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Abstract

We consider learning discriminative representations of variables related to each other via a
causal graph. To learn representations that are robust against interventional distribution
shifts, the training dataset is augmented with interventional data in addition to existing
observational data. However, even when the underlying causal model is known, existing
approaches treat interventional data like observational data, ignoring the independence re-
lations resulting from these interventions. This leads to representations that exhibit large
disparities in predictive performance on observational and interventional data. The perfor-
mance disparity worsens when the quantity of interventional data available for training is
limited. In this paper, (1) we first identify a strong correlation between this performance
disparity and adherence of the representations to the statistical independence conditions
induced by the underlying causal model during interventions. (2) For linear models, we de-
rive sufficient conditions on the proportion of interventional data during training, for which
enforcing statistical independence between representations corresponding to the intervened
node and its non-descendants during interventions can lower the test-time error on interven-
tional data. Following these insights, we propose RepLIn, an algorithm to explicitly enforce
this statistical independence during interventions. We demonstrate the utility of RepLIn
on synthetic and real face image datasets. Our experiments show that RepLIn is scalable
with the number of nodes in the causal graph and is suitable to improve the robustness
of representations against interventional distribution shifts of both continuous and discrete
latent variables compared to the ERM baselines.

1 Introduction

We consider the problem of learning discriminative representations corresponding to latent random variables
from their observable data. The relationship between these latent variables can be modeled using directed
acyclic graphs (DAGs) called causal graphs. These latent variables usually correspond to semantic concepts
such as the color of an object, the level of glucose in the blood, and a person’s age. Causal modeling
allows manually altering the causal graph and observing its effects on the data, for instance, by consuming
an insulin inhibitor and measuring the glucose level in the blood. This procedure is known as a causal
intervention, and the data collected through this procedure is called interventional data. In contrast, data
collected without intervention is known as observational data. Several types of interventions are possible on
a causal graph, of which we are interested in hard interventions where we manually set the value of one or
more variables. Intervening on a node renders it statistically independent of its parent nodes in the causal
graph1. See (Peters et al., 2017, Chapter 6) and (Pearl, 2009, Chapter 3).

Suppose the latent variables are A and B, such that A → B (A causes B) during observations. An attribute-
specific representation FA corresponding to A learned by a model from observational training data alone
may contain information about its child node B due to the association between A and B. Subsequently,
these models show a performance drop on data collected through intervention on B during inference. In

1For ease of use, we refer to “statistical independence” as “independence”, and “hard interventions” as “interventions”. We
will also use “features” to describe the representations a model learns from data.
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other words, these models are not robust against interventional distribution shifts. Interventional data
samples are included in the training data to learn models that are robust to interventional distribution
shifts. For example, in (Sauer & Geiger, 2021; Gao et al., 2023), interventional data was generated using
data augmentations to train image classification models that were invariant to texture and background.
In some works such as (Arjovsky et al., 2019; Heinze-Deml & Meinshausen, 2021), interventional data
is treated merely as data sourced from different domains or environments, and they do not consider the
explicit statistical independence relations that arise from interventions. As we demonstrate, ignoring these
independence relations may result in representations that are still susceptible to interventional distribution
shifts during inference. Additionally, performing interventions is often challenging, thus limiting the amount
of interventional data available for training. Therefore, causally motivated learning is necessary to improve
the robustness of learned representations against interventional distribution shifts.

We first consider a simple case study in which we observe that models that do not learn independent repre-
sentations during interventions show a performance drop on interventional data. We then derive sufficient
conditions on the proportion of interventional data during training, for which enforcing linear independence
between interventional features of linear models during training can reduce test-time error on interven-
tional data. Following the theoretical assessment, we propose “Representation Learning from Interventional
Data” (RepLIn), an algorithm to train models with improved robustness against interventional distribution
shifts. We confirm the utility of RepLIn on synthetic (Sec. 5.1) and real face image datasets (Sec. 5.2) and
demonstrate its scalability to the number of nodes (Sec. 6.2).

To summarize our contributions,

• We demonstrate a positive correlation between accuracy drop during interventional distribution shift
and dependence between representations corresponding to the label node and its children. We refer
to this as “interventional feature dependence” (Sec. 3.3).

• We theoretically explain why linear ERM models are susceptible to interventional distribution shifts
in the regime of linear causal models. In the same setting, we theoretically and empirically show that
enforcing linear independence between interventional features improves robustness when sufficient
interventional data is available during training and establish the sufficient condition (Sec. 3.4).

• We propose a novel training algorithm that combines these insights and demonstrates that this
model minimizes the drop in accuracy under interventional distribution shifts by explicitly enforcing
independence between interventional features (Sec. 4).

2 Related Work

Identifiable Causal Representation Learning (ICRL) (Locatello et al., 2019; Schölkopf et al., 2021;
Hyvärinen et al., 2024) seeks to learn representations of the underlying causal model under certain assump-
tions (Hyvärinen et al., 2024), and is, therefore, important to interpretable representation learning. However,
we are interested in a broader class of discriminative representation learning when some underlying causal
relations are known. In contrast to learning the entire causal model, we seek to exploit the known inde-
pendence relations from interventions to learn discriminative representations that are robust against these
interventions. We provide a detailed review of ICRL in App. C.

Interventional data is key in causal discovery (Eberhardt et al., 2005; Yu et al., 2019; Ke et al., 2019; Lippe
et al., 2022a; Wang et al., 2022) as one can only retrieve causal relations up to Markov equivalent graph
without interventions or assumptions on the causal model. For example, known interventional targets have
been used for unsupervised causal discovery of linear causal models (Subramanian et al., 2022), interventional
and observational data have been leveraged for training a supervised model for causal discovery (Ke et al.,
2022), and interventions with unknown targets were used for differentiable causal discovery (Brouillard et al.,
2020). Interventional data also find applications in reinforcement learning (Gasse et al., 2021; Ding et al.,
2022) and recommendation systems (Zhang et al., 2021; Krauth et al., 2022; Luo et al., 2024). While this
body of work focuses on discovering causal relations in the data, our work considers how to leverage known
causal relations to learn data representations that are robust to distribution shifts induced by interventions.
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Training with group-imbalanced data leads to models that suffer from group-bias during inference.
In such cases, resampling the data according to the inverse sample frequency can improve generalization
and robustness. Studies such as (Gulrajani & Lopez-Paz, 2021; Idrissi et al., 2022) have shown that ERM
with resampling is effective against spurious correlations and is a strong baseline for domain generalization.
Recent work such as dynamic importance reweighting (Fang et al., 2020), SRDO (Shen et al., 2020), and
MAPLE (Zhou et al., 2022) learn to resample using a separate validation set that acts as a proxy for the test
set. However, learning such a resampling requires a large dataset of both observational and interventional
data, which is often not practically feasible. In contrast, we will exploit known independence relations during
interventions to improve robustness to interventional distributional shifts.

3 The Learning from Interventional Data Problem

Notation: Random variables and random vectors are denoted by regular (e.g., A) and bold (e.g., a) sans-
serif uppercase characters, respectively. The distribution of a random variable A is denoted by PA.

A1 A2 . . . AmU

X B

A1 A2 . . . AmU

X ′ B̃

During observation During intervention

Figure 1: Causal graph modification due to inter-
vention: During observation, B is the effect of its parent
variables PaB = {A1, . . . , Am}. When we intervene on
B, it becomes statistically independent of its parents.

We now formally define the problem of inter-
est in this paper, namely learning discriminative
representations that are robust against interven-
tional distribution shifts, in general terms, and
examine a specific case study in Sec. 3.1. The
learning problem is characterized by a DAG G
that causally relates our attributes of interest
A1, . . . , Am, and B. Let PaB = {A1, . . . , Am}
denote the parents of the attribute B. These at-
tributes along with other unobserved exogenous
variables U , generate the observable data X, i.e.,
X = gX(B,A1, . . . , Am,U). During interven-
tions, the variable B is set to values drawn from a known distribution independent of PaB . Therefore,
the post-intervention variable B (denoted by B̃) is statistically independent of its parents, i.e., B̃ ⊥⊥ PaB ,
as shown in Fig. 1. Although gX is not affected by this intervention, the distribution of X (now denoted
by X ′) will change since it is a function of B. Note that to learn representations that are robust against
distribution shift due to intervention on B, our setting does not provide the knowledge of any node apart
from B and its parents in this causal graph or of any causal relations between A1, . . . , Am. We also do
not have restrictions on the functional form of causal relations between A1, . . . , Am, B, and X, or on their
marginal distributions. For training, data samples from both observational and interventional distributions
are available, i.e., Dtrain = Dobs ∪Dint where Dobs ∼ P (X, B,A1, . . . , Am) and Dint ∼ P (X ′, B̃, A1, . . . , Am).
Given Dtrain and G, the goal is to learn attribute-specific discriminative representations FB = hB(X) and
FAi

= hAi
(X) that are robust against distribution shifts due to intervention on B.

3.1 Does Accuracy Drop during Interventions Correlate with Interventional Feature Dependence?

First, we consider a motivating case study on a synthetic dataset and establish a correlation between the
accuracy drop on interventional data and statistical dependence between the attribute representations under
intervention. We will then estimate the strength of this correlation and theoretically investigate whether
this correlation can be exploited to improve the robustness against interventional distribution shifts.

Problem Setting: Consider the causal graph shown in Fig. 2a. Here, A and B are binary random variables
that generate the observed data X ∈ R2. X is also affected by an unobserved noise variable U . Therefore,
functionally X = gX(A,B,U). A itself could be a function of unobserved random factors that are of no
predictive interest to us. Therefore, we model A ∼ Bernoulli(0.6). The distribution of B is only affected by
A, as denoted by the arrow between them. Analytically, B := A, where := indicates the causal assignment
operator, following (Peters et al., 2017). Visually, the observed data looks like a windmill. The value of
A determines the windmill’s blade, and B determines the radial distance. We shear the windmill blades
according to a sinusoidal function of the radial distance. To make the data more stochastic, the points’
precise angle and radial distance are sampled from an unobserved distribution independent of A and B. In
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(a) Observational graph and data
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(b) Interventional graph and data

Data legend
A = 0, B = 0
A = 0, B = 1
A = 1, B = 0
A = 1, B = 1

Figure 2: An illustration of Windmill Dataset: A and B are binary random variables that are causally
linked to each other and X, as shown in (a). By intervening on B as shown in (b), we make A ⊥⊥ B̃.
X = gX(A,B,U) where U denotes unobserved noise variables. The true decision boundaries for predicting
A and B from X are shown in red and blue dashed lines, respectively. See App. D for a detailed description.

