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ABSTRACT

State-space models (SSMs), such as Mamba (Gu & Dao, 2023), have been proposed
as alternatives to Transformer networks in language modeling, by incorporating
gating, convolutions, and input-dependent token selection to mitigate the quadratic
cost of multi-head attention. Although SSMs exhibit competitive performance,
their in-context learning (ICL) capabilities, a remarkable emergent property of
modern language models that enables task execution without parameter optimiza-
tion, remain underexplored compared to Transformers. In this study, we evaluate
the ICL performance of SSMs, focusing on Mamba, against Transformer models
across various tasks. Our results show that SSMs perform comparably to Trans-
formers in standard regression ICL tasks, while outperforming them in tasks like
sparse parity learning. However, SSMs fall short in tasks involving non-standard
retrieval functionality. To address these limitations, we introduce a hybrid model,
MambaFormer, that combines Mamba with attention blocks, surpassing individual
models in tasks where they struggle independently. Our findings suggest that hybrid
architectures offer promising avenues for enhancing ICL in language models.

1 INTRODUCTION

Meta-learning, or “learning to learn,” has been extensively studied Schmidhuber et al. (1997); Ravi
& Larochelle (2016) and recently regained interest in the context of ICL, particularly concerning
Transformer models Vaswani et al. (2017). Garg et al. (2022), for example, proposed various ICL
tasks, such as learning linear regression, and evaluated the ability of transformers to perform them
when specifically trained to do so. On the other hand, Min et al. (2022) studied fine-tuning language
models to explicitly learn and perform ICL. Following these footsteps, numerous research studies
have been dedicated to understanding the mechanics of Attention that enable such meta-learning
capabilities, either through constructive arguments or extensive experimental investigation Akyürek
et al. (2022); Li et al. (2023b); von Oswald et al. (2023b); Bai et al. (2023); Yang et al. (2023a); Li
et al. (2023a); von Oswald et al. (2023a).

As Transformer language models are currently the only large models that have been reported to be
capable of ICL in practice, this raises the question:

Can attention-free models perform ICL?

This question holds merit, especially considering that several recent studies have attempted to move
beyond attention-based networks due to their quadratic cost Gu et al. (2022c); Dao et al. (2022);
Gu & Dao (2023); Poli et al. (2023); Peng et al. (2023); Sun et al. (2023); Yang et al. (2023b). In
this work, we focus specifically on state-space models (SSMs), and particularly Mamba (Gu & Dao,
2023). Mamba was recently demonstrated to be highly efficient while achieving near state-of-the-art
performance in standard pretraining language data sets, such as the Pile (Gao et al., 2020), but at
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smaller model scales (e.g., up to 3 billion parameters), surpassing transformers and other attention-
free architectures across various language and non-language tasks. However, ICL capabilities usually
emerge at scales beyond 3 billion parameters. As a result, the potential of these attention-free models
to perform ICL remains underexplored, as testing such hypotheses usually requires scaling beyond
the 7 billion parameter level. Nonetheless, we can still investigate small-scale ICL capabilities by
specifically training a model to perform in-context learning, following the approach of Garg et al.
(2022).

Transformer Mamba MambaFormer

Linear Regression ✓ ✓ ✓

Sparse Linear Regression ✓ ✓ ✓

2NN Regression ✓ ✓ ✓

Decision Tree ✓ ▲ ✓

Orthogonal-outlier Regression ✓ ▲ ✓

Many-outlier Regression ▲ ✓ ✓

Sparse Parity ✗ ✓ ✓

Chain-of-Thought I/O ✓ ✓ ✓

Vector-valued MQAR ✓ ✗ ✓

(a) Model performances on various ICL tasks. We
label the model’s performance with ✓ if the model
performs on par with other baseline models, ✗ if the
model struggles to learn the task, and ▲ if the perfor-
mance improves but with a performance gap compared
to other baseline models. Transformer fails in learn-
ing sparse parity, showing performance no better than
random guessing, while Mamba suffers to accurately
retrieve the value vector in vector-valued MQAR. Our
proposed MambaFormer performs on par with other
baseline models in all tasks.
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Mamba
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(b) MambaFormer is a hybrid architecture that re-
places MLP blocks within the transformer with
Mamba blocks. Importantly, the architecture starts
with a Mamba block and does not use positional en-
coding. In our ICL evaluations, we find that Mam-
baFormer consistently achieves a best-of-both-worlds
performance when compared to Transformer and
Mamba.

