A Novel General Framework for Sharp Lower Bounds in Succinct Stochastic Bandits

Guo Zeng

School of Computing and Information Systems, The University of Melbourne guo.zeng@student.unimelb.edu.au

Jean Honorio

School of Computing and Information Systems, The University of Melbourne, and ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications jean.honorio@unimelb.edu.au

Abstract

Many online learning applications adopt the stochastic bandit problem with a linear reward model, where the unknown parameter exhibits a succinct structure. We study minimax regret lower bounds which allow us to know whether more efficient algorithms can be proposed. We introduce a general definition of succinctness and propose a novel framework for constructing minimax regret lower bounds based on an information-regret trade-off. When applied to entry-sparse vector, our framework sharpens a recent lower bound by [7]. We further apply our framework to derive novel results. To the best of our knowledge, we provide the first lower bounds for the group-sparse and low-rank matrix settings.

1 Introduction

Stochastic bandits [4] model online learning problems, where an agent is evaluated over its interactions with an initially unknown and memory-less bandit machine. At each round t, the agent (stochastically) plays an action A_t to the machine and (stochastically) receives a real-valued reward y_t . The memory-less nature allows defining an optimal action that maximizes $\mathbb{E}[y_t]$, independent of the past interactions. Against those optimal actions, the agent's regret up to n rounds on a specific bandit instance can be calculated. Assuming bounded single-round regret, it is desirable for algorithms to achieve sub-linear regret rate o(n) across a class of bandit instances, called the assumption class.

In real-world applications like advertising recommendation [6] and personalized healthcare systems [3], automated decision-making often involves high-dimensional data. To enable effective algorithm design, one common modeling approach assumes a linear reward: $\mathbb{E}[y_t] = \langle A_t, \theta \rangle$, where the action is represented by an associated data vector or matrix A_t , and the bandit instance by a parameter θ of the same shape but with a succinct structure. For example, entry-sparse bandits—also known as Lasso bandits or sparse linear bandits—assume that $\theta \in \mathbb{R}^d$ has its number of non-zero entries limited to $s \ll d$ [5]. Alternatively, if θ is organized into a matrix in $\mathbb{R}^{d_1 \times d_2}$, it may be constrained to have a low rank $s \ll \min(d_1, d_2)$, to be group-sparse with no more than $s \ll d_1$ non-zero rows, or to exhibit other structured forms [12]. We consider these bandits to be succinct linear bandits, differing in how they impose succinct constraints on θ .

While upper bounds guarantee the regret growth of a specific algorithm across an assumption class, minimax lower bounds apply to all possible algorithms on that assumption class, and are usually established by identifying hard bandit instances tailored to any given algorithm. To illustrate, suppose that $A_t \in \mathbb{R}^d$ is to be chosen from the standard basis $\{e_1, e_2, ..., e_d\}$ and $\theta \in \mathbb{R}^d$ has only one non-zero entry. When d > n, given any algorithm, there obviously exists a tailored θ to cause that

Table 1: Some results obtained with our novel framework, compared to existing upper bounds from algorithms and prior lower bounds. The number of rounds is denoted by n. For entry-sparse vectors, d is the dimension and s is the number of non-zero entries. For low-rank matrices and group-sparse matrices, d_1 is the number of rows and d_2 is the number of columns. For low-rank matrices, s is the matrix rank, while for group-sparse matrices, s is the number of non-zero rows. C_{\min} is a quantity measuring to what extent the action set admits a well-condition exploration, properly introduced in Definition 4.1.

	Upper Bound from Algorithms	Prior Lower Bound	Our Lower Bound
sparse	$\begin{array}{c} O(\sqrt{sdn}) \text{ in [1]} \\ O(s\sqrt{n}\log(dn)) \text{ in [10]} \\ O(\sqrt{sn}\log(dn)) \text{ in [13]} \\ O(C_{\min}^{-2/3}s^{2/3}n^{2/3}) \text{ in [7]} \\ O(s^{1/3}n^{2/3}\sqrt{\log(dn)}) \text{ in [12]} \end{array}$	$\begin{array}{l} \Omega(\min(C_{\min}^{-1/3}s^{1/3}n^{2/3},\sqrt{dn}))\\ \text{in [7]}\\ \Omega(\sqrt{sdn}) \text{ in [11]} \end{array}$	$\frac{\Omega(\min(C_{\min}^{-1/3}s^{2/3}n^{2/3},\sqrt{dsn}))}{\text{in Corollary 4.1}}$
rank	$\begin{array}{c} O((d_1+d_2)^{3/2}\sqrt{sn}) \text{ in [9]} \\ O((d_1+d_2)^{3/2}\sqrt{sn}) \text{ in [8]} \\ O(s^{1/3}n^{2/3}\log(d_1+d_2)) \text{ in [12]} \end{array}$	None	$\frac{\Omega(\min(C_{\min}^{-1/3}s^{2/3}n^{2/3},\sqrt{d_1d_2sn}))}{\text{in Corollary 4.3}}$
sparse	$\begin{array}{c} O(\sqrt{sd_2d_1n}) \text{ in [8]} \\ O(s^{1/3}n^{2/3}(\sqrt{d_2} + \sqrt{\log d_1})) \\ \text{in [12]} \end{array}$	None	$\frac{\Omega(\min(C_{\min}^{-1/3}s^{1/3}n^{2/3},\sqrt{d_1d_2n}))}{\text{in Corollary 4.2}}$

algorithm linear regret. Since the entry-sparse θ with s=1 can also be interpreted as low-rank or group-sparse, the $\Omega(n)$ regret is unavoidable in the data-poor regime $(n\ll d)$ for succinct linear bandits without extra constraints.

Related Work. For entry-sparse vector bandits, [11] gives a lower bound $\Omega(\sqrt{sdn})$ in the datarich regime by emulating in parallel s canonical multi-armed bandits, each with d/s arms and a lower bound $\Omega(\sqrt{(d/s)n})$ established by [2]. A matching upper bound $O(\sqrt{sdn})$ is achieved by an online-to-confidence-set conversion algorithm in [1], which works on arbitrary action set and thus confirm the optimal rate $\Theta(\sqrt{sdn})$ in the data-rich regime. To ease the polynomial dependence on d, various constraints are introduced to study refined assumption classes [1, 10, 7, 13, 14], most of them focusing on upper bound analysis for their proposed algorithms. One closely related previous study by [7] considers entry-sparse bandits with a fixed action set \mathcal{A} that allows for a well-explored sampling distribution, where the minimum eigenvalue of the population covariance matrix can be lower bounded despite growing d. By creating an information-regret trade-off, they construct a lower bound of $\Omega\left(\min(C_{\min}^{-1/3}(\mathcal{A})s^{1/3}n^{2/3},\sqrt{dn})\right)$, where $C_{\min}(\mathcal{A})$ is the lower-bounding quantity. This lower bound nearly matches the upper bound $O(C_{\min}^{-2/3}(\mathcal{A})s^{2/3}n^{2/3})$ for their explore-sparsity-then-commit algorithm in the data-poor regime. It is also popular to study the contextual setting [10, 13, 14], where action A_t is chosen from a set of stochastically generated contexts, making it easy to impose complicated assumptions on the more passively available action data $(A_t)_{t=1}^n$.