Fig. 2b, we intervene on B, modeled as B̃ ∼ Bernoulli(0.5). This induces a change in the distribution of
B and subsequently that of X. Since the intervention is independent of A, B̃ is also independent of A,
denoted by removing the arrow between A and B̃. Note that gX is unaffected by this intervention. The
exact mathematical formulation of the data-generating process is provided in App. D.

Learning task: The task is to accurately predict A and B from X at test time. We have N samples for
training, where βN are interventional and (1 −β)N are observational with 0 < β < 1 typically being a small
value. For this demonstration, we set N = 40, 000, β = 0.01. Therefore, we have 39,600 observational and 400
interventional samples. We train a feed-forward network with two hidden layers to learn representations FA
and FB corresponding to A and B, respectively. We normalize them by dividing each by their corresponding
L2 norm. Separate linear classifiers predict A and B from FA and FB respectively. By construction, gX
in the data-generating process is a one-to-one mapping. Therefore, predicting A and B from X accurately
is possible. However, the true decision boundary for A is more complex than that of B2. Therefore, the
model may rely on information from B to predict A due to their association during observation, similar to
the concept of simplicity bias from (Shah et al., 2020). As a result, FA may contain information about B
even during interventions when A ⊥⊥ B.

ERM version Accuracy in predicting A Accuracy in predicting B NHSIC
Observation Intervention Relative drop Observation Intervention Relative drop

Vanilla 99.97 58.56 0.414 100 100 0 0.786
w/ Resampling 93.24 68.65 0.264 100 99.99 10−4 0.537

Table 1: The relative drop in accuracy in predicting A correlates well with a gap in the measure of dependence
between the learned representations on interventional data.

Observations: Following the standard ERM framework, the cross entropy errors in predicting A and
B from FA and FB , respectively, provide the training signal. The statistical loss function can be writ-
ten as Ltotal(f,X) = EPtrain [Lpred(f,X)]. The training distribution is a mixture of observational and
interventional distributions with (1 − β) and β acting as the corresponding mixture weights. Thus,
Ltotal(f,X) = (1 − β)EPobs

[
Lpred(f,Xobs)

]
+ βEPint [Lpred(f,X int)]. Tab. 1 shows the accuracy of ERM in

predicting A and B on observational and interventional data during validation. Ideally, we expect no drop in
accuracy from observation to intervention if the learned representations are robust against interventional dis-
tribution shift. However, we observe that ERM performs only slightly better than random chance in predict-
ing A on interventional data. As a remedy, we consider a stronger version of ERM by sampling observational
and interventional data in separate batches. This is equivalent to sampling interventional data

(
1−β
β

)
-times

as observational data. Therefore, we refer to this version as “ERM-Resampled”. The equivalent loss for a
learning function f in ERM-Resampled is Ltotal(f,X) = EPobs

[
Lpred(f,Xobs)

]
+EPint [Lpred(f,X int)]. Note

2We informally define “complexity” as the minimum polynomial degree required to approximate the decision boundary.
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that β does not appear in Ltotal(f,X) due to resampling. Although ERM-Resampled performs better than
vanilla ERM, we observe that ERM-Resampled still exhibits a large drop in predictive accuracy between
observational and interventional data during inference.

3.2 Measuring Statistical Dependence Between Interventional Features

A key characteristic of hard interventions in causal graphs is that the variable being intervened upon be-
comes independent of all its nondescendants. Since the predictive accuracy on the parent node is affected
by intervention, we hypothesize that the representation corresponding to the parent node is dependent on
the child node during intervention. Therefore, to verify our hypothesis, we measure the dependence be-
tween the representations. We measure the dependence between the representations instead of between the
representations and the latent attributes because we aim to learn robust representations for every attribute.

Dependence Measure: To measure dependence between a pair of high-dimensional continuous random
variables X and Y , we use HSIC (Gretton et al., 2005), a non-parametric measure of dependence. Given N
i.i.d. samples X =

{
x(i)}N

i=1 and Y =
{
y(i)}N

i=1 from X and Y , empirical HSIC between these samples can
be computed as HSIC(X ,Y) = 1

(N−1)2 Trace [KXHKYH], where H is the N × N centering matrix, and
KX ,KY ∈ RN×N are Gram matrices whose (i, j)th entries are kX

(
x(i),x(j)) and kY

(
y(i),y(j)), respectively.

Here, kX and kY are the kernel functions associated with a universal kernel (e.g., RBF kernel). Since HSIC
is unbounded, we normalize it as NHSIC(X ,Y) = HSIC(X ,Y)√

HSIC(X ,X ) HSIC(Y,Y)
, following (Li et al., 2021).

We use the NHSIC metric to compare the statistical dependence between the features in the Windmill
problem. Tab. 1 shows the difference in NHSIC values between the features FA and FB from interventional
data. We observe that ERM-Resampled learns features with less statistical dependence during interventions
than vanilla ERM. A larger interventional feature dependence indicates a larger violation of the underlying
statistical independence relations that result from interventions in the causal graph.

3.3 Strength of Correlation between Drop in Accuracy and Interventional Features Dependence

0.0 0.2 0.4
Rel.∆ in accuracy

0.0

0.2

0.4

0.6

0.8

N
H

SI
C

ρ : 0.81, τ : 0.61

(a) Rel.∆ against NHSIC

0.0 0.2 0.4
Rel.∆ in accuracy

0.4

0.6

0.8

1.0

K
C

C

ρ : 0.75, τ : 0.56

(b) Rel.∆ against KCC

Figure 3: Across models with different capacities, a
relative drop in accuracy is always accompanied by
interventional feature dependence, while the corollary
does not hold. Interventional feature dependence is
measured using NHSIC and KCC.

How strong is the observed correlation between the
dependence of features and the drop in accuracy?
For a given combination of predictive task and
dataset, does it hold for a variety of hyperparameter
settings? To answer these questions, we train several
models under the ERM-Resampled setting described
in Sec. 3.1. To learn representations, we use feed-
forward networks, each with one to six hidden layers
and with 20 to 200 hidden units. We also randomly
set the number of training epochs to use early-
stopping as a regularizer, as described in (Sagawa
et al., 2020). To measure the robustness of a model
to interventional distribution shift, we evaluate the
relative drop in accuracy between observational and
interventional data: Rel.∆ = Obs acc.−Int acc.

Obs acc. .

In Fig. 3, we plot the relative drop in accuracy
against the interventional feature dependence. In
addition to NHSIC, we also use kernel canonical correlation (KCC) (Bach & Jordan, 2002) to measure the
dependence. From the plots, we infer that a relative drop in accuracy is always accompanied by interventional
feature dependence. The strength of the correlation between the relative drop in accuracy and interventional
feature dependence is quantitatively measured using Spearman rank correlation coefficient (ρ) (Spearman,
1904) and Kendall rank correlation coefficient (τ) (Kendall, 1938). In Fig. 3a, ρ = 0.81 and τ = 0.61,
indicating that the correlation we noted in Sec. 3.2 can be observed for a wide range of models. A similarly
strong correlation can be observed between the relative drop in accuracy and KCC in Fig. 3b.
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3.4 Will Minimizing Dependence between Interventional Features Improve Robustness?

Fig. 3 showed that strong interventional feature dependence always accompanies a large relative drop in
accuracy. Based on this correlation, we may ask the following question: will minimizing interventional
feature dependence improve the robustness to interventional distribution shifts? We consider a linear causal
model to answer this question theoretically. The detailed proof of each step is provided in App. B.

Causal Model: We use the causal model shown in Fig. 2a with A and B being continuous random variables.
A and B are causally related during observation as B := wABA. The observed data signal X is generated

from A and B as X :=
[
XA

XB

]
+ U , where XA := wAA and XB := wBB. U :=

[
UA
UB

]
is exogenous noise.

UA and UB are independent of A and B respectively. We intervene on B as shown in Fig. 2b, severing the
causal relation between A and B. The intervened variable is denoted as B′ and B′ ⊥⊥ A.

Learning model: Similar to the case study, the task is to predict the latent variables A and B from observed
data signalX. The training dataset is sampled from a training distribution Ptrain that contains observational
and interventional samples. We model Ptrain as a mixture of observation distribution Pobs and interventional
distribution Pint with (1 − β) and β acting as the mixture weights, i.e., Ptrain = (1 − β)Pobs + βPint. We
use linear models to learn attribute-specific representations FA and FB , from which predictions Â and B̂,
respectively, are made using the classifiers. The linear models are parameterized by Θ(A) and Θ(B), and the
classifiers are parameterized by c(A) and c(B).

Statistical Risk: The parameter matrix of the linear feature extractor described before can be written in

terms of its constituent parameter vectors as Θ(A) =
[
θ

(A)⊤
A

θ
(A)⊤
B

]
. Assuming zero mean for all latent variables,

the statistical squared error of an arbitrary model in predicting A from an interventional test sample X is,

EA =
(

1 − wAc
(A)⊤θ

(A)
A

)2
ρ2
A +

(
c(A)⊤θ

(A)
A

)2
ρ2
UA︸ ︷︷ ︸

E
(1)
A

+
(
wBc

(A)⊤θ
(A)
B

)2
ρ2
B′ +

(
c(A)⊤θ

(A)
B

)2
ρ2
UB︸ ︷︷ ︸

E
(2)
A

(1)

where ρ2
A = EPint

[
A2]

, ρ2
B′ = EPint

[
B′2]

, ρ2
UA

= EPint

[
U2
A

]
, and ρ2

UB
= EPint

[
U2
B

]
. The statistical risk can

be split into two components: (1) E(1)
A in terms of A and UA, and (2) E(2)

A in terms of B and UB . E(2)
A ̸= 0

when θ(A)
B ̸= 0. A non-zero θ(A)

B indicates that ϕ(A) is a function of XB , i.e., it learns a spurious correlation
with B. Thus the prediction Â is susceptible to interventions on B. In contrast, a robust model will have
θ

(A)
B = 0, and thus E(2)

A = 0. Derivation of Eq. (1) is provided in App. B.1.

Optimal ERM model: The optimal ERM model can be obtained by minimizing the expected risk in
predicting the latent attributes. Since parameters are not shared between the prediction of a and b, we
can consider their optimization separately. We will consider the optimization of parameters for predicting a
since we are interested in the performance drop in predicting A from interventional data.