Contributions. In this study, we introduce a diverse set of ICL tasks to evaluate the performance
of Transformer and various SSMs, including state-of-the-art models like Mamba and S4 Gu et al.
(2022b). Our findings reveal that most of these SSMs can effectively perform ICL, matching the
performance of Transformers across multiple tasks. However, Mamba demonstrates some limitations
in learning decision trees and retrieval tasks (as also noted in Arora et al. (2023)), but can outperform
Transformers in other complex ICL tasks, such as sparse parity, where Transformer models struggle.

Since there seem to be tasks where either family of models is better, we explore the impact of
interleaving SSM blocks with multi-head attention blocks, similar to Gu & Dao (2023). We introduce
MambaFormer, a novel hybrid architecture that integrates Mamba and Attention layers, while
eliminating the need for positional encodings, as shown in Fig. 1b. MambaFormer seems to leverage
the strengths of both Mamba and Transformers, exhibiting good performance across all evaluated
ICL tasks and simultaneously learning sparse parity and retrieval.

We believe that our findings underscore the importance of broadening the understanding of ICL
beyond Transformers, as significant progress has been made in the context of attention-free models.

2 IN-CONTEXT LEARNING TASKS

We provide a brief outline of the ICL and related tasks investigated in this study. Some tasks are
adapted from Garg et al. (2022), and we follow the settings outlined in their work. We only include a
table summarizing the ICL tasks here. For a detailed description of each task, refer to A.3

3 IN-CONTEXT LEARNING CAPABILITIES OF MAMBA

In this section, we demonstrate that Mamba can be trained from scratch to perform various ICL tasks.
Furthermore, we identify specific tasks in which one model performs better than others and vice
versa, given the same amount of computation resources measured in terms of its total floating point
operations (FLOPs) used in training.

2



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Task dim (d) points (N ) Example/Function Sampling Task-specific

Linear regression 20 41 x,w ∼ N (0, Id) –
Sparse Linear regression 20 101 x,w ∼ N (0, Id), sparsity(w)← k k = 3

2NN regression 20 101 W
(1)
ij ,W

(2)
ij ∼ N (0, 1) –

Decision Tree 20 101 x,Leaf ∼ N (0, 1),non leaf ∼ {1, ..., d} depth = 4
Orthogonal-outlier regression 20 101 x,w ∼ N (0, Id), u,v ∼ w⊥ p = 0.5
Many-outlier regression 20 512 x ∼ N (0, I) w.p. 1− p, else (x, y) = (1, 1) p = 0.9
Sparse Parity 10 140 x ∼ {−1, 1}d, y =

∏
j∈I x[j] k = 2

Chain-of-Thought I/O 10 101 x ∼ N (0, Id), Wij ∼ N (0, 2/k), v ∼ N (0, Ik) h = 8
Vector MQAR 20 128 k,v ∼ Unif(Sd−1) 32 k-v pairs

Table 1: Summary of Tasks. All models are trained for 500,000 iterations (except for the vector
MQAR; see A.3.7).

3.1 MAMBA can IN-CONTEXT LEARN!

In figure 2, Mamba consistently outperforms its simpler counterparts S4-Mamba and S4. For linear
regression, the gap between Mamba and S4-Mamba is much smaller than that between S4-Mamba
and S4. As the only difference between Mamba and S4-Mamba is the input-dependent selection
mechanism, appropriate gating and stacking of MLPs (i.e., difference between S4-Mamba and S4)
seem to be more significant for such tasks. In comparison, the input-dependence of Mamba makes
meaningful progress for more complex tasks such as 2NN regression and learning decision trees.

Mamba can also perform on par with Transformer even as the total FLOPs scale up. This is surprising
given that Transformer and attention have been the focus of many previous works for its unique ICL
capability. Moreover, Mamba tends to perform better in smaller parameter settings when controlling
for equal depth, i.e., keeping the number of attention, MLP, and Mamba blocks equivalent.