Other succinct linear bandits are less investigated. For low-rank matrix bandits, an upper bound of $O((d_1+d)^{3/2}\sqrt{sn})$ is established for different approaches: [9] developed an explore-subspace-thenrefine algorithm for a bi-linear bandit setting, where the reward is computed as the bi-linear product of the matrix parameter with the left and right arms. [8] extended the algorithm to the generalized linear setting under a mild assumption on action data and the singular values of the low-rank parameter. For group-sparse matrix bandits, $O(\sqrt{sd_1d_2n})$ is given by [8] in an attempt to unify bandits with structured parameter in the contextual setting by constructing high-probability confidence ellipsoids. Under the restricted eigenvalue condition in the contextual setting, [12] offers a general framework of explore-sparsity-and-commit algorithms to achieve a common upper bound of $O(s^{1/3}n^{2/3})$ on entry-sparse, low-rank, group-sparse bandits, and their novel formulation of multi-agent bandits.

Overall, lower bound analysis for succinct linear bandits has been relatively under-developed, especially beyond the entry-sparse setting, where existing work often relies on informal arguments or naive reductions to the entry-sparse case to invoke known lower bounds. Meanwhile, upper bounds with dominating dependency on d are proven attainable primarily in the data-rich regime [1, 10],

while dimension-free rates are typically achieved by constraining the assumption class to bandit instances that permit well-explored action data $(A_t)_{t=1}^n$ in order to bypass the linear lower bound in the data-poor regime [7, 12].

Contributions. Our contributions in this work are threefold. First, in Section 3.1, we propose a succinctness model in general vector space, along with lemmas that may be of independent interest. Second, in Section 3.2, we develop a general framework for deriving minimax lower bounds of succinct linear bandits in both data-rich and data-poor regimes, offering customizable constructions that revolve around two concepts, i.e. information-regret trade-off and succinctness support. Third, in Section 4, we apply this framework to three stochastic linear bandit problems that exhibit succinct structure and permit well-conditioned exploration. With minimal customization, we are able to improve the previous bound of [7] for entry-sparse vector bandits. To the best of our knowledge, we obtain the first lower bounds for group-sparse matrix bandits as well as for low-rank matrix bandits. These results, summarized in Table 1, showcase the generality of our framework and shed light to directions for extending existing upper and lower bounds.

2 Preliminaries

In this section, we start with a concise description of vector spaces, stochastic linear bandits and the notation used throughout this paper. We then briefly review the standard machinery commonly used in the literature for lower bound construction—techniques that we also draw upon later in proving our main theorem.

2.1 Problem setting

Vector Space. We consider a vector space $\mathbb V$ over $\mathbb R$, which is a set equipped with the vector addition and the scalar multiplication operations satisfying the standard axioms, such as the existence of $\vec 0$ and additive inverse -X of any vector $X \in \mathbb V$. We also define an inner product $\langle \cdot, \cdot \rangle$ as a function $\mathbb V \times \mathbb V \to \mathbb R$ that satisfies the properties of symmetry, linearity, and positive definiteness. Later, we will use the general definition of a norm, e.g. $P(\cdot): \mathbb V \to \mathbb R$, which satisfies the triangle inequality $P(X+Y) \leq P(X) + P(Y)$, absolute scalability P(aX) = |a|P(X), and positive definiteness $X \neq \vec 0 \Rightarrow P(X) > 0$, for all vectors $X, Y \in \mathbb V$ and scalars $a, b \in \mathbb R$.

Stochastic Linear Bandit. At each round t, the agent perceives a fixed action set $\mathcal{A} \subseteq \mathbb{V}$ and executes an action $A_t \in \mathcal{A}$. Then, the bandit machine generates a reward $y_t = \langle A_t, \theta \rangle + \eta_t$, where $\eta_t \sim \mathcal{N}(0,1)$ and some parameter $\theta \in \mathbb{V}$ characterizes a bandit instance. The agent is conceptualized to follow a policy π which yields A_t stochastically conditioned on the ongoing interaction $A_1y_1A_2y_2\dots A_{t-1}y_{t-1}$.

Now that a stochastic process can be fully determined from the interactions between the policy π and the bandit instance (A, θ) , or briefly θ , up to a horizon of n rounds, we can calculate the regret of π , compared to an omniscient policy that always plays an optimal action:

$$R_n^{\pi}(\mathcal{A}, \theta) := \mathbb{E}_{\pi, \theta} \left[\sum_{t=1}^n \max_{X \in \mathcal{A}} \langle X, \theta \rangle - \sum_{t=1}^n y_t \right] \quad \text{where } \max_{X \in \mathcal{A}} |\langle X, \theta \rangle| \le 1$$
 (1)

Notation. We denote the sub-optimal gap of an action $X \in \mathcal{A}$ under the instance θ as $\Delta_{\theta}(X) := \max_{X^* \in \mathcal{A}} \langle X^*, \theta \rangle - \langle X, \theta \rangle$. Given an inner product, we define the induced norm or length $\|X\| := \sqrt{\langle X, X \rangle}$ for all $X \in \mathbb{V}$, which can be shown to be a norm. We shorthand the set of integers $\{1, 2, 3, \ldots, d\}$ as [d], and $\{2, 3, \ldots, d\}$ as [2:d]. Let $|\mathcal{G}|$ be the cardinality of a set \mathcal{G} . The indicator $1\{D\}$ equals 1 if the event D occurs and 0 otherwise. We will omit π in $\mathbb{P}_{\pi,\theta}$ and $\mathbb{E}_{\pi,\theta}$ when the context is clear. For vectors in \mathbb{R}^d , we use $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ to denote the l_{∞} and the l_1 norms. For matrices $X \in \mathbb{R}^{d_1 \times d_2}$, $\|X\|_{\infty,2} := \max_i (\sum_j x_{ij}^2)^{1/2}$ and $\|X\|_{1,2} := \sum_i (\sum_j x_{ij}^2)^{1/2}$ denote the $l_{\infty,2}$ and the $l_{1,2}$ norms, while $\|\cdot\|_{\mathrm{op}}$ and $\|\cdot\|_{\mathrm{nuc}}$ denote the operator and the nuclear norms.