Θ(A)∗, c(A)∗ = argmin
Θ(A),c(A)

EPtrain

[(
A− c(A)⊤Θ(A)⊤X

)2
]

(2)

For a given training error, there is no unique solution for Θ(A) and c(A). Therefore, we can equivalently

optimize for ψA = c(A)⊤Θ(A)⊤. We can write ψA =
[
ψ1
ψ2

]
where ψ1 = c(A)⊤θ

(A)
A and ψ2 = c(A)⊤θ

(A)
B .. The

learning objective in Eq. (2) then reduces to,

ψ∗
A = argmin

ψA

EPtrain

[
(A−ψAX)2

]
(3)

We can solve Eq. (3) by setting the gradients to zero. To check the robustness of the optimal ERM model,
we can verify whether ψ∗

2 = 0 or not since a robust model will have θ(A)
B = 0. Solving Eq. (3), we get:

ψ∗
2 =

−(1 − β)wBwABσ2
Aσ

2
UA

T
̸= 0
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where T is a non-zero scalar. This implies that E(2)
A ̸= 0 in optimal ERM models. Therefore, optimal ERM

are not robust against interventional distribution shift. The detailed derivation is provided in App. B.2.

Minimizing linear dependence: In Sec. 3.3, we showed that dependence between interventional features
correlated positively with the drop in accuracy on interventional data. We will now verify if minimizing
dependence between interventional features can minimize the drop in accuracy. The interventional features
are given by FA = Θ(A)⊤X and F ′

B = Θ(B)⊤X.

FA = Θ(A)⊤X = XAθ
(A)
A +XBθ

(A)
B

F ′
B = Θ(B)⊤X = XAθ

(B)
A +XBθ

(B)
B

For ease of exposition, we will minimize the linear dependence between interventional features instead of
enforcing the full statistical independence we described in Sec. 3.2. Following the definition of HSIC (Gretton
et al., 2005), the linear dependence in interventional features can be defined as follows3,

Dep (FA,F ′
B) =

∥∥EPint

[
FAF

′⊤
B

]∥∥2
F

(4)

Leveraging the independence relations during interventions, we can expand Eq. (4) as,∥∥EPint

[
FAF

′⊤
B

]∥∥2
F

=
∥∥∥(w2

Aρ
2
A + ρ2

UA
)θ(A)
A θ

(B)⊤
A + (w2

Bρ
2
B′ + ρ2

UB
)θ(A)
B θ

(B)⊤
B

∥∥∥2

F
(5)

The dependence loss is thus the Frobenius norm of a sum of rank-one matrices. There are three classes of
solutions that minimize Eq. (5): (1) θ(A)

A = θ
(A)
B = θ

(B)
A = θ

(B)
B = 0, (2) θ(A)

A = ±γθ(A)
B and γθ

(B)
A = ∓θ(B)

B

for some scalar γ ̸= 0, and (3) θ(A)
A = 0 or θ(B)

A = 0, and θ(A)
B = 0 or θ(B)

B = 0. However, all except two
of these solutions produce trivial features and increase the classification error. The only remaining non-
degenerate solutions are: (S1) θ(A)

A = 0,θ(B)
B = 0, and (S2) θ(A)

B = 0,θ(B)
A = 0. Note that (S2) corresponds

to a robust model. Since both (S1) and (S2) minimize Eq. (4), the solution that minimizes the prediction
error on both A and B during training will prevail.
Proposition 1. The total training error for (S1) is strictly greater than that of (S2) when the following

conditions are satisfied: (1) β ≥ 1 − 1
|wAB | , (2) β ≥ min

(
ρ2

A

2ρ2
B′ +ρ2

A

,
ρ2

UA

w2
A
w2

AB
ρ2

A

)
.

Proposition 1 states that a robust model is guaranteed when a minimum amount of interventional data is
available during training. Note that Proposition 1 describes sufficient conditions for (S1) to have a larger
training error than (S2). In practice, β could be smaller. Refer to App. B.3 for a detailed derivation and
experimental verification of Proposition 1.
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Figure 4: Robust models achieve E(2)
A = 0 in Eq. (1).

ERM models have a non-zero θ(A)
B resulting in E(2)

A ̸=
0. Minimizing linear independence on interventional
features results in orthogonal interventional feature
spaces where θ(A)

B = θ
(B)
A = 0. Thus, they result in

robust models with E
(2)
A = 0.

Experimental verification: To experimentally verify the theoretical results, we simulate the causal model
by setting wA = wB = wAB = 1. The random variables A, B, UA, and UB are sampled from independent
normal distributions with zero mean and unit variance. We generate N = 50000 data points for training
with β = 0.5. The classifiers use 2-dimensional features learned by linear feature extractors to predict A
and B. The experiment is repeated with 50 seeds. In Eq. (1), the statistical risk was shown to be composed
of E(1)

A and E
(2)
A , plotted in Figs. 4a and 4b respectively. An ideal robust model will achieve E(2)

A = 0. As
expected, both models have similar E(1)

A . However, linear independence models minimize E(2)
A , resulting in

a lower total error EA shown in Fig. 4c.
3For a complete definition of the dependence, refer to App. B.3.
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4 RepLIn: Enforcing Statistical Independence between Interventional Features

X

Encoder A

Encoder B

FA

FB

Classifier A

Classifier B

Â

B̂

A

B

Lpred

Lpred

Ldep(only during interventions)

Lself

Lself

ERM

• Uses only Lpred for training.
• Ignores distribution changes from

causal interventions.

RepLIn (ours)

• Ldep: consistency with interventional
causal model.

• Lself: encourage to learn relevant infor-
mation only.

A

B

X

A

B̃

X ′

During observations

During interventions

Figure 5: Schematic illustration of RepLIn for a causal graph with two attributes (A → B) and X =
f(A,B,U). Encoders learn representations FA and FB corresponding to A and B, which are then used
by their corresponding classifiers to predict Â and B̂ respectively. On interventional samples, we minimize
Ldep between the features to ensure their independence. On all samples, we minimize Lself to encourage the
representations to learn only the relevant information.

As noted in the previous section, there is a strong correlation between the drop in accuracy during interven-
tions and interventional feature dependence. We also showed theoretically that minimizing linear dependence
between interventional features can improve test time error on interventional data for linear models. Based
on this observation, we propose “Representation Learning from Interventional data” (RepLIn) to learn dis-
criminative representations that are robust against interventional distribution shifts.

To enforce independence between interventional features, we propose to use dependence-guided regulariza-
tion denoted as Ldep over the prediction loss function (e.g., cross-entropy for classification tasks) used in
ERM. We refer to this regularization as “dependence loss” and is defined for the general case in Sec. 3 as
Ldep =

∑n
i=1 NHSIC(F int

Ai
,F int

B ) . We minimize the dependence loss only for the interventional samples in
our training set since congruent statistical independence occurs in the data space only during interventions.

However, Ldep alone is insufficient since learning irrelevant features can minimize Ldep. To avoid
such pathological scenarios and encourage the model to learn only relevant information, we intro-
duce another loss that maximizes the dependence between a feature and its corresponding label. We
employ this “self-dependence loss” on both observational and interventional data and define it as

Lself = 1 −
NHSIC(FB ,B)+

∑n

i=1
NHSIC(FAi

,Ai)
2(n+1) . However, in contrast to Ldep, we use linear kernels in Lself

to maximize a lower estimate of the dependence between the representations and the labels. Using linear
kernels in HSIC amounts to kP

(
x(i),x(j)) = x(i)⊤

x(j) in Sec. 3.2. In summary, RepLIn optimizes the fol-
lowing total loss: Ltotal = Lpred + λdepLdep + λselfLself , where λdep and λself are weights that control the
contribution of the respective losses. A pictorial overview of the RepLIn pipeline is shown in Fig. 5.

5 Experimental Evaluation

In this section, we compare the performance of RepLIn to the baselines on synthetic and real face image
datasets. We use the Windmill dataset introduced in Sec. 3.1 to verify the effectiveness of RepLIn and eval-
uate its broader applicability to practical scenarios through the facial attribute prediction task on the CelebA
dataset. Our experiments are designed to validate the following hypothesis: Does explicitly minimizing the
interventional feature dependence improve interventional accuracy?

Training Hyperparameters and Baselines: We consider vanilla ERM and ERM-Resampled (Chawla
et al., 2002; Cateni et al., 2014) as our primary baselines since they are the most commonly used training
algorithms. ERM-Resampled is a strong baseline for group-imbalanced training and domain generaliza-
tion (Idrissi et al., 2022; Gulrajani & Lopez-Paz, 2021). On Windmill dataset, we also consider the follow-
ing SOTA algorithms in domain generalization: IRMv1 (Arjovsky et al., 2019), Fish (Shi et al., 2022), and
GroupDRO (Sagawa et al., 2020). We study two variants of our method: RepLIn and RepLIn-Resampled.
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The latter variant uses the resampling strategy from ERM-Resampled. In each method, attribute-specific
representations are extracted from the input data, which feed into the classifiers to get the final prediction.
All baselines share the same architecture for feature extractors. Linear classifiers are used for all base-
lines. We note that the values of λdep and λself in RepLIn variants are kept fixed across all proportions of
interventional data β. A detailed description of the datasets and the training settings is provided in App. A.

Evaluation Criterion: Our primary interest is in investigating the accuracy drop when predicting the
variables that are unaffected by interventions. Ideally, if the learned features respect causal relations during
interventions, we expect no change in the prediction accuracy of parent variables of the intervened variable
between observational and interventional distributions. To measure the change, we use the relative drop in
accuracy defined in Sec. 3.3: Rel.∆ = Obs acc.−Int acc.

Obs acc. . Since we optimize NHSIC during training, we use
NKCC from Sec. 3.3 to evaluate the dependence between the features on interventional data during testing.
We repeat each experiment with five different random seeds and report the mean and standard deviation.

5.1 Windmill dataset

We first evaluate our method on the synthetic dataset that helped us identify the relation between the
performance gap in predicting A on observational and interventional data in Sec. 3.1. As a reminder, the
causal graph consists of two binary random variables A and B, where A → B during observations. We
intervene by setting B ∼ Bernoulli(0.5), breaking the dependence between A and B. The proportion of
interventional samples in the training data varies from β = 0.01 to β = 0.5.