3.2 LEARNING PARITY AND RETRIEVAL

Challenges in Learning Parity and Retrieval From table 3b, we can see that Mamba struggles to
accurately retrieve the vectors as the mean squared error for retrieving normalized vectors are greater
than 0.1 in all cases. Since SSMs are limited by their hidden state dimension in carrying information
to predict the next token, they would eventually be overwhelmed if the number of key-value pairs
within the context (not queries) increases substantially.

While Mamba fails on simple retrieval tasks such as MQAR (table 3b), the tables turn for the task
of learning sparse parity. Transformer fails to do better than random guessing, in line with the
empirical evidence of Bhattamishra et al. (2023). We confirm this for Transformer sizes of embedding
dimensions up to 768 and 24 layers, trained for 1M iterations (refer to A.3.5 for median convergence
rate of each model). However, Mamba succeeds in this task with ease, solving sparse parity for
(d, k) = (10, 2) with a network as small as 2 layers. Even more surprisingly, S4-Mamba solves
sparse parity as well; this may mean that proper convolution or gating may be more important than
input-dependent selection.

We perform an ablation study by equipping Transformer with an initial Mamba block without any
positional encoding. Furthermore, we test MQAR on MambaFormer, which will be explained in the
subsequent section. For more details, refer to A.3.8

3.3 ALL-IN-ONE ICL PERFORMANCE

While MambaFormer succeeds in two tasks that were deemed difficult for either Mamba or Trans-
former, it also performs equally well as Transformer and Mamba do in the rest the ICL tasks. In figure
8, we see that MambaFormer and Standard Hybrid both learn decision trees as well as Transformer
does and better than Mamba, even at larger parameter sizes.

More surprisingly, MambaFormer efficiently learns linear regression more robustly even in the
presence of noisy data in Many-outlier regression and Orthogonal-outlier regression (see figure 4). In
particular, a small MambaFormer trained on 100k iterations (< 1017 FLOPs) performs as well as
models trained with nearly 5 times the number of FLOPs (figure 4 left).
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Figure 2: Model performance on our suite of ICL tasks for Transformer, Mamba, S4-Mamba, and S4
where each color represents a different architecture. For each architecture, the best performing model
given the same amount of FLOPs is plotted (see A.2 for details on model configurations). Transparent
points indicate earlier stages of training; plotted models are trained in between {100k, 300k, 500k}
iterations. The descriptions of tasks can be found in A.3.

When evaluated with no outliers during test-time, MambaFormer resembles Transformer and Stan-
dard Hybrid resembles Mamba in terms of its out-of-distribution performance, where Mamba easily
learns linear regression when there is only one outlier vector (figure 4 top right) while Transformer
learns better when there is a subspace of outlier vectors (figure 4 bottom right).

In conclusion, we find the best of both worlds within our diverse array of ICL tasks; a hybrid
architecture that can solve as difficult problems as retrieval and parity, while performing on par with
Transformer and Mamba in other ICL tasks.
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(a) Although Transformer fails to converge, Mamba and
S4-Mamba can learn sparse parity of d = 10, k = 2. Each
model is trained with width 256 and depth 12.
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(b) Test loss (mean squared error) on vector-valued
MQAR and respective model configurations.

d model 64 128

Mamba 8.64e-1 1.64e-1
Transformer w/ PE 5.17e-6 8.76e-7
Transformer w/o PE 1.14e-3 8.66e-5
MambaFormer 0.73e-5 3.37e-6

(i) 32 key-value pairs with 4 queries.

d model 64 128

Mamba 7.23e-1 1.50e-1
Transformer w/ PE 3.99e-5 2.46e-7
Transformer w/o PE 7.61e-5 5.55e-5
MambaFormer 1.03e-5 3.79e-7

(ii) 32 key-value pairs with 16 queries.

Given our results, it will be interesting to see how hybrid architectures perform in other kinds of ICL
tasks, as those found in Xie et al. (2021); Akyürek et al. (2024). In turn, we explore formal language
ICL capabilities in the following subsection.

3.4 IN-CONTEXT LEARNING FORMAL LANGUAGES

Given the empirical strength in hybrid models, this subsection analyzes their performance on synthetic
formal language benchmarks, namely GINC and ICLL RegBench. We use these benchmarks as a
proxy to measure language ICL capabilities. The experiment results can be found in A.3.9.