2.2 Techniques for lower bound construction

Le Cam's Lemma. The construction of minimax lower bounds can be viewed as mirroring Le Cam's method in statistics for lower-bounding the worst-case error for any estimator. Let \mathcal{F} be a set of distributions, where each distribution $\mathbb{P} \in \mathcal{F}$ is associated with a parameter $\theta \in \Theta$. Consider $\hat{\theta}(S)$ as an estimator for θ using empirical data $S \sim \mathbb{P}$. Let metric $d: \Theta \times \Theta \to [0, \infty)$ satisfy symmetry and triangle inequality. For any $\mathbb{P}_1, \mathbb{P}_2 \in \mathcal{F}$ with $\theta_1, \theta_2 \in \Theta$ and densities $p_1(\cdot), p_2(\cdot)$, we have

$$\inf_{\hat{\theta}} \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{S \sim \mathbb{P}}[d(\hat{\theta}(S), \theta)] \ge \frac{d(\theta_1, \theta_2)}{4} \cdot \int_{S} \min(p_1(S), p_2(S))$$

The \int_S term can be further lower bounded by $\frac{1}{2}\exp(-\mathrm{KL}(\mathbb{P}_1;\mathbb{P}_2))$ or other options [11]. We can relate the regret of some policy π on a bandit instance θ to the estimation error of some estimator $\hat{\theta}(\cdot)$ on the trajectory distribution $\mathbb{P}_{\pi,\theta}$. The key to establishing this bound is to identify two instances (\mathbb{P}_1,θ_1) and (\mathbb{P}_2,θ_2) , along with some common event, e.g. $D:=\{d(\hat{\theta}(S),\theta_1)\geq d(\hat{\theta}(S),\theta_2)\}$, such that the sum of the two estimation errors can be lower bounded independent of $\hat{\theta}(\cdot)$:

$$\int_{S} p_{1}(S) \cdot d(\hat{\theta}(S), \theta_{1}) + \int_{S} p_{2}(S) \cdot d(\hat{\theta}(S), \theta_{2}) \ge \int_{S} \left[p_{1}(S) \mathbf{1}\{D\} + p_{2}(S) \mathbf{1}\{\overline{D}\} \right] \cdot \frac{d(\theta_{1}, \theta_{2})}{2}$$

KL-divergence Decomposition. Let \mathbb{P}_{θ_1} and \mathbb{P}_{θ_2} be the two trajectory distributions induced by the policy π playing in the bandit instances θ_1 and θ_2 , respectively. Consider a trajectory $A_1y_2\ldots A_ny_n$, the log-likelihood ratio $\log[p_{\theta_1}(A_1\ldots y_n)/p_{\theta_2}(A_1\ldots y_n)]$ equals $\sum_{t=1}^n \log[p_{\theta_1}(y_t|A_t)/p_{\theta_2}(y_t|A_t)]$. This allows us to decompose $\mathrm{KL}(\mathbb{P}_{\theta_1};\mathbb{P}_{\theta_2})$ to n KL-divergences between reward distributions conditioned on A_t under \mathbb{P}_{θ_1} . If reward distributions are $\mathcal{N}(\langle A_t, \theta_1 \rangle, 1)$ and $\mathcal{N}(\langle A_t, \theta_2 \rangle, 1)$, we have

$$\mathrm{KL}(\mathbb{P}_{\theta_1}; \mathbb{P}_{\theta_2}) = \mathbb{E}_{\theta_1} \left[\sum_{t=1}^n \frac{1}{2} \langle A_t, \theta_1 - \theta_2 \rangle^2 \right]$$

3 Main results

In this section, we present our general succinctness model which encompasses cases such as entrysparse vectors, group-sparse matrices and low-rank matrices. We then present a general minimax lower bound based on the proposed succinctness model.

3.1 Succinctness model

Here, we give the formal definition of vectors being "s-succinct" and related lemmas, in preparation for the lower bound construction in the next subsection.

We assume that all the 1-succinct vectors are given in advance and that the scalar multiple aX of some succinct $X \in \mathbb{V}$ should be equally succinct at least when $a \neq 0$. We first impose the existence of the set of "succinct units", i.e. the 1-succinct vectors of unit length.

Axiom 3.1 (existence of the succinct unit set). There exists a non-empty set \mathcal{U} such that $\forall E : E \in \mathcal{U} \Leftrightarrow E$ is an 1-succinct vector in \mathbb{V} with ||E|| = 1, and that $\forall E : E \in \mathcal{U} \Rightarrow -E \in \mathcal{U}$.

We aim to compose from some succinct units a new vector that can be regarded as "s-succinct" without any part or the whole reducing to "1-succinct". Then, those units the "s-succinct" vector decompose to must uphold some relation against all the succinct units in \mathcal{U} to prove that they are indeed irreducible.

Definition 3.1 (succinct support). We say that an indexed set of $d \in \mathbb{N}^+$ succinct units $\{E_i\}_{i=1}^d \subseteq \mathcal{U}$ forms a support if and only if

$$\sup_{E \in \mathcal{U}} \sum_{i=1}^{d} |\langle E, E_i \rangle| = 1 \tag{2}$$

Remark. It is easy to see that any non-empty subset of $\{E_i\}_{i=1}^d$ forms a support. We can flip the sign of any support member and still get a valid support, e.g. $\{\pm E_i\}_{i=1}^d$. The equality (2) implies mutual orthogonality. On the other hand, if $\mathcal U$ contains only mutually orthogonal elements, then $\mathcal U$ itself forms a support.

Now, we introduce the two quantities $Q(\cdot)$, $R(\cdot): \mathbb{V} \to [0, \infty)$ for later imposing boundedness condition, and then state the, by now, fairly evident definition of "s-succinct".

Definition 3.2 (two semi-norms). For all $X \in \mathbb{V}$, we define $Q(X) := \sup_{E \in \mathcal{U}} \langle X, E \rangle$, as well as $R(X) := \sup_{Q(Y) < 1} \langle X, Y \rangle$ where $Y \in \mathbb{V}$ with $Q(Y) \le 1$.

Remark. Since $\mathcal U$ is non-empty, both $Q(\cdot)$ and $R(\cdot)$ are validly defined and satisfy the triangle inequality. Moreover, because $\mathcal U$ is closed under additive inverse, it follows that Q(X) and R(X) also satisfy the property of absolute scalability. Hence, they qualify as semi-norms, as they satisfy all the norm properties except positive definiteness.

Remark. Given $X \neq \vec{0}$, Q(X) = 0 suggests $\forall E \in \mathcal{U} : \langle X, E \rangle = 0$. Thus, $Q(\cdot)$ will be a norm if \mathcal{U} spans \mathbb{V} , as \mathcal{U} will have no other orthogonal complement in \mathbb{V} than $\vec{0}$. In addition, R(X) will also be a norm because $R(X) \geq \langle X, X/Q(X) \rangle = ||X||^2/Q(X) > 0$ as long as $X \neq 0$.

Definition 3.3 (s-succinct). Consider $s \in \mathbb{N}^+$. We call a vector $X \in \mathbb{V}$ s-succinct if and only if it can can decompose to some support $\{E_i\}_{i=1}^s$ with some scalar coefficients $\{a_i\}_{i=1}^s$, i.e. $X = \sum_{i=1}^s a_i E_i$, and strictly s-succinct if and only if $a_i \neq 0$ for all $i \in [s]$.

Based on the definitions above, we have the following lemmas. See their proofs at Appendix A.

Lemma 3.1. If $X = \sum_{i=1}^{s} a_i E_i$ for some support $\{E_i\}_{i=1}^{s}$ and some scalar coefficients $\{a_i\}_{i=1}^{s}$, then $Q(X) = \max_{i \in [s]} |a_i|$.

Lemma 3.2. If $X = \sum_{i=1}^{s} a_i E_i$ for some support $\{E_i\}_{i=1}^{s}$ and some scalar coefficients $\{a_i\}_{i=1}^{s}$, then $R(X) = \sum_{i=1}^{s} |a_i|$.

