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Abstract

Many online learning applications adopt the stochastic bandit problem with a linear
reward model, where the unknown parameter exhibits a succinct structure. We
study minimax regret lower bounds which allow us to know whether more efficient
algorithms can be proposed. We introduce a general definition of succinctness
and propose a novel framework for constructing minimax regret lower bounds
based on an information-regret trade-off. When applied to entry-sparse vector, our
framework sharpens a recent lower bound by [7]. We further apply our framework
to derive novel results. To the best of our knowledge, we provide the first lower
bounds for the group-sparse and low-rank matrix settings.

1 Introduction

Stochastic bandits [4] model online learning problems, where an agent is evaluated over its interactions
with an initially unknown and memory-less bandit machine. At each round t, the agent (stochastically)
plays an action At to the machine and (stochastically) receives a real-valued reward yt. The memory-
less nature allows defining an optimal action that maximizes E[yt], independent of the past interactions.
Against those optimal actions, the agent’s regret up to n rounds on a specific bandit instance can be
calculated. Assuming bounded single-round regret, it is desirable for algorithms to achieve sub-linear
regret rate o(n) across a class of bandit instances, called the assumption class.

In real-world applications like advertising recommendation [6] and personalized healthcare systems
[3], automated decision-making often involves high-dimensional data. To enable effective algorithm
design, one common modeling approach assumes a linear reward: E[yt] = ⟨At, θ⟩, where the action
is represented by an associated data vector or matrix At, and the bandit instance by a parameter θ
of the same shape but with a succinct structure. For example, entry-sparse bandits—also known
as Lasso bandits or sparse linear bandits—assume that θ ∈ Rd has its number of non-zero entries
limited to s ≪ d [5]. Alternatively, if θ is organized into a matrix in Rd1×d2 , it may be constrained to
have a low rank s ≪ min(d1, d2), to be group-sparse with no more than s ≪ d1 non-zero rows, or to
exhibit other structured forms [12]. We consider these bandits to be succinct linear bandits, differing
in how they impose succinct constraints on θ.

While upper bounds guarantee the regret growth of a specific algorithm across an assumption class,
minimax lower bounds apply to all possible algorithms on that assumption class, and are usually
established by identifying hard bandit instances tailored to any given algorithm. To illustrate, suppose
that At ∈ Rd is to be chosen from the standard basis {e1, e2, ..., ed} and θ ∈ Rd has only one
non-zero entry. When d > n, given any algorithm, there obviously exists a tailored θ to cause that
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Table 1: Some results obtained with our novel framework, compared to existing upper bounds from
algorithms and prior lower bounds. The number of rounds is denoted by n. For entry-sparse vectors,
d is the dimension and s is the number of non-zero entries. For low-rank matrices and group-sparse
matrices, d1 is the number of rows and d2 is the number of columns. For low-rank matrices, s is the
matrix rank, while for group-sparse matrices, s is the number of non-zero rows. Cmin is a quantity
measuring to what extent the action set admits a well-condition exploration, properly introduced in
Definition 4.1.

Upper Bound from Algorithms Prior Lower Bound Our Lower Bound

Entry- O(
√
sdn) in [1] Ω(min(C

−1/3
min s1/3n2/3,

√
dn)) Ω(min(C

−1/3
min s2/3n2/3,

√
dsn))

sparse O(s
√
n log(dn)) in [10] in [7] in Corollary 4.1

vector O(
√
sn log(dn)) in [13] Ω(

√
sdn) in [11]

O(C
−2/3
min s2/3n2/3) in [7]

O(s1/3n2/3
√
log(dn)) in [12]

Low- O((d1 + d2)
3/2

√
sn) in [9] None Ω(min(C

−1/3
min s2/3n2/3,

√
d1d2sn))

rank O((d1 + d2)
3/2

√
sn) in [8] in Corollary 4.3

matrix O(s1/3n2/3 log(d1 + d2)) in [12]

Group- O(
√
sd2d1n) in [8] None Ω(min(C

−1/3
min s1/3n2/3,

√
d1d2n))

sparse O(s1/3n2/3(
√
d2 +

√
log d1)) in Corollary 4.2

matrix in [12]

algorithm linear regret. Since the entry-sparse θ with s = 1 can also be interpreted as low-rank or
group-sparse, the Ω(n) regret is unavoidable in the data-poor regime (n ≪ d) for succinct linear
bandits without extra constraints.

Related Work. For entry-sparse vector bandits, [11] gives a lower bound Ω(
√
sdn) in the data-

rich regime by emulating in parallel s canonical multi-armed bandits, each with d/s arms and a
lower bound Ω(

√
(d/s)n) established by [2]. A matching upper bound O(

√
sdn) is achieved by an

online-to-confidence-set conversion algorithm in [1], which works on arbitrary action set and thus
confirm the optimal rate Θ(

√
sdn) in the data-rich regime. To ease the polynomial dependence on

d, various constraints are introduced to study refined assumption classes [1, 10, 7, 13, 14], most of
them focusing on upper bound analysis for their proposed algorithms. One closely related previous
study by [7] considers entry-sparse bandits with a fixed action set A that allows for a well-explored
sampling distribution, where the minimum eigenvalue of the population covariance matrix can be
lower bounded despite growing d. By creating an information-regret trade-off, they construct a
lower bound of Ω

(
min(C

−1/3
min (A)s1/3n2/3,

√
dn)

)
, where Cmin(A) is the lower-bounding quantity.

This lower bound nearly matches the upper bound O(C
−2/3
min (A)s2/3n2/3) for their explore-sparsity-

then-commit algorithm in the data-poor regime. It is also popular to study the contextual setting
[10, 13, 14], where action At is chosen from a set of stochastically generated contexts, making it easy
to impose complicated assumptions on the more passively available action data (At)

n
t=1.

Other succinct linear bandits are less investigated. For low-rank matrix bandits, an upper bound of
O((d1 + d)3/2

√
sn) is established for different approaches: [9] developed an explore-subspace-then-

refine algorithm for a bi-linear bandit setting, where the reward is computed as the bi-linear product of
the matrix parameter with the left and right arms. [8] extended the algorithm to the generalized linear
setting under a mild assumption on action data and the singular values of the low-rank parameter.
For group-sparse matrix bandits, O(

√
sd1d2n) is given by [8] in an attempt to unify bandits with

structured parameter in the contextual setting by constructing high-probability confidence ellipsoids.
Under the restricted eigenvalue condition in the contextual setting, [12] offers a general framework
of explore-sparsity-and-commit algorithms to achieve a common upper bound of O(s1/3n2/3) on
entry-sparse, low-rank, group-sparse bandits, and their novel formulation of multi-agent bandits.

