unique challenges when applying the smoothing technique to decentralized
minimax optimization in order to improve the convergence rate, as outlined below.

Challenge-1: How to incorporate the variance reduction technique into the smoothing technique
to achieve a faster convergence rate? Existing minimax optimization algorithms with the smoothing
technique in a single machine setting are based on the deterministic gradient (Zhang et al., 2020) or
the unbiased stochastic gradient (Yang et al., 2022)). Directly extending their smoothing technique to
decentralized stochastic minimax optimization will lead to a slow convergence rate. For example,
(Yang et al., 2022) can only achieve a O(1/e*) convergence rate to achieve the e-accuracy solution for
a nonconvex-PL problem, while the existing decentralized minimax optimization algorithm (Huang
& Chen, [2023) can achieve a O(1/€3) convergence rate for the same problem class by using the
variance reduction technique. However, due to the existence of the auxiliary variable in the smoothing
technique, it is unclear how to leverage the variance reduction technique to accelerate its convergence
rate. For example, it is unclear which component in the smoothed gradient should use variance
reduction and how to control the gradient bias to guarantee the fast convergence rate.

Challenge-2: How to compute and communicate the auxiliary variable in the smoothing
technique and how does it affect the communication complexity? The standard smoothing
technique introduces an auxiliary variable to smooth the loss landscape with respect to the primal
variable to improve the convergence rate. However, in a decentralized setting, it is unclear how to
update and communicate the auxiliary variable. In particular, due to the strong dependence between
the original variable and the auxiliary variable, it remains unclear whether the communication of the
auxiliary variable, especially given that our algorithm introduces auxiliary variables for both the
primal and dual variables, will improve or degrade the communication complexity, for example, by
affecting the dependence on the spectral gap or condition number in the convergence rate.

'In the introduction, we omit other factors in the convergence rate for clarity.
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To answer the aforementioned questions, we develop a novel decentralized algorithm based on the
smoothing technique: the doubly smoothed decentralized stochastic gradient descent ascent with
momentum (Smoothed?-DSGDAM) algorithm, which brings the following contributions:

¢ In terms of algorithm design, we apply the smoothing technique to both the primal and dual
variables. Importantly, we propose a novel and feasible approach to incorporate the variance
reduction technique into the smoothed gradient regarding both the primal and dual variables.
More importantly, our algorithm demonstrates how to update and communicate the auxiliary
variable introduced by the smoothing technique in the decentralized setting. As far as we know,
this is the first time to show how to handle the auxiliary variable and reduced the gradient
variance for the decentralized smoothed minimax algorithm.

* In terms of convergence analysis, we establish the convergence rate of our algorithm for
nonconvex-PL minimax problems. In particular, on the one hand, for a nonconvex-PL minimax
problem, the smoothing technique with a variance-reduced gradient can make the convergence
rate enjoy a better dependence on the condition number « , i.e., in the order of O(n3/ 2), which is
better than the dependence O(x?) in existing decentralized non-smoothed minimax algorithms
(Xian et al., 2021; [Huang & Chen, 2023) and the dependence O(k?) in smoothed minimax
algorithms (Yang et al.,|2022)) in the single-machine setting |} To the best of our knowledge,
this is the first time the dependence on the condition number is improved to O(x°/2). On
the other hand, our convergence analysis shows that the ratio between the learning rate of the
primal variable and that of the dual variable can be improved from O(1/x?) of Xian et al(2021);
Zhang et al.| (2024); [Chen et al.{(2024); Huang & Chen|(2023)) to O(1), and the convergence rate
can be improved from O(1/e?) of |Yang et al.| (2022) to O(1/€?). To the best of our knowledge,
this is the first time that a decentralized stochastic minimax optimization algorithm can
achieve such a fast convergence rate with the same-scale learning rate. A detailed comparison
between our algorithm and existing algorithms can be found in Table|[T}

Finally, the extensive experimental results validate the performance of our proposed algorithm.
2 RELATED WORKS

2.1 STOCHASTIC MINIMAX OPTIMIZATION

Due to the widespread application of stochastic minimax optimization in machine learning, numerous
stochastic optimization algorithms (Lin et al., 2020; [Luo et al., |2020; Huang et al.,|2022; |Qiu et al.,
2020; |Guo et al. 2021} |Yang et al., 2020; 2022; |Chen et al.l [2022)) have been developed recently.
In particular, the nonconvex-strongly-concave and nonconvex-PL problems have been extensively
studied. For the former, |Lin et al.|(2020) established the convergence rate of the stochastic gradient
descent ascent (SGDA) algorithm for nonconvex-strongly-concave problems. Following that, a
couple of variance-reduced gradient methods (Luo et al., 2020; Huang et al., [2022} |Qiu et al.} 2020;
Guo et al.,|2021) have been developed to accelerate its convergence rate. Specifically, Huang et al.
(2022)); |Q1u et al.| (2020) combined the STORM gradient estimator (Cutkosky & Orabona, [2019) with
SGDA and established its convergence rate. |[Luo et al.[(2020) investigated the convergence rate when
incorporating the SPIDER gradient estimator (Fang et al.l [2018) into SGDA. For the latter, Yang
et al.[(2020) investigated the convergence rate for the alternating stochastic gradient descent ascent
(ASGDA) algorithm. [Chen et al.| (2022) studied the convergence rate for the finite-sum minimax
problem when combining the SPIDER gradient estimator with ASGDA.

The smoothing technique for the minimax problem was first studied for nonconvex-concave problems
in|Zhang et al.| (2020). Specifically, it established the convergence rate of the full alternating gradient
(AGDA) descent ascent algorithm when incorporating the smoothing technique. Later,|Yang et al.
(2022)) applied this technique to nonconvex-PL problems and established its convergence rate for
SGDA. In fact, due to the efficacy of the smoothing technique, it has been applied to various settings,
such as nonconvex-nonconcave problems with the one-sided KL condition (Zheng et al., [2023),
constrained optimization problems (Pu et al.l2024), etc, which are beyond the scope of this paper.

2.2 DECENTRALIZED STOCHASTIC MINIMAX OPTIMIZATION

To facilitate decentralized optimization for minimax problems, a great amount of effort (T'saknakis
et al.| 2020; |Zhang et al.l 2021} |Xian et al., [2021; |Gaol [2022} [Zhang et al.,|2024} |Chen et al.| 2024;

’Here, to make a fair comparison, the existing methods considered use a batch size of O(1), rather than large
batch sizes.
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Xu},2024) has recently been made. For example, [T'saknakis et al.| (2020) developed a decentralized
gradient descent ascent algorithm by using the full gradient for local computation and the gradient
tracking technique for communication. Xian et al.|(2021) proposed a decentralized minimax algorithm
based on the STORM gradient estimator and established its convergence rate for the stochastic setting.
Zhang et al.|(2021) developed a decentralized minimax algorithm based on the SPIDER gradient
estimator and established its convergence rate for the finite-sum setting. Later, its convergence rate for
the stochastic setting was established in|Zhang et al.| (2024). Moreover, (Gao| (2022) incorporated the
ZeroSARAH gradient estimator into the decentralized minimax algorithm and provided convergence
analysis for the finite-sum setting. Recently, |(Chen et al.[(2024) studied the convergence rate of
the decentralized minimax algorithm when using the PAGE gradient estimator (Li et al., 2021).
More recently, [Huang et al.|(2024)) introduced the adaptive learning rate to decentralized minimax
optimization and established the corresponding convergence rate. Note that all these existing methods
restrict their focus to the nonconvex-strongly-concave problem.

Recently, [Huang & Chen! (2023) developed a decentralized minimax algorithm for nonconvex-PL
problems, where the STORM gradient estimator is used for local updates and the gradient tracking
technique is used for communication between workers. To our knowledge, in the distributed setting,
the smoothing technique has only been studied for federated centralized learning in|Shen et al.| (2024).
Specifically, each worker uses the standard unbiased stochastic gradient to do local update and the
central server uses the smoothing technique to assist the update of the dual variable. As a result, the
additional variable introduced by the smoothing technique behaves as a single-machine setting. Thus,
it is easy to handle this variable in convergence analysis. All in all, the smoothing technique has
not been studied for decentralized minimax optimization and it is unclear how to apply it from the
algorithm design perspective and how to handle it from the convergence analysis perspective.

3 METHOD

3.1 PROBLEM SETUP

We introduce the following assumptions with respect to the loss function and communication topology,
which have been widely used in the existing literature (Yang et al.| {2022} | Xian et al., 2021; Huang &
Chenl, 2023} Zhang et al., [2021} 2024} (Chen et al., [2024)).

Assumption 3.1. (Smoothness) For any k € {1,2,--- ,K}, the loss function on the k-th
worker satisfies the mean-squared Lipschitz smoothness, i.e., for any (x1,y1) € R® x R% and
(z2,12) € R4 x R%, there exists a constant value L > 0 such that B[||V, f*) (x1,y1;€F)) —
Vi (@a,y2:6M)1°] < LA(lr — 2ol + g1 — wol®) and E[|[Vyf® (z1,51;6W) —
Vi f ¥ (@2, y2: €P)I1P] < L2(flar — 22 + lyr — w2l).

Assumption 3.2. (PL condition) For any fixed x € R%, the set of solutions of the optimization
problem with respect to y, max, cga, f(2,Y), is not empty and the optimal value is finite. Furthermore,
for any x € RY, there exists a constant value ji > 0 such that |V, f(z,y)||> > 2u(f(z,y*) —
f(z,y)), where y* = arg max, cga, f(z,y).

Assumption 3.3. (Variance) For any k € {1,2,--- , K}, the stochastic gradients with respect to
x and y of the loss function on the k-th worker are unbiased estimators and their variances are
upper bounded as: E[|V, f® (z,y;€®)) — VB (z,9)||2] < 0 and E[||V, f*) (z,y; £F)) —
Vy f® (z,y)||2] < o2, where o > 0 is a constant value.

Assumption 3.4. (Communication graph) The element w;; of the adjacency matrix W € REXK of
the communication graph is non-negative, with a positive value indicating that worker-1 is connected
to worker-j, and a value of zero indicating they are disconnected. Moreover, W is doubly stochastic
and symmetric, and its eigenvalues satisfy | Ak | < [Ag—1] < -+ <|Xo| < M| =1

By denoting A = |\z|, the spectral gap of the adjacency matrix can by represented by 1 — A. Moreover,
we use N}, to denote the neighboring worker of the k-th worker, and use x = L/u to represent

the condition number. In addition, we use a; = % Zszl aﬁk) to denote the average value of any
{a{"}X__ in the ¢-th iteration.

3.2 SMOOTHED?-DSGDAM

The essential idea of the smoothing technique is to introduce a regularization term such that the
original nonconvex function becomes strongly convex. As a result, the update of the primal and dual
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Algorithm 1 Doubly Smoothed Decentralized Stochastic Gradient Descent Ascent with Momentum
(Smoothed?-DSGDAM)

Input: 1) > 0 and pq, py, Be, By, Be, By > 0, with pan?, pyn?, Bum, Byn < 1.