Lemma 3.3. If X is simultaneously s-succinct and strictly z-succinct, then $s \ge z$.

Lemma 3.4. If X is simultaneously strictly s-succinct and strictly z-succinct, then s=z.

Lemma 3.5. If X is s-succinct, then $|\langle X, Y \rangle| \leq \min(Q(X)R(Y), Q(Y)R(X))$ holds for any $Y \in \mathbb{V}$.

Lemma 3.6. If X is s-succinct, then $\sup_{R(Y)<1}\langle X,Y\rangle=Q(X)$, where $Y\in\mathbb{V}$ and $R(Y)\leq 1$.

Remark. If X is s-succinct, Lemma 3.1 and Lemma 3.2 ensure positive definiteness, i.e. $X \neq 0 \Rightarrow Q(X), R(X) > 0$. Meanwhile, Lemma 3.5 and Lemma 3.6 show that $Q(\cdot)$ and $R(\cdot)$ resemble a norm and its dual norm at least for s-succinct vectors. On the other hand, If $\mathcal U$ spans $\mathbb V$, then $Q(\cdot)$ becomes a norm and $R(\cdot)$ its dual norm. In this case, we have $|\langle X,Y\rangle| \leq Q(X)R(Y)$ and $\sup_{R(Y)\leq 1}\langle X,Y\rangle = Q(X)$ hold for all $X,Y\in \mathbb V$. However, $\mathcal U$ spanning $\mathbb V$ does not imply that every vector in $\mathbb V$ is s-succinct for some respective $s\in \mathbb N^+$.

3.2 General minimax lower bound

In what follows, we present our general lower bound for stochastic bandits under the succinctness model previously described. We start with a set of assumptions, which are fulfilled by our applications in Section 4.

Assumption 3.7. Suppose the following objects exist.

- 1. an action set $\mathcal{H} \subseteq \mathbb{V}$ satisfying $\max_{X \in \mathcal{H}} \langle X, \theta_0 \rangle \leq -C_0$, where $C_0 > 0$ is some global constant and $\theta_0 \in \mathbb{V}$ is some parameter that can decompose to some support $\{E_1', E_2', \dots, E_k'\}$ of cardinality $k \geq 1$.
- 2. s-k non-empty groups of succinct units, denoted as $\mathcal{G}_1,\mathcal{G}_2,\ldots,\mathcal{G}_{s-k}$, where for any tuple (E_1,E_2,\ldots,E_{s-k}) in the Cartesian set $\bigotimes_{i=1}^{s-k}\mathcal{G}_i$, the set $\{E_1,\ldots,E_{s-k},E_1',\ldots,E_k'\}$ forms a support of cardinality $s\geq 3k+3$.
- 3. $q, p \in \mathbb{R}$ satisfying $\max_{X \in \mathcal{H}} \Phi_{\mathcal{G}_i}(X) \leq \frac{1}{q}$ and $\max_{X \in \mathcal{G}_i} \Phi_{\mathcal{G}_i}(X) \leq \frac{1}{p}$ for each $i \in [s-k]$, where $\Phi_{\mathcal{G}_i}(X) := \sum_{E \in \mathcal{G}_i} \langle X, E \rangle^2 / |\mathcal{G}_i|$.

Next, we introduce our main theoretical result. We provide a formal proof based on a sequence of steps and some claims that are proved in the Appendix B.

Theorem 3.8. Consider the bandit problem (1) where all actions $X \in \mathbb{V}$ and parameters $\theta \in \mathbb{V}$ are bounded with $Q(X) \leq 1$ and $R(\theta) \leq 1$. Suppose Assumption 3.7 hold with some $s \in \mathbb{N}^+$, $C_0 > 0$

and $p, q \ge 1$. Then, we can construct an action set A such that given any policy π , there exists an s-succinct parameter θ to incur regret

$$R_n^{\pi}(\mathcal{A}, \theta) \ge \frac{\min(C_0, e^{-4}/8)}{3} \cdot \min(s^{\frac{2}{3}} n^{\frac{2}{3}} q^{\frac{1}{3}}, s\sqrt{pn})$$
 (3)

Proof. Since Assumption 3.7 holds, we assume access to θ_0 , the action set \mathcal{H} , and the s-k groups $\mathcal{G}_1,\mathcal{G}_2,\ldots,\mathcal{G}_{s-k}$. Let $b=\lfloor (s-k)/2\rfloor$. It follows that $b\geq k+1$ and $3b\geq 2b+k+1\geq s>2b$. Note that $0< C_0\leq 1$ due to $R(\theta_0)\leq 1$ and Lemma 3.5. We choose a specific $(E_1^*,E_2^*,\ldots,E_b^*)\in X_{i=1}^b\mathcal{G}_{b+i}$ and extend each of the first b groups with a corresponding star-marked unit as follows:

$$\mathcal{G}_1 \cup \{E_1^*\}, \ \mathcal{G}_2 \cup \{E_2^*\}, \dots, \ \mathcal{G}_b \cup \{E_b^*\}$$

Step 1: Construction of action set A. We construct

$$\mathcal{S} := \left\{ \sum_{i=1}^b \tilde{E}_i \;\middle|\; \forall i \in [b]: \; \tilde{E}_i \in \mathcal{G}_i \cup \{E_i^*\} \right\}, \qquad \mathcal{A} := \mathcal{H} \cup \mathcal{S}$$

Each action $X \in \mathcal{S}$ is s-succinct and satisfies Q(X) = 1 by Lemma 3.1. Since each action corresponds with a unique selection of a unit \tilde{E}_i from each extended-group $\mathcal{G}_i \cup \{E_i^*\}$, later when discussing the action A_t at round t and if $A_t \in \mathcal{S}$, we will use the notation $\tilde{A}_{t,i} := \tilde{E}_i$ to represent its unit selection in the extended-group i.

Step 2: Parameters in consideration. Let $\varepsilon > 0$ be a constant to be decided later, subject to the constraint $s\varepsilon \leq \frac{C_0}{3}$. We construct

$$\Theta := \left\{ \frac{1}{2} \theta_0 + \varepsilon \sum_{i=1}^b \left(E_i^* + 2\tilde{E}_i \cdot \mathbf{1} \{ \tilde{E}_i \neq E_i^* \} \right) \mid \forall i \in [b] : \ \tilde{E}_i \in \mathcal{G}_i \cup \{ E_i^* \} \right\}$$

We can verify that $\forall \theta \in \Theta : R(\theta) \leq \frac{1}{2} + 3b\varepsilon \leq 1$. Similar to the construction of \mathcal{S} , there is a one-to-one correspondence between Θ and $\times_{i=1}^{b} (\mathcal{G}_i \cup \{E_i^*\})$. For any $\theta \in \Theta$ and $i \in [b]$, we use $\tilde{E}_i(\theta) \in \mathcal{G}_i \cup \{E_i^*\}$ to indicate the unit that θ selects in the extended group i.

By construction, playing any \mathcal{H} -based action in any parameter setting θ incurs at least a constant regret per round, compared to an optimal \mathcal{S} -based action that shares the same unit selection as θ . By constraining $s\varepsilon$ to be sufficiently small relative to C_0 , we can show that $\forall \theta \in \Theta, \forall X \in \mathcal{H}$: $\Delta_{\theta}(X) \geq C_0/3$. See the formal argument at Appendix B.1.