On GINC, Mamba achieves the best ICL accuracy among non-LSTM models, though Transformer
achieves lower perplexity. Interestingly, Standard Hybrid performs on par with Transformer and
Mamba, while MambaFormer performs slightly worse than other models here. However, findings
from Xie et al. (2021) indicate that LSTMs excel over Transformers on GINC, even when accounting
for different settings such as vocabulary size or the number of in-context examples. This aligns
with previous findings in which Transformers perform worse or comparably to LSTMs in many
formal languages considered (Bhattamishra et al., 2020; Deletang et al., 2022). Yet, Transformers are
the de facto superior model for language modeling, so it remains unclear how performance on this
benchmark translates to real-world language ICL, where Transformers typically outperform LSTMs.

On RegBench, which favors Transformers over attention-free models, Mamba indeed performs worse
than Transformer, consistent with previous findings. Notably, hybrid architectures excel on this
benchmark, converging much faster both Mamba and Transformer while achieving higher accuracy.

Given prior evidence that Standard Hybrid achieves lower perplexity in language modeling (Gu &
Dao, 2023), our new results suggest that hybrid models offer a promising direction for both language
modeling and in-context learning on language tasks. We hope these results and analysis demonstrate
the potential of hybrid models for language-based applications of ICL.

4 DISCUSSION

In this work, we have provided a comprehensive investigation of in-context learning with state-
space models (SSMs) and contrasted them with transformer architecture. Future research directions
include exploring (1) how performance on our ICL suite correlates with general language modeling
capabilities, such as perplexity on standard NLP benchmarks, (2) the potential for developing more
effective architectures by integrating elements from transformers, SSMs, and gating mechanisms, (3)
identifying architectural features that contribute to effective in-context learning, and (4) assessing the
impact of MambaFormer and other innovative architectures on language modeling performance.
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A APPENDIX

A.1 RELATED WORK

Transformer-based in-context learning. The role of attention in ICL has been the focus of
both theoretical and empirical research. Studies have primarily focused on meta-learning (Ravi &
Larochelle, 2016; Min et al., 2022), where one explicitly trains for ICL. Notably, Garg et al. (2022)
have examined transformers in in-context regression tasks, from learning linear regression to learning
decision trees. Subsequent works have suggested that attention may mimic various optimization
algorithms (Akyürek et al., 2022; von Oswald et al., 2023b; Dai et al., 2023). In fact, Ahn et al. (2023);
Mahankali et al. (2023) have provably shown that the global minimum of the linear regression ICL
objective implements one step of preconditioned gradient descent for one layer of linear attention.

While these settings might appear simplistic and detached from language models, Bhattamishra
et al. (2023) showed that a frozen GPT-2 can implement the nearest neighbor algorithm, drawing
connections between the ICL in existing language models and the stylized setting of training for
ICL from random initialization. Furthermore, Olsson et al. (2022) also empirically demonstrate that
“induction heads”, which are attention heads that solve a simple retrieval problem, correlate with ICL
behavior, providing a strong connection between retrieval and ICL.

Sub-quadratic architectures. The number of effective floating point operations in an attention
layer scales quadratically with respect to the input sequence length. Numerous approximations or
alternative model architectures have been proposed to overcome the quadratic dependence. These
range from approximating attention mechanisms (Beltagy et al., 2020; Wang et al., 2020) to the
development of novel recurrent convolutional models such as structured state-space models (Gu et al.,
2022c).

S4 (Gu et al., 2022a) is a family of sequence models characterized by a discretized state-space model

ht = Aht−1 +Bxt, yt = Cht, (1)

where ht represents the hidden state and (A,B,C) are input-independent (transformed) parameters.
The recurrence is expressible as a convolution, enabling near-linear complexity using Fast Fourier
Transform. Viewed in this framework, Linear Transformers (Katharopoulos et al., 2020), which
employ linear attention without softmax, can be seen as a variant of linear SSM.

Building upon this concept, H3 (Dao et al., 2022) integrates an S4 with dual gated connections.
The recent Mamba (Gu & Dao, 2023) departs from the standard SSM by introducing a selection
mechanism that makes (A,B,C) in equation 1 dependent on the input xt allowing input-dependent
sequence mixing.

There are other notable attention-free models such as Hyena (Poli et al., 2023), RWKV (Peng
et al., 2023), RetNet (Sun et al., 2023), and GLA (Yang et al., 2023b). Despite of state-of-the-art
performance for models like Mamba, Arora et al. (2023) have demonstrated that subquadratic models
still lag behind attention on multi-query recall tasks, which is a generalization of the induction head
task (Olsson et al., 2022).