Accuracy on interventional data. The relative drop in accuracy is shown in parentheses.
Method β = 0.5 β = 0.3 β = 0.1 β = 0.05 β = 0.01
ERM 76.87 ± 1.08 (0.18 ± 0.01) 69.86 ± 3.19 (0.29 ± 0.04) 62.78 ± 1.77 (0.37 ± 0.02) 59.52 ± 1.30 (0.40 ± 0.01) 60.15 ± 3.12 (0.40 ± 0.03)
ERM-Resampled 73.70 ± 3.19 (0.22 ± 0.04) 71.19 ± 3.23 (0.24 ± 0.03) 73.62 ± 1.54 (0.22 ± 0.02) 71.03 ± 2.83 (0.25 ± 0.03) 70.20 ± 3.73 (0.26 ± 0.03)
IRMv1 78.24 ± 0.79 (0.16 ± 0.01) 74.83 ± 1.74 (0.20 ± 0.02) 78.61 ± 2.24 (0.16 ± 0.02) 76.28 ± 1.87 (0.18 ± 0.02) 71.75 ± 2.03 (0.24 ± 0.02)
Fish 77.23 ± 2.24 (0.19 ± 0.02) 77.23 ± 1.32 (0.19 ± 0.01) 78.24 ± 2.09 (0.18 ± 0.02) 76.42 ± 1.95 (0.20 ± 0.02) 73.92 ± 2.53 (0.23 ± 0.03)
GroupDRO 80.10 ± 1.66 (0.02 ± 0.01) 80.96 ± 1.33 (0.04 ± 0.02) 80.35 ± 1.01 (0.06 ± 0.02) 77.40 ± 1.16 (0.08 ± 0.01) 71.86 ± 1.60 (0.22 ± 0.02)
RepLIn 87.94 ± 1.46 (0.08 ± 0.02) 87.76 ± 2.30 (0.10 ± 0.02) 83.23 ± 2.67 (0.16 ± 0.03) 73.63 ± 2.43 (0.25 ± 0.02) 67.52 ± 2.30 (0.32 ± 0.03)
RepLIn-Resampled 88.46 ± 0.96 (0.07 ± 0.01) 88.05 ± 1.04 (0.08 ± 0.01) 87.91 ± 1.36 (0.08 ± 0.01) 86.38 ± 0.85 (0.10 ± 0.01) 78.41 ± 1.27 (0.18 ± 0.02)

Table 2: Results on Windmill dataset: We evaluate the variants of RepLIn (highlighted in gray) against
the baselines on two metrics: interventional accuracy and relative accuracy drop on interventional data
compared to observational. As the proportion of interventional data during training (β) decreases, the
problem becomes more challenging. Compared to the baselines, RepLIn maintains its interventional accuracy.
A similar trend is observed in the relative accuracy drop, where RepLIn significantly outperforms most
baselines. The best and the second-best results are shown in different colors.

Tab. 2 compares the interventional accuracy of A for various amounts of interventional data. We make the
following observations: (1) our model outperforms every baseline in interventional accuracy for all values of
β. This clearly demonstrates the advantage of exploiting the underlying causal relations when learning from
interventional data, instead of treating it as a separate domain, and (2) comparing ERM and RepLIn with
their resampling variants, we observe that resampling is a generally useful technique with large gains when
β is very small (for example, consider results with β ≤ 0.05). We are also interested in the relative drop in
accuracy between observational and interventional data (Rel.∆). From Tab. 2, we observe that GroupDRO
has the lowest Rel.∆ among the considered methods for β ≥ 0.05, and achieves its best results when more
interventional data is available during training. However, this improvement comes at the cost of lower
interventional accuracy. Meanwhile, the relative drop in accuracy of RepLIn is comparable to GroupDRO
at larger values of β and has the least relative drop in accuracy at lower values of β. We discuss in Sec. 6.1
how the representations learned by RepLIn are less affected by interventional shifts.

5.2 Facial Attribute Prediction

We verify the utility of RepLIn for predicting facial attributes on the CelebA dataset (Liu et al., 2015). Images
in the CelebA dataset are annotated with 40 labeled binary attributes. We consider two of these attributes
– smiling and gender – as random variables affecting each other causally. Since the true underlying
relation between smile and gender is unknown, we adopt the resampling procedure from (Wang & Boddeti,
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2022) to induce a desired causal relation between the attributes (smiling → gender) and obtain samples.
Specifically, to simulate this causal relation, we sample smiling from Bernoulli(0.6) first and then sample
gender according to a probability distribution conditioned on the sampled smiling variable. We then sample
a face image whose attribute labels match the sampled values. We model the diversity in the images due
to unobserved noise variables. Note that, unlike in Windmill, the noise variables in this experiment may
be causally related to the attributes that we wish to predict, adding to the challenges in the dataset. The
causal model for this experiment and some sample images are shown in Fig. 7.

gendersmiling

(a) Observational causal graph and samples

gendersmiling

(b) Interventional causal graph and samples

Figure 7: Causal model for CelebA before and after intervention along with sample images from these models

Given the face images, we first extract features from ResNet-50 (He et al., 2016) pre-trained on ImageNet
dataset (Deng et al., 2009). Then, similar to the architecture for Windmill experiments, we employ a
shallow MLP to act on these features, followed by a linear classifier to predict the attributes. Our loss
functions act upon the features of the MLP. We use 30,000 samples for training and 15,000 for testing.
We use the relative drop in interventional accuracy as the primary metric and compare RepLIn-Resampled
against ERM-Resampled. We also verify if the correlation between interventional feature dependence and the
relative drop in accuracy observed in Sec. 3.3 on Windmill experiments holds in a more practical scenario.

ERM-Resampled RepLIn-Resampled
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(b) Dependence
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Figure 8: Facial Attribute Prediction:
(a) RepLIn has a lower relative drop in accu-
racy compared to ERM-Resampled. (b) Minimizing
interventional feature dependence during training
generalizes to testing. (c) Interventional feature
dependence correlates positively with the relative
drop in accuracy.

Fig. 8 reports the experimental results on facial attribute prediction for various amounts of interventional
training data. We make the following observations: (1) as the proportion of interventional data increases, the
relative drop in accuracy in all methods decreases, (2) across all proportions of interventional data, RepLIn
consistently outperforms the baseline by 4% − 7% lower relative drop in accuracy despite the potential
challenges due to noise variable being causally related to the attributes of interest, (3) relative drop in
accuracy and interventional feature dependence show strong positive correlation (ρ = 0.86), and (4) the
interventional feature dependence of RepLIn steadily decreases as the amount of interventional data increases.

6 Discussion

6.1 How does RepLIn improve robustness against interventional distribution shift?

In Sec. 3.4, we showed theoretically that enforcing linear independence between interventional features can
improve robustness in a linear model. We verified our claims experimentally in non-linear settings in Sec. 5.
In this section, we qualitatively and quantitatively compare the interventional features learned by various
methods to understand how RepLIn improves robustness against interventional distribution shift.

Windmill dataset: We consider the distribution of F int
A for a fixed value of A and changing values of

B. Robust representations of A change with A but not B. The distribution shift in F int
A due to changes

in B can be quantitatively measured using Jensen-Shannon (JS) divergence. In Tab. 3, we calculate JS
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(c) RepLIn-Resampled

Figure 9: Visualization of interventional features learned by various methods on Windmill dataset.

Method ERM ERM-Resampled IRMv1 Fish GroupDRO RepLIn RepLIn-Resampled

When A = 0 0.45 ± 0.058 0.423 ± 0.105 0.333 ± 0.122 0.341 ± 0.111 0.365 ± 0.066 0.15 ± 0.03 0.188 ± 0.032
When A = 1 0.499 ± 0.07 0.456 ± 0.11 0.405 ± 0.111 0.37 ± 0.116 0.431 ± 0.048 0.183 ± 0.058 0.168 ± 0.047

Average 0.475 ± 0.063 0.439 ± 0.105 0.369 ± 0.116 0.355 ± 0.113 0.398 ± 0.055 0.166 ± 0.035 0.178 ± 0.036

Table 3: Jensen-Shannon (JS) divergence: The distribution of F int
A must be invariant to the value

assumed by B since A ⊥⊥ B during interventions. Therefore, JS divergence between P (F int
A |B = 0, A = a)

and P (F int
A |B = 1, A = a) of a robust model must be zero. We compare the JS divergence between

interventional features of the baselines for β = 0.5. Among the baselines, RepLIn achieves the lowest values
of Jensen-Shannon divergence. The lowest and the second lowest scores are highlighted in color.

divergence between P (F int
A |B = 0, A = a) and P (F int

A |B = 1, A = a) for all methods trained on Windmill
dataset. JS divergence for an ideal robust model must be zero. We observe that F int

A learned by RepLIn
achieves the lowest JS divergence. This shows that F int

A learned by RepLIn contains the least information
about B among the baselines. In our experiments on Windmill dataset, all baselines learned 3-dimensional
features that lay on a unit radius sphere. Therefore, we can visualize the distributions of their spherical
angles, namely inclination and azimuth. We compare the distributions of inclination and azimuth of F int

A

learned by RepLIn-Resampled against the ERM baselines in Fig. 9. Each row shows the distribution of the
spherical angles for different values of A. Distributions for different values of B have separate colors. These
feature distributions for a robust model must change with A but not B. We observed from the figure that
the feature distributions of the baselines are affected by B and not A due to the dependence between F int

A

and B. However, the feature distributions learned by RepLIn change with A and overlap significantly when
B takes different values. Thus, our models perform similarly to a robust model. Visualizations of the feature
distributions of other baselines are provided in App. E.

(a) ERM-Resampled

(b) RepLIn-Resampled

Figure 10: Consider these sample face images where
the subjects are smiling. The ERM baseline misclassi-
fied these samples as not smiling, while RepLIn classi-
fied them correctly. We use GradCAM visualizations
to identify the regions in the input images that the
models used to make their predictions. The ERM
model relied on factors such as hair and the presence
of a hat that may correlate with gender to predict
whether the subjects are smiling. In contrast, RepLIn
attended to the lip regions to make predictions.

CelebA dataset: Our learned representations on CelebA are high-dimensional, and therefore we employ
Grad-CAM (Selvaraju et al., 2017) to analyze the features and compare them against those learned by ERM-
Resampled. Since our primary metric is accuracy in predicting smiling during interventions, we visualize
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the parts of the input image that the models attend to for predicting a smile. We consider some samples with
smiling = 1 that were misclassified by ERM-Resampled but were correctly classified by RepLIn-Resampled.
Comparing these predictions would help us explain the robustness of RepLIn. Fig. 10 shows the attention
maps from models trained on datasets with 50% interventional data. A robust model would attend to facial
regions surrounding lips to make predictions about smiling. Observe that RepLIn-Resampled tends to focus
more on the region around the lips while ERM-Resampled attends to other regions of the face.