Overall, lower bound analysis for succinct linear bandits has been relatively under-developed, espe-
cially beyond the entry-sparse setting, where existing work often relies on informal arguments or
naive reductions to the entry-sparse case to invoke known lower bounds. Meanwhile, upper bounds
with dominating dependency on d are proven attainable primarily in the data-rich regime [1, 10],
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while dimension-free rates are typically achieved by constraining the assumption class to bandit
instances that permit well-explored action data (At)

n
t=1 in order to bypass the linear lower bound in

the data-poor regime [7, 12].

Contributions. Our contributions in this work are threefold. First, in Section 3.1, we propose a
succinctness model in general vector space, along with lemmas that may be of independent interest.
Second, in Section 3.2, we develop a general framework for deriving minimax lower bounds of
succinct linear bandits in both data-rich and data-poor regimes, offering customizable constructions
that revolve around two concepts, i.e. information-regret trade-off and succinctness support. Third, in
Section 4, we apply this framework to three stochastic linear bandit problems that exhibit succinct
structure and permit well-conditioned exploration. With minimal customization, we are able to
improve the previous bound of [7] for entry-sparse vector bandits. To the best of our knowledge, we
obtain the first lower bounds for group-sparse matrix bandits as well as for low-rank matrix bandits.
These results, summarized in Table 1, showcase the generality of our framework and shed light to
directions for extending existing upper and lower bounds.

2 Preliminaries

In this section, we start with a concise description of vector spaces, stochastic linear bandits and the
notation used throughout this paper. We then briefly review the standard machinery commonly used
in the literature for lower bound construction—techniques that we also draw upon later in proving
our main theorem.

2.1 Problem setting

Vector Space. We consider a vector space V over R, which is a set equipped with the vector
addition and the scalar multiplication operations satisfying the standard axioms, such as the existence
of 0⃗ and additive inverse −X of any vector X ∈ V. We also define an inner product ⟨·, ·⟩ as a function
V× V → R that satisfies the properties of symmetry, linearity, and positive definiteness. Later, we
will use the general definition of a norm, e.g. P (·) : V → R, which satisfies the triangle inequality
P (X + Y ) ≤ P (X) + P (Y ), absolute scalability P (aX) = |a|P (X), and positive definiteness
X ̸= 0⃗ ⇒ P (X) > 0, for all vectors X,Y ∈ V and scalars a, b ∈ R.

Stochastic Linear Bandit. At each round t, the agent perceives a fixed action set A ⊆ V and
executes an action At ∈ A. Then, the bandit machine generates a reward yt = ⟨At, θ⟩ + ηt,
where ηt ∼ N (0, 1) and some parameter θ ∈ V characterizes a bandit instance. The agent is
conceptualized to follow a policy π which yields At stochastically conditioned on the ongoing
interaction A1y1A2y2 . . . At−1yt−1.

Now that a stochastic process can be fully determined from the interactions between the policy π and
the bandit instance (A, θ), or briefly θ, up to a horizon of n rounds, we can calculate the regret of π,
compared to an omniscient policy that always plays an optimal action:

Rπ
n(A, θ) := Eπ,θ

[
n∑

t=1

max
X∈A

⟨X, θ⟩ −
n∑

t=1

yt

]
where max

X∈A
|⟨X, θ⟩| ≤ 1 (1)

Notation. We denote the sub-optimal gap of an action X ∈ A under the instance θ as ∆θ(X) :=
maxX∗∈A⟨X∗, θ⟩ − ⟨X, θ⟩. Given an inner product, we define the induced norm or length ∥X∥ :=√
⟨X,X⟩ for all X ∈ V, which can be shown to be a norm. We shorthand the set of integers

{1, 2, 3, . . . , d} as [d], and {2, 3, . . . , d} as [2 : d]. Let |G| be the cardinality of a set G. The indicator
1{D} equals 1 if the event D occurs and 0 otherwise. We will omit π in Pπ,θ and Eπ,θ when the
context is clear. For vectors in Rd, we use ∥·∥∞ and ∥·∥1 to denote the l∞ and the l1 norms. For
matrices X ∈ Rd1×d2 , ∥X∥∞,2 := maxi(

∑
j x

2
ij)

1/2 and ∥X∥1,2 :=
∑

i(
∑

j x
2
ij)

1/2 denote the
l∞,2 and the l1,2 norms, while ∥·∥op and ∥·∥nuc denote the operator and the nuclear norms.
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2.2 Techniques for lower bound construction

Le Cam’s Lemma. The construction of minimax lower bounds can be viewed as mirroring Le
Cam’s method in statistics for lower-bounding the worst-case error for any estimator. Let F be a set
of distributions, where each distribution P ∈ F is associated with a parameter θ ∈ Θ. Consider θ̂(S)
as an estimator for θ using empirical data S ∼ P. Let metric d : Θ×Θ → [0,∞) satisfy symmetry
and triangle inequality. For any P1,P2 ∈ F with θ1, θ2 ∈ Θ and densities p1(·), p2(·), we have

inf
θ̂

sup
P∈F

ES∼P[d(θ̂(S), θ)] ≥
d(θ1, θ2)

4
·
∫
S

min(p1(S), p2(S))

The
∫
S

term can be further lower bounded by 1
2 exp(−KL(P1;P2)) or other options [11]. We can

relate the regret of some policy π on a bandit instance θ to the estimation error of some estimator θ̂(·)
on the trajectory distribution Pπ,θ. The key to establishing this bound is to identify two instances
(P1, θ1) and (P2, θ2), along with some common event, e.g. D := {d(θ̂(S), θ1) ≥ d(θ̂(S), θ2)}, such
that the sum of the two estimation errors can be lower bounded independent of θ̂(·):∫

S

p1(S) · d(θ̂(S), θ1) +
∫
S

p2(S) · d(θ̂(S), θ2) ≥
∫
S

[
p1(S)1{D}+ p2(S)1{D}

]
· d(θ1, θ2)

2

KL-divergence Decomposition. Let Pθ1 and Pθ2 be the two trajectory distributions induced by the
policy π playing in the bandit instances θ1 and θ2, respectively. Consider a trajectory A1y2 . . . Anyn,
the log-likelihood ratio log[pθ1(A1 . . . yn)/pθ2(A1 . . . yn)] equals

∑n
t=1 log[pθ1(yt|At)/pθ2(yt|At)].