Step 3: Intricacies of avoiding sub-optimality. Choosing the correct optimal \mathcal{S} -based action across different parameter settings of θ can be seen as solving b sub-problems in parallel, where the challenge is to minimize the regret of failing to select the correct unit $\tilde{E}_i(\theta)$ for each extended-group $i \in [b]$. Define $T_{\mathcal{S}} := \{t \in [n] \mid A_t \in \mathcal{S}\}$, For each $i \in [b]$, we introduce an event D_i (and its complement event \overline{D}_i):

$$D_i = \left\{ \sum_{t \in T_S} \mathbf{1} \{ \tilde{A}_{t,i} = E_i^* \} \ge \frac{n}{2} \right\}$$

Claim 3.9. $\forall \theta \in \Theta$, we can lower bound the regret in terms of those group-wise events:

$$R_n^{\pi}(\mathcal{A}, \theta) \geq \sum_{i=1}^b R_i^{\theta}$$
, where $R_i^{\theta} := \frac{n\varepsilon}{2} \cdot \begin{cases} \mathbb{P}_{\theta}(\overline{D}_i) & \text{if } \tilde{E}_i(\theta) = E_i^* \\ \mathbb{P}_{\theta}(D_i) & \text{if } \tilde{E}_i(\theta) \neq E_i^* \end{cases}$

where \mathbb{P}_{θ} is the distribution over empirical trajectories induced by π playing in θ up to n rounds. See the proof at Appendix B.1.

Step 4: Bound through KL-divergence. Intuitively, the sparse geometry in S and Θ within each extended-group i puts an information-theoretic limit on π 's ability to distinguish between the situations $\tilde{E}_i(\theta) = E^*$ and $\tilde{E}_i(\theta) \neq E^*$ over all versions of θ .

We consider different settings of θ with varying $\tilde{E}_i(\theta)$ for the extended-group i, while keeping their unit selection fixed for the other extended-groups. Given $(\tilde{E}_1, \tilde{E}_2, \dots, \tilde{E}_b) \in \times_{i=1}^b (\mathcal{G}_i \cup \{E_i^*\})$ and extended-group index i, we reversely denote $\theta(\tilde{E}_i, \tilde{\mathbf{E}}_{-i}) := \frac{1}{2}\theta_0 + \varepsilon \sum_{i=1}^b (E_i^* + 2\tilde{E}_i \cdot \mathbf{1}\{\tilde{E}_i \neq E_i^*\})$, where $\tilde{\mathbf{E}}_{-i} := (\tilde{E}_1, \dots, \tilde{E}_{i-1}, \tilde{E}_{i+1}, \dots, \tilde{E}_b)$. Fix i and $\tilde{\mathbf{E}}_{-i}$. Then, using Le Cam's Lemma, KL-divergence decomposition, and Jensen's Inequality, we can lower bound the following quantity:

$$\sum_{E \in \mathcal{G}_i} R_i^{\theta(E_i^*, \tilde{\mathbf{E}}_{-i})} + R_i^{\theta(E, \tilde{\mathbf{E}}_{-i})} \ge \frac{n\varepsilon |\mathcal{G}_i|}{4} \exp\left(-2\varepsilon^2 \mathbb{E}_{\theta(E_i^*, \tilde{\mathbf{E}}_{-i})} \left[\sum_{t=1}^n \sum_{E \in \mathcal{G}_i} \frac{\langle A_t, E \rangle^2}{|\mathcal{G}_i|} \right] \right)$$

This intermediate bound is established to support the following claim. See the details at Appendix B.2.

Claim 3.10. Define $T_{\mathcal{H}} := \{t \in [n] \mid A_t \in \mathcal{H}\}$. We have

$$\max_{\theta \in \Theta} R_n^{\pi}(\mathcal{A}, \theta) \ge \frac{ns\varepsilon}{24} \exp(-2\varepsilon^2 \left[\frac{n}{p} + \frac{1}{q} \cdot \max_{\theta \in \Theta} \mathbb{E}_{\theta}[|T_{\mathcal{H}}|] \right]) \tag{4}$$

Step 5: Information-regret tradeoff. Overall, the lower bound (4) is optimistic regarding π playing more \mathcal{H} -based actions, as S-based actions are sparse and provide limited information for distinguishing between different θ across Θ . However, since \mathcal{H} -based actions are also suboptimal, there is another lower bound on the maximal regret that discourages the same quantity $\max_{\theta \in \Theta} \mathbb{E}_{\theta}[|T_{\mathcal{H}}|]$:

$$\max_{\theta \in \Theta} R_n^{\pi}(\mathcal{A}, \theta) \ge \max_{\theta \in \Theta} \mathbb{E}_{\theta} \left[\sum_{t \in T_{\mathcal{H}}} \Delta_{\theta}(A_t) \right] \ge \frac{C_0}{3} \cdot \max_{\theta \in \Theta} \mathbb{E}_{\theta}[|T_{\mathcal{H}}|]$$
 (5)

The challenge of determining how often to play regrettable yet potentially informative \mathcal{H} -based actions leads us to the final lower bound. Combining the lower bounds (4) and (5) in a minimum expression, we can replace $\max_{\theta \in \Theta} \mathbb{E}_{\theta}[|T_{\mathcal{H}}|]$ with a free variable h, and obtain the lower bound $\min(\frac{ns\varepsilon}{24}\exp(-2\varepsilon^2[\frac{n}{p}+\frac{h}{q}]),\frac{C_0}{3}h)$ that holds for any $h \in \mathbb{R}$.

When $p < n^{\frac{1}{3}}s^{-\frac{2}{3}}q^{\frac{2}{3}}$, we let $\varepsilon = \sqrt{p/n}$ and $h = q\varepsilon^{-2}$ (the constraint $s\varepsilon \le C_0/3$ requires $9s^2p \le C_0{}^2n$). Then, we have a lower bound $\min(e^{-4}/24,C_0/3)\cdot s\sqrt{pn}$. When $p \ge n^{\frac{1}{3}}s^{-\frac{2}{3}}q^{\frac{2}{3}}$, we let $\varepsilon = n^{-\frac{1}{3}}s^{-\frac{1}{3}}q^{\frac{1}{3}}$ and $h = q\varepsilon^{-2}$ ($s\varepsilon \le C_0/3$ requires $27s^2q \le C_0^3n$). Then, we have another lower bound $\min(e^{-4}/24,C_0/3)\cdot s^{\frac{2}{3}}n^{\frac{2}{3}}q^{\frac{1}{3}}$. Together, we have the final lower bound (3).

4 Applications

In this section, we show that our framework sharpens a recent lower bound by [7] when applied to entry-sparse vectors. We then apply our framework to provide the first lower bounds (to the best of our knowledge) for the group-sparse and low-rank matrix settings.

First, we derive corollaries for bandit problems with three types of succinct representations: entry-sparse vector, group-sparse matrix, and low-rank matrix. Accordingly, we consider $\mathbb{V} := \mathbb{R}^d$ or $\mathbb{R}^{d_1 \times d_2}$, treating vectors in \mathbb{R}^d as one-column matrices.