6.2 Scalability with number of nodes

A

B C

D E

(a) Observational

A

B C̃

D E

(b) Intervening on C

A

B C

D̃ E

(c) Intervening on D

A

B C

D Ẽ

(d) Intervening on E

XA = MLP6(A)
XB = MLP4(B)
XC = MLP1(C)
XD = MLP1(D)
XE = MLP1(E)
(e) Generating X

Figure 11: 5-variable causal graph: We construct a 5-variable causal graph to demonstrate the scalability
of our method with the number of nodes. To collect interventional data, we intervene on C, D, and E
separately and measure the performance drop in predicting A and B during these interventions. Nodes in
the graphs with dashed borders indicate intervened nodes. Note that we do not intervene on multiple targets
at a time. The input data signal X is constructed as a concatenation of individual input signals, each being
a function of a latent variable, i.e., X =

[
X⊤
A X⊤

B X⊤
C X⊤

D X⊤
E

]⊤ Here, MLPl indicates a randomly
initialized MLP with l linear layers, each followed by a ReLU. We also add Gaussian noise sampled from
N (0, 0.01) to the output of the MLP.

Consider a causal graph with N nodes, each with K parent nodes. To learn robustness against distribution
shifts due to interventions on M nodes, RepLIn requires only the independence relations between these
M nodes and their parents and the data resulting from separate interventions on these nodes. Therefore,
RepLIn can scale with M and K. To verify this scalability, we use the causal graph shown in Fig. 11a with
five latent variables. It consists of two binary source nodes A and B, and three binary derived nodes C, D,
and E. During observations, A and B are sampled from independent Bernoulli(0.5) distributions. During
observation, the remaining nodes take the following logical expressions: C := A or B, D := A and B, and
E := not B and C. Like our previous experiments, the training dataset has interventional data samples
collected by intervening on nodes C, D, and E separately in addition to the observational data. The changes
in the causal graph due to these interventions are shown in Figs. 11b to 11d. Each intervened variable
assumes values from a Bernoulli(0.5) distribution independent of their parents. Each latent variable ∗ is
passed through a randomly initialized MLP with noise added to its output to get a corresponding observed
signal X∗. These individual signals are concatenated to obtain the observed input signal X, as shown in
Fig. 11e. The task is to predict the latent variables from the input signal X. Since we are interested in the
robustness of the model against interventional distribution shift, our primary metrics will be the predictive
accuracy for A and B during interventions on C, D, and E.

Each batch comprises only observational or interventional data after intervention on a single target. There-
fore, our method only enforces the independence relations from at most one interventional target in each
batch. The validation and test sets consist of samples collected during interventions on C, D, or E. The
predictive performances on the test sets are reported in Table 4. We observe that RepLIn significantly im-
proves over the baseline with sufficient interventional data, β > 0.1. When the proportion of interventional
data β ≤ 0.1, RepLIn is comparable with the baseline, suggesting that the benefits of enforcing independence
between interventional features extend to larger causal graphs with multiple intervention targets.
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Interventional
target Method Predictive accuracy on A Predictive accuracy on B

β = 0.5 β = 0.3 β = 0.1 β = 0.05 β = 0.5 β = 0.3 β = 0.1 β = 0.05

C
ERM-Resampled 79.71 ± 0.30 76.22 ± 0.42 73.97 ± 0.39 73.56 ± 0.36 87.60 ± 0.06 85.45 ± 0.23 83.89 ± 0.33 83.71 ± 0.40

RepLIn-Resampled 95.37 ± 0.97 78.77 ± 0.54 72.15 ± 0.31 73.74 ± 0.36 96.72 ± 0.81 86.16 ± 0.63 82.35 ± 0.95 82.43 ± 0.65

D
ERM-Resampled 79.65 ± 0.43 75.47 ± 0.64 71.76 ± 0.35 70.27 ± 0.34 91.05 ± 0.29 90.21 ± 0.27 90.36 ± 0.58 90.55 ± 0.74

RepLIn-Resampled 95.49 ± 1.01 77.76 ± 0.82 71.20 ± 0.82 68.80 ± 0.79 97.87 ± 0.31 92.21 ± 0.48 91.40 ± 0.79 90.88 ± 0.89

E
ERM-Resampled 86.63 ± 0.33 81.90 ± 0.26 76.20 ± 0.84 73.46 ± 0.37 81.12 ± 0.22 78.00 ± 0.48 74.02 ± 0.38 72.97 ± 0.38

RepLIn-Resampled 96.71 ± 0.49 84.68 ± 0.36 75.01 ± 0.53 71.52 ± 0.87 96.89 ± 0.68 80.88 ± 0.57 72.81 ± 1.13 71.60 ± 0.59

Table 4: Results on 5-variable causal graph: We compare the accuracy of RepLIn in predicting the
source nodes A andB during interventions on non-source nodes C, D, and E against that of ERM-Resampled.
Our approach outperforms the baselines with sufficient interventional data.

7 Conclusion

This paper considered the problem of learning representations that are robust against interventional dis-
tribution shifts by leveraging the statistical independence induced by interventions in the underlying data-
generating process. First, we established a strong correlation between the drop in accuracy during interven-
tions and statistical dependence between representations on interventional data. We then showed theoreti-
cally that minimizing linear dependence between interventional representations can improve the robustness
of a linear model against interventional distribution shift. Building on this result, we proposed RepLIn
to learn representations that are robust against interventional distribution shift by explicitly enforcing sta-
tistical independence between learned representations on interventional data. Experimental evaluation of
RepLIn across different scenarios corresponding to different causal graphs showed that RepLIn can improve
predictive accuracy during interventions for various proportions of interventional data. RepLIn is also scal-
able to the number of causal attributes and can be used with continuous and discrete latent variables. We
used qualitative and quantitative tools to show that RepLIn is more successful in learning interventional
representations that do not contain information about their child nodes during interventions.
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Overview of Appendix

App. A: Details of implementation and hyperparameters for all experiments
App. B: Theoretical Motivation for RepLIn
App. C: Review of Identifiable Causal Representation Learning
App. E: Visualization of Feature Distribution Learned on Windmill dataset
App. D: Generating Windmill dataset

A Implementation details

We implement our models using PyTorch (Paszke et al., 2019) and use Adam (Kingma & Ba, 2015) as our
optimizer with its default settings. Training hyperparameters for each dataset (such as the number of data
points, training epochs, etc.) are shown in Tab. 5. For training stability, we warm up λdep from 0 to its set
value between sN and eN epochs where N is the total number of epochs, and s and e are fractions shown
in Tab. 5.

Table 5: List of hyperparameters used for each dataset.

Dataset #Training samples Epochs Batchsize Initial LR Scheduler λdep λself Start (s) End (e)
Windmill 40,000 5000 1000 2e-3 MultiStepLR(milestones=[1000], gamma=0.5) 1 1 0.66 0.99
CelebA 30,000 2000 1000 1e-3 MultiStepLR(milestones=[1000], gamma=0.1) 20 2 0.01 0.99

For all methods, we first extract label-specific features from the inputs and pass them through a corresponding
classifier to predict the label. The architecture of the feature extractor is the same for all methods on a given
dataset, except on the Windmill dataset. The classification layer is a linear layer mapping from feature
dimensions to the number of classes. The specific details for each dataset are provided below.

Windmill dataset: For ERM baselines, we use an MLP with two layers of size 40 and 1, with a ReLU
activation after each layer (except the last) to extract the features. However, we observed that enforcing in-
dependence using 1-dimensional features was difficult. Therefore, we used 2-dimensional features for RepLIn,
which were then normalized to lie on a sphere.

CelebA dataset: We first extract features from the raw image using a ResNet-50 (He et al., 2016) pre-
trained on ImageNet (Deng et al., 2009). Although these features are not optimal for face attribute prediction,
they are useful for face verification (Sharif Razavian et al., 2014). Additionally, it makes the binary attribute
prediction task more challenging. We extract attribute-specific features from this input using a linear layer
that maps it to a 500-dimensional space.

B Theoretical Motivation for RepLIn

In Sec. 3.4, we theoretically motivated RepLIn. This section explains the motivation with detailed proof.

Sketch of proof: First, we estimate the statistical risk in predicting the latent variables from interventional
data from representations learned by arbitrary linear feature extractors and classifiers. In this statistical
risk, we will identify a term that is the source of performance drop during interventions. We will then
show that the optimal ERM models will suffer from this performance drop when trained on a dataset
comprising observational and interventional data. Finally, we show that minimizing linear dependence
between interventional features can lead to robust linear feature extractors.

Setup: We follow the same mathematical notation as the main paper, shown in Tab. 6. The input data X
is generated as a function of two latent variables of interest, A and B. There are noise variables collectively
denoted by U that participate in the data generation but are not of learning interest. Our task is to predict
A and B from X. A and B are causally related during observation. For ease of exposition, we will consider
a simple linear relation B := wABA. This causal relation breaks when we intervene on B. The intervened
variable is denoted with an added apostrophe (i.e., B′). The data generation process can be written in the
form of a structural causal model as follows:
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Entity Notation Examples
Scalar Regular lowercase characters a, γ
Random variable Regular sans-serif uppercase characters A
Random vector Bold sans-serif uppercase characters A
Distribution of a random variable A P with subscript PA

Table 6: Mathematical notation used in the proof.

A ∼ PA XA := wAA+ UA
B′ ∼ PB′ XB := wBB + UB

B := wABA (during observations)
X =

[
XA

XB

]
B := B′ (during interventions)

UA, UB ∼ PU

Training: The distribution from which training data is sampled is denoted by Ptrain. The training data
consists of both observational and interventional samples, which themselves come from distributions Pobs
and Pint. We are interested in the scenario where (1 − β) proportion of the training data is observational,
while the remaining β proportion is interventional, where 0 < β < 1. The training distribution can be
represented as a mixture of observational and interventional distributions as follows:

Ptrain(X, A,B) = (1 − β)Pobs(X, A,B) + βPint(X, A,B)

Typically, we assume β ≪ 1. We will also assume that A, B, U , and X have zero mean, so that we may use
linear models without bias terms to extract representations corresponding to the variables of interest and
train linear classifiers on these representations. The corresponding classifiers are parameterized by c(A) and
c(B). The predictions are made by the classifiers from the learned representations as Â = c(A)⊤Θ(A)⊤X and
B̂ = c(B)⊤Θ(B)⊤X. The models are trained by minimizing the mean squared error on the training data,

LMSE = EPtrain

[(∥∥∥A− Â
∥∥∥2

2
+

∥∥∥B − B̂
∥∥∥2

2

)]
.