In their study, Xie et al. (2021) introduced a synthetic language-based dataset for in-context learning,
named GINC, and demonstrated that both transformers and LSTMs (Hochreiter & Schmidhuber,
1997) can perform ICL. Notably, LSTMs outperformed transformers in ICL accuracy on GINC, a
finding similar to that found in Liu et al. (2023) for their flip-flop language modeling task. More
recently, Akyürek et al. (2024) proposed a language-based ICL benchmark for training models on
formal languages generated by random finite automata. Their results showed that Transformers
notably better than subquadratic models, establishing a benchmark that effectively measures ICL in
language modeling.

A.2 MODEL TRAINING FOR IN-CONTEXT LEARNING

We train models to learn a specific function class F in-context. Training begins by generating random
prompts: selecting a function f ∈ F from distribution DF and sampling a sequence of random inputs
x1, . . . ,xN ∈ Rd i.i.d. from DX . Here, N and d represent the number of in-context examples and
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the dimension of xi, respectively. These inputs create the prompt P = (x1, f(x1), . . . ,xN , f(xN )).
We train the model fθ, parameterized by θ, by minimizing the expected loss over all prompts:

min
θ

EP

[
1

N

N−1∑
i=1

ℓ(fθ(P
i), f(xi))

]
, (2)

where P i := (x1, f(x1), . . . ,xi, f(xi),xi+1) and ℓ(·, ·) is a loss function. Since f : Rd → R, we
append d− 1 zeros to f(x) to match the dimensions. We use appropriate loss functions for each task.

Model architecture. We primarily focus on SSMs, including (1) Mamba (Gu & Dao, 2023), a state-
of-the-art SSM model with selection mechanism; (2) S4 (Gu et al., 2022a), a linear time-invariant
predecessor of Mamba; and (3) S4-Mamba, a variant where Mamba’s input-dependent S6 is replaced
with input-independent S4, while maintaining the same structure as Mamba. The primary differences
between the two S4 models lie in the application of multiplicative gating and the module order.1

Training. We train each model by sampling a batch of random prompts at each training step and
updating the model parameters using Adam optimizer (Kingma & Ba, 2014). We use a batch size of
64 and trained for 500,000 iterations (except for the vector MQAR task; see A.3.7).

Evaluation. We evaluate the model performance on in-context learning using task and data distribu-
tions DF and DX consistent to those during training. A function and a sequence of N inputs are sam-
pled from DF and DX , respectively, to generate a test prompt Ptest = (x1, f(x1), . . . ,xN , f(xN )).
We create 1,280 prompts and measure the empirical mean of equation 2 across the prompts for
in-context learning performance.

Throughout our experiments, we keep the total number of parameters of models roughly the same for
each configuration as explained in A.2. To plot the model performance as the model capacity grows,
we calculate the total floating point operations (FLOPs) used for training the model.

Model configurations and training implementation details are provided in A.2.

A.3 IN-CONTEXT LEARNING TASKS

In this section, we describe in detail the in-context learning tasks we have tested Transformers, SSM
models, and variant models with.

A.3.1 LEARNING REGRESSION

For all regression tasks, in-context examples xi are sampled from the Gaussian distribution N (0, Id),
where Id is the d× d identity matrix. We use the squared error loss for model training.

Linear Regression We examine the class of linear functions F = {f |f(x) = w⊤x,w ∈ Rd}. w
is sampled from the Gaussian distribution N (0, Id). We set d = 20.

Sparse Linear Regression The setting is identical to linear regression, except that w is sampled
fromN (0, Id), after which k coordinates are randomly retained in w, and the rest are set to zero. We
set k = 3.

Two-Layer Neural Network We consider the class of two-layer linear neural networks F =
{f |f(x) = W(2)σ

(
W(1)x

)
}, where W(2) ∈ R1×nh ,W(1) ∈ Rnh×d, and σ(·) = max(0, ·) is the

ReLU function. Each element of the weight matrices is independently drawn from N (0, 1). We use
d = 20 and nh = 100.