Initialization on worker k: :Jco k) — :p y(k) = Yo, :E( ) = = Zo, yék) = Yo,
k) :sz(k)(xéM y<k) A(k) i f(k)) (k> =V, F® (z (k) yé> A (K )7%1@)’ (()k)) i
) = ol o 2ol
1: fort =0,---,T — 1, worker k do
2:  Update z: mgi)l = Z]e/\/k wk]xgj) ,sz(k> ) $§]j—)1 =z (k) + n(z; (k> — w§k>) s
3: Update y: gz(l-?l = ZJeNk wkjyt JF By q<k) s yg-]% = yt(k> + n(y§+)1 yt(k)) >
4 Update & &%) = Y0 e, wigdt” + Buaith —#17) . a2 = & + @5 - 2(")
5. Update §: §i%) = e, i’ + By —9t) o 9l = 9" + 0@ - 0"
6:  Compute variance-reduced gradient uw
ult = @ = e = VeF®E® e g e+
VIF(k)(xEI_? y§i>1’£§i)1agt§-17§§i)1) >
7:  Compute variance-reduced gradient vt(m:

k k k), (k) (k). o(k
U§+)1 = 1 - Py )( & - VyFUC)(xg ) ( )7 ‘ )73/t( )7€t(+)1)) +
k k) (k) ~(k k
yF_(k) ($§+)1» y§+)1, IE+)17 y£+)1a §§+)1 >
8:  Gradient tracking:
k
P = 2 e, wipt” + uf
9: end for

(k) (k) (k) (k)

k k
—u s i = Djen, Whils o L

+og — v

variables can be well coordinated to avoid divergence. Inspired by this, we introduce the doubly
smoothed loss function, which adds the regularization term to both the primal and dual variables such
that the nonconvex-PL loss function becomes strongly-convex-strongly-concave. Specifically, the
doubly smoothed loss function is defined as follows:

K
L 1 1 N 2 _
F(a,yid,9) = 2 > (@) + Dle -2l - Tlly - all°, @
k=1

FR) (z,y;2,9)

where v; > 0 and 5 > 0 are hyperparameters, and & € R, § € R% are the auxiliary variables
for the primal and dual variables, respectively. Here, v, and - are set such that F'(x, y; &, §) is
strongly convex with respect to x and strongly concave with respect to y. For example, we can set
v1 = 2L and 72 = 2L. Note that most existing works in the single-machine setting, such as (Zhang
et al., 2020; |Yang et al., 2022) apply the smoothing technique to a single variable. Only a recent
work (Zheng et al.| 2023) uses it for both variables for nonconvex-nonconcave problems. However, it
focuses on the deterministic setting, failing to handle the biased stochastic gradient estimator and the
decentralized communication. Hence, a new algorithm design and convergence analysis are required
to address the challenges caused by them.

Based on the smoothed loss function in Eq. (2), the k-th worker can compute the stochastic gradient
with respect to the primal and dual variables in the ¢-th iteration as follows:

va(k)(xik) (k). A(k)7g§k)7£(k)):v f(k)( (k) (k) (k>)+7( (k) A(k))

PO ), 49509 0,6 = 7,0 o ,yi’”,a’“)) " - 9). )

In terms of the smoothed loss function in Eq. (2) and the stochastic gradients in Eq. (3), we
develop a novel doubly smoothed decentralized stochastic gradient descent ascent with momentum
(Smoothed’>-DSGDAM) algorithm in Algorithm |1l Generally speaking, we apply the variance
reduction technique, STORM (Cutkosky & Orabonal 2019), to the stochastic gradient on each
worker to update the primal and dual variables, and use the gradient tracking technique to conduct
communication between different workers. However, there are two unique challenges when designing
our Smoothed?-DSGDAM algorithm: 1) How to apply the variance reduction technique in the
presence of the smoothing term? 2) How to update and communicate the auxiliary variables 2
and ¢ to guarantee convergence in the decentralized setting?
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As for the first challenge regarding variance reduction, there are actually two ways to apply variance

reduction. Specifically, we can apply it to the original stochastic gradient V, f (k)( (k), Yy ,5 )

or to the smoothed gradient V, F(¥) (z} (k) (k) z (k , g(k), I3 (k)) However, computing the variance-

reduced gradient ug ) for the original stochastlc gradlent V. fe (:cgli), yék); ,Ek)) will complicate the

convergence analysis, when bounding a critical term (V, F (T, §¢; &1, Ut ), Te+1 — Tt ), Where Ty, G,

Z¢, and ¢, denote the averaged variable across workers.

Specifically, when computing the STORM gradient estimator ugk) for the smoothed gradient

VPO 400, )60
(Vo (T4, Gt B, Ge), Ter — Te) = —0Ba(VaF (Te, Go; Tty Gt), Ue)
=~ P — P2 | P, s B GNP + T IV s B i) . @)

All three terms in the last step are straightforward to handle.

, we can bound it as follows:

However, when computing the STORM gradient estimator u, ) for the original stochastic gradient
Vo f® (@M, yM; M), we have
(Vo F(Ze, §t; Tt Gt), Tew1 — Tt)
= 0B (VaF (Zt, G; &1, Ge), 11 (Te — &¢)) — 182 (Va F(Ze, §es Tty o), Ur)
< nﬁx

IV (Ze, Go; &e, §0)lI” + AnBuri||Te — )
nﬁm a|? - nﬁx 7]/61

Here, the last term_should be further handled by ||V$F(§ct, U e, 9t) — Ue]|? < 2|V f (T, 7)) —
U]|? + 293||Z; — #4]|*>. Then, it can be seen that this approach introduces an addition term
(marked in blue), which can make it more challenging to select hyperparameters to handle
2 — a2

Vo F (Ze, Gt; Te, 9) || * + Vo F(Z¢, §t; Tty 9e) — e - &)

In addition to this problem, if STORM is applied to the original stochastic gradient, whenever
|1 — Z¢||* appears, it should be decomposed into two terms: ||u;||? and ||Z; — Z¢||. In contrast,
the smoothed one only needs to replace ||Z;11 — Z¢||* with n?32||1||?, which is much easier for the
downstream proof. All in all, applying the variance reduction technique to the original stochastic
gradient could significantly complicate the proof. Therefore, we apply it to the smoothed gradient

V, F® (7 ) 58 5(). )y Which is shown in Step 6 of Algorithm

Regarding the update and communication of the variable & and ¢, it has not been studied in the
existing decentralized optimization literature. A straightforward approach is to update & (and )
locally without communication. However, in convergence analysis, we have to handle the negative

(%) @ﬁ’“ |2 (See Lemma ,

simultaneously. Spec1ﬁcally, we need to convert ||x§i)1 - x(k) ||?

term, —||#;11 — 24> (See Lemma , and positive term,

to ||#;,1 — 2¢||* based on the

consensus error ||zt — &¢||%. If there is no communication operation for &, it is difficult to control
the consensus error. In fact, it may be exploding. To address this challenge, we propose the following
approach for the update and communication of Z (and ¢):

(k (5 5 k (ke (ke (ke k L~ (k
§+>1 = Z wijij) + ,B;C($£+)1 xf& )) ’ xiﬁ = 1(5 )+ 77(x§+) 1”% )) ) (6)
JENY

where (3, > 0 and 1 > 0 are hyperparameters. The first step in Eq. (@) can be viewed as the update
of the communicated variable ) . JeN, Wkj x? ) with the local gradient 955,@1 - j“,(fk) and the second

step is a convex combination between the intermediate variable ‘%Ei)l and the local variable @E’“).

With such an update and communication stratery, we can bound the consensus error regarding the

p— 2 . .
auxiliary variable as shown in our Lemma , where the coefficient 1 — w is important to
shrink the consensus error.

In summary, the smoothing technique brings new challenges for algorithm design in the decentralized
setting. In our algorithm, we develop novel strategies to handle variance reduction and the update
and communication of the auxiliary variables. Therefore, our algorithm design is novel.
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4 CONVERGENCE ANALYSIS

Before presenting the convergence rate of our algorithm, we introduce the following stationary
measures, which were introduced in (Yang et al., 2022).

Definition 4.1. A solution (x,y) is termed the (€1, €2)-stationary solution if |V f(z,y)| < e
and |V f(z,y)|| < €. A solution x is termed the e-stationary solution if |[V®(x)|| < € where
O(z) = f(x,y"(x)) and y*(x) = arg max, g, f(2,y)-

Based on the assumptions in Section [3] we establish the convergence rate of our Algorithm|[I]in the
following theorem.

Theorem 4.2. Given Assumptions when p, > 0, p, > 0, v = O(L), the condition about

n and B, in Eq. , and those about 3, Bm, By in Eq. hold, Algorithmhas the following
convergence upper bound:

T—1
% Z (E[|Vaf(@e, 50)|I7] + KE[|Vy f(@e, 50)11%]) < O(rpan‘c”) + O(rpin*o®)
t=0
KPo k1 *)( R *)(
+0 BT T? E[||Vaf™ (zo, y0)]?] T? E[|Vy f™ (20, y0)|1?]
: =1 k=1
:‘4/0'2 K,O'Q KZO’Q K/pz’l’] o Kp 7’] o
e (W) <0 (Grm) ~o () + ( Jro(m). o

where Py = F(x0,Y0; Zo, §0) — 2Fa(yo; Lo, Jo) +2q(Z0), whose definitions can be found in Eq. .

Corollary 4.3. Given Assumptions |3.113.4) by setting 3, = O((1 — N\)?), B, = O((1 — \)?),

~ 32 ~ L1/2

B =0 (U22), B, = O((1= N2 1 = O (&8), pe =0 (£). py = O (%), B=0 (=),
13/2

T=0 (W) Algorlthm can achieve the O(e, €/\/k)-stationary solution, where ¢ > 0
denotes the solution accuracy, and B is the batch size in the initial iteration.

Remark 4.4. The actual learning rate of the primal variable is B,n = O (K(i%)%), and that

of the dual variable is S,n = O (K(i%)ze) Obviously, they are on the same scale in terms of

condition number k, solution accuracy €, and spectral gap 1 — \. In addition, the constant batch size
based methods, including DM-HSGD (Xian et al.||2021) and DM-GDA (Huang & Chen, |2023|), use

the learning rate for the primal variable in the order of O (}((1){;?:\)%> and that for the dual variable

is O (M) Apparently, our algorithm can allow a larger learning rate. Moreover, when the

number ofworkers K =1, the spectral gap becomes 1 — \ = 1. Our learning rates O (ﬁ) are
larger than O (& ) of the single-machine method, Smoothed-SAGDA (Yang et al.| |2022|).

The primal—-dual learning rate ratio is important because the loss function often exhibits distinct
properties for the two variables. When the loss function is nonconvex in the primal variable but
satisfies the PL condition in the dual variable, optimizing the primal variable becomes significantly
more challenging, and a smaller learning rate is commonly used (See Table[I)) to maintain stability
and prevent divergence. In contrast, with the smoothing technique, the loss function becomes strongly
convex in the primal variable and strongly concave in the dual variable, resulting a well-behaved loss
landscape that permits a larger primal learning rate.

Remark 4.5. To compare the convergence rate of our algorithm in Corollary d.3| with existing
algorithms in Table[l} we need to translate the O (e, €//k)-stationary solution to the O(€)-stationary
solution. In particular, (Yang et al| 2022) shows that we can apply stochastic gradtent descent
ascent algorithm to the optimization problem: min, cga, max,cga, f(7,y) 2 where z'

is the output of our Algorithm[l| Since this problem satlsﬁes the PL condition in both x and vy, the
iteration complexity for the translation is in the order of O( == ), which is apparently dominated by

o
T:O(K(ffi/;’)w).

The proof structure and all technical details is provided in Appendix

). Therefore, the iteration complexity to find the O(e)-stationary solution is still

7
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Figure 1: Test AUC vs. Iterations and Gradient Evaluations (Random Graph).

5 EXPERIMENTS

In this section, we conduct extensive experiments on AUC maximization, which is defined in
Appendix[A] to verify the performance of our Algorithm|[T]

5.1 AUC MAXIMIZATION

Experimental Settings We employ three benchmark datasets: a9a, w8a, and ijennl, which can be
found from LIBSVM Data websiteEl In our experiments, 80% of samples are used as the training set,
while the remaining 20% are used for testing. The training samples are randomly distributed across
ten workers, where K = 10 in our experiment. To evaluate the performance of our algorithm, we
compare it with the state-of-the-art decentralized optimization algorithms: DSGDA (Tsaknakis et al.|
2020), DM-HSGD] 2021), DGDA-VR (Zhang et al.,[2024), and DREAM éChen etal.
2024). Notably, for DSGDA, we use the stochastic gradient descent ascent instead of the full gradient
as described in their paper. For DM-HSGD, the STORM gradient estimator is employed. DGDA-VR
leverages the SPIDER gradient estimator in the stochastic setting, while DREAM utilizes the PAGE
estimator.
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Figure 2: Test AUC vs Iterations and Gradient Evaluations (Line Graph).