B.1 Statistical Risk in Predicting Interventional Latent Samples

The model predicts Â and B̂ from X during inference. The statistical squared error in predicting A from
interventional samples can be written as,

EA = EPint

[(
A− Â

)2
]

= EPint

[(
A− c(A)⊤Θ(A)⊤X

)2
]

(6)

The expectation is taken over the interventional distribution over X, A,B,U denoted by Pint. Θ(A) can be

written in terms of constituent parameter vectors as Θ(A) =
[
θ

(A)⊤
A

θ
(A)⊤
B

]
. The predicted latent Â can hence be

written in terms of these vectors as,

Â = c(A)⊤Θ(A)⊤X = c(A)⊤
(
XAθ

(A)
A +XB′θ

(A)
B + Θ(A)⊤U

)
= wAAc

(A)⊤θ
(A)
A + wBB

′c(A)⊤θ
(A)
B + c(A)⊤Θ(A)⊤U

∴
(
A− c(A)⊤Θ(A)⊤X

)2
=

((
1 − wAc

(A)⊤θ
(A)
A

)
A+ wBB

′c(A)⊤θ
(A)
B + c(A)⊤Θ(A)⊤U

)2

=
(

1 − wAc
(A)⊤θ

(A)
A

)2
A2 +

(
wBc

(A)⊤θ
(A)
B

)2
B′2 + Ũ2

+ 2
(

1 − wAc
(A)⊤θ

(A)
A

) (
wBc

(A)⊤θ
(A)
B

)
AB′

+ 2
(

1 − wAc
(A)⊤θ

(A)
A

)
ŨA+ 2

(
wBc

(A)⊤θ
(A)
B

)
ŨB′ (7)
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∴ EA = EPint

[(
1 − wAc

(A)⊤θ
(A)
A

)2
A2 +

(
wBc

(A)⊤θ
(A)
B

)2
B′2 + Ũ2

]
+ 2EPint

[(
1 − wAc

(A)⊤θ
(A)
A

) (
wBc

(A)⊤θ
(A)
B

)
AB′

]
+ 2EPint

[(
1 − wAc

(A)⊤θ
(A)
A

)
ŨA+ 2

(
wBc

(A)⊤θ
(A)
B

)
ŨB′

]
where Ũ = c(A)⊤Θ(A)⊤U = c(A)⊤θ

(A)
A UA + c(A)⊤θ

(A)
B UB . U denotes exogenous variables that are indepen-

dent of A and B. Due to interventions, we also have A ⊥⊥ B. The expectation of AB′ will be zero since
they are independent and have zero means marginally. Similarly, the expectation of the products of Ũ with
A and B will be zero. Therefore,

EA =
(

1 − wAc
(A)⊤θ

(A)
A

)2
ρ2
A +

(
c(A)⊤θ

(A)
A

)2
ρ2
UA︸ ︷︷ ︸

E
(1)
A

+
(
wBc

(A)⊤θ
(A)
B

)2
ρ2
B′ +

(
c(A)⊤θ

(A)
B

)2
ρ2
UB︸ ︷︷ ︸

E
(2)
A

(8)

where ρ2
A = EPint

[
A2]

, ρ2
B′ = EPint

[
B′2]

, ρ2
UA

= EPint

[
U2
A

]
, and ρ2

UB
= EPint

[
U2
B

]
.

Statistical risk for a robust model: We are interested in robustness against interventional distribution
shifts. The predictions of A by a robust model are unaffected by interventions on its child variable B. If Â
must not depend on B′, then the corresponding representations ϕ(A) must not depend on it either, i.e. θ(A)

B

must be a zero vector. Eq. (8) has two terms: E(1)
A and E

(2)
A . Therefore, a robust model will have E(2)

A = 0
since θ(A)

B = 0. We will show that an optimal model trained using ERM will have a non-zero θ(A)
B .

B.2 Optimal ERM model

The optimal ERM model can be obtained by minimizing the expected risk in predicting the latent attributes.
Since parameters are not shared between the prediction of a and b, we can consider their optimization
separately. We will consider the optimization of the parameters for predicting a since we are interested in
the performance drop in predicting A from interventional data.

Θ(A)∗, c(A)∗ = argmin
Θ(A),c(A)

EPtrain

[(
A− c(A)⊤Θ(A)⊤X

)2
]

where Ptrain is the joint distribution of (X, A,B) during training. As mentioned earlier, Ptrain is a mixture of
observational distribution Pobs and interventional distribution Pint, with (1−β) and β acting as the mixture
weights. Therefore, the training objective can be rewritten as,

Θ(A)∗, c(A)∗ = argmin
Θ(A),c(A)

J(Θ(A), c(A))

where, J(Θ(A), c(A)) =
(

(1 − β)EPobs

[(
A− c(A)⊤Θ(A)⊤X

)2
]

+ βEPint

[(
A− c(A)⊤Θ(A)⊤X

)2
])

(9)

Expanding the error term on observational data, we have,

c(A)⊤Θ(A)⊤X = c(A)⊤
(
XAθ

(A)
A +XBθ

(A)
B + Θ(A)⊤U

)
= wAAc

(A)⊤θ
(A)
A + wBBc

(A)⊤θ
(A)
B + c(A)⊤Θ(A)⊤U

= wAAc
(A)⊤θ

(A)
A + wBwABAc

(A)⊤θ
(A)
B + c(A)⊤Θ(A)⊤U

∴
(
A− c(A)⊤Θ(A)⊤X

)2
=

(
A− wAAc

(A)⊤θ
(A)
A − wBwABAc

(A)⊤θ
(A)
B − c(A)⊤Θ(A)⊤U

)2

=
((

1 − wAc
(A)⊤θ

(A)
A − wBwABc

(A)⊤θ
(A)
B

)
A− c(A)⊤Θ(A)⊤U

)2

=
(

1 − wAc
(A)⊤θ

(A)
A − wBwABc

(A)⊤θ
(A)
B

)2
A2 + Ũ2

− 2
(

1 − wAc
(A)⊤θ

(A)
A − wBwABc

(A)⊤θ
(A)
B

)
AŨ
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where Ũ = c(A)⊤Θ(A)⊤U = UAc
(A)⊤θ

(A)
A + UBc

(A)⊤θ
(A)
B from App. B.1. Since the exogenous variable U is

independent of A and B, the expectation of their products over the observational distribution becomes zero.
Therefore,

EPobs

[(
A− c(A)⊤Θ(A)⊤X

)2
]

=
(

1 − wAc
(A)⊤θ

(A)
A − wBwABc

(A)⊤θ
(A)
B

)2
EPobs

[
A2]

+ EPobs

[
Ũ2]

=
(

1 − wAc
(A)⊤θ

(A)
A − wBwABc

(A)⊤θ
(A)
B

)2
ρ2
A +

(
c(A)⊤θ

(A)
A

)2
ρ2
UA

+
(
c(A)⊤θ

(A)
B

)2
ρ2
UB

(10)

Note that, ρ2
A = EPobs

[
A2]

, ρ2
UA

= EPobs

[
U2
A

]
, and ρ2

UB
= EPobs

[
U2
B

]
similar to App. B.1 since these values

are unaffected by interventions. The expansion of the error term on interventional data was derived in
Eq. (8). Thus, the overall training objective Eq. (9) can be written as,

J(Θ(A), c(A)) = (1 − β)
((

1 − wAc
(A)⊤θ

(A)
A − wBwABc

(A)⊤θ
(A)
B

)2
ρ2
A +

(
c(A)⊤θ

(A)
A

)2
ρ2
UA

+
(
c(A)⊤θ

(A)
B

)2
ρ2
UB

)
+ β

((
1 − wAc

(A)⊤θ
(A)
A

)2
ρ2
A +

(
wBc

(A)⊤θ
(A)
B

)2
ρ2
B′ +

(
c(A)⊤θ

(A)
A

)2
ρ2
UA

+
(
c(A)⊤θ

(A)
B

)2
ρ2
UB

)

We set ψ1 = c(A)⊤θ
(A)
A and ψ2 = c(A)⊤θ

(A)
B . Since ERM jointly optimizes the feature extractors and the

classifiers, no unique solution minimizes the prediction loss. For example, scaling the feature extractor
parameters by an arbitrary constant scalar γ and the classifier parameters by 1/γ will give the same error.
Therefore, we can optimize J(Θ(A), c(A)) over ψ1 and ψ2, similar to (Arjovsky et al., 2019).

J(Θ(A), c(A)) = (1 − β)
(

(1 − wAψ1 − wBwABψ2)2
ρ2
A + ψ2

1ρ
2
UA

+ ψ2
2ρ

2
UB

)
+ β

(
(1 − wAψ1)2

ρ2
A + w2

Bψ
2
2ρ

2
B′ + ψ2

1ρ
2
UA

+ ψ2
2ρ

2
UB

)
(11)

The optimal values of ψ1 and ψ2 are the stationary points of J(Θ(A), c(A)) (denoted by J for brevity). Thus
the optimal parameter values can be solved for by taking the first-order derivatives of J w.r.t. ψ1 and ψ2
and setting them to zero.

∂J

∂ψ1
= 2(1 − β)

(
− (1 − wAψ1 − wBwABψ2)wAρ2

A + ψ1ρ
2
UA

)
+ 2β

(
− (1 − wAψ1)wAρ2

A + ψ1ρ
2
UA

)
∂J

∂ψ2
= 2(1 − β)

(
− (1 − wAψ1 − wBwABψ2)wBwABρ2

A + ψ2ρ
2
UB

)
+ 2β

(
w2
Bψ2ρ

2
B′ + ψ2ρ

2
UB

)
Setting ∂J

∂ψ1
= ∂J

∂ψ2
= 0, we have,(

w2
Aρ

2
A + ρ2

UA

)
ψ1 +(1 − β)wAwBwABρ2

Aψ2 −wAρ2
A = 0

(1 − β)wAwBwABρ2
Aψ1 +

(
βw2

Bρ
2
B′ + (1 − β)w2

Bw
2
ABρ

2
A + ρ2

UB

)
ψ2 −(1 − β)wBwABρ2

A = 0

The equations are of the form u1ψ1 + v1ψ2 + w1 = 0 and u2ψ1 + v2ψ2 + w2 = 0. We can solve for ψ2 as
ψ2 = w2u1−w1u2

v1u2−v2u1
. Since we are only interested in probing the robustness of ERM models, we will check if

ψ2 is zero instead of fully solving the system of linear equations. E
(2)
A in Eq. (8) is zero if ψ2 = 0, i.e. if

w2u1 − w1u2 = 0.

w2u1 − w1u2 = −(1 − β)wBwAB
(
w2
Aρ

2
A + ρ2

UA

)
ρ2
A + 4(1 − β)w2

AwBwABρ
4
A

= −(1 − β)wBwABρ2
Aρ

2
UA

Unless the training data is entirely composed of interventional data (i.e., β = 1), w2u1 − w1u2 is not zero.
Thus, the optimal ERM model is not robust against interventional distribution shifts.
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B.3 Minimizing Linear Dependence

In Sec. 3.3, we showed that dependence between interventional features correlated positively with the drop
in accuracy on interventional data. We will now verify if minimizing dependence between interventional
features can minimize the drop in accuracy. For ease of exposition, we will minimize the linear dependence
between interventional features instead of enforcing statistical independence. The interventional features are
given by FA = Θ(A)⊤X and F ′

B = Θ(B)⊤X.