Decision Tree We consider a full binary tree with a fixed depth and input x ∈ Rd. Leaf node values
are sampled from N (0, 1), and the rest are sampled uniformly from {1, ..., d}, functioning as indices
of x. For a given index, x[i] > 0 indicates moving to the right, and vice versa. y is the leaf node
value when the traversal terminates.

1https://github.com/state-spaces/s4/blob/main/models/s4
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A.3.2 LEARNING WITH OUTLIERS

The problems that belong to this family adopt the basic setting of the standard linear regression task.
With a fixed probability p, each pair of (xi, f(xi)) in the prompt is replaced with dummy vectors
which are either out of the training distribution, or confounders designed to increase the complexity
of the task. We test p ∈ {0.2, 0.5} as replacement probabilities for all tasks described below.

Orthogonal-outlier Regression Each pair of (xi, f(xi)) are randomly replaced with ((axu +
bxv)/(a

2
x + b2x), (ayu + byv)/(a

2
x + b2x)) where u,v ∈ w⊥. (u,v) := (w1 − projw(w1),w2 −

projw(w2)) and w1 and w2 are sampled from N (0, Id) and the coefficients ax, bx, ay, by are inde-
pendently sampled from N (0, 1).

Many-outlier Regression In this setting, xi and f(xi) are randomly replaced with a d-dimensional
vector of ones {1}d and an one-hot vector [1, 0, . . . , 0], respectively, with probability 90%.

A.3.3 PERFORMANCE GAPS IN OUTLIER TASKS
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Figure 4: (Left) Performance of various architectures on two robust linear regression tasks. More
transparent points indicate earlier stages of training; plotted models are trained in between {100k,
300k, 500k} iterations. (Right) Out-of-distribution performances when models do not see outliers
during test-time, i.e., standard linear regression. Task descriptions can be found in table 1. Standard
Hybrid and MambaFormer are hybrid models of Transformer and Mamba defined in A.4.

Orthogonal-outlier regression and many-outlier regression, like other outlier tasks, focus on the
model’s ability to learn to ignore dummy vectors, either by the fact that the xi ∈ w⊥, or by the fact
that yi is a vector instead of a zero-padded scalar value. This explicitly requires the models to look
at previous input sequences and discover the properties that distinguish the dummy vectors from
training examples while learning the class of functions the training prompt represents.
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For orthogonal-outlier regression task with a relatively short sequence length of 101, Mamba does
not perform as well as Transformer given the same total FLOPs, though its learns significantly better
than S4 (figure 4). However, for many-outlier regression where we train on a sequence length of
512 and 90% all-ones replacement, Mamba outperforms Transformers, especially in terms of its
out-of-distribution (OOD) accuracy where we evaluate each model on clean sequences with no
outliers at all. Recurrent models, such as S4 and Mamba, seem to generalize well in such OOD
regime when the data is contaminated with many identical outlier vectors. This is also in line with
what Gu & Dao (2023) reports: Mamba fares better in retrieval tasks of long sequence lengths with
a single retrieval key. These results indicate that Mamba has no significant issue with filtering out
unnecessary information, while retaining the ability to learn linear regression in-context.

A.3.4 LEARNING DISCRETE FUNCTIONS

Sparse Parity Following the setting from Bhattamishra et al. (2023), we consider the class of
functions F = {f |f(x) =

∏
j∈S xi[j]} where xi[j] denotes the j-th element of the vector xi and S

is a subset of {1, . . . , d} with the size k. Each xi is sampled uniformly at random from {−1, 1}d,
and S of size k is randomly sampled from the set {1, . . . , d}. For this task, we train a model using
the cross-entropy loss and evaluate the model using a binary indicator for accuracy, which assigns 1
to correct predictions and 0 to incorrect ones.

A.3.5 MEDIAN CONVERGENCE TIME FOR SPARSE PARITY TASK

105 106

Total Parameters (non-embedding)

0

100000

200000

300000

400000

500000

M
ed

ia
n 

Co
nv

er
ge

nc
e 

Ti
m

e 
(it

er
at

io
ns

)

Sparse Parity ICL Convergence

Transformer
Mamba
Standard Hybrid

MambaFormer
TF w/ initial Mamba

Figure 5: Median convergence time of learning parity over 5 random seeds for max. 500k iterations.
Having the initial layer as Mamba is essential for efficiently learning parities.