*https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
“Note that DM-GDA is the same as DM-HSGD; they differ only in their convergence analysis under different
assumptions.
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Specifically, we consider two types of communication networks: 1) an Erdos-Renyi random graph
with an edge probability of 0.5, and 2) a line communication network where each worker is connected
to only two neighboring workers. Throughout all experiments, we fix the solution accuracy € at 0.01
and use a batch size b of 100. For the a9a and ijenn1 datasets, the step size of all methods is set to
0.01. Specifically, in our method, 3., By, BAI, and By are each set to 0.1, while 7 is set to 0.1, ensuring
that their product equals 0.01. For the w8a dataset, the step size of all methods is set to 0.05. In this
case, B, By, Bz, and By are each set to 0.5, while 7 remains 0.1, ensuring that their product equals
0.05. Moreover, according to the theoretical results of the baseline methods, the learning rate of the
dual variable in DSGDA, DM-HSGD, and DGDA-VR is scaled by 1/x, while the learning rate of
the primal variable is scaled by 1/x3. For DREAM, scaling is 1 for the dual variable and 1/x? for
the primal variable. Both learning rates in our method are scaled by 1/x'/2. In our experiments, we
assume x = 1.5. Additionally, in our method, 1 and v, are assigned a value of 0.01. For DM-HSGD,
the coefficient of the STORM estimator is set to 0.01. Additionally, DGDA-VR computes the full

gradient every 100 iterations, while for DREAM, the probability of the PAGE estimator is set to %.
Experimental Results For the random communication graph, we present test AUC versus the
number of iterations and gradient evaluations in Figure[T] As shown in Figure[I] our algorithm
achieves significantly faster convergence than all baseline methods in terms of the number of iterations,
demonstrating its superior efficiency. Furthermore, Figure [T also indicates that our method also
converges more quickly when measured by the number of gradient evaluations, highlighting its lower
sample complexity. Notably, DGDA-VR and DREAM incur significantly higher computational cost
due to periodic full-gradient computation. These results underscore the efficacy of our algorithm in
optimizing performance while maintaining computational efficiency. For the line communication
graph, we also present test AUC versus the number of iterations and gradient evaluations in Figure [2]
Our method continues to exhibit faster convergence compared to the baseline methods, further
validating its effectiveness.
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Figure 3: Test AUC under hyperparameters (Random Graph, a9a).

Finally, we evaluate the performance of our method under different values of ~, 3, f, and pn in
Figure where we set v, = vy =, Bz = By = 5, By = By = 3, and Pz = py = p. Our method is
robust to all hyperparameters except 3, so they do not require fine-tuning. Since S only scales the
learning rate, we fix its value, leaving the learning rate 1 as the only hyperparameter to tune.

5.2  FAIR CLASSIFICATION

We consider the following nonconvex-PL minimax optimization problem (Nouiehed et al.,2019):
C

Ye >0, ye=1}. @

k=1c=1 c=1

K C
1 A
S ) (o — M pa112 _ c
minmax - E E Yy Lo () 5 [ly]] st.Y={yeR

This task serves as a standard benchmark for reweighting classes to improve worst-class performance
and has been widely evaluated in federated learning algorithms (Sharma et al.}[2022). We conduct
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the evaluation in a decentralized setting with eight workers on CIFAR-10 using ResNet-18

. In this setup, ££k> represents the cross-entropy loss functions corresponding to class ¢ on
worker k for the C' = 10 classes, and = denotes the model parameters of ResNet-18. We consider
three types of communication networks: a random graph, a ring graph, and a torus graph. The
learning rate is tuned via grid search and fixed at 0.1, the per-worker batch size is set to 32, and all
other hyperparameters and baseline settings remain consistent with the earlier experiments.

Figure [ reports the test accuracy versus the number of iterations and gradient evaluations. Our
algorithm achieves the best overall test accuracy among all baselines and converges faster in terms
of gradient evaluations. Although DREAM appears slightly faster in early iterations, its periodic
large-batch updates substantially increase the total number of gradient computations, leading to a
higher overall computational cost. Overall, our algorithm achieves both superior accuracy and more
efficient convergence.

In addition, we evaluate the sensitivity of our method to the hyperparameters v and B, which are the
only new hyperparameters introduced compared with existing baselines. As shown in Figure[5} our
method remains robust even under this more challenging task, further demonstrating that it does not
require complicated hyperparameter tuning.
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6 CONCLUSION

In this paper, we developed a novel decentralized minimax optimization algorithm based on the
smoothing technique. In particular, our algorithm demonstrates how to incorporate the variance-
reduced gradient in the presence of the auxiliary variable and how to perform communication for the
auxiliary variable. Moreover, our algorithm can achieve a better dependence on the condition number
than all existing methods, which confirms the significance of our algorithm. Finally, experimental
results confirm the effectiveness of our algorithm.

10
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Ethics statement This research complies with the ICLR Code of Ethics. The study is purely
theoretical and methodological, and it does not involve human participants or personally identifiable
information. The datasets used in this paper are publicly accessible sources. Our algorithm is
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safety, fairness, privacy, or security.
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A AUC MAXIMIZATION

Specifically, we focus on the AUC maximization problem (Ying et al.|[2016) for the binary classifica-
tion task, which is formulated as the following minimax optimization problem (Note that we have
included the smoothed term 7 2 v /2|ly — 911%):

1 K 1 n
— - T k) 2
min max E > Eil ( a; Z1) I[[bgk)zl]

z,%1,T2

k k
+2(1+y) (pl‘ g )H[bgk):fl] - (1 — p)xTal(- )H[bik)zl])

+p(aTal” 552)2}1[65“:71] —-p(1—p)y°

2
T get " 72 N
+pY g+ e =l - 2y — i) . ©)

where z € R? is the classifier’s parameter, 1 € R, 22 € R, y € R are the parameters to compute the

AUC loss, £ and g are the auxiliary variables. (agk), bgk)) is the 4-th sample’s feature and label on the
k-th worker, p is the prior probability of positive class, I is an indicator function, p is a hyperparameter
for the regularization term, and y; > 0, y2 > 0 are hyperparameters for the auxiliary variable. In
our experiments, we set p to 0.001. Notably, this optimization problem satisfies the nonconvex-PL
optimization problem, which can be efficiently solved using our proposed Algorithm [T}

To further evaluate the sensitivity of our method to the hyperparameters v and B, we added on ablation
study under the line graph topology, as shown in Figure [f]
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Figure 6: Test AUC under hyperparameters (Line Graph, a9a).

B THE STRUCTURE OF THE PROOF FOR THEOREM

To make our proof easy to follow, we provide an overview diagram in Figure[7]

It is worth noting that the STORM gradient estimator is a biased gradient estimator, so existing
convergence analyzes based on the deterministic gradient (Zhang et al.| |2020; [Zheng et al.| [2023)
and the unbiased gradient estimator (Yang et al.,|2022) cannot be applied directly to our algorithm.
Moreover, most existing stochastic smoothing methods typically apply smoothing only to the primal
variable, which makes their analysis insufficient for our algorithm.

In Figure[7] there are actually two key components in our proof: 1) the optimization error related
to doubly smoothing, 2) the consensus error and the gradient estimation error related to the
decentralized setting. In Section[C| we provide the lemmas for bounding the optimization error.
This includes:

* descent-ascent update lemmas (Lemma [C.I] Lemmal[C.2] Lemma[C.3);
* optimal solution mappings (Lemma[C.4] Lemma[C.3);
» auxiliary sequences (Lemma[C.6] Lemma|[C.7).

These results are used in a potential function as Eq.(52):

Pi = E[F (1, §t; B, 9¢)] — 2B[Fa(@s; B¢, 9¢)] + 2E[q(24)]

13
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Primal Descent Dual Ascent Proximal Descent
Lemmal[C]] Lemma Lemma
Optimal Solution Mappings Auxiliary Sequence
Lemmas [C.4][C.3] Lemmal|C.6

Consensus Error Optimization Error P, Gradient Estimation Error
Section[D.]] Lemmal[C8| Section[D.2]
Theorem [4.2]
Section[E]

Figure 7: The structure of the proof for Theorem

to establish the overall optimization error bound P, — P; in Lemma|[C.§] It is worth noted that
Lemma [C.§| demonstrates that optimization error is affected by the consensus error caused by the
decentralized setting and gradient estimation errors. Therefore, in Section D} we address two types of
error in the decentralized setting:

* the consensus error, including that of auxiliary variables introduced by smoothing (Sec-
tion [D.T));

* the gradient estimation error from the STORM update (Section[D.Z).

After establishing all supporting lemmas, we proceed to derive the convergence rate through a novel
potential function £;, which intergrates the optimization error in Lemma and the consensus error
and gradient estimation error together as follows:

K K
1 k 1 N (k) (k) A(k) Ak

optimization error k=1 k=1

gradient estimation error

K
1 k A(k) -
+ e Bz > vl Zv F® @,y 2, )]
k=1
gradient estimation error
1 K
~ (k)
+ 32 ZEnx —a P+ ZEny — 1P+ e g D EllE — 27|
k=1
K K‘ N K

_(k 1 _
+ 10y Z g = 31P) + cogz D Ellpe —p" 7] + er g Z g — a1
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appropriate hyperparameters, as detailed in Section [E| we establish the convergence

guarantee stated in Theorem [4.2] The construction of this proof framework is both technically
intricate and conceptually non-trivial, underscoring the novelty and difficulty of our analysis.

B.1 TERMINOLOGIES

To establish the convergence rate of Algorithm[I] we introduce the following symbols:

Xt = [ 1(51) (Q)a"' ) (K)} € RleK ) Xt = [~(1)7j§2)a" : 7'%1(£K)] € RleK )
K 5 1) ~(2 (K

V=l oy e REE Y = g g g e REXE

Xt 2 ~ (1) AE )’ . @(K)} c RdlxK’ Xt _ [;%( )"%(2)7“. ’:%EK)] c ]RdlxK7

o 1) . (K > 1) =(2 (K

Vo=, 07, 0 e RK Y = [ g7 ] e RO

U [ gl) (Q)a"'vui(t HéRleKaVvt:[ (1)7 ,"'aUEK)]eR(bXKa

Po=[p",p?, - p e REXE Q= [gfV, 40, ,gi™)] e REXE

_ _ 1 = = 1 -

X = RthlT Vo= 2Y1h, X, = EthlT V= Yt

_ 1 _ 1 _ 1 ~ 1

U= 201", V= 2ViA1T, Po= P11, Q= Q117 (10)
where 1 = [1,1,---,1]7 € RX. Based on these terminologies, the update of z, y, Z, 9, p, and ¢ in

Algorithm[T]is represented as follows:

Note that P, =

X1 =X W = 8Py, X1 = Xy + (X1 — Xo)

Vi = YW +8,Q:, Vi1 =Y, + (Y41 — i),

):(t-i-l = XiW + Bo(Xeg1 — Xi) , Xep1 = X + 77():(75-&-1 - X)),

{/;SJrl =YW +B3,(Yey1 = V2), Yy = Vi + 77(5:/#1 -y,

P =PW+ U1 — U, Qi1 = QW + Vi1 — Vi,

X1 =X¢ — BanUy Yt+1 =Y, + ﬁyﬁvf )

)T(t+1 = ):(t + Bon( X1 — )?t) a%ﬁ-&-l = {/;5 + ByU(YtH - {/t) . (11)
Ugand Q; = V;

Moreover, following (Yang et al 2022} [Zheng et al., 2023)), we introduce the following auxiliary
functions and variables for convergence analysis:

Fy(y; &,49) = min F(z,y;,7), dual function
zER%

Fy(z;2,9) = maf F(z,y;Z,4), primal function
yERI2

T = min max F(x,y;Z
9(2,9) = nin max (z,y;2,9)

p(¥) = min 9(&,9),  a(@) = [nax 9(2,9),

" (y;2,9) = arg min F(x,y;2,9) ,
rERM
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yER2
1'*(5%7@) é .’E*(y (xag)vivg) = arg rél]]igill Fp(xax,g) )
v (&,9) =y (¢ (2,9); &, 9) = arg max Fu(y; ,9) ,
yEeRI2
2*(§) = arg min g(,9),  §'(2) = arg max g(z,9) ,
ZERL JER2
y+(33"ta§t) =Yt + BynVyFa(ys; T¢,9t)
G (Zeg1) = ¢ + Byn(y™ (e, ¢) — Je) - (12)

B.2 FUNCTION PROPERTIES

Lemma B.1. (Zheng et al., |2023) Given Assumptions|3. then F(x,y; &,7) is (v1 + L)-smooth
and (-1 — L)-strongly convex with respect to x. F(x,y; &,y ) is (y2+L)- smooth and (~yo— L)-strongly
concave with respect to .