This allows us to decompose KL(Pθ1 ;Pθ2) to n KL-divergences between reward distributions
conditioned on At under Pθ1 . If reward distributions are N (⟨At, θ1⟩, 1) and N (⟨At, θ2⟩, 1), we have

KL(Pθ1 ;Pθ2) = Eθ1

[
n∑

t=1

1

2
⟨At, θ1 − θ2⟩2

]

3 Main results

In this section, we present our general succinctness model which encompasses cases such as entry-
sparse vectors, group-sparse matrices and low-rank matrices. We then present a general minimax
lower bound based on the proposed succinctness model.

3.1 Succinctness model

Here, we give the formal definition of vectors being “s-succinct” and related lemmas, in preparation
for the lower bound construction in the next subsection.

We assume that all the 1-succinct vectors are given in advance and that the scalar multiple aX of
some succinct X ∈ V should be equally succinct at least when a ̸= 0. We first impose the existence
of the set of “succinct units”, i.e. the 1-succinct vectors of unit length.
Axiom 3.1 (existence of the succinct unit set). There exists a non-empty set U such that ∀E : E ∈
U ⇔ E is an 1-succinct vector in V with ∥E∥ = 1, and that ∀E : E ∈ U ⇒ −E ∈ U .

We aim to compose from some succinct units a new vector that can be regarded as “s-succinct”
without any part or the whole reducing to “1-succinct”. Then, those units the “s-succinct” vector
decompose to must uphold some relation against all the succinct units in U to prove that they are
indeed irreducible.
Definition 3.1 (succinct support). We say that an indexed set of d ∈ N+ succinct units {Ei}di=1 ⊆ U
forms a support if and only if

sup
E∈U

d∑
i=1

|⟨E,Ei⟩| = 1 (2)

Remark. It is easy to see that any non-empty subset of {Ei}di=1 forms a support. We can flip the
sign of any support member and still get a valid support, e.g. {±Ei}di=1. The equality (2) implies
mutual orthogonality. On the other hand, if U contains only mutually orthogonal elements, then U
itself forms a support.
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Now, we introduce the two quantities Q(·), R(·) : V → [0,∞) for later imposing boundedness
condition, and then state the, by now, fairly evident definition of “s-succinct”.

Definition 3.2 (two semi-norms). For all X ∈ V, we define Q(X) := supE∈U ⟨X,E⟩, as well as
R(X) := supQ(Y )≤1⟨X,Y ⟩ where Y ∈ V with Q(Y ) ≤ 1.

Remark. Since U is non-empty, both Q(·) and R(·) are validly defined and satisfy the triangle
inequality. Moreover, because U is closed under additive inverse, it follows that Q(X) and R(X)
also satisfy the property of absolute scalability. Hence, they qualify as semi-norms, as they satisfy all
the norm properties except positive definiteness.
Remark. Given X ̸= 0⃗, Q(X) = 0 suggests ∀E ∈ U : ⟨X,E⟩ = 0. Thus, Q(·) will be a norm if U
spans V, as U will have no other orthogonal complement in V than 0⃗. In addition, R(X) will also be
a norm because R(X) ≥ ⟨X,X/Q(X)⟩ = ∥X∥2/Q(X) > 0 as long as X ̸= 0.

Definition 3.3 (s-succinct). Consider s ∈ N+. We call a vector X ∈ V s-succinct if and only if it can
can decompose to some support {Ei}si=1 with some scalar coefficients {ai}si=1, i.e. X =

∑s
i=1 aiEi,

and strictly s-succinct if and only if ai ̸= 0 for all i ∈ [s].

Based on the definitions above, we have the following lemmas. See their proofs at Appendix A.

Lemma 3.1. If X =
∑s

i=1 aiEi for some support {Ei}si=1 and some scalar coefficients {ai}si=1,
then Q(X) = maxi∈[s] |ai|.
Lemma 3.2. If X =

∑s
i=1 aiEi for some support {Ei}si=1 and some scalar coefficients {ai}si=1,

then R(X) =
∑s

i=1 |ai|.
Lemma 3.3. If X is simultaneously s-succinct and strictly z-succinct, then s ≥ z.

Lemma 3.4. If X is simultaneously strictly s-succinct and strictly z-succinct, then s = z.

Lemma 3.5. If X is s-succinct, then |⟨X,Y ⟩| ≤ min
(
Q(X)R(Y ), Q(Y )R(X)

)
holds for any

Y ∈ V.

Lemma 3.6. If X is s-succinct, then supR(Y )≤1⟨X,Y ⟩ = Q(X), where Y ∈ V and R(Y ) ≤ 1.

Remark. If X is s-succinct, Lemma 3.1 and Lemma 3.2 ensure positive definiteness, i.e. X ̸=
0 ⇒ Q(X), R(X) > 0. Meanwhile, Lemma 3.5 and Lemma 3.6 show that Q(·) and R(·) resemble
a norm and its dual norm at least for s-succinct vectors. On the other hand, If U spans V, then
Q(·) becomes a norm and R(·) its dual norm. In this case, we have |⟨X,Y ⟩| ≤ Q(X)R(Y ) and
supR(Y )≤1⟨X,Y ⟩ = Q(X) hold for all X,Y ∈ V. However, U spanning V does not imply that
every vector in V is s-succinct for some respective s ∈ N+.

3.2 General minimax lower bound

In what follows, we present our general lower bound for stochastic bandits under the succinctness
model previously described. We start with a set of assumptions, which are fulfilled by our applications
in Section 4.

Assumption 3.7. Suppose the following objects exist.

1. an action set H ⊆ V satisfying maxX∈H⟨X, θ0⟩ ≤ −C0, where C0 > 0 is some global con-
stant and θ0 ∈ V is some parameter that can decompose to some support {E′

1, E
′
2, . . . , E

′
k}

of cardinality k ≥ 1.

2. s− k non-empty groups of succinct units, denoted as G1,G2, . . . ,Gs−k, where for any tu-
ple (E1, E2, . . . , Es−k) in the Cartesian set×s−k

i=1
Gi, the set {E1, . . . , Es−k, E

′
1, . . . , E

′
k}

forms a support of cardinality s ≥ 3k + 3.

3. q, p ∈ R satisfying maxX∈H ΦGi
(X) ≤ 1

q and maxX∈Gi
ΦGi

(X) ≤ 1
p for each i ∈ [s− k],

where ΦGi
(X) :=

∑
E∈Gi

⟨X,E⟩2/|Gi|.