FA = Θ(A)⊤X =
[
θ

(A)
A θ

(A)
B

] [
XA

XB

]
= XAθ

(A)
A +XBθ

(A)
B

F ′
B = Θ(B)⊤X =

[
θ

(B)
A θ

(B)
B

] [
XA

XB

]
= XAθ

(B)
A +XBθ

(B)
B

To define linear independence between interventional features, we use the following definition of cross-
covariance from (Gretton et al., 2005):
Definition 1. The cross-covariance operator associated with the joint probability pXY is a linear operator
CXY : G → F defined as

CXY = EXY [(ϕ(X) − µX) ⊗ (ψ(Y ) − µY )]

where G and F are reproducing kernel Hilbert spaces (RKHSs) defined by feature maps ϕ and ψ respectively,
and ⊗ is the tensor product defined as follows

(f ⊗ g)h := f⟨g, h⟩G for all h ∈ G

where ⟨·, ·⟩ is the inner product defined over G.

In our case, instead of RKHS, we have finite-dimensional feature space Rd. Therefore, we have the cross-
covariance matrix as follows,

CXY = EXY [ϕ(X) ⊗ ψ(Y )] = EXY
[
ϕ(X)ψ(Y )⊤]

given that the feature maps have zero mean. Following the definition of HSIC (Gretton et al., 2005), linear
dependence in the finite-dimensional case between X and Y is defined as the Frobenius norm of the cross-
covariance matrix. Therefore, we define the linear dependence loss between the interventional features as,

Ldep = Dep (FA,F ′
B) =

∥∥EPint

[
FAF

′⊤
B

]∥∥2
F

(12)

Leveraging the independence relations during interventions, we can expand Eq. (12) as,

EPint

[
FAF

′⊤
B

]
= EPint

[(
XAθ

(A)
A +XBθ

(A)
B

) (
XAθ

(B)
A +XBθ

(B)
B

)⊤
]

= EPint

[
X2
Aθ

(A)
A θ

(B)⊤
A +XAXBθ

(A)
A θ

(B)⊤
B +XAXBθ

(A)
B θ

(B)⊤
A +X2

Bθ
(A)
B θ

(B)⊤
B

]
= (w2

Aρ
2
A + ρ2

UA
)θ(A)
A θ

(B)⊤
A + (w2

Bρ
2
B′ + ρ2

UB
)θ(A)
B θ

(B)⊤
B

∴ Ldep =
∥∥∥(w2

Aρ
2
A + ρ2

UA
)θ(A)
A θ

(B)⊤
A + (w2

Bρ
2
B′ + ρ2

UB
)θ(A)
B θ

(B)⊤
B

∥∥∥2

F

In the last step, all cross-covariance terms are zero due to the independence of the corresponding random
variables in the causal graph. The dependence loss is the Frobenius norm of a sum of rank-one matrices
θ

(A)
A θ

(B)⊤
A and θ(A)

B θ
(B)⊤
B . Consider the following general form: Z = ab⊤ + cd⊤. Then Zij = aibj + cidj .

∥Z∥2
F =

∑
ij

(aibj + cidj)2
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∥Z∥2
F is a sum of squares and thus is zero iff aibj + cidj = 0, ∀i, j. Therefore, Ldep is minimized when

θ
(A)
Ai θ

(B)
Aj + θ

(A)
Bi θ

(B)
Bj = 0, ∀i, j. The potential solutions that minimize Ldep are (1) θ(A)

A = θ
(A)
B = θ

(B)
A =

θ
(B)
B = 0, (2) θ(A)

A = ±γθ(A)
B and γθ(B)

A = ∓θ(B)
B for some γ ̸= 0, and (3) θ(A)

A = 0 or θ(B)
A = 0, and θ(A)

B = 0
or θ(B)

B = 0. The former two solutions result in trivial features and will increase the classification error.
The latter solution contains four possible solutions, out of which two solutions result in trivial features.
Solutions resulting in trivial features are unlikely to occur during optimization due to a large classification
error. Therefore, we need to consider only the remaining two solutions.

The possible solutions are: (1) θ(A)
A = 0,θ(B)

B = 0, and (2) θ(A)
B = 0,θ(B)

A = 0. Intuitively, in the former
solution, A and B will be predicted using XB and XA respectively, and the latter solution corresponds to a
robust feature extractor that minimizes the reducible error in Eq. (8). We will compare the predictive error
achieved by these solutions to compare their likelihood during training.

Recall the expression for training error in predicting A from Eq. (11).

JA(Θ(A), c(A)) = (1 − β)
(

(1 − wAψA1 − wBwABψA2)2
ρ2
A + ψ2

A1ρ
2
UA

+ ψ2
A2ρ

2
UB

)
+ β

(
(1 − wAψA1)2

ρ2
A + w2

Bψ
2
A2ρ

2
B′ + ψ2

A1ρ
2
UA

+ ψ2
A2ρ

2
UB

)
= (1 − β)

(
(1 − wAψA1 − wBwABψA2)2

ρ2
A

)
+ β

(
(1 − wAψA1)2

ρ2
A + w2

Bψ
2
A2ρ

2
B′

)
+ ψ2

A1ρ
2
UA

+ ψ2
A2ρ

2
UB

We use ψA1 and ψA2 instead of ψ1 and ψ2 respectively to denote the parameters for predicting A. A similar
expression can be written for the error in predicting B with ψB1 and ψB2 denoting the parameters for
predicting B.

JB(Θ(B), c(B)) = (1 − β)
(

(1 − wAψB1 − wBwABψB2)2
ρ2
A + ψ2

B1ρ
2
UA

+ ψ2
B2ρ

2
UB

)
+ β

(
w2
Aψ

2
B1ρ

2
A + (1 − wBψB2)2ρ2

B′ + ψ2
B1ρ

2
UA

+ ψ2
B2ρ

2
UB

)
= (1 − β)

(
(1 − wAψB1 − wBwABψB2)2

ρ2
A

)
+ β

(
w2
Aψ

2
B1ρ

2
A + (1 − wBψB2)2ρ2

B′

)
+ ψ2

B1ρ
2
UA

+ ψ2
B2ρ

2
UB

Case 1: When θ
(A)
A = 0,θ(B)

B = 0: In this case, ψA1 = 0 and ψB2 = 0. Therefore, the predictive error
during training for each latent variable can be written as,

JA = (1 − β) (wBwABψA2 − 1)2
ρ2
A + βρ2

A + βw2
Bψ

2
A2ρ

2
B′ + ψ2

A2ρ
2
UB

JB = (1 − β) (wAψB1 − wAB)2
ρ2
A + βw2

Aψ
2
B1ρ

2
A + βρ2

B′ + ψ2
B1ρ

2
UA

The optimal values of ψA2 and ψB1 can be obtained by equating the gradients of RA and RB to zero.
∂JA
∂ψA2

= 2(1 − β)wBwAB (wBwABψA2 − 1) ρ2
A + 2βw2

BψA2ρ
2
B′ + 2ψA2ρ

2
UB

= 0

∴ ψ∗
A2 = (1 − β)wBwABρ2

A

(1 − β)w2
Bw

2
ABρ

2
A + βw2

Bρ
2
B′ + ρ2

UB

J∗
A =

(1 − β)ρ2
A

(
βw2

Bρ
2
B′ + ρ2

UB

)
(1 − β)w2

Bw
2
ABρ

2
A + βw2

Bρ
2
B′ + ρ2

UB

+ βρ2
A

∂JB
∂ψB1

= 2(1 − β)wA (wAψB1 − wAB) ρ2
A + 2βw2

AψB1ρ
2
A + 2ψB1ρ

2
UA

= 0

∴ ψ∗
B1 = (1 − β)wAwABρ2

A

w2
Aρ

2
A + ρ2

UA

J∗
B =

(1 − β)w2
ABρ

2
A(βw2

Aρ
2
A + ρ2

UA
)

w2
Aρ

2
A + ρ2

UA

+ βρ2
B′
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The combined training error for this solution is,

J∗
1 = J∗

A + J∗
B

=
(1 − β)ρ2

A

(
βw2

Bρ
2
B′ + ρ2

UB

)
(1 − β)w2

Bw
2
ABρ

2
A + βw2

Bρ
2
B′ + ρ2

UB

+ βρ2
A

+
(1 − β)w2

ABρ
2
A(βw2

Aρ
2
A + ρ2

UA
)

w2
Aρ

2
A + ρ2

UA

+ βρ2
B′ (13)

Case 2: When θ
(A)
B = 0,θ(B)

A = 0: Here, ψA2 = 0 and ψB1 = 0. The predictive error during training for
each latent variable can be written as,

JA = (wAψA1 − 1)2
ρ2
A + ψ2

A1ρ
2
UA

JB =
(
(1 − β)w2

ABρ
2
A + βρ2

B′

)
(wBψB2 − 1)2 + ψ2

B2ρ
2
UB

We follow the former procedure to estimate the optimal values of ψA1 and ψB2.