Lemma B.2. (Zheng et al.l 2023) Given Assumptions 3. 1}{3.4] the following inequality holds:

2" (a5 &, 9) — 2" (y2; 2, 9)| < Cor_lyr — w2l

2" (ys 21, §) — 2% (y; 22, §)|| < Cz (21 = 22,
" (21 )—33 (22, 9)|| < Cor) ||931—l“2||
ly*(21:2,9) — y"(z2: 2, 9)|| < C 2o llzr = @2l
ly* (w“ﬁ) y (@ 2,92)[ < Cys_or = Dall
ly"(21,9) — y* (22, 9)|| < yggllxl — @l
1y (2, 91) = y* (2, 42) | < Cyz_ll91 — Dl , (13)
where
Cor,, = %7_1 7 Coz_ = %’y_l 7 Ca1, = 7171 I’
Cp =122 Cp =12 1 7O, +1.Cpz = 2 a4

Ve = L7 Ve qp— L7 Ver g — L e Yy — L

Lemma B.3. (Zheng et al.,|2023) Given Assumptions then Fy(y; &,9) is Ly-smooth, where
Ly = LCJ;}&A + L+ .

Lemma B.4. Given Assumptions by defining y* (&1, 9t) = yr + BynVyFa(ye; &e, ), the
following inequality holds:

I =" G 00 < sl g (15)
Proof. Due to y* (I, §;) = arg max, cga, Fa(y; ¢, Ut ), for any y € R?, we have
(v =y (&, 9e), VyFa(y" (&, §e); Te, §e)) < 0. (16)
By taking y = y;, we have
(ye —y* (2, 9¢), Vy Fa(y™ (2, 9¢); B¢, G¢)) < 0. (17)

In addition, because Fy(y; &, ¥) is (72 — L)-strongly concave with respect to y, we have

(yr — y* (B¢, 9¢), VyFalye; Be, 9) — VyFa(y* (Ze, Ge); 8o, G0)) + (2 — D)llye — y* (&4, 90) || S(IOS)

By combining the above two inequalities, we have

(ye — ¥ (&6, 9e)s VyFalye; B4, 90)) + (2 — L)|lye — y* (&, 91) || < 0. (19)
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Then, we can obtain

(v2 = D)llye — y* @e, G0)|1> < (Y (Z4, 9¢) — yes Vo Falye; Be, 9¢))
||H y+(§jt7@t) — Yt ||

< ||yt - y*(@taﬁt)HHVde(yt;ft».@t)” = ||yt - y*(ftaﬁt) (20)
Byn
As a result, we have
lye = y* (@6, 90| < =< 9" (@0, 9¢) — well - 21)
Byn(yz — L)
O
Lemma B.5. Given Assumptions[3.1}[3.4) then
lwe — 2™ (yes Te, 9e)|| < Vo F (e, yes Te, ¢ - (22)
v —L
Proof. Due to z*(yy; 24, §;) = arg ming cga, F(,ys; &4, §¢), for any # € R4, we have
(@ — 2™ (Ye: T, 9e), =V F (" (o5 ey Gt ) Yes Te, §e)) < 0. (23)
By taking z = z;, we have
(e — (Y T, Ge), Ve (7 (Y15 8o, Ot ), ye5 T4, 9e)) > 0. (24)
In addition, because F'(x,y; &, 9) is (y1 — L)-strongly convex with respect to z;, we have
(e — 2" (Ye5 Tt, Ut )y Vo F (26, Y85 T, Gt) — Vo F (27 (Yes T, Ut ), Yes Tt Ut))
> (y1 — L)||ze — 2™ (3 4, 90) || - (25)
By combing the above two inequalities, we have
(v1 = D)||lze — 2™ (g5 Bes 9) |12 < (2 — % (yes Bes Ge) s Vi F (@, Ye3 B4, 1))
< e — 2" (yes Te, Y| Vo F (24, yes 4, ) || - (26)
As a result, we have
llze — 2™ (yes Te, 9e) || < Vo F (e, yes Te, 9e)|| - 27
m—L
O
C OPTIMIZATION ERRORS
Lemma C.1. Given Assumptions andn < m, the following inequality holds:
EIF(Zo41, Geg1; Zer1s Gea1)] — EIF (Te, Ges Ee, 0e)]
< B9, P (3, 550 012 + TRV F (3, 5 B 5012 + (48,8202 L% — P2 2
< PRV F (e F 5P+ DRI, P g5 017+ (48,n82° 17 — PR )
3ﬁ 52772(72 +L) _ ﬂw _ _ =z = _
+ (T Bl ) + SNV L P @ G e ) — )
Y1 2_/317] = = 72(5 77_2) = =
- @Bz gy - 28 =D G (8)

2821 251;77

Proof. Because F(z,y;2,9) is (L + 71 )-smooth with respect to x, we have

E[F (Zt11, e; Tt, Ot)]

17
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S EIF(Ze, Gt &1, Ge)] + EUVF (Ze, Gei E4, G ), Trr — T)] + L —; %]E[Hftﬂ — ]
= L (e, 1, 50] — B LV e, s ), )+ 2 g
= EF (20 80, 50)] — DB F (@ 205017 - PV E] )

+ B9, P o) — )+ WE[HW

< B[P, 5080, 50)) — 2BV F s B 50112 — 2

+ BZ”E[||V$F(@,Q;:@,@) —w?, @9

where the last step holds due to np < m
In addition, because F'(x, y; &, ) is (L + 71 )-smooth with respect to y, we have

E[F(Zty1, Get1; Tt Je)]
Y2+ L

< E[F(Zeg1,t; B, 9)] + EUV Y F(Zg1, Ues Bes Ot )s Yep1 — )] + E||ge+1 — 9¢l1°]
= E[F(Zes1, Je5 B¢, 9e)] + BynE[(Vy F(Zeg1, s Be, Ge) — Vo F (Te, Ges &, Ge), Ur)]

B+ D, oy

2
_ _ = = _ _ = = _ - =z = ﬂ
< E[F(Zog1, §es &, 90)] + 4BynE[|Vy F(Z g1, G B, 9e) — Vo F(Te, Ges To, 9e) |I°] + ynE[” 7¢]|]

Ban?(v2 + L)
2

+ BynE[(Vy F (Zy, G; B¢, 9e), 00)] +
+ D19, R s B 017) + o) + B o)

< B[P i, 5 50, 50) + BV F (B i )

3 on* (2 + L
48, LPE |+ ( b | By e )> Bl 30

where the last step holds due to the following inequality.
BV F(Zei1, §e; &1, 00) — Vo F(Te, Gos &1, 00)|%]
= E[|Vyf(Ze+1,7¢) + w(yt —9¢) = V(@0 5e) = 125 — 90)|I°]
< LPE[[| 2041 — 74]1*] < B2n L*E[||ae]|] - (31
By combining Eq. (29) and Eq. (30), we have
E[F(Zts1, Gea1; e, 1))

< B[P0, 9 50, 90)] — 2RIV F s 205012 + CRIY, F @0, 506060 )
+ %E[HVIF(jtvyt;‘%hy:t) — U |?]
. 3 o7 (y2 + L
+ @882 L? - Emga )+ (2 4 A0 By ey 62

Moreover, according to the definition of F'(z, y; &, ), we have
F(Zg1, Goyrs 2, 90) — F(Tren, Jera; Sy, Oe)
_ _ Y1, - ’y Y2, - =~
= f(Z441, Jeg1) + §||$t+1 —&* - ?Hyt-i-l — ¢|?
_ _ Y1 = = Y2 - =
— [(@e41, Yeg1) — 7||-Tt+1 — Ze||? + ?Hyﬂrl —)?
71 _ =
) (||$t+1 - thI [Z+1 — $t+1||2)

18
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7

2 (e = &l = 101 = Bam) (@1 — 2011
’71(]— - (]— - an)2)

1 Ze1 — |

2
1-(1- A:v 2 = =
_ ’71( (A B 77) )”xtJrl _ xt||2
28307
2 — Ax = =
_ 71(2B Ban) | Zos1 — xtuz : (33)
zT]

where the third and fifth steps hold due to §t+1 =3+ an(itﬂ — Et).
Similarly, we have
F(Zti1, Yo 15 Ze41, ) — F (o1, Got; Bo1, Ge1)
= f(Zt41, Y1) + %Hfﬂrl = Fel® - %Hﬂtﬂ — Gul?
— [ (@41, Y1) — %”fﬂrl — &+ %Hﬂtﬂ — G l?
= Zlgerr = Gl = S MG - Gl

Y2 B -2 = =
= MH%H —ul* - (34)
2B8yn
By combining the above three inequalities, we have
E[F (Zt+1, Yot 15 Bet1, Ger1)) — BIF (B¢, Ge; T4, 1))
= E[F(Zt41, Jet1; 41, Gea1) — F(Zegr, Gerns g1, Oe)

+ (F(ftﬂ, Yig1; Beg1s Gt) — F(Teg1, Yegrs ét,f/t)) + (F(T/tﬂaﬂtﬂ; Ty, G) — F(ft,gt;%taﬁt)])

B;v _  _ x = B _  _ x =
< S BV F @ e 50) 2] + S5 ELIV F @, B ) )
+ ﬂ;nE[Hva;F(jtagt;-%tvﬁt) — a)?]
B\ - 38,n  Ben*(ve+L)
+ (4BymBin*L* — e VE[|ze %] + ( 4y + 5 VE[|5e]|?]
Y1(2 = Ban) = = o 2Bm—2) - =0
— ———E[||Zt41 — #lI"] - ——5—E[llge+1 — "] - (35)
28zm 25y"7
]

Lemma C.2. Given Assumptions[3.13.4] the following inequality holds:
E[Fa(Ges1; Zry1s Ger1)] — BIFa(Ge; ¢, 90)]

o 2 2L A
> 8,1V, Pl ). 0] = P B )+ 25
Yy

+ %E[@Hl — By D1 + By — 2$*(?3t+1§§5t+17§t)>] . (36)

[IGe+1 = el1%]

Proof. According to the definition of Fy(y; &, ), we have

Fa(Jes1; Ze41, Gev1) — Fa(leq1; Begr, D)
= F(@" (Je415 To415 Ye1)s Jeg15 Doy, Yerr) — F (@ (Jep1s Ters Ue), Ue1s Tea1, Ut)
> F(x"(Je415 Toa 1, Uer1)s Yot Terts Yer) — F (@ (Fe1s Torr, Yer1)s U1 Tegrs It)

Y2 _ = _ =
= §(||yt+1 - :UtH2 - ||?Jt+1 - yt+1||2>

19
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72(2 — Byn) = =02
=1 — Gl (37
28yn

where the second step holds due to z* (¥4 1; %141, J;) = arg ming,cga, F (2, Jig1; Z411,U¢), the last
step holds as Eq. (34).

In addition, according to the definition of Fy(y; Z, §), we have
Fa(Fes1; &g, Gt) — Fa(fer1; To, 0e)
= F(2" (Ut+15 Te1, 0t)s Yea 15 Lo 1, Ue) — F (@ (Ge15 Do, Ue) s Yer1s e, Ue)
> F(2" (Yeg15 Tet1, Ut), Yet1s Te1, Ue) — F(@" (Geg15 Tet1, Ue), Yer1s Tes Ye)

= %(||=’E*(Z7t+1;§t+1737t) — & |? = 12" Grrrs Eogr, 9e) — 24l|°)
= %<x*(gt+l§§t+la§t) — &1 — (@ (Geg15 Beg1, Oe) — 2,
(Gt 15 Bet1, Ot) — Ter + (@ (o1 Ber, Ge) — &)
= Ag (Beg1 — To, Beg1 + B¢ — 20" (Peg1; Begr, Be)) (38)

where the second step holds due to * (;11; &¢, §) = arg mingcga, F (2, Jet1; 1, §¢), the fourth
step holds due to the fact a® — b?> = (a — b)(a + b).