Next, we introduce our main theoretical result. We provide a formal proof based on a sequence of
steps and some claims that are proved in the Appendix B.

Theorem 3.8. Consider the bandit problem (1) where all actions X ∈ V and parameters θ ∈ V are
bounded with Q(X) ≤ 1 and R(θ) ≤ 1. Suppose Assumption 3.7 hold with some s ∈ N+, C0 > 0
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and p, q ≥ 1. Then, we can construct an action set A such that given any policy π, there exists an
s-succinct parameter θ to incur regret

Rπ
n(A, θ) ≥ min(C0, e

−4/8)

3
·min(s

2
3n

2
3 q

1
3 , s

√
pn) (3)

Proof. Since Assumption 3.7 holds, we assume access to θ0, the action set H, and the s− k groups
G1,G2, . . . ,Gs−k. Let b = ⌊(s − k)/2⌋. It follows that b ≥ k + 1 and 3b ≥ 2b + k + 1 ≥ s > 2b.
Note that 0 < C0 ≤ 1 due to R(θ0) ≤ 1 and Lemma 3.5. We choose a specific (E∗

1 , E
∗
2 , . . . , E

∗
b ) ∈

×b

i=1
Gb+i and extend each of the first b groups with a corresponding star-marked unit as follows:

G1 ∪ {E∗
1} , G2 ∪ {E∗

2} , . . . , Gb ∪ {E∗
b }

Step 1: Construction of action set A. We construct

S :=

{ b∑
i=1

Ẽi

∣∣∣∣ ∀i ∈ [b] : Ẽi ∈ Gi ∪ {E∗
i }

}
, A := H ∪ S

Each action X ∈ S is s-succinct and satisfies Q(X) = 1 by Lemma 3.1. Since each action
corresponds with a unique selection of a unit Ẽi from each extended-group Gi ∪ {E∗

i }, later when
discussing the action At at round t and if At ∈ S , we will use the notation Ãt,i := Ẽi to represent its
unit selection in the extended-group i.

Step 2: Parameters in consideration. Let ε > 0 be a constant to be decided later, subject to the
constraint sε ≤ C0

3 . We construct

Θ :=

{
1

2
θ0 + ε

b∑
i=1

(
E∗

i + 2Ẽi · 1{Ẽi ̸= E∗
i }

) ∣∣∣∣ ∀i ∈ [b] : Ẽi ∈ Gi ∪ {E∗
i }

}
We can verify that ∀θ ∈ Θ : R(θ) ≤ 1

2 + 3bε ≤ 1. Similar to the construction of S, there is a

one-to-one correspondence between Θ and×b

i=1
(Gi ∪ {E∗

i }). For any θ ∈ Θ and i ∈ [b], we use
Ẽi(θ) ∈ Gi ∪ {E∗

i } to indicate the unit that θ selects in the extended group i.

By construction, playing any H-based action in any parameter setting θ incurs at least a constant
regret per round, compared to an optimal S-based action that shares the same unit selection as θ.
By constraining sε to be sufficiently small relative to C0, we can show that ∀θ ∈ Θ,∀X ∈ H:
∆θ(X) ≥ C0/3. See the formal argument at Appendix B.1.

Step 3: Intricacies of avoiding sub-optimality. Choosing the correct optimal S-based action
across different parameter settings of θ can be seen as solving b sub-problems in parallel, where the
challenge is to minimize the regret of failing to select the correct unit Ẽi(θ) for each extended-group
i ∈ [b]. Define TS := {t ∈ [n] |At ∈ S}, For each i ∈ [b], we introduce an event Di (and its
complement event Di):

Di =

{∑
t∈TS

1{Ãt,i = E∗
i } ≥ n

2

}

Claim 3.9. ∀θ ∈ Θ, we can lower bound the regret in terms of those group-wise events:

Rπ
n(A, θ) ≥

b∑
i=1

Rθ
i , where Rθ

i :=
nε

2
·

{
Pθ(Di) if Ẽi(θ) = E∗

i

Pθ(Di) if Ẽi(θ) ̸= E∗
i

where Pθ is the distribution over empirical trajectories induced by π playing in θ up to n rounds. See
the proof at Appendix B.1.
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Step 4: Bound through KL-divergence. Intuitively, the sparse geometry in S and Θ within
each extended-group i puts an information-theoretic limit on π’s ability to distinguish between the
situations Ẽi(θ) = E∗ and Ẽi(θ) ̸= E∗ over all versions of θ.

We consider different settings of θ with varying Ẽi(θ) for the extended-group i, while keeping their
unit selection fixed for the other extended-groups. Given (Ẽ1, Ẽ2, . . . , Ẽb) ∈×b

i=1
(Gi ∪ {E∗

i }) and
extended-group index i, we reversely denote θ(Ẽi, Ẽ−i) :=

1
2θ0+ε

∑b
i=1(E

∗
i +2Ẽi ·1{Ẽi ̸= E∗

i }),
where Ẽ−i := (Ẽ1, . . . , Ẽi−1, Ẽi+1, . . . , Ẽb). Fix i and Ẽ−i. Then, using Le Cam’s Lemma,
KL-divergence decomposition, and Jensen’s Inequality, we can lower bound the following quantity:

∑
E∈Gi

R
θ(E∗

i ,Ẽ−i)
i +R

θ(E,Ẽ−i)
i ≥ nε|Gi|

4
exp

(
− 2ε2Eθ(E∗

i ,Ẽ−i)

[
n∑

t=1

∑
E∈Gi

⟨At, E⟩2

|Gi|

] )
This intermediate bound is established to support the following claim. See the details at Appendix B.2.

Claim 3.10. Define TH := {t ∈ [n] |At ∈ H}. We have

max
θ∈Θ

Rπ
n(A, θ) ≥ nsε

24
exp(−2ε2

[
n

p
+

1

q
·max
θ∈Θ

Eθ[|TH|]
]
) (4)

Step 5: Information-regret tradeoff. Overall, the lower bound (4) is optimistic regarding π
playing more H-based actions, as S-based actions are sparse and provide limited information
for distinguishing between different θ across Θ. However, since H-based actions are also sub-
optimal, there is another lower bound on the maximal regret that discourages the same quantity
maxθ∈Θ Eθ[|TH|]:

max
θ∈Θ

Rπ
n(A, θ) ≥ max

θ∈Θ
Eθ

[ ∑
t∈TH

∆θ(At)

]
≥ C0

3
·max
θ∈Θ

Eθ[|TH|] (5)

The challenge of determining how often to play regrettable yet potentially informative H-based
actions leads us to the final lower bound. Combining the lower bounds (4) and (5) in a minimum
expression, we can replace maxθ∈Θ Eθ[|TH|] with a free variable h, and obtain the lower bound
min(nsε24 exp(−2ε2[np + h

q ]) ,
C0

3 h) that holds for any h ∈ R.