A.3.6 LEARNING CHAIN-OF-THOUGHT

Chain-of-Thought-I/O Following the setting from Li et al. (2023b), we consider the class of two-
layer linear neural networks F = {f |f(x) = W(2)σ

(
W(1)x

)
} where W(2) ∈ R1×nh ,W(1) ∈

Rnh×d, and σ(·) is the ReLU function. We set d = 10, and nh = 8. We additionally interleave the
intermediate hidden feature si = σ

(
W(1)xi

)
in our input training sequence in a Chain-of-Thought

style. Given the input sequence (x1, s1, f(x1), · · · ,xN , sN , f(xN ),xtest), the model is evaluated on
the final output prediction ŷ based on the input sequence and the intermediate layer prediction ŝtest.

Chain-of-Thought-I/O Results Table 2 presents the configurations for the Chain-of-Thought-I/O
task using a 2-layer ReLU neural network, following the setup described by Li et al. (2023b). In
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the model scale experiment, the input dimension d = 10 and hidden layer dimension k = 8 are
held constant while varying the model scale. Additionally, the hidden dimension k is varied among
4, 8, 16 while fixing the model scale to small to identify the effect of problem scale.

Table 2: Model configurations for Chain-of-Thought-I/O experiments.

Model # layers embed dim # heads (MHA)
Standard 12 256 8
Small 6 128 4
Tiny 3 64 2

Figure 6 shows thatMamba models are capable of in-context learning in a chain-of-thought manner,
performing comparably to Transformer models across the tested configurations. In smaller model
configurations, Mamba models exhibit superior performance compared to Transformer models. How-
ever, as model size increases, Transformer models begin to surpass Mamba models. The performance
of Transformer models remains relatively stable across different problem sizes, while Mamba models’
performance is significantly influenced by the size of the hidden layer. Specifically, Mamba models
excel over Transformer models at smaller problem sizes (i.e., smaller hidden dimensions), but their
advantage diminishes as the problem size expands.
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Figure 6: Performance of Transformer and Mamba Models on the Chain-of-Thought-IO Task.
Experiments on varying the model size (left) and varying the hidden dimension (right).
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A.3.7 LEARNING RETRIEVAL

Vector-valued Multi-Query Associative Recall We test the model’s ability to do multi-query
associative recall (MQAR) Arora et al. (2023). To better measure the model’s ability to retrieve
information from context, we consider a variant of MQAR such that keys and values are vector-
valued. Specifically, in this task, the model is given a sequence of key-value pairs of vectors
{k1,v1, ...,kn,vn} where ki,vi ∈ Sd−1. The query consists of sequence of vectors {q1, ...,qm}.
For each query qj , there exists some 1 ≤ l ≤ n such that qj = kl. The model must learn to output
vl associated with the query qj for each of the queries, producing m outputs total. We train a model
using the norm-squared error.

We run vectorized MQAR on two settings: (1) 32 key-value pairs with 16 queries and (2) 32 key-value
pairs with 4 queries. The training set consists of 300, 000 training samples. We train for 64 epochs
with batch size of 64 and evaluate on a test set of 3, 000 samples. For each setting, we sweep with
learning rates in np.logspace(-4, -2, 4) and report the best result among all learning rates. All models
have 4 layers.

A.3.8 CLOSING THE GAP IN RETRIEVAL

We perform an ablation study by equipping Transformer with an initial Mamba block without any
positional encoding. Although this variant Transformer only has fewer Mamba blocks than Standard
Hybrid, it solves parity almost as efficiently as Mamba. Not only does this show us that order of
layers in interleaving matter, as shown in Press et al. (2022), but also that Mamba can complement
Transformer without hurting performance in ICL. This result brings up intriguing difference between
the function learning capabilities of Attention and Mamba; we leave this question up for further study.

The gap between Mamba and Transformer in vector-valued MQAR task is largely due to the fact
that Mamba (as an SSM) compresses context into smaller states when generating output, while the
Attention mechanism in Transformer does not compress the context. The amount of information
about the context Mamba has at each state depends on the dimension of hidden state (as the hidden
states capture the important information in the context) and it is challenging if the task is to accurately
retrieve a specific part of the context by a query that is placed after the context.