Moreover, because Fy(y; 2, §) is Lq-smooth, we have

_ = = _ X = _ X = _ _ Ld _ _
Fa(Gesri e, 0) > Fa@e &0 90) + (Vo Fa(Ge 6, 00)s Yoo = Go) — 57 e = el

2,2
= Fg(Js; 1, 9t) + Byn{VyFa(Je; Tt, Ut), V) — (39
By combining the above three inequalities, we have
E[Fa(Ges1; Zeg1s Ger1)] — B[Fa(Ge; ¢, 9e)]
= E[Fa(Je+15 Ter1, Y1) — Fa(Ges1; Teg1, Ue)
+ (Fd(ﬂt+1;§t+1,§t) - Fd(§t+1;§3t737t)) + (Fd(ﬂt+1;f§t>§t) - Fd(ﬂt%@ﬁt)])
Ry AN /82 °L (2 _B 77) = =
> BynE[(Vy Fa(Ge; Te, 1), 0r)] — TENN5:2) + PR Gyt — G
26yn
+ %E[<%t+l — By, Brg1 + B — 2I*(ﬂt+1;5t+17§t)>] : (40)
O
Lemma C.3. Given Assumptions[3.1}3.4] the following inequality holds:
Q1) = q(&0) < D {Feer — G, Gen + G0 — 207 (30,37 (Fe0)) (4D)

Proof.
(J@tﬂ) - Q(ét)
= 9(Zt41, 0" (Te41)) — (@4, U™ (24
= Fp(* (Zt41, " (Z141));
< Fp(a* (2141, 5" )i

($t+1 ) )
< Fp(ff*(%t»y (xtﬂ)) §t+1 .@*(e%tﬂ)) - Fy(x (%tvg*(éwrl))'ftvg*(-%tJrl))

= F(a™ (20,9 (2041)), ¥ (" (20, 9" (Z141)); Boa 1, 0 (Be11) )5 g1, §* (F141))
— F(z* (&0, 9" (Z041)), " (@ (20, 9" (£441)); B, 9" (£041)); B0, 9" (£141))
< F(2* (20,0 (2041)), " (@ (B0, 0 (Z041)); g1, 07 (£141)); Begr, 7 (Be41))
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976t+1)) ( (xm 7" (£t+1))3 »%t+17 7" (£t+1))3 »%m g @tﬂ))

i %/ Ak * /% A%/ Z =
%(Hx T, 9" (Fe41)) — xt+1|| 2" (Z+, 9 ($t+1))*$t||2)
= %@*(éhy*(m» G = (@7 (@05 () — ),
a (&, G (Er41)) = Togr + (@ (30,97 (F141)) — &)
= 721 <§t+1 — &, D1 + & — 227 (24, 9 (Be41))) 42)
where the second step holds due to g(Z, §) = min,cgra, Fp(z; £, ), the three inequalities hold due
to y*(z; 2, 9) = argmax, F'(z,y; &, 9) and F,(x; &,9) = F(z, y*(x; £,9); £, ), the second to last
step holds due to the fact a® — b? = (a — b)(a +b).
L]
Lemma C.4. Given Assumptions[3.1}3.4) the following inequality holds:
||95*(5t+17@+(§7t+1))*x*(itﬂv (It+1))||
2 C’ 2 A 0\2
2 2 Bs 24 2 2% 2 (1= Byn) gt 2
S A [ @er — dl|” + pomny ol o7 Ths e 15 — 5 (Zeg1)
(43)
Proof.
s —L * ~ = Ak (5
12 2 (#eq1, 5 (&141)) — 2 (B4, 9 (fﬂt+1))H2
< Fp(@* (B0, 9 (£041)); 41, 9% (Fe41)) = Fp(@ (@41, 9% (Be41)); Beg1, 07 (£141))
< max Fo(a™ (&40, 07 (£041)); 8141, 9) = Fp(@™ (Zr41, T (#e41)); Te1, 97 (E141))
9
< max (@ (Z41, 07 (@041)): 41, §) — Fp(@™ (@1, 7 (Z041) ) a1, 7 (T041))
g
1 =
< @HVpr(fC (@41, 0 (@e41)); Tag1, G (Ta41)) |
= E”y*(x*(‘%ﬂrla I (E041)); Beq1, 07 (B041)) — 07 (@) |
2
'7 * * /[~ ~ = = ~ = = S x/~ = =
= ﬁ”y (@ (&r11, 9 (Ze41)); Be11, 9 (Fe41)) — G — Byn(y™ (&, 9e) — yt)||2
7 Sy = S OE2 3 27% = S OEN2
< ;||y*(5%t+1v@+(ﬁt+l)) =y (2, )17 + (1 = Byn) ;H@t =y (@, Ue) |
<ﬁ * /= At (7 k(5 a(E Qﬁ*:A+7 (T2
S ==y (@41, 07 (@ea1)) — ¥ (@, 97 (@) I7 + —= My (86, 97 (Ze41)) — ¥ (e, G
A 273 = INTD)
+ (1= Byn) ;H@t —y* (2, G|
2,)/202 202
T yz ( /B 77) A ~ ~
< Tnyt+1 — &+ TyHy (Zr41) — 0l + m TyQ”er(It+l) — 9el?
2’7202 2 2 A 2
2, <2 2 (1—=5yn) ot 2
< TnyEtH — & + 7 <Cy3y + N 19: — 57 (@)1 (44)

where the first step holds because F),(x;#,9) is (y1 — L)-strongly convex with respect to x, the
fourth step holds due to Theorem 5.2 of (Yu et al.| 2022) with PL property being a special KL
property, the fifth step holds due to the definition of F}, the sixth step and the last step hold due to the

definition §+ (Z¢11) = G¢ + Byn(y* (T4, 0¢) — Ge)-
O
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Lemma C.5. Given Assumptions[3.1}3.4] the following inequality holds:
E[l|2* (G415 Fe41, 0e) — 2 (@er1, 07 (Z41)) 1]
<10830°C Bl — ¥, Pl e i) ) + 1080°L2C2, Bl — a* (gt 0. 50)|)
1 o
2, +EEN 2
+ 503;MC§;@EH|@ = Ze|?] + 50% JEllg: - g (@) (45)
Proof.

Ell|a* (Jes1; Te41, ) — &% (@41, 91 (@) 7]
< C [||yt+1 — Y (41,

= C [||yt+1 -y (3:3 f&

NN N @>

_|_
"‘il/ (mtyyt) -y (9Ct+17 +y ($t+1,yt) y*(fwrl, ($t+1))|| ]
<5CH El[gir1 —y™t (&, 00)| ]+5C2 Ellly™ (&, 9¢) — %ell ]+5C2 Elllg: — v* (&1, 50)1%]

+5C§;£g [y (@ 9e) = y" (@1, Ge) ]+502 Ellly"(&t+1,9) —y ($t+1 §F (@e))I]
< 10@377205;ng[||@ — VyF(Zy, Gr; T, 90)))°] + 1055 QLQC%M 1Ze — 2™ (Fe; T4, 90)]17]

1 o
#5C,, (14 G ) Bl G~ il

+5C5 Cor Ell|2e — 2" +5C5 Cpa Elllge — 97 (2011)]1%] (46)
where the last step holds due to the following inequality:
E[l|ge+1 = yF (24, 90) 7]

= E[|5: + Bynvr — G — BynV y F (2" (G5 1, Gt ), s T1, 91 ||1?)
= Bon’El||vr — Vy F(x* (§e; Te, 0t ) s B, 5e) 1]
< 2B;0°E[||0; — Vy F (&4, Gs; e, 90) 1]
+ 2820 B[V F(Ze, §es &t, Gt) — VyF (@ (e Be, G1), Ut Be, )|
<2B00°E|[0; — Vy F(Ze, Tt B0, 90)|I°] + 28,0 L*E[||Ze — 2% (56 26, 90)[I] . 47

Lemma C.6. Given Assumptions B.4| the following inequality holds:
E[Ig: — 97 (o) 1%] < 2B[l[Ges1 — 96 1%] + 46;0° By E[[2:]|)
452 .
Y7 — y (&, 9] - 48
+ 53(’72-@2 [”yt Y (th,yt)” ] (48)
Proof.

*]E[Hyt JF (@e)]

< E[l[ge+1 = Gell*] + Elllge+1 — 97 (@4 II°]

<Ell[ge1 — 9ell*) + BUIGe + Byn(@esr — 90) — e — Byn(y™ (e, 91) — 9) 1)
=E[[|§e41 — 9el*] + B§U2E[||§t+1 — " (&4, 1) |I°]

< E[lGe+1 — 3el*] + QBEWQE[HZ%H — gl + QBSUQE[H% — (&, 90)|1?]

232

E[||ge+1 — 9ell?] + 2820 B20E[||o:]12] + WE[H@ -y @)l 49)

22
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Lemma C.7. Given Assumptions 5.4} the following inequality holds:
Efl|ge =y (&, 9)|1°] < 4850° L*E[| 2™ (Fe3 &1, 9¢) — 2¢|?]
+ 4B RV y F (Tt §e; T4, §e) — 0:l|%] + 28,07 E || 9| - (50)

Proof.
Ellly™ (2, 9:) — :1I°]
< 2E[[ly* (£, 9¢) — Ger 1P + 2E [ Fegr — Gell?]
= 2B[||G: + BynVyFa(Ge; &1, ) — G — Bynoel|*] + 28,0 E[[[5:]°]
= 28.0°E[|Vy Fa(§e: B¢, §) — 0el1?] + 28,07 E[||0.]|]
< ABNE(Vy Fale; &1, 9e) — VyF (2o, s B, 9e) 7]
+ A8 RV y F (e, §e; 1, 0e) — 0ll°] + 28207 E[|5:]1%] (51)
< 4G50 L*E[||2* (§e; &4, o) — Tl|*] + 4850 B[V y F (24, Ge3 1. 92) — 0e1%] + 28507 E||0]|”] -

O
Lemma C.8. Given Assumptions[3.113.4} by defining
Pr = E[F(ft@t% Tty 0t)] — 2E[Fa(Ge; &, )] + 2E[q(Z4)] | (52)

by setting n < 5 S 5 and B < min{ 1202;3, ”51236&;7;6“ }, then the following inequality

holds:
Pris — P < B[V, B @i 0501 — DB, F e s )
+ ﬁ;nE[Her(jtvﬂt;%t,@) - ﬂt||2] + AS]E[|‘va(jt7?7t§§_3t7§t) - 77t||2]

i (4/3ynﬁ§n2L2 5’”) Efla|?

3 B2n*(v2 + L) 7 -
(52 2p, 4 30 | Dy + 44 B2 y1 + 24280% — 2 Byn | Bl

4 2
2~72C? 3
R 4 T2Cn 2 — B, = =
+ o 0C5 Cp + ——g——" - BB gy, - g
6827 Yeg v Hw 203:m
2—f . =
+ <2A1 — W) EHlyt+1 - yt||2] ) (53)
y
where

; 4 293 (1= Byn)?
A =6 1002, 2% + =20 4 —E ),
1 Y1821 ( Thas Yig | oy — I 1 v2, B2n?

. 1 BQ
Ay = 6071 B,nC% (1 + ) + A17 )
Tueg an*(v2 — L)? o(v2 — L)?
As = Byn + 1200 BB Cly  + 44afir” (54)
and
8, = p (1 —L)? 5, = (v = L)* (2 — L)*p
Tooe4r2 T E 24 20 72 (EA2 2 ’
_64L2 X 642+, L (571u F1642 (71 — L))
cgy:O(l)

c5,=0(1/k)

(11— L)* (e — L)*
642 x 480733 L2

CBy :O(l)

By = B (55)
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Proof. Based on Lemmas[C.1} [C:2] [C.3] we have
Pt~ Pr < =22 BV, F @15 5 017 + 2RIV, 30, 501)

+ P9, (s B — )+ (4@,77/32 212 ﬁ”) Eflla |

+<ﬂ§n2Ld+3ﬁy”+ﬂ"”“”)E[n A7+ < m@ - /3”””)>E[||%t+1ét|21

4 2 2 ﬁx

T (—”2‘5”’> Ellesr — 5112] — 28,mEL(V y Fa(is B, o), 1)
28ym

+2NE[Z 1 — &6 2 (15 Ber1, 0e) — 27 (20,57 (Ze41)))] - (56)
For —28,mE[(V y Fu(s; &¢, Ut ), Ut)], we have
= 2B,mE[(Vy Fa(ye; s &y, Ot ), Ut)]
= =28, nE[(Vy Fa(Ge; B, Gt) — Vi F(Ze, G3 T4, 1), 00)] — 28,mE[(Vy F (T4, G5 4, G1), 0)]
= —28,mE[(V, Fu(9e;24,9¢) — V F(ﬂﬁt@t;%t,@),@tﬂ
- 5@/771[“3[”v F (24,56 %, 00)1°) = BynEl5el”] + BynBIIVy F (Z¢, G5 &1, §e) — e)?]