When p < n
1
3 s−

2
3 q

2
3 , we let ε =

√
p/n and h = qε−2 (the constraint sε ≤ C0/3 requires

9s2p ≤ C0
2n). Then, we have a lower bound min(e−4/24, C0/3) · s

√
pn. When p ≥ n

1
3 s−

2
3 q

2
3 ,

we let ε = n− 1
3 s−

1
3 q

1
3 and h = qε−2 ( sε ≤ C0/3 requires 27s2q ≤ C3

0n). Then, we have another
lower bound min(e−4/24, C0/3) · s

2
3n

2
3 q

1
3 . Together, we have the final lower bound (3).

4 Applications

In this section, we show that our framework sharpens a recent lower bound by [7] when applied to
entry-sparse vectors. We then apply our framework to provide the first lower bounds (to the best of
our knowledge) for the group-sparse and low-rank matrix settings.

First, we derive corollaries for bandit problems with three types of succinct representations: entry-
sparse vector, group-sparse matrix, and low-rank matrix. Accordingly, we consider V := Rd or
Rd1×d2 , treating vectors in Rd as one-column matrices.

Naturally, the inner product is defined as ⟨X,Y ⟩ := trace(XTY ) for all matrices X,Y ∈ V and
the induced norm ∥X∥ :=

√
⟨X,X⟩ follows. In addition, we define the following quantity to

characterize the shape of an action set A ⊆ V.

Definition 4.1. Let Pr(A) be the space of probability distributions over A and define

Cmin(A) := max
µ∈Pr(A)

min
β

EX∼µ[⟨X,β⟩2] where β ∈ V with ∥β∥ = 1

7



Remark. By flattening matrices X ∼ µ into vectors x, Cmin(A) can be computed by finding
a distribution µ that maximizes the minimum eigenvalue of the covariance matrix Ex∼µ[xx

T ].
Intuitively speaking, Cmin(·) measures how well the set A can support an exploration distribution
that samples well-conditioned action data for probing the unknown bandit parameter.
Remark. Cmin(A) > 0 if and only if A spans V. Cmin(A) is upper bounded by 1 if actions in A are
bounded with ∥·∥∞ ≤ 1, by 1/d2 if ∥·∥∞,2 ≤ 1, and by 1/min(d1, d2) if ∥·∥op ≤ 1.

4.1 Entry-sparse vector bandits

First, we use our general framework to obtain a lower bound of order Ω(min(C
−1/3
min s2/3n2/3,

√
dsn))

for entry-sparse vectors. Our result is tighter than the prior rate of Ω(min(C
−1/3
min s1/3n2/3,

√
dn))

shown in [7].
Corollary 4.1. Consider the bandit problem (1) where actions x ∈ Rd and parameters θ ∈ Rd

are bounded with ∥x∥∞ ≤ 1 and ∥θ∥1 ≤ 1. Given any policy π, there exist an action set A with
Cmin(A) and a parameter θ with no more than s non-zero entries, such that

Rπ
n(A, θ) ≥ exp(−4)

24
·min

(
C

− 1
3

min(A)s
2
3n

2
3 ,
√
dsn

)
(6)

Proof. We define the succinct unit set U := {ej}dj=1, where each ej := (0, 0, . . . , 1, . . . , 0)T ∈ Rd

has a single 1 at the j-th entry. Then, the two semi-norms Q(·) = ∥·∥∞ and R(·) = ∥·∥1. Meanwhile,
θ having no more than s non-zero entries is equivalent to it being s-succinct. Let 0 < κ ≤ 1 be a
constant and construct the action set

H :=

{
d∑

j=1

aj · ej

∣∣∣∣∣ ∀j ∈ [d] : aj =

{
1 if j = 1

±κ otherwise

}

We consider θ0 := −e1 which is 1-succinct and satisfies maxx∈H⟨x, θ0⟩ ≤ −1. It also can be shown
that Cmin(H) ≥ κ2. Assume d (mod s) = 0 and construct

∀i ∈ [s− 1] : Gi :=

{
ej

∣∣∣∣∣ j ∈
[
id

s
+ 1 :

id

s
+

d

s

]}
We can verify that maxx∈Gi ΦGi(x) ≤ s/d and maxx∈H ΦGi(x) ≤ κ2 for each i ∈ [s− 1]. Invoking
Theorem 3.8 with the constructed H and {Gi}s−1

i=1 , we can construct an action set A with Cmin(A) ≥
Cmin(H) and s-succinct θ that make the lower bound (6) hold.

4.2 Group-sparse matrix bandits

Next, we use our general framework to obtain the first lower bound for group-sparse matrices. The
following corollary provides a lower bound of order Ω(min(C

−1/3
min s2/3n2/3,

√
d1d2sn)).

Corollary 4.2. Consider the bandit problem (1) where actions X ∈ Rd1×d2 and parameters θ ∈
Rd1×d2 are bounded with ∥X∥∞,2 ≤ 1 and ∥θ∥1,2 ≤ 1. Given any policy π, there exist an action set
A with constant Cmin(A) and a parameter θ with no more than s non-zero rows, such that

Rπ
n(A, θ) ≥ exp(−4)

24
·min

(
C

− 1
3

min(A)s
2
3n

2
3 ,
√
d1d2sn

)
(7)

Proof. We define the succinct unit set U := {evT | e ∈ {ej}d1
j=1, v ∈ Rd2 , ∥v∥ = 1}, where

{ej}d1
j=1 is the standard basis of Rd1 . Then, the two semi-norms Q(·) = ∥·∥∞,2 and R(·) = ∥·∥1,2.