Naturally, the inner product is defined as $\langle X,Y\rangle:=\operatorname{trace}(X^TY)$ for all matrices $X,Y\in\mathbb{V}$ and the induced norm $\|X\|:=\sqrt{\langle X,X\rangle}$ follows. In addition, we define the following quantity to characterize the shape of an action set $\mathcal{A}\subseteq\mathbb{V}$.

Definition 4.1. Let Pr(A) be the space of probability distributions over A and define

$$C_{\min}(\mathcal{A}) := \max_{\mu \in \Pr(\mathcal{A})} \min_{\beta} \mathbb{E}_{X \sim \mu} [\langle X, \beta \rangle^2] \quad \text{where } \beta \in \mathbb{V} \text{ with } \|\beta\| = 1$$

Remark. By flattening matrices $X \sim \mu$ into vectors x, $C_{\min}(\mathcal{A})$ can be computed by finding a distribution μ that maximizes the minimum eigenvalue of the covariance matrix $\mathbb{E}_{x \sim \mu}[xx^T]$. Intuitively speaking, $C_{\min}(\cdot)$ measures how well the set \mathcal{A} can support an exploration distribution that samples well-conditioned action data for probing the unknown bandit parameter.

Remark. $C_{\min}(\mathcal{A}) > 0$ if and only if \mathcal{A} spans \mathbb{V} . $C_{\min}(\mathcal{A})$ is upper bounded by 1 if actions in \mathcal{A} are bounded with $\|\cdot\|_{\infty} \leq 1$, by $1/d_2$ if $\|\cdot\|_{\infty,2} \leq 1$, and by $1/\min(d_1,d_2)$ if $\|\cdot\|_{\mathrm{op}} \leq 1$.

4.1 Entry-sparse vector bandits

First, we use our general framework to obtain a lower bound of order $\Omega(\min(C_{\min}^{-1/3}s^{2/3}n^{2/3},\sqrt{dsn}))$ for entry-sparse vectors. Our result is tighter than the prior rate of $\Omega(\min(C_{\min}^{-1/3}s^{1/3}n^{2/3},\sqrt{dn}))$ shown in [7].

Corollary 4.1. Consider the bandit problem (1) where actions $x \in \mathbb{R}^d$ and parameters $\theta \in \mathbb{R}^d$ are bounded with $||x||_{\infty} \leq 1$ and $||\theta||_1 \leq 1$. Given any policy π , there exist an action set A with $C_{\min}(A)$ and a parameter θ with no more than s non-zero entries, such that

$$R_n^{\pi}(\mathcal{A}, \theta) \ge \frac{\exp(-4)}{24} \cdot \min\left(C_{\min}^{-\frac{1}{3}}(\mathcal{A})s^{\frac{2}{3}}n^{\frac{2}{3}}, \sqrt{dsn}\right) \tag{6}$$

Proof. We define the succinct unit set $\mathcal{U}:=\{e_j\}_{j=1}^d$, where each $e_j:=(0,0,\dots,1,\dots,0)^T\in\mathbb{R}^d$ has a single 1 at the j-th entry. Then, the two semi-norms $Q(\cdot)=\|\cdot\|_\infty$ and $R(\cdot)=\|\cdot\|_1$. Meanwhile, θ having no more than s non-zero entries is equivalent to it being s-succinct. Let $0<\kappa\leq 1$ be a constant and construct the action set

$$\mathcal{H} := \left\{ \sum_{j=1}^{d} a_j \cdot e_j \mid \forall j \in [d] : a_j = \left\{ \begin{matrix} 1 & \text{if } j = 1 \\ \pm \kappa & \text{otherwise} \end{matrix} \right\} \right\}$$

We consider $\theta_0 := -e_1$ which is 1-succinct and satisfies $\max_{x \in \mathcal{H}} \langle x, \theta_0 \rangle \leq -1$. It also can be shown that $C_{\min}(\mathcal{H}) \geq \kappa^2$. Assume $d \pmod{s} = 0$ and construct

$$\forall i \in [s-1]: \ \mathcal{G}_i := \left\{ e_j \ \middle| \ j \in \left[\frac{id}{s} + 1: \frac{id}{s} + \frac{d}{s} \right] \right\}$$

We can verify that $\max_{x \in \mathcal{G}_i} \Phi_{\mathcal{G}_i}(x) \leq s/d$ and $\max_{x \in \mathcal{H}} \Phi_{\mathcal{G}_i}(x) \leq \kappa^2$ for each $i \in [s-1]$. Invoking Theorem 3.8 with the constructed \mathcal{H} and $\{\mathcal{G}_i\}_{i=1}^{s-1}$, we can construct an action set \mathcal{A} with $C_{\min}(\mathcal{A}) \geq C_{\min}(\mathcal{H})$ and s-succinct θ that make the lower bound (6) hold.

4.2 Group-sparse matrix bandits

Next, we use our general framework to obtain the first lower bound for group-sparse matrices. The following corollary provides a lower bound of order $\Omega(\min(C_{\min}^{-1/3}s^{2/3}n^{2/3},\sqrt{d_1d_2sn}))$.

Corollary 4.2. Consider the bandit problem (1) where actions $X \in \mathbb{R}^{d_1 \times d_2}$ and parameters $\theta \in \mathbb{R}^{d_1 \times d_2}$ are bounded with $\|X\|_{\infty,2} \leq 1$ and $\|\theta\|_{1,2} \leq 1$. Given any policy π , there exist an action set A with constant $C_{\min}(A)$ and a parameter θ with no more than s non-zero rows, such that

$$R_n^{\pi}(\mathcal{A}, \theta) \ge \frac{\exp(-4)}{24} \cdot \min\left(C_{\min}^{-\frac{1}{3}}(\mathcal{A})s^{\frac{2}{3}}n^{\frac{2}{3}}, \sqrt{d_1d_2sn}\right)$$
 (7)

Proof. We define the succinct unit set $\mathcal{U}:=\{ev^T\,|\,e\in\{e_j\}_{j=1}^{d_1},v\in\mathbb{R}^{d_2},\|v\|=1\}$, where $\{e_j\}_{j=1}^{d_1}$ is the standard basis of \mathbb{R}^{d_1} . Then, the two semi-norms $Q(\cdot)=\|\cdot\|_{\infty,2}$ and $R(\cdot)=\|\cdot\|_{1,2}$. Meanwhile, θ having no more than s non-zero rows is equivalent to it being s-succinct. Let $\{v_g\}_{g=1}^{d_2}$ be an orthonormal basis of \mathbb{R}^{d_2} and $0<\kappa\leq\frac{1}{2}$ be a constant. We construct the action set

$$\mathcal{H} := \bigcup_{g \in [d_2]} \left\{ \frac{1}{2} e_1 v_1^T + \sum_{j=1}^{d_1} a_j \cdot e_j v_g^T \,\middle|\, \forall j \in [d_1] : a_j = \begin{cases} 0 & \text{if } j = g = 1 \\ \pm \kappa & \text{otherwise} \end{cases} \right\}$$