< 6yn;]E[||vad(37t;~%t,§t) — Yy F (T4, §o; &1, 90) 1*] + vBynE[ [0 ]|]
— Byl y F (@1, G031, 90) %] = BynEl|0e]|*] + BynBlIVy F (e, Gas Te, 92) — 0[]
= By Bl Faliis 1,0 — VP (@ s £, )
- 5y77E[||V F (24,56 &0, 90)17] = (1 = v)BynEl|[0e|*] + BynEll[Vy F (20, Gs &, §2) — 0]
= 5;;77 ]E[HV F (2™ (Ge; &0, 00) Tt B, 0e) — Vo F (Ze, G5 %1, 1) ||
- ﬂynE[IIV F(24, 50 @0, 9017 = (1 = v)BynEll[0e|1°] + BynEll|Vy F (20, §s &, §1) — 0]
(e
(Z¢

iy, Tr) — ift||2]

365 8, 9017 = (1= v) BynE[[0e]1*] + BynEll|Vy F (24, Ges B, 9¢) — ﬁt”gi)

< ﬁyan Efl|="
- ﬂynE[llva

where the third step holds due to Young’s inequality 2a”b < 1||a[|? + v||b]|* with v > 0 being a
constant, and the last step holds due to the following inequality:

E[”va(x*(ﬂt;ﬂTCqut) Qtﬂ:?t,ﬁt) -V F(jtagt;étagt)”Q]
= E(IVy f (@ (§e; &1, 90), G) — Vo f (26, 5)|17) < LPE[|la* (Ge; &0, 9) — T]P] . (58)

For 2v1E[(Z441 — &¢, 2 (Yeg1; Beg1, §e) — @* (&4, 97 (£441)))], we have
2NE[(Zeg1 — T, 2 (Get1s Betr, Gt) — (B, 7 (£e41)))]
= 2nE[(Z41 i
+ 271 (Zig1 — B, ¥ (Z441, 77 (Fe1)) —
[

|1 — 2¢))%] + 67159077]]3[”95 (Yes1; Bes15 Ot) —

— B4y @ (Yeg15 Teg1, O) —

+ 2711E[vat+1 = &yfllle* (@er1, 5 (Ee41) — 27 (@6 97 (Ter1)) ]

< (SgilnE[H%tH — &¢)|%] + 671 BB (|2 (Fes 13 Fer1s G) — 27 (Feg1, 97 (Fe11))||?]

+ 271G ElllZe41 — 3], (59)

where the second step holds due to Young’s inequality 2a”b < L||a||*> + v||b]|? with v = 6/3,n and
a”b < ||al|||b]|, and the last step holds due to Lemma|[B.2}
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Then, by plugging Eq. and Eq. into Eq. with v= %, we have

Poss =P < =BV F (o 5B, G0 — PRI, P (s BN

+ %E[me,yﬁét,ﬁa — ||’ + BynE[[|Vy F (Ze, 513 #1, Ge) — 04 ]1%]

2,.2 L
+ <4Bynﬁin2L2 - %ﬁ) Efj|a|*] + (BinzLd 3P By 0ot L) ;ﬁyn> E[l|o1?]

4 2
2 - A:z: = = 2 - 3 = =
t(2mey + 2 B g gy (228 B gy e
768 28:n 268yn
+ 88y nL2E[||* (Fe; Fe, §¢) — Te||?] + 651 BBl (Fegr; Fesrs ) — @ (Za1, 97 (Feg1))|1?] 0
(60)

For E[||2* (Fo41; #1141, 91) — 2* (141, 97 (
Elll2* (§e415 Fe41, 9e) — & (Frgr, 0 (£042)) 1]
<R[ (Frg1; Ber1, 91) — 25 (Zeg1, 97 (Fe41)) ]
+ 2B [ (&4 1, 91 (141)) — 2 (Zeg1, 7 (#e40)) ]
< 205§W20§;iQE[||75t — VyF(Ze, §e: B, 0) 1) + ZOBEUQLQC%ME[H@ — 2" (Ge; &, Ge) ||?]

#111))||?], we have

‘]

+ 1002yry (1 + W) E[||y+(l‘ta Z/t) - ytH2]
Y

+ 10051 021 E[H%t — Bl + 1005; [Ilyt g (Ze1)17]
2 202 2 A \2
4 2 ywy 4 272 2 (1 - ﬂyn)
+ WL n E[l| &40 — &%) + m—L pu Cy?;@ + 35772 Eflge = 97" (Fe1)I]
= 2082 202 E[||v: — Vy F(Ze, Gt ¢, 50) |*] + 2055772L2055ME[||@ — 2" (s &0, 00)|17]

1 = = _
+ 10C’2yw <1 + W) Ellly™ (&, 9:) — Z/tHz]
Y

272C?
4 21 _ _
2 2 Y% s A2
(1OC yxynyy + m—L 1 )E[th Zeg1|?]
4 23 (1 - Byn)?
oo Cy 2 (g2, L By

where the second step holds due to Lemma|C.4|and Lemma|[C.3]

By plugging the above inequality into Eq. (60), we have

Prir — Pu < =PRI, P (G s B0 GO — PRIV, F i )

+ B;n]E[HVxF(ft,ﬂt; To,00) — Wwl”] + (Byﬁ + 12071&77@37720;}@@) E[||VyF(Z¢, §; Ze, Ge) — 0e]|?]

2,2 L
+ (a8ms2Pr? - ) Blja?) + (/ﬁn%d i 3 Bt D) ;Byn> LI

4 2

2 2 4 2,-)/5051}:1/ ’71(2_/3%77) =~ =~ 112
Lt 6m (1002 Ch o+ ) = DL g - )

| 2nCoy, + ——
( @ 65 s9 Yoo oy =L p 2B,m

=]

2 — 3 = = A TR ) T
i (= 2C PNy, )+ (36,082 + 1200 BB L2CY Bl (s i) — 7
26y77 Yy

A 1 ~ ~ —
+ 60’}’13:1:7]093;&@ (1 + 52772(72[/)2) Elly™ (&1, 9¢) — 5:lI°]
v
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5 2 2 4 273 2 (1- Byn)Q
+ 671ﬂx77<10C Gz, T (Cyfy + 35772) E[l|g: — 5F (@e)11%] - (62)

Furthermore, based on Lemmal[C.6] we have

Pry1 — P < *%E[

+ ﬁ;nE[HVzF(ft,ﬂt; Ty Or) — Wel|?] + (ﬂyﬁ + 12071Bm775§772€§§w) E[||VyF(ft,ﬂt;9§t73§t) — T¢|?]

i <4ﬁynﬁin2L2 - 5”) Efla:|?]

- _ = = 6 _  _ = =
192 F @513 0, 50) 2] =SSPV, F (@, s 1, 5001

3 Byn*(v2 + L - 7 .
+ <62 2La+ ”Byn + (22 )+4A16§n26§n2*§ﬂw E[||v|1%]
2 202 A
4 TNVl (2 Ben) = P
2 1 2 2 @9\ _ _ T Elll P
+ ( 1Ca1, t o i +6'7lﬁw77( 0C2, Co + PO ) o (lZe41 — 2el|]
2 ~ ~
(2 - 22Ny gy
28ym
+ (88,112 + 1200 BunBBPL2C Y El|a" (30 80, ) — )
) 1 432 -
21 1 A Y Eilllut (7., G, — 7. 112
+ (60%590’70%( *ﬂ;an%L)?)* 165(’72L)2> o e =l (69

where A1 = 6710, (1002 e (G ))

vey Yig | m—L p Yz B2n?

Moreover, based on Lemma[C.7] we have

Bzn

Pry1 —Pr < — 5 E[|VoF (2, §e; 21, 90)|1%] — ﬁynE[HV F(Z4, 523 8¢, 1) |1°]

+ PR, P (@ s e ) — )
+ (ﬁyn + 120 Ben By Cl  + 4A2ﬁ§n2) E[||VyF (%1, o3 1, Ge) — 00|°]

+(4ﬂynﬁin2L2 5“7) E[l[a:|/?

3 Bin?(y2 + L) R 7 )
+< B2n°Lg + By" + Y 5 +4A1 B0 Bon” + 2A28,m% — gﬁyn E[[|54]%]
2720 A
4 TR =B \pa .z
2 Ty _ xr - _ 12
+ (2’710 + B +6715z77(100 .G, P S ) 2B E[[[e41 — &[]
72( —57,,77) = < 12
+ (241 — ——— )E[l|9t+1 — G:|]
( Qﬂyn )
+ (88,1L% + 1200 BunB2nPLCE  + Ao B2 LY) Ella* (5 81 61) — il (64)
442

— 3 2 1 v
where Ay = 6071ﬁzncﬁw (1 + ggnQ(er)z) + A B0 D
Finally, based on Lemma[B.3] we have

(As+7B,n)L?  Bun
Pi1 — P < ( = L) 5
Bzn

+ =5 EllIVaF (2, s Zo,00) — wl|’] + ASE[|Vy F (¢, §t; &1, G1) — 0]

— — ~ ~ /3
>E[IIVIF(xt,yt;xuyt)IF] WEHIV F(Z4, 563 %1, 02) ||°]
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+—<4Bynﬁin2L2—-an)1EWUA2]

3 B2n*(v2 + L) . 7 )
+ (62 *La+ By" + = +4A1 B0 Ban” + 24280m% — 50un E[||oe?]
293C? A
4 ANty Y1(2 = B21) = z

2 2 Yag \ _ z - TD

+ (2710 + B +6’Y15z77(100 O i, T WL g ) % E[l|Zt41 — @[]
’72( —57;77) = =2
+ (241 — ——— )E[l|9r+1 — 9: /7] , (65)
( Qﬁyn )

where Az = 8,1 + 120m BonB2n2C%  + 442822
y&g
Then, for E[||V . F(Z, §s; T+, §¢ ) ||?], we set

(A3 + T8> Ban
(m —L)? 2

BN Bzn
o ST ©®

1 A
= m (85y77L2 + 12071&7753772[,203;% " 4A25§772L2> B

Specifically, we enforce
86ynL> _ fan
(m-L?~ 87
2272012
12071&7]5 L=C7, 2l Ban
(71— L)2 =32%16°
4pyn°L? < _Ben
(n—L)2 2~ 32x16"
For the first inequality in Eq. (67), we set

(67)

(- L)
6412
s, =O0(1)

By = Bz (68)

For the last inequality in Eq. (67), from the definition of A; and A, we enforce

62 2 2 < 6w77
(m1 — L)? = 32x64°
=L\ (r-L)? (=L m—L n  p2p T 32x647

6071617702

AL? s AByn*  _ Bum
(y1 — L)? vis Yoo (79 — L)2 ~ 32 x 64
AL S4 N2, AR Ban

6 N < . 69
= e e O T e S e 69)

we obtain

To solve the first inequality in Eq. 1@) since Bwn <landn < 1,fromC,: = 71 b,
yzy

L2

B < o075 (70)

Here, we have also shown that the second inequality in Eq. holds.
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Then, to address the second inequality in Eq. , note that since Byn < 1, it follows that 1 — Byn <1.
Consequently, we obtain

A (71— L)4(’Y2 - L)Qﬂ
ﬂx = ﬂr ’ 7D
24 x 642, L2 (57%/4 + 1673 (1 — L))

¢, =0(1/k)