Meanwhile, θ having no more than s non-zero rows is equivalent to it being s-succinct. Let {vg}d2
g=1

be an orthonormal basis of Rd2 and 0 < κ ≤ 1
2 be a constant. We construct the action set

H :=
⋃

g∈[d2]

{
1

2
e1v

T
1 +

d1∑
j=1

aj · ejvTg

∣∣∣∣∣ ∀j ∈ [d1] : aj =

{
0 if j = g = 1

±κ otherwise

}
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We consider θ0 := −e1v
T
1 which is 1-succinct and satisfies maxX∈H⟨X, θ0⟩ ≤ − 1

2 . It also can be
shown that Cmin(H) ≥ κ2/d2. Assume d1 (mod s) = 0 and construct

∀i ∈ [s− 1] : Gi :=

{
ejv

T
m

∣∣∣∣∣ j ∈
[
id1
s

+ 1 :
id1
s

+
d1
s

]
,m ∈ [d2]

}
We can verify that maxx∈Gi ΦGi(x) ≤ s/(d1d2) and maxx∈H ΦGi(x) ≤ κ2/d2 for each i ∈ [s− 1].
Invoking Theorem 3.8 with the constructed H and {Gi}s−1

i=1 , we can construct an action set A with
Cmin(A) ≥ Cmin(H) and s-succinct θ that make the lower bound (7) hold.

4.3 Low-rank matrix bandits

In what follows, we use our general framework to obtain the first lower bound for a slightly more
challenging problem: low-rank matrices. The corollary below provides a lower bound of order
Ω(min(C

−1/3
min s1/3n2/3,

√
d1d2n)).

Corollary 4.3. Consider the bandit problem (1) where actions X ∈ Rd1×d2 and parameters θ ∈ Rd

are bounded with ∥X∥op ≤ 1 and ∥θ∥nuc ≤ 1. Given any policy π, there exist an action set A with
constant Cmin(A) and a parameter θ with its rank no larger than s, such that

Rπ
n(A, θ) ≥ exp(−4)

24
·min

(
C

− 1
3

min(A)s
1
3n

2
3 ,
√
d1d2n

)
(8)

Proof. We define the succinct unit set U := {uvT |u ∈ Rd1 , v ∈ Rd2 , ∥u∥ = ∥v∥ = 1}. Then, the
two semi-norms Q(·) = ∥·∥op and R(·) = ∥·∥nuc. Meanwhile, θ having a rank no larger than s is
equivalent to it being s-succinct. Let {uj}d1

j=1 and {vg}d2
g=1 be orthonormal bases of Rd1 and Rd2 ,

respectively. Let 0 < κ ≤ 1
2 be a constant and assume d1 ≤ d2 (the case d1 > d2 can be handled by

swapping the subscripts of u and v below). We construct the action set

H :=
⋃

g∈[d2]

{
1

2
u1v

T
1 +

d1∑
j=1

aj · ujv
T
m(g,j)

∣∣∣∣∣ ∀j ∈ [d1] : aj =

{
0 if j = m(g, j) = 1

±κ otherwise

}
where m(g, j) := (g + j) (mod d2) + 1 is used to cyclically iterate over [d2] for each j ∈ [d1],
with a different starting point for each g ∈ [d2]. We consider θ0 := −e1v

T
1 which is 1-succinct

and satisfies maxX∈H⟨X, θ0⟩ ≤ − 1
2 . It also can be shown that Cmin(H) ≥ κ2/d2. Assume

d1(mod s) = d2(mod s) = 0 and construct

∀i ∈ [s− 1] : Gi :=

{
ujv

T
m

∣∣∣∣∣ j ∈
[
id1
s

+ 1 :
id1
s

+
d1
s

]
,m ∈

[
id2
s

+ 1 :
id2
s

+
id2
s

]}
We can verify that maxx∈Gi

ΦGi
(x) ≤ s2/(d1d2) and maxx∈H ΦGi

(x) ≤ κ2s/d2 for each i ∈ [s−1].
Invoking Theorem 3.8 with the constructed H and {Gi}s−1

i=1 , we can construct an action set A with
Cmin(A) ≥ Cmin(H) and s-succinct θ that make the lower bound (8) hold.

5 Future Work

In this paper we give a first step towards unifying the study of lower bounds for succinct stochastic
bandits. Although we provide three applications including two novel lower bounds, we believe
our framework will motivate future work for finding lower bounds on other bandit problems. The
study of other stochastic bandits over mathematical objects beyond vectors and matrices, such as a
multi-linear regimes (e.g., tensors) and kernels of combinatorial objects (e.g., sentences, trees) would
be interesting. In addition, the study of nonparametric settings, in which the bases are functions
would also be an interesting extension.
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Supplementary Material: A Novel General Framework for Sharp
Lower Bounds in Succinct Stochastic Bandits

A Proofs of succinctness-related lemmas

Here, we provide detailed proofs for the succinctness-related lemmas in the main text.

A.1 Proof of Lemma 3.1

We rewrite X =
∑s

i=1 aiEi as X =
∑s

i=1 |ai| · sign(ai)Ei
1. Then,

sup
E∈U

⟨X,E⟩ = sup
E∈U

s∑
i=1

|ai| · ⟨sign(ai)Ei, E⟩

≤ sup
E∈U

max
i∈[s]

|ai| ·
s∑

i=1

|⟨sign(ai)Ei, E⟩|

= max
i∈[s]

|ai| · sup
E∈U

s∑
i=1

|⟨Ei, E⟩|

= max
i∈[s]

|ai| (9)

Notably, step (9) applies the succinct support requirement (2) on {Ei}si=1. This upper bound is
reachable by letting E = sign(am)Em where m ∈ argmaxi∈[s] |ai|. Since sign(am)Em ∈ U , we
have Q(X) := supE∈U ⟨X,E⟩ = maxi∈[s] |ai|.

A.2 Proof of Lemma 3.2

We rewrite X =
∑s

i=1 aiEi as X =
∑s

i=1 |ai| · sign(ai)Ei. Then,

sup
Q(Y )≤1

⟨X,Y ⟩ = sup
Q(Y )≤1

s∑
i=1

|ai| · ⟨sign(ai)Ei, Y ⟩

≤ sup
Q(Y )≤1

s∑
i=1

|ai| · |⟨Ei, Y ⟩|

≤ sup
Q(Y )≤1

s∑
i=1

|ai| · sup
E∈U

|⟨E, Y ⟩|

= sup
Q(Y )≤1

s∑
i=1

|ai| ·Q(Y ) (10)

≤
s∑

i=1

|ai| (11)

Equality (10) requires the fact that U is closed under flipping the sign of any E ∈ U . The upper bound
in (11) is reachable by letting Y =

∑s
i=1 sign(ai)Ei, in which case Q(Y ) = 1 due to Lemma 3.1.

Therefore, we have R(X) := supQ(Y )≤1⟨X,Y ⟩ =
∑s

i=1 |ai|.