We consider $\theta_0 := -e_1 v_1^T$ which is 1-succinct and satisfies $\max_{X \in \mathcal{H}} \langle X, \theta_0 \rangle \leq -\frac{1}{2}$. It also can be shown that $C_{\min}(\mathcal{H}) \geq \kappa^2/d_2$. Assume $d_1 \pmod{s} = 0$ and construct

$$\forall i \in [s-1]: \ \mathcal{G}_i := \left\{ e_j v_m^T \ \middle| \ j \in \left[\frac{id_1}{s} + 1: \frac{id_1}{s} + \frac{d_1}{s} \right], m \in [d_2] \right\}$$

We can verify that $\max_{x \in \mathcal{G}_i} \Phi_{\mathcal{G}_i}(x) \leq s/(d_1d_2)$ and $\max_{x \in \mathcal{H}} \Phi_{\mathcal{G}_i}(x) \leq \kappa^2/d_2$ for each $i \in [s-1]$. Invoking Theorem 3.8 with the constructed \mathcal{H} and $\{\mathcal{G}_i\}_{i=1}^{s-1}$, we can construct an action set \mathcal{A} with $C_{\min}(\mathcal{A}) \geq C_{\min}(\mathcal{H})$ and s-succinct θ that make the lower bound (7) hold. \square

4.3 Low-rank matrix bandits

In what follows, we use our general framework to obtain the first lower bound for a slightly more challenging problem: low-rank matrices. The corollary below provides a lower bound of order $\Omega(\min(C_{\min}^{-1/3}s^{1/3}n^{2/3},\sqrt{d_1d_2n}))$.

Corollary 4.3. Consider the bandit problem (1) where actions $X \in \mathbb{R}^{d_1 \times d_2}$ and parameters $\theta \in \mathbb{R}^d$ are bounded with $\|X\|_{\mathrm{op}} \leq 1$ and $\|\theta\|_{\mathrm{nuc}} \leq 1$. Given any policy π , there exist an action set A with constant $C_{\min}(A)$ and a parameter θ with its rank no larger than s, such that

$$R_n^{\pi}(\mathcal{A}, \theta) \ge \frac{\exp(-4)}{24} \cdot \min\left(C_{\min}^{-\frac{1}{3}}(\mathcal{A})s^{\frac{1}{3}}n^{\frac{2}{3}}, \sqrt{d_1d_2n}\right)$$
 (8)

Proof. We define the succinct unit set $\mathcal{U}:=\{uv^T\,|\,u\in\mathbb{R}^{d_1},v\in\mathbb{R}^{d_2},\|u\|=\|v\|=1\}$. Then, the two semi-norms $Q(\cdot)=\|\cdot\|_{\mathrm{op}}$ and $R(\cdot)=\|\cdot\|_{\mathrm{nuc}}$. Meanwhile, θ having a rank no larger than s is equivalent to it being s-succinct. Let $\{u_j\}_{j=1}^{d_1}$ and $\{v_g\}_{g=1}^{d_2}$ be orthonormal bases of \mathbb{R}^{d_1} and \mathbb{R}^{d_2} , respectively. Let $0<\kappa\leq\frac{1}{2}$ be a constant and assume $d_1\leq d_2$ (the case $d_1>d_2$ can be handled by swapping the subscripts of u and v below). We construct the action set

$$\mathcal{H} := \bigcup_{g \in [d_2]} \left\{ \frac{1}{2} u_1 v_1^T + \sum_{j=1}^{d_1} a_j \cdot u_j v_{m(g,j)}^T \,\middle|\, \forall j \in [d_1] : a_j = \begin{cases} 0 & \text{if } j = m(g,j) = 1 \\ \pm \kappa & \text{otherwise} \end{cases} \right\}$$

where $m(g,j):=(g+j) \pmod{d_2}+1$ is used to cyclically iterate over $[d_2]$ for each $j\in[d_1]$, with a different starting point for each $g\in[d_2]$. We consider $\theta_0:=-e_1v_1^T$ which is 1-succinct and satisfies $\max_{X\in\mathcal{H}}\langle X,\theta_0\rangle\leq -\frac{1}{2}$. It also can be shown that $C_{\min}(\mathcal{H})\geq \kappa^2/d_2$. Assume $d_1(\text{mod }s)=d_2(\text{mod }s)=0$ and construct

$$\forall i \in [s-1]: \ \mathcal{G}_i := \left\{ u_j v_m^T \ \middle| \ j \in \left[\frac{id_1}{s} + 1: \frac{id_1}{s} + \frac{d_1}{s} \right], m \in \left[\frac{id_2}{s} + 1: \frac{id_2}{s} + \frac{id_2}{s} \right] \right\}$$

We can verify that $\max_{x \in \mathcal{G}_i} \Phi_{\mathcal{G}_i}(x) \leq s^2/(d_1d_2)$ and $\max_{x \in \mathcal{H}} \Phi_{\mathcal{G}_i}(x) \leq \kappa^2 s/d_2$ for each $i \in [s-1]$. Invoking Theorem 3.8 with the constructed \mathcal{H} and $\{\mathcal{G}_i\}_{i=1}^{s-1}$, we can construct an action set \mathcal{A} with $C_{\min}(\mathcal{A}) \geq C_{\min}(\mathcal{H})$ and s-succinct θ that make the lower bound (8) hold. \square

5 Future Work

In this paper we give a first step towards unifying the study of lower bounds for succinct stochastic bandits. Although we provide three applications including two novel lower bounds, we believe our framework will motivate future work for finding lower bounds on other bandit problems. The study of other stochastic bandits over mathematical objects beyond vectors and matrices, such as a multi-linear regimes (e.g., tensors) and kernels of combinatorial objects (e.g., sentences, trees) would be interesting. In addition, the study of nonparametric settings, in which the bases are functions would also be an interesting extension.

References

[1] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvari. Online-to-confidence-set conversions and application to sparse stochastic bandits. In *Artificial Intelligence and Statistics*, pages 1–9. PMLR, 2012.

- [2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem. *SIAM journal on computing*, 32(1):48–77, 2002.
- [3] H. Bastani and M. Bayati. Online decision making with high-dimensional covariates. *Operations Research*, 68(1):276–294, 2020.
- [4] G. Burtini, J. Loeppky, and R. Lawrence. A survey of online experiment design with the stochastic multi-armed bandit. *arXiv preprint arXiv:1510.00757*, 2015.
- [5] A. Carpentier and R. Munos. Bandit theory meets compressed sensing for high dimensional stochastic linear bandit. In *Artificial Intelligence and Statistics*, pages 190–198. PMLR, 2012.
- [6] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff functions. In *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*, pages 208–214. JMLR Workshop and Conference Proceedings, 2011.
- [7] B. Hao, T. Lattimore, and M. Wang. High-dimensional sparse linear bandits. *Advances in Neural Information Processing Systems*, 33:10753–10763, 2020.
- [8] N. Johnson, V. Sivakumar, and A. Banerjee. Structured stochastic linear bandits. *arXiv preprint* arXiv:1606.05693, 2016.
- [9] K.-S. Jun, R. Willett, S. Wright, and R. Nowak. Bilinear bandits with low-rank structure. In *International Conference on Machine Learning*, pages 3163–3172. PMLR, 2019.
- [10] G.-S. Kim and M. C. Paik. Doubly-robust lasso bandit. Advances in Neural Information Processing Systems, 32, 2019.
- [11] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
- [12] W. Li, A. Barik, and J. Honorio. A simple unified framework for high dimensional bandit problems. In *International Conference on Machine Learning*, pages 12619–12655. PMLR, 2022.
- [13] M.-h. Oh, G. Iyengar, and A. Zeevi. Sparsity-agnostic lasso bandit. In *International Conference on Machine Learning*, pages 8271–8280. PMLR, 2021.
- [14] X. Wang, M. Wei, and T. Yao. Minimax concave penalized multi-armed bandit model with high-dimensional covariates. In J. Dy and A. Krause, editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 5200–5208. PMLR, 10–15 Jul 2018.