Similarly, for the third inequality in Eq. , from C\2 = 2, we obtain
&9

(11— L)*(2 = L)*

- - 72
ﬁ = 642 x 480772 L2 (72)
c5,=0(1)
Moreover, to solve the last inequality in Eq. (69), we obtain
—1)3 —L)?
8, < pn =L (2 = L)” o) . 73)
512, /6’ylcﬁmvgcﬁ~y
Finally, by plugging Eq. (66) into Eq. (63), the proof is complete. O
D KEY LEMMAS RELATED TO THE DECENTRALIZED SETTING
D.1 CONSENSUS ERRORS
Lemma D.1. Given Assumptions the following inequality holds:
1 K
_ k
= > Bl — p)
k=1
1 & 11
_ k k B), g0k
< Vg 2 Ellp o)+ 30t s e DU Bl — VPO @ a7
1 k=1
K K
9L +17) 1 k k 9% 1 k k
+ 2L LS el — o)+ 2 S B, - o
k=1 k=1
9’y K 1
k) ok
I e (74)
k=1
Proof.
1 K
_ k
7 O Ellperr = piih 1)
1 D 2
= wEllPr1 = Praallz]
1 _
= EE[HPt — U + U — PW + Uy — Upsa ||7]
1 _ 1 _ _
<(1+ a)?E[IIPt - PWIE]+ (1 + 1/G)EE[|| — Ui+ U1 + Up — U |17
1 _ 1
< (1L+ N[ Py — BlI3] + (1+ 1/a) U, — Vs3]
1 _ 1
< AE[IP — Pill%] + T e EllU: = Urallz] (75)
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where a = % Then, we have the following inequality to complete the proof:

1
E[|U: — Ul 7]

1
k k
= K E E ||U§+)1 - ( )||2]
k=1

K
k) (k). a(k) (K
§jn1—mm< — Vo FW () 3™ 5 eb))
k:
k k) (k) A(k) . (k k
+ Ve F(k)( 1(s+)1,yt(+)1, 1(5+)17yt(+)1v€t(+)1) *U:E )HQ]
K
k) (k). a(k) (K
Z Il 7pzn2u§ )erznszF(k (2 ( )’yg ), ( ) ( ))”2]
Kz
1 K
k k L(k) Ak
Z Il = e Ve P @y 20, 57 + pan? VaF® (2 M5 2" 55017
1 X
k), a(k) ~(k). o(k k k) | alk) (k) o(k
+3?Z =V F(k)( . ( ), ( ayt( ),§§+)1)+VxF(k)(x§+)l,y§+)1,z£+)1,y§+)1, t(+)1)|| J
k=1

K
1 k (k) ~
<3020 = N E[lut® — Vo F® @My M2 5()|2] + 3p20" 0

K
k=
1 K
k & k k) | A(k) (k) k
+3 Z [||—V F(k)( () () , 7§t+1)+vwF(k)(x§+)17yt(+)1v 1E+)1ayt(+1’ t(+)1)|| ]

1
1 k k) (k). (k) A(K)
fgdﬁEZMwP—mﬂW<wwﬁhwnm%ﬁ#¥
k=1

N

K
1 k k k)
+wﬁ+@ggﬁwgﬁ@m<wﬁ §jm@—%n1
k=1

k ~(k
+971KZEH i — 21, (76)
k=1

where the last step holds due to the following inequality:
k k) ~ ~(k k ~(k ~(k
E[| -V, F®) (@F a8 50 e®) 4+ v, F® @)y 052 g0 e
k k k ~(k
E[|| — Vo f® (! @>§&>w<”7(6
k ~(k
+ Vg f(k) (xt-i-l’ yt+17 §t+1) + ’yl(xi—i-)l - 95§+)1)||2]
k k k k k k
< BE[| Vo fP (@, yths €)= Vi f O @™y eI
k k k k
+33E[|lz) — a2 + 32E[|1207) — 27|12
k (k k (k k ~(k
< 3(L2 +4D)E[|z{) — 2|12 + 3L2E[ly ) — ot 12 + 342E[25, — 2712, D)
O

Lemma D.2. Given Assumptions the following inequality holds:

K
K ZE qe+1 — Qt+1|| ]

K K
1 1 k k) (k). (k) ~(k
2 I — a1+ 303t = o DBl =V P @y a0 )|
k=1
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9L2 1 & k k L +’Y us k k
Z [ty — 2|12+ ==—2 Z [lyess — w1%)
9'72 - (k) ~(k)p2 24 0 1
ji: gy = 98717+ 3pyn'o® —; - (78)

This lemma can be proved by following Lemma|[D.1] Thus, we omit its proof.
Lemma D.3. Given Assumptions|3. when 535 < 1 A the following inequality holds:

B[l e — Kol < (1— “;A));{ZEHI@—”?)IQ]

477ﬁ2 1 E 4776 277,32 1
/\2KZEIIx — 2|2 + T /\QKZEllpt P2 (79)

Proof.

1K1 — Xesall?
= ||Xt + U():(tﬂ - Xt) - )T(t — an(Xt-i-l — ):(t)H%
= ||Xt + W(XtW + Bm(XtJrl - Xt) - Xt) - )T(t - UBI(XtH - )Et)H%
= (1= ) (Xe — X0) + (KW — X0) + 0fa( X — Xo) = 0Bu(Kerr — X013
< (L=n)IXe = KXol + | XeW = Xi + Bo(Xesr — X2) = Be(Kopr — Xo)lI%
< (1=l Xe = Xel3+ L+ I XW = X3+ (L + /B2 (Xerr — Xo) — (Ko — X012
< (=) X~ Xeld + L+ MK — XellE + 201+ 1/)nB2 )| Xesr — Xesall?

+2(1+ 1/e)nB21X; — Xe||3
1— )2 .= 4n 32 _
< (1= TN g, Rt 2 - Rl
4 1—A
K
n(l—X%) -2\ 1 (K
< (1— ) = S ElE -
k:l
4nﬂ2 1 A2 4775 27752 1 k) jj2
AQKZE 1% + AzKZE e — 2™ 11%] (80)

where ¢ = % the second to last inequality holds due to Bm < %, and the last step holds due to
Lemma O

Lemma D.4. Given Assumptions when B < %, the following inequality holds:

; T=AD\ 1~ -
Bll¥in - Tl < (1- T522) £ S Bl - a1
k=1

a1 & n 277ﬁ2 1 .
AZKZEHyt w7+ AQKZIEH% a1 @D

This lemma be proved by following Lemma|[D.3] Thus, we omit its proof.
Lemma D.5. Given Assumptions the following inequality holds:

K
1 _ k 1 _
= ;wam — 217 = ZEIX e — X E
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K
(1l —X)\ 1 _ ®)2 2776 1 (k)2
< <1— 2 ?;E[”xt_ I AzKZE [pe —pe (7] (82)

This lemma can be proved by following Lemma[D.3] Thus, we omit its proof.
Lemma D.6. Given Assumptions the following inequality holds:

K
1 )
2= D Ellge - I (83)
k=1
K K
n(l =X )\ 1 k) |12
<(1-15 2 Blla o1 AQKZEuqt—qt R

This lemma can be proved by following Lemma[D.3] Thus, we omit its proof.

D.2 GRADIENT ESTIMATION ERRORS

Lemma D.7. Given Assumptions|3. when n < \ﬁ the following inequality holds:
K
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where the last step holds due to the following inequality:
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Lemma D.8. Given Assumptions|3. when n < \ﬁ the following inequality holds:
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1 k B 50 4
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ALt ZEH Ul L Y et ZEuyﬁﬁl—yt 2] + 2020 0> .

This lemma can be proved by following Lemma [D.7] Thus we omit its proof.
Lemma D.9. Given Assumptions|3. when n < \ﬁ the following inequality holds:

K K
1 k) (k) a(k) Ak 1 k
E[HE Zva(k)($£+)1aZ/£+)1a £+)17yt(+)1) K U£+)1||2]
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This lemma can be proved by following Lemma [D.7] Thus we omit its proof.

Lemma D.10. Given Assumptions 3. when n < \ﬁ the following inequality holds:

(k k ~(k ~(k k
E[[|V, Fk t+)1»yt(+)1, 1(5+)17yt(+)1) - Ut(+)1|| ]
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k:l

Similarly, this lemma can be proved by following Lemma[D.7] Thus, we omit its proof.

D.3 OTHER AUXILIARY LEMMAS

Lemma D.11. Given Assumptions[3.1)[3.4] the following inequality holds:
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where the last step holds due to Lemma[D.3] O

Lemma D.12. Given Assumptions[3.1)[3.4] the following inequality holds:

k k = ~(k
= ZE It = 9t 17) < BElges1 — 5] +6—ZE - 31
7752 12082 2mB2 1 &
AQKZ:IEIIyt ]+17>\217>\2KZE”%_(]1& 7. (93)

This lemma can be proved by following Lemma|[D.T1] Thus, we omit its proof.
Lemma D.13. Given Assumptions[3.1{3.4) the following inequality holds:

K
1 k (k k
7 O Elles — V7 < 1207 ZE — )]
S
_ k _
+ 3827 2 Y Ellpe —pi" 7] + 36207 Ellla ) (94)
k=1

Lemma D.14. Given Assumptions[3.1}[3.4] the following inequality holds:

K

1 k (k

7 O Elluts — I < 127 ZEny—yﬁm
k_
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K
1 _ _
+ 38507 2 > Ellla: — ¢ |P) + 385 E o) - 95)
k=1

Lemmas [D.13] [D.14]can be proved by following (Gao, 2022).

E PROOF OF THEOREM

We first propose a novel potential function as follows:

K
1 .
Li=Pit Bl Y u - Zv FO (@, 4052, 57|17
k=1

K K
1 k 1 k ~(k) ~(k
ekl Xt = g 2 v F @ g )
k=1

m—ZE 1, — 212 + ca— zEny—m +c—ZE|xt—mt %]
k=1 k=1

K
k
+ch2Euyt i ||]+CGKZE||pt P + e 2 Ellg - o)

K
1 k k) (k). (k) A(k
sz 2 Efluf = Vo F® @,y a4, 9P
k=1
K
k) k). A (k) (K
+cQKI;E|| o = 7,0,y 6, 52, 96)
where the coefficient {c;}?_, are positive.
Since
E(| Vo F (&4, §t; &1, 1) — e ]
K
R 1 k) (k). A(k) A(k
< 2B[|VaF (@0 s ) — 32 D Vol ® (@™ ™58, 5))1)
k=1
s
k) (k). a(k) A(k _
+2B[]l 2 > Vo POy a7, 97) — )
k=1
| K
(k
L2E; e — 297 + 217 ZEnyt w7
K
+2E[||izv FO () 8. 50 509y Zu(k)”
K= ’ t K t
e
and
K K
v F o (k) 2L2 (k)12
E|VyF (Ze, Ges 3o, Ge) — 0[] Z [z = 2" 1%) + 2% 2 3 CElllg - v, |1
k=1 k:
K
1 . . _
+2E[ 3 >V PO @ ™2 ) — ), (98)
k=1
we obtain

Bzn

Lip1 — Ly < — 4 E[||V:rF(jtagt§=%ta?§t)||2] ﬁynE[HV F(xt,yt,xt7yt)|| ]
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K
k). (k) - 1 k
+ (Batt — c1pan”)E KZVF Hotat o) - 2w
k=1
| K
k k
+ 2A3_py77 02 ”izvyf Y g))_gzut() ?
k=1

+(4ﬁw762 22 Bw") Efja

+

2 K 2 K
e )éZEH@—@E“HZH(—( _— ) > Bl 5"

+ 4

K
1 k k) (k). (k) A(k
DBl = Vo F® @,y 8, )]