1sign(x) = 1{x ≥ 0} − 1{x < 0}
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A.3 Proof of Lemma 3.3

From the definition of s-succinct and z-succinct, we know that X =
∑s

i=1 aiEi =
∑z

i=1 biE
′
i

for some {Ei}si=1 and some {E′
i}zi=1 that constitute a succinct support respectively, and where the

coefficients can fulfill bi ̸= 0 for all i ∈ [z].

Let Y =
∑s

i=1 sign(ai)Ei. Due to the mutual orthogonality of support members, we have ⟨X,Y ⟩ =
⟨
∑s

i=1 aiEi, Y ⟩ =
∑s

i=1 |ai| and ⟨Y, Y ⟩ = s. Importantly, Q(Y ) = 1 according to Lemma 3.1.

Meanwhile, Lemma 3.2 suggests R(X) =
∑s

i=1 |ai| =
∑z

i=1 |bi|. Once again, from X’s decompo-
sition as

∑z
i=1 |bi| · sign(bi)E′

i, we calculate

⟨X,Y ⟩ =
z∑

i=1

|bi| · ⟨sign(bi)E′
i, Y ⟩ =

z∑
i=1

|bi| (12)

For each i ∈ [z], we have an upper bound

⟨sign(bi)E′
i, Y ⟩ ≤ |⟨E′

i, Y ⟩| ≤ sup
E∈U

|⟨E, Y ⟩| = sup
E∈U

⟨E, Y ⟩ = Q(Y ) = 1 (13)

Since |bi| > 0 for all i ∈ [z], for equality (12) to hold, the inequalities in (13) must hold with equality,
meaning |⟨E′

i, Y ⟩| = 1, for all i ∈ [z].

Let P =
∑z

i=1⟨E′
i, Y ⟩ · E′

i be the projection of Y onto the set of bases {E′
i}zi=1. Then, by

construction, ⟨P, Y ⟩ = ⟨P, P ⟩ =
∑z

i=1⟨E′
i, Y ⟩2 = z. Combining them with the Cauchy-Schwarz

inequality ∥P∥ · ∥Y ∥ ≥ ⟨P, Y ⟩, we can conclude ∥Y ∥ =
√

⟨Y, Y ⟩ =
√
s ≥ z/

√
z =

√
z, and thus

s ≥ z.

A.4 Proof of Lemma 3.4

By definition, X is also s-succinct and z-succinct at the same time. From Lemma 3.3, we have s ≥ z
and z ≥ s at the same time. Naturally, s = z.

A.5 Proof of Lemma 3.5

Recall that Q(·) is a semi-norm, meaning Q(kA) = |k|Q(A) and Q(A) ≥ 0 for all k ∈ R and
A ∈ V. Therefore, for any A,B ∈ V with Q(A) ̸= 0

|⟨A,B⟩|
Q(A)

≤ sup
Q(A′ )̸=0

|⟨A′, B⟩|
Q(A′)

≤ sup
Q(A′)≤1

|⟨A′, B⟩| = sup
Q(A′)≤1

⟨A′, B⟩ = R(B)

By substituting A,B with X,Y , we have |⟨X,Y ⟩| ≤ Q(X)R(Y ) as long as Q(X) ̸= 0. In the
case of Q(X) = 0, given that X =

∑s
i=1 aiEi for some support {Ei}si=1 and some coefficients

{ai}si=1, we have Q(X) = maxi∈[s] |ai| = 0 from Lemma 3.1, which leads to X = 0⃗ and thus
⟨X,Y ⟩ = 0 = Q(X)R(Y ). Together, |⟨X,Y ⟩| ≤ Q(X)R(Y ).

By substituting A,B with Y,X , we have |⟨X,Y ⟩| ≤ Q(Y )R(X) as long as Q(Y ) ̸= 0. In the case
of Q(Y ) := supE∈U ⟨Y,E⟩ = 0, it is easy to see that ⟨Ei, Y ⟩ = 0 for all the members in the support
{Ei}si=1 and thus ⟨X,Y ⟩ = 0. Together, |⟨X,Y ⟩| ≤ Q(Y )R(X).

A.6 Proof of Lemma 3.6

Applying Lemma 3.5 within the maximization, we obtain the upper bound

sup
R(Y )≤1

⟨X,Y ⟩ ≤ sup
R(Y )≤1

R(Y )Q(X) ≤ Q(X)

Given that X =
∑s

i=1 aiEi for some support {Ei}si=1 and some coefficients {ai}si=1, let Y =
sign(am)Em where m ∈ argmaxi∈[s] |ai|. We can verify that ⟨X,Y ⟩ = maxi∈[s] |ai| = Q(X) due
to Lemma 3.1, and that R(Y ) = 1 due to Lemma 3.2. Therefore, supR(Y )≤1⟨X,Y ⟩ = Q(X).
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B Proof details for Theorem 3.8

Here, we provide detailed proofs for the claims inside the proof of Theorem 3.8 in the main text.

B.1 Proof of Claim 3.9

With bε ≤ sε
2 ≤ C0

6 , we can prove that ∀θ ∈ Θ,∀X ∈ H:

∆θ(X) ≥ max
X∈A

⟨X, θ⟩ − max
X∈H

⟨X, θ⟩

≥ max
X∈S

⟨X, θ⟩ −
[
max
X∈H

⟨X,
1

2
θ0⟩+ max

Q(X)≤1
⟨X, θ − 1

2
θ0⟩

]
≥ ε

b∑
i=1

(1 + 1{Ẽi(θ) ̸= E∗
i })−

[
−C0

2
+ ε

b∑
i=1

(1 + 2 · 1{Ẽi(θ) ̸= E∗
i })

]
(14)

=
C0

2
− ε

b∑
i=1

1{Ẽi(θ) ̸= E∗
i }

≥ C0

3

≥ ε

b∑
i=1

1{Ẽi(θ) = E∗
i } (15)

Recall that by construction, θ − 1
2θ0 = ε

∑b
i=1 E

∗
i + 2Ẽi(θ) · 1{Ẽi(θ) ̸= E∗

i }. In step (14),
maxX∈S⟨X, θ⟩ is obtained by the action X =

∑b
i=1 Ẽi(θ), while maxQ(X)≤1⟨X, θ − 1

2θ0⟩ can be
achieved by an action X =

∑b
i=1 E

∗
i + Ẽi(θ) · 1{Ẽi(θ) ̸= E∗

i }. Further, we have that ∀θ ∈ Θ :

Rπ
n(θ) := Eθ

[
n∑

t=1

max
X∈A

⟨X, θ⟩ − ⟨At, θ⟩

]