∂JA
∂ψA1

= 2wA (wAψA1 − 1) ρ2
A + 2ψA1ρ

2
UA

= 0

∴ ψ∗
A1 = wAρ

2
A

w2
Aρ

2
A + ρ2

UA

J∗
A =

ρ2
Aρ

2
UA

w2
Aρ

2
A + ρ2

UA

∂JB
∂ψB2

= 2wB
(
(1 − β)w2

ABρ
2
A + βρ2

B′

)
(wBψB2 − 1) + 2ψB2ρ

2
UB

∴ ψ∗
B2 = (1 − β)wBw2

ABρ
2
A + βwBρ

2
B′

(1 − β)w2
Bw

2
ABρ

2
A + βw2

Bρ
2
B′ + ρ2

UB

J∗
B =

(
(1 − β)w2

ABρ
2
A + βρ2

B′

)
ρ2
UB

(1 − β)w2
Bw

2
ABρ

2
A + βw2

Bρ
2
B′ + ρ2

UB

The combined training error for this solution is,

J∗
2 = J∗

A + J∗
B

=
ρ2
Aρ

2
UA

w2
Aρ

2
A + ρ2

UA

+
(
(1 − β)w2

ABρ
2
A + βρ2

B′

)
ρ2
UB

(1 − β)w2
Bw

2
ABρ

2
A + βw2

Bρ
2
B′ + ρ2

UB

(14)

Comparing J∗
1 and J∗

2 ,

J∗
1 − J∗

2 =
(1 − β)βw2

Bρ
2
Aρ

2
B′ + (1 − β)ρ2

Aρ
2
UB

− (1 − β)w2
ABρ

2
Aρ

2
UB

− βρ2
B′ρ2

UB

(1 − β)w2
Bw

2
ABρ

2
A + βw2

Bρ
2
B′ + ρ2

UB

+
(1 − β)βw2

Aw
2
ABρ

4
A + (1 − β)w2

ABρ
2
Aρ

2
UA

− ρ2
Aρ

2
UA

w2
Aρ

2
A + ρ2

UA

+ β(ρ2
A + ρ2

B′)

Simplifying the above expression, we get the condition that J∗
1 −J∗

2 > 0 if β satisfies the following conditions:

(1) β ≥ 1 − 1
|wAB | , (2) β ≥ min

(
ρ2

A

2ρ2
B′ +ρ2

A

,
ρ2

UA

w2
A
w2

AB
ρ2

A

)
. The conditions imply that enforcing linear indepen-

dence results in robust feature extractors when enough interventional data is available during training.

However, this is only a sufficient condition that strictly ensures J∗
1 − J∗

2 > 0. In practice, β could be much
lower, especially when the total loss is of the form Ltotal = λMSELMSE + λdepLdep, where λMSE and λdep
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are positive hyperparameters. We verify this empirically by randomly setting the parameters of the data
generation process and plotting the predictive errors J∗

1 and J∗
2 for different values of β. We calculate J∗

1
and J∗

2 for 5000 runs (shown using thin curves) and plot the average error (shown using thick curves) in
Fig. 12. We observe that the average value of J∗

1 is always higher than that of J∗
2 for all values of β. But,

when β → 0, their average values get closer to each other.
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Figure 12: Comparing J∗
1 (Eq. (13)) and J∗

2 (Eq. (14)) as functions of β for 5000 runs with randomly sampled
data generation parameters. We show individual runs using thin curves and the average error values using
thick curves. We only show the errors from a few randomly sampled runs for visual clarity. We observe that
the average value of J∗

1 (shown using thick red curve) is always higher than that of J∗
2 (shown using thick

blue curve), indicating that enforcing linear independence between interventional features is more likely to
obtain robust feature extractors than degenerate solutions.

C Review of identifiable causal representation learning

The primary objective of identifiable causal representation learning (ICRL) is to learn a representation such
that it is possible to identify the latent factors (up to permutation and elementwise transformation) from the
representation. These methods are commonly built upon autoencoder-based approaches and learn generative
representations. The advantage of learning a causal representation is that the decoder then implicitly acts
as the true underlying causal model, facilitating counterfactual evaluation and interpretable representations.

Locatello et al. (2019); Khemakhem et al. (2020) showed that disentangled representation learning was
impossible without additional assumptions on both the model and the data. Some of the inductive biases
that have been proposed since to learn disentangled representations include auxiliary labels (Hyvarinen &
Morioka, 2016; Hyvarinen et al., 2019; Sorrenson et al., 2020; Khemakhem et al., 2020; Lu et al., 2021; Ahuja
et al., 2022b; Kong et al., 2022), temporal data (Klindt et al., 2021; Yao et al., 2022; Song et al., 2023), and
assumptions on the mixing function (Sorrenson et al., 2020; Yang et al., 2021; Lachapelle et al., 2022; Zheng
et al., 2022; Moran et al., 2022).

Use of interventional data: Some works also use interventional data as weak supervision for identifiable
representation learning (Lippe et al., 2022b; Brehmer et al., 2022; Ahuja et al., 2022a; 2023; Varıcı et al.,
2023; von Kügelgen et al., 2023). Lippe et al. (2022b) learns identifiable representations from temporal
sequences with possible interventions at any time step. Similar to our setting, they assume the knowledge of
the intervention target. They also assume that the intervention on a latent variable at a time step does not
affect other latent variables in the same time step. Lippe et al. (2023) relaxes the latter assumption as long
as perfect interventions with known targets are available. Von Kügelgen et al. (2021); Zimmermann et al.
(2021) showed that self-supervised learning with data augmentations allowed for identifiable representation
learning. Brehmer et al. (2022) use pairs of data samples before and after some unknown intervention to
learn latent causal models. Ahuja et al. (2022a) learns identifiable representations from sparse perturbations,
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with identifiability guarantees depending on the sparsity of these perturbations. Sparse perturbations can
be treated as a parent class of interventions where the latent is intervened through an external action such
as in reinforcement learning. Ahuja et al. (2022b) use interventional data for causal learning for polynomial
mixing functions, under some assumptions on the nature of support for non-intervened variables. Varıcı
et al. (2024) relaxes the polynomial assumption on the mixing function and proves identifiability when two
uncoupled hard interventions per node are available along with observational data. Varıcı et al. (2023)
learn identifiable representations from data observed under different interventional distributions with the
help of the score function during interventions. von Kügelgen et al. (2023) uses interventional data to learn
identifiable representations up to nonlinear scaling. In addition to the above uses of interventional data, a
few works (Saengkyongam & Silva, 2020; Saengkyongam et al., 2024; Zhang et al., 2023) have also attempted
to predict the effect of unseen joint interventions with the help of observational and atomic interventions
under various assumptions on the underlying causal model.

Difference from our setting: The general objective in ICRL is to “learn both the true joint distribution
over both observed and latent variables” (Khemakhem et al., 2020). In contrast, the objective of our work is
to learn representations corresponding to latent variables that are robust against interventional distributional
shifts by leveraging known interventional independence relations. We pursue this objective in the hope that
as large models such as (Radford et al., 2021), (Brown et al., 2020), (Touvron et al., 2023) and (Dehghani
et al., 2023) become more ubiquitous, efficient methods to improve these models with minimal amounts of
experimentally collected data will be of interest.

D Generating Windmill Dataset

We provide the exact mathematical formulation of Windmill dataset described in Sec. 3.1. We define the
following constants:

Constants Description Default value
narms Number of “arms” in Windmill dataset 4
rmax Radius of the circular region spanned by the observed data 2
θwid Angular width of each arm 0.9π

narms
= 0.7068

λoff Offset wavelength. Determines the complexity of the dataset 6
θmax-off Maximum offset for the angle π/6

Table 7: Constants used for generating Windmill dataset, their meaning, and their values.

RB ∼ B(1, 2.5) (Sample radius)

R = rmax
2 (BRB + (1 −B)(2 −RB)) (Modify sampled radius based on B)

ΘA ∼ C
({

2π i

narms + 1 : i = 0, . . . , narms − 1
})

(Choose an arm)

U ∼ U(0, 1) (To choose a random angle)

Θoff = θmax-off sin
(
πλoff

R

rmax

)
(Calculate radial offset for the angle)

Θ = θwid (U − 0.5) +A

(
ΘA + π

narms

)
+ (1 −A)ΘA + Θoff

(Angle is decided by A and the radial offset)

X1 = R cos Θ, X2 = R sin Θ, X =
[
X1
X2

]
(Convert to Cartesian coordinates)

PyTorch code to generate Windmill dataset is provided in Listing 1.
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Listing 1: Code for Windmill dataset
import math
import torch

# Constants
num_arms = 4 # number of blades in the windmill
max_th_offset = 0.5236 # max offset that can be added to the angle for shearing (= pi/6)
r_max = 2 # length of the blade
num_p = 20000 # number of points to be generated
offset_wavelength = 6 # adjusts the complexity of the blade

# Sample latent variables according to the causal graph.
A = torch.bernoulli(torch.ones(num_points) * 0.6)
if observational_data:

B = A
else:

B = torch.bernoulli(torch.ones(num_points) * 0.5)

# Convert A, B to X.
th_A0 = torch.linspace(0, 2*math.pi, num_arms+1)[:-1]
th_A1 = torch.linspace(0, 2*math.pi, num_arms+1)[:-1] + math.pi/num_arms
# Choose a random arm for A=0 from possible arms. Likewise for A=1.
th_A0 = th_A0[torch.randint(num_arms, (num_p,))]
th_A1 = th_A1[torch.randint(num_arms, (num_p,))]

# beta distribution with alpha=1, beta=3
beta_dist = torch.distributions.beta.Beta(1, 2.5)

# Sample r according to B. If B=0, sample a small r, else sample a large r.
# r ranges from 0 to r_max
B0_r = beta_dist.sample(torch.Size([num_p])) * r_max/2.
B1_r = r_max - beta_dist.sample(torch.Size([num_p])) * r_max/2.
r = B * B0_r + (1-B) * B1_r

# Sample theta according to A.
# Choose the theta arm according to A and then sample from this arm using a uniform distribution.

# First we will have a cartwheel style.
theta = torch.rand(num_p)*th_wid + th_A0*(1-A) + th_A1*A - th_wid/2.

# Add an offset to theta according to r.
th_offset_mod = torch.sin((r/r_max)*offset_wavelength*math.pi)
th_offset = max_th_offset*th_offset_mod
theta += th_offset

x1 = r*torch.cos(theta)
x2 = r*torch.sin(theta)

data = torch.stack([x1, x2], dim=1)
labels = torch.stack([A, B], dim=1).type(torch.long)

E Visualization of Feature Distribution Learned on Windmill dataset

In this section, we compare the feature distributions learned by RepLIn on Windmill dataset against all
the baselines from Sec. 5.1. The feature distributions are shown in Fig. 13.
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Top row: When A = 0, Bottom row: When A = 1 B = 0 B = 1
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(b) ERM-Resampled
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(g) RepLIn-Resampled

Figure 13: Visualization of interventional features learned by various methods on Windmill dataset.
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