36 Ban?(v2 + L) A 7 _
+ ( B2nLg + y77 + 5 +4A15§7725§772+2A2/3§ 2 - gﬁy’? E[]|5¢]?]
2 202 N
4 fyz 1 2 - x =~ =
+ [ 2m — - 6mfan 10C% Ch + vy | _ 1@ =B Y gz, 52
Ban oom—Lop 26.n
2 ~ ~
+ <2A1 ﬁyﬁ)) Elll g1 — 9¢l1?]
2/6317]
4L2c1 C2 (L2 +9%)cg  9L%cy 9 9 1 & (k) (k)12
(%5 PR s S s e ) Sl -1
4L2C1 ca | 9L%cs | 9(L? +73)er 2 2 1 & (k) (k)12
+< I +1_)\+ Y +4L%cg +4L ¢ ?;E[”yt+l_yt ]
97% X k) (k)2 972 = (k)2
o (250 ) e St — a0 2er S Bl 51
k: k=1
4nf3? N1=2) N1~
2 2 I 2
+ (ﬁﬂ]L +2L°% A3 T a% 5 ?1; (1ze — 2 (7]
4np? ICERSIRN &
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+<Bn + e 5 KZ;HW v |I7]
2152 8n2ﬂ262 1 ¢ 02
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K
27752 81726252 K
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k=1
| XK
k k (k i
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1 1
clpxn o? ? + QCgpyn JQK + 366p37)402 Y + 307p§n402 - + 268pi7740'2 + 2¢ p?2!77402 .
99)

By setting

4Hq+u%+wﬂ+ﬁ% 9L2%c;

4172 4172
K K 11—\ [\ T Ao,
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4L261 4L2C2 9L266 9(L2 + ")/22)07 2 2
Y= i7a i7a T Y +4L%cg +4L"¢cy (100)
and due to \ < 1, we obtain ;=57 < —)\ and further derive
Lo~ L0 < fﬂ”Emsz(zt,m;ét,w] O, P (@1, ) )
1K
k). o(k) k
+ (B — c1pan’)E H—Zv FO@ y i g%) — 23 P
k=1
K

+
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K
A 1
26ym + 24071 BonByn*Crs  + 8 A28y — py77202) Efl = STV P M,y

Z e

+ 4/3yn62 2[2 4 35220 - 5”) Eflla]1?]
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A
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(1002 Cj + ) L0 WP
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2
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Y
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+ (BwL2+2L2A + 177_’8”;% a iﬁgl + 127X — ) > B[z — 2"
k=1
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252 8PBRB2 216n°B25%43 1 &
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206y SPBE  2160°6;5503 Lm0
+ (1_@3@4 G0t oy eIy — (L= Ner ) 2 3 Ella — ¢l 1)
k=1
547 n(l— )\2 1« L(F) 12 5473 n(l—A?) 1 = (k)2
— _ — — E —
+<1Acﬁ . K; )+ ( 25 - "0 e ) 25 el 51
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+<1 CCo — pan’es Z FO a1, 51
3p2nt K k 2B g
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k:
, 1
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(101)
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To cancel out E[[| % 3340, Vo F®) (@™ g 2", 97) — & S35, wf? |2, e
Bt — pan’er < 0. (102)
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Then, we set

Ba
Pz

k
To cancel out E[|| & S| v, f*) (x} ) gy — v P12,

Cc1 =

2&n+ﬂwﬁw@ﬁ0%m+&mﬁf—%ﬁ@SO.

Specifically, since the second and last inequality in Eq. (67) holds, we have
28.m (1 —L)°
32x16 L2 ’

25:1:77 (’71 - L)2
2. 2
SAﬁW7§32xm 2

24071 BBy Clr <

_ n-
64L2

, wWe set

28
240 Benfyn’Ch < 55 “{6

ﬁzn . Byn
S 3wt T

Then, by the definition of cg , i.e., cg, =

64c By— 5;;777

8A252 2

Therefore, we obtain

58y
2pyn

Co =

To cancel out & S5 Elllul® — v, F® (@M " 28 50))2), e

3p2n*

1—-A

c6 — panies < 0.
Here, because pan < 1, we set
Ce = B:cn(l - )\) , g =308m.
Similarly, to cancel out & 74| E[flv(*® — va<k>(m§’“) B 3B gy 12y

3p2n
1—\

C7—Pu77 g 0.

Because p,n? < 1, we set

Cr = Byn(l - )‘) y €9 = 35@/77 .

To cancel out = Y1 E[||Z; — "

we set

To cancel out - Ele E[|g: — ng) 1], i.e

(103)

(104)

(105)

(106)

(107)
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(110)
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we set

C10 (1 )\) ( 5)

K _ k .
To cancel out + >, E[||z; — 2)2), ie.,

4n B2 1087)52%

(1 —\?)
12T a2

6 + 122X — 5

BunL* 4 2L% A3 + c5<0. (116)

Firstly, from the definition of X', we have

4L%¢; N 4L%cs  9(L2+13)cg  9L%cr
K K 1—)\ 11—\
AL* B,  AL* 58, ) ) )
== 9(L 9L 12L 1212
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K oo +— i +( +971) B + Byn (117)

Moreover, from the definition of A3 and Eq. (I04), we have

X = +4L%cg +4L%¢cy ,

A 5
Byn + 1200 BenByn*Cly  + 4A2Bm* < S By (118)

Therefore, we set
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<M, (119)

+ (2112 +9+%) + 21L2%>

where the second step holds due to an < landn < 1, the fourth step holds due to Eq. . By
solving this inequality, we obtain

86477
e (L= A)?

108~%
1=
(120)

cs, +253L% 4+ 108~; + 255L%cg, + ﬁgc + Bacy,

o 284 48L2+120L2
TN\ K T K

Then, we set

28, (48L2 120L2
C3 —

253L2 + 108~2 2172
=Y pr+pchﬁy+ 53L% + 108y7 + 302L%cg,

C3,1

38




Under review as a conference paper at ICLR 2026

253 52
+ o 864 4t 10853 (121)
c3.2 C3,3

Here, it is easy to know that c3 1 = O(1) when p, = O(1/K) and p, = O(1/K), c32 = O(1/K?)
and ¢33 = O(1/k) due to c; = O(1/K).

To cancel out = S5 E[||5: — ¥ |2, ie

4n3? 108?762% gn (1= A2)
1— Aw (1—X)2 A2y =T

BenL? + 202 As + cs <0. (122)

Firstly, from the definition of ), we have
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11—\
< %q : (124)

where the second step holds due to Byn < 1 and n < 1, the fourth step holds due to Eq. . By
solving this inequality, we set

28, ( 48L*  120L?
b ( +253L7% + 255L% ¢, + 108y3cp, )

Cq = + c
! (T=XM)\ pK pyl< o
C4,1
3 2 2
+ 1fA 86473cp, > 2 +$ 108v5¢, ¢4 - (125)
(L= X3 20 e T =2 2 e
ca2 C4,3

Similarly, it is easy to know that ¢, 1 = O(1) when p, = O(1/K) and p, = O(1/K), ca2 =
O(1/k*)and ¢4 3 = O(1/k) dueto cg = O(1/k).

To cancel out = S E[l|p, — pi*|?]. i.e

2132 +8n2ﬁ252 21602825273
TSt Aot Ao

Firstly, we enforce

6+ 38207 X — (1= N)eg < 0. (126)

2160020007 _ (1=

(1 — )\)3 Ce S 1 Cg - (127)
Then, based on Eq. (55) , we obtain
1—X
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Then, we enforce

C3

TN 1

8123232 ~ Ban

Saong s 4 N
ﬂﬂ)

382X < 7(1 -2,

To solve the first inequality in Eq. (I29), we enforce

287 2B < Bl e
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Therefore, we obtain

1=X7,
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<
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To solve the second inequality in Eq. (I29), we obtain
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To solve the last inequality in Eq. (T29), we enforce
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1
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Firstly, we enforce

216065075 _ (1-))
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Then, based on Eq. (33)), we obtain

3 (1—=A)
z 6 /’ngﬁycﬁTJ .
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cloi’iﬂi)y < 51”(1 — )2, (138)
352 2y < /5(:;/677(1 _ )\)2.
To solve the first inequality in Eq. (I38), we enforce
1277—5% (12%,\)04 L= 61?/277(1 -
12U—Bj\ (12—51)3042 = 51y277( - (139)
1217_/812(12_/8%\)204,3 < %(1 —A)?.
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To solve the second inequality in Eq. (I38), we obtain
1— 5/4
g< AV (141)
V2C5,Ch,
To solve the last inequality in Eq. (I38), we enforce
412 B 1 10L? B 1
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—L —L — L 1
By <min{ L~ n )2(72 Z\m : . (146)
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For E[||g141 — 9:], by setting

27~2 . 2 72
7 — —= S ——=
L=A 26yn 48yn

Specifically, from the definition of A;, we enforce

24, +

. 842

v (m—L)n) T 168,n
12713 n 8'722 (1- Byn)Q < Y2
Tn-Lw p T 166,
2173, < 2
L=A" 7 8/31/77

(147)
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To solve the second inequality, we use the second inequality in Eq. (69) to obtain the following:

4 2yBen 203 (1-Bm)° _ Ben (0 — L)
(2= L) m—L n  p2 T 32x64 4L2

Then, it is easy to derive

8%  (1=Bym)?® _ Ban (n—L)° (o~ L)

1271 3, .
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Therefore, it leads us to solve

Bt (=L (2=L)? _
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and we obtain
32L
Bz <
Ve, (n—L)(y2 — L)

y1—L

Finally, to solve the first and last inequality in Eq. 1| fromC,1 = Trand O =

we obtain

—L)(y2 — L 1
8, < min VE(M ) (72 ) 7
8\/ 3cg, c5 M72(100F 1 + 893 (1 — L)) 6\/ 6y2cs,c5,
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Pz 2pyn
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216877 216372
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(%W“ﬁmﬁﬂ'&ﬂnwﬁ

38,m  Byn’(y2 + L) . 7 )
F(ﬂ?de+ zf + - 5 +4Aﬂﬁﬂ%ﬁn2+2Aﬂﬁﬁ2+35?fJL*gﬂM? E[||ve?]
71 = = 12
— ——E[[[Zr41 — &[] - E[[ge+1 — 3:]1%]
469577 ﬁy
1 5 1
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(155)
For E[||@||?], we enforce
AByn B L? + 363° X — % < —% : (156)
Specifically, we enforce
1By < 221
16
38224 < Ban (157)
16
To solve the first inequality, we obtain
fa < ! (158)
= 8L,/65y

To solve the last inequality, we use the last inequality in Eq. (129) along with the fact that 1 — A < 1,
from which it is straightforward to show that the inequality holds.

For E[||5;]|?], we enforce

38yn  Byn’(v2+ L) ; 7 1
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Firstly, from Eq. || and the definition of A5, we obtain 245 65772 < fiz, and
452 Byn
2 2 2A Yy < Y
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By reformulating the above inequality, we obtain
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Therefore, we enforce
62 2 +L B?’ 3 — L
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Specifically, we enforce
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2,2 Y
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To solve the first and second inequality, we obtain

1 1
< mi 7 164
fr < min { 48¢p,(2La+ 2+ L) " V3eg, (12 — L) } Hew

To solve the last inequality, we use the last inequality in Eq. along with the fact that 1 — A < 1,
from which it is straightforward to show that the inequality holds.

In summary, by setting
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By setting v; = O(L), v2 = O(L), we obtain
1
cg, =0(1), ¢; =0 <W> , ¢z, =0(1). (169)

Because
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k=1 j=1
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k=1
K
< 60° +6 gz 11V (2o, 90) 17 , (170)
k=1
and
K K
1 _ 1
= D Ellldo — a6 7] < 60 + 67 S E[IV, P (w0, 30| a71)
k=1 k=1
we have
K K
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k=1 k=1
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k=1
K
1 k k) (k) ~(k)
+38yn D Elllvg” — Vy FO g 5" " 367 1]
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K
Be 0* BBy o
<Po+ w§+2p - -+ 9m0? + 90, 10" 68,2 S ENIVr™® (a0,0) 7
Y k=1
K
1
+68yn72 D BV (w0, 30) %] (172)

k=1

Then, we have

LS BV £, )] + KBV 30l
t=0

'ﬂ
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=

<o(40)+o 73 f B[V (0.90) 7] ) + 0 [ e S BV, (o, o)
BonT T 2 0, Y0 TK 4 ZEO Yo

o) o) o) o o

+ O(kp2n*o?) + O(kp2n*a?) . (173)
By setting 3, = O((1 — \)?), n = O(,ff/ez)’ Pz = O(%) Py = O(%) B=0"-)T=
O(K(l"jii\z)w),we have

Z IV f (@, ge) 1P] + KE[Vy £ (24, ) [P]) < O(?) . (174)

t=0
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