≥ Eθ

 n∑
t=1


max
X∈S

⟨X, θ⟩ − ⟨At, θ⟩ if At ∈ S

ε

b∑
i=1

1{Ẽi(θ) = E∗
i } if At ∈ H

 (16)

=

n∑
t=1

Eθ

ε b∑
i=1


1− 1{Ãt,i = E∗

i } if At ∈ S, Ẽi(θ) = E∗
i

2− 1{Ãt,i = E∗
i } − 2 · 1{Ãt,i = Ẽi(θ))} if At ∈ S, Ẽi(θ) ̸= E∗

i

1{Ẽi(θ) = E∗
i } if At ∈ H

 (17)

≥
n∑

t=1

Eθ

ε
b∑

i=1


1− 1{Ãt,i = E∗

i } if At ∈ S, Ẽi(θ) = E∗
i

1{Ãt,i = E∗
i } if At ∈ S, Ẽi(θ) ̸= E∗

i

1 if At ∈ H, Ẽi(θ) = E∗
i

0 if At ∈ H, Ẽi(θ) ̸= E∗
i



= Eθ

ε b∑
i=1


∑
t∈TH

1 +
∑
t∈TS

[
1− 1{Ãt,i = E∗

i }
]

if Ẽi(θ) = E∗
i∑

t∈TS

1{Ãt,i = E∗
i } if Ẽi(θ) ̸= E∗

i



=

b∑
i=1

ε ·


Eθ

[
n−

∑
t∈TS

1{Ãt,i = E∗
i }

]
if Ẽi(θ) = E∗

i

Eθ

[∑
t∈TS

1{Ãt,i = E∗
i }

]
if Ẽi(θ) ̸= E∗

i
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=

b∑
i=1

nε

2
·

{
Pθ(D

c
i ) if Ẽi(θ) = E∗

i

Pθ(Di) if Ẽi(θ) ̸= E∗
i

Recall that TS := {t ∈ [n] |At ∈ S} and TH := {t ∈ [n] |At ∈ H}. In step (16), for the case
At ∈ H, we invoke the inequality in (15). Meanwhile, the case At ∈ S can be further analyised per
extended-group as shown in step (17): when At ∈ S, the optimal move for At in each extended-
group i is to select the unit that θ selects, i.e. Ãt,i = Ẽi(θ); doing so yields an optimal gain of ε if
Ẽi(θ) = E∗

i or an optimal gain of 2ε if Ẽi(θ) ̸= E∗
i .

B.2 Proof of Claim 3.10

Given i and Ẽ−i, we have

∑
E∈Gi

nε

2
·
[
Pθ(E∗

i ,Ẽ−i)
(Di) + Pθ(E,Ẽ−i)

(Di)
]

≥ nε

4

∑
E∈Gi

exp
(
−KL(Pθ(E∗

i ,Ẽ−i)
;Pθ(E,Ẽ−i)

)
)

=
nε

4

∑
E∈Gi

exp
(
− 2ε2Eθ(E∗

i ,Ẽ−i)

[
n∑

t=1

⟨At, E⟩2
] )

≥ nε|Gi|
4

exp
(
− 2ε2Eθ(E∗

i ,Ẽ−i)

[
n∑

t=1

∑
E∈Gi

⟨At, E⟩2

|Gi|

] )
≥ nε|Gi|

4
exp

(
− 2ε2Eθ(E∗

i ,Ẽ−i)

[∑
t∈TS

max
X∈S

ΦGi(X) +
∑
t∈TH

max
X∈H

ΦGi(X)

] )
≥ nε|Gi|

4
exp

(
− 2ε2Eθ(E∗

i ,Ẽ−i)

[
n · max

X∈Gi

ΦGi
(X) + |TH| · max

X∈H
ΦGi

(X)

] )
≥ nε|Gi|

4
exp

(
− 2ε2Eθ(E∗

i ,Ẽ−i)

[
n

p
+

|TH|
q

] )
≥ nε|Gi|

4
exp

(
− 2ε2

[
n

p
+

1

q
max
θ∈Θ

Eθ[|TH|]
] )

We consider

T := ((E1, E
∗
1 ), (E2, E

∗
2 ), . . . , (Eb, E

∗
b )) ∈

b×
i=1

(Gi × {E∗
i })

Given T, we denote

Ẽ := (Ẽ1, Ẽ2, . . . , Ẽb) ∈
b×

i=1

{Ei, E
∗
i }
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Thus, we have

max
θ∈Θ

Rπ
n(θ) ≥

1∣∣∣×b

i=1
(Gi × {E∗

i })
∣∣∣
∑
T

1∣∣∣×b

i=1
{Ei, E∗

i }
∣∣∣
∑
Ẽ

Rπ
n(θ(Ẽ))

≥ 1∏b
i=1 |Gi|

· 1

2b

∑
T

∑
Ẽ

b∑
i=1

nε

2
·

{
Pθ(Ẽ)(Di) if Ẽi = E∗

i

Pθ(Ẽ)(Di) if Ẽi ̸= E∗
i

=
1∏b

i=1 |Gi|
· 1

2b

b∑
i=1

∑
T−i

∑
Ẽ−i

∑
E∈Gi

nε

2
·
[
Pθ(E∗

i ,Ẽ−i)
(Di) + Pθ(E,Ẽ−i)

(Di)
]

≥ 1∏b
i=1 |Gi|

· 1

2b

b∑
i=1

∑
T−i

∑
Ẽ−i

2|Gi| ·
nε

8
exp

(
− 2ε2

[
n

p
+

1

q
max
θ∈Θ

Eθ[|TH|]
] )

=
nbε

8
exp

(
− 2ε2

[
n

p
+

1

q
max
θ∈Θ

Eθ[|TH|]
] )

Then apply 3b ≥ s to get the claimed lower bound (4).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract is a short version of the introduction, and the introduction
accurately reflects the paper’s contribution and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clearly describe the different assumptions and models being used. We also
describe the limitations of our results as ideas for future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide several theorems and lemmas, together with their proofs, as well
as assumptions for our theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The contribution of this paper is entirely theoretical and proof-based. No
experiments were performed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and proof-based. No
experiments were performed.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and proof-based. No
experiments were performed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and proof-based. No
experiments were performed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and proof-based. No
experiments were performed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethics, and our papers conforms
with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proof-
based. There is no societal impact of the work performed.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The contribution of this paper is entirely theoretical and mathematical proof-
based.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The contribution of this paper is entirely theoretical and mathematical proof-
based.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proof-
based.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proof-
based.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proof-
based.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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