To close the gap in the vector-valued MQAR task between Mamba and Transformer and without
sacrificing too much of the efficiency, we add one attention layer within layers of Mamba blocks. In
particular, in a Mamba model of 4 layers (8 Mamba blocks stacked homogeneously), we replace the
middle two blocks with Standard Hybrid (w/o positional embedding). As shown in 3b, Mamba model
gains a significant improvement in vector-valued MQAR by having one Standard Hybrid. We further
test MambaFormer on the same task and find that MambaFormer closes the gap in vector-valued
MQAR task.

A.3.9 LEARNING SYNTHETIC FORMAL LANGUAGES

Although not the main focus of our work, we conduct initial experiments using synthetic language
benchmarks designed to assess in-context learning (ICL) capabilities within the language setting.
Given that real language ICL typically demands extensive datasets and computational resources,
these synthetic datasets act as useful proxy for exploring language ICL. For detailed descriptions of
their construction and evaluation, we direct readers to the respective publications.

GINC dataset (Xie et al., 2021). Generative In-Context learning (GINC) dataset is a small-scale
language dataset synthetically generated using a mixture of hidden markov models. Its pretraining
dataset contains approximately 10 million tokens and each trained model is evaluated on 2500
test-time prompts containing 0 to 64 examples. We train and test our models using a vocabulary size
of 100. We additionally train LSTMs for this dataset, as done in prior work.

RegBench (Akyürek et al., 2024). In-context Language Learning (ICLL) RegBench is a synthetic
regular language benchmark created by randomly generating probabilistic finite automata (PFA)
with uniform transition probabilities; multiple problem instances are produced that include samples
from each PFA. The models are evaluated using a greedy-decoding accuracy metric, which assesses
whether each next token predicted by the model is valid under the current regular language.
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GINC Parameters Train PPL (↓) Valid PPL (↓) ICL acc. (↑)
LSTM 29M 3.53 3.71 96.4 ± 0.6
Transformer 86M 4.06 4.14 84.2 ± 5.1
Mamba 90M 4.30 4.57 87.1 ± 7.8
MambaFormer 77M 4.22 4.77 79.6 ± 3.8
Standard Hybrid 74M 4.18 4.65 85.0 ± 3.1

Table 3: GINC data has a vocab size of 100 and the ICL accuracy is evaluated at 64 examples, where
each example has length 10. Each model is trained with embedding size 768 and 12 layers, other
than LSTM, which used embedding size 768, hidden layer size 768, and 6 layers. We include 90%
confidence intervals for ICL accuracy. We follow the same training recipes as Xie et al. (2021).

RegBench (trained 15 epochs) Train PPL (↓) Valid PPL (↓) Acc. (↑)
LSTM 6.20 6.39 51.0
Transformer 4.20 4.17 92.6*
Mamba 5.59 5.69 69.4
MambaFormer 1.01 1.01 99.8
Standard Hybrid 1.01 1.01 99.9

RegBench (trained 120 epochs) Train PPL (↓) Valid PPL (↓) Acc. (↑)
LSTM 3.33 4.37 73.5
Transformer 1.03 1.10 98.9
Mamba 3.12 3.32 87.8
MambaFormer 1.01 1.01 99.8
Standard Hybrid 1.01 1.01 99.9

Table 4: Perplexity (PPL) and greedy-decoding accuracy for RegBench after training each model
15 and 120 epochs. We use the same models configurations as done in Akyürek et al. (2024) and
perform similar hyperparameter sweeps. See A.3 for how accuracy is measured. * denotes reported
accuracy in Akyürek et al. (2024).

A.4 HYBRID ARCHITECTURES
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Figure 7: Model Architectures. (a) and (b) denote the standard Transformer and Mamba architectures.
(c) denotes the hybrid architecture of Mamba and Attention blocks, following the design proposed
in Gu & Dao (2023). (d) demonstrates the proposed architecture, namely MambaFormer, which
replaces the Positional Encoding with a Mamba block. For convenience, we denote 2 blocks of either
Mamba, Multi-head Attention, or a Feed Forward Network as 1 layer.
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Figure 8: A suite of ICL tasks ran for Transformer, Mamba, and hybrid architectures where each
color represents a different architecture. More transparent points indicate earlier stages of training;
plotted models are trained {100k, 300k, 500k} iterations. Standard Hybrid and MambaFormer are
hybrid models of Transformer and Mamba defined in the figure above: A.4.
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