Supplementary Material: A Novel General Framework for Sharp Lower Bounds in Succinct Stochastic Bandits

A Proofs of succinctness-related lemmas

Here, we provide detailed proofs for the succinctness-related lemmas in the main text.

A.1 Proof of Lemma 3.1

We rewrite $X = \sum_{i=1}^{s} a_i E_i$ as $X = \sum_{i=1}^{s} |a_i| \cdot \operatorname{sign}(a_i) E_i^{-1}$. Then,

$$\sup_{E \in \mathcal{U}} \langle X, E \rangle = \sup_{E \in \mathcal{U}} \sum_{i=1}^{s} |a_{i}| \cdot \langle \operatorname{sign}(a_{i}) E_{i}, E \rangle$$

$$\leq \sup_{E \in \mathcal{U}} \max_{i \in [s]} |a_{i}| \cdot \sum_{i=1}^{s} |\langle \operatorname{sign}(a_{i}) E_{i}, E \rangle|$$

$$= \max_{i \in [s]} |a_{i}| \cdot \sup_{E \in \mathcal{U}} \sum_{i=1}^{s} |\langle E_{i}, E \rangle|$$

$$= \max_{i \in [s]} |a_{i}|$$

$$(9)$$

Notably, step (9) applies the succinct support requirement (2) on $\{E_i\}_{i=1}^s$. This upper bound is reachable by letting $E = \operatorname{sign}(a_m)E_m$ where $m \in \operatorname{arg}\max_{i \in [s]}|a_i|$. Since $\operatorname{sign}(a_m)E_m \in \mathcal{U}$, we have $Q(X) := \sup_{E \in \mathcal{U}} \langle X, E \rangle = \max_{i \in [s]} |a_i|$.

A.2 Proof of Lemma 3.2

We rewrite $X = \sum_{i=1}^{s} a_i E_i$ as $X = \sum_{i=1}^{s} |a_i| \cdot \operatorname{sign}(a_i) E_i$. Then,

$$\sup_{Q(Y) \le 1} \langle X, Y \rangle = \sup_{Q(Y) \le 1} \sum_{i=1}^{s} |a_{i}| \cdot \langle \operatorname{sign}(a_{i}) E_{i}, Y \rangle$$

$$\le \sup_{Q(Y) \le 1} \sum_{i=1}^{s} |a_{i}| \cdot |\langle E_{i}, Y \rangle|$$

$$\le \sup_{Q(Y) \le 1} \sum_{i=1}^{s} |a_{i}| \cdot \sup_{E \in \mathcal{U}} |\langle E, Y \rangle|$$

$$= \sup_{Q(Y) \le 1} \sum_{i=1}^{s} |a_{i}| \cdot Q(Y)$$

$$\le \sum_{i=1}^{s} |a_{i}|$$

$$(11)$$

Equality (10) requires the fact that $\mathcal U$ is closed under flipping the sign of any $E \in \mathcal U$. The upper bound in (11) is reachable by letting $Y = \sum_{i=1}^s \operatorname{sign}(a_i) E_i$, in which case Q(Y) = 1 due to Lemma 3.1. Therefore, we have $R(X) := \sup_{Q(Y) \le 1} \langle X, Y \rangle = \sum_{i=1}^s |a_i|$.

 $^{^{1}}$ sign $(x) = \mathbf{1}\{x \ge 0\} - \mathbf{1}\{x < 0\}$

A.3 Proof of Lemma 3.3

From the definition of s-succinct and z-succinct, we know that $X = \sum_{i=1}^{s} a_i E_i = \sum_{i=1}^{z} b_i E_i'$ for some $\{E_i\}_{i=1}^{s}$ and some $\{E_i'\}_{i=1}^{z}$ that constitute a succinct support respectively, and where the coefficients can fulfill $b_i \neq 0$ for all $i \in [z]$.

Let $Y = \sum_{i=1}^s \operatorname{sign}(a_i) E_i$. Due to the mutual orthogonality of support members, we have $\langle X, Y \rangle = \langle \sum_{i=1}^s a_i E_i, Y \rangle = \sum_{i=1}^s |a_i|$ and $\langle Y, Y \rangle = s$. Importantly, Q(Y) = 1 according to Lemma 3.1.

Meanwhile, Lemma 3.2 suggests $R(X) = \sum_{i=1}^{s} |a_i| = \sum_{i=1}^{z} |b_i|$. Once again, from X's decomposition as $\sum_{i=1}^{z} |b_i| \cdot \text{sign}(b_i) E_i'$, we calculate

$$\langle X, Y \rangle = \sum_{i=1}^{z} |b_i| \cdot \langle \operatorname{sign}(b_i) E_i', Y \rangle = \sum_{i=1}^{z} |b_i|$$
(12)

For each $i \in [z]$, we have an upper bound

$$\langle \operatorname{sign}(b_i)E_i', Y \rangle \le |\langle E_i', Y \rangle| \le \sup_{E \in \mathcal{U}} |\langle E, Y \rangle| = \sup_{E \in \mathcal{U}} \langle E, Y \rangle = Q(Y) = 1$$
 (13)

Since $|b_i| > 0$ for all $i \in [z]$, for equality (12) to hold, the inequalities in (13) must hold with equality, meaning $|\langle E_i', Y \rangle| = 1$, for all $i \in [z]$.

Let $P = \sum_{i=1}^z \langle E_i', Y \rangle \cdot E_i'$ be the projection of Y onto the set of bases $\{E_i'\}_{i=1}^z$. Then, by construction, $\langle P, Y \rangle = \langle P, P \rangle = \sum_{i=1}^z \langle E_i', Y \rangle^2 = z$. Combining them with the Cauchy-Schwarz inequality $\|P\| \cdot \|Y\| \ge \langle P, Y \rangle$, we can conclude $\|Y\| = \sqrt{\langle Y, Y \rangle} = \sqrt{s} \ge z/\sqrt{z} = \sqrt{z}$, and thus $s \ge z$.

A.4 Proof of Lemma 3.4

By definition, X is also s-succinct and z-succinct at the same time. From Lemma 3.3, we have $s \ge z$ and $z \ge s$ at the same time. Naturally, s = z.

A.5 Proof of Lemma 3.5

Recall that $Q(\cdot)$ is a semi-norm, meaning Q(kA)=|k|Q(A) and $Q(A)\geq 0$ for all $k\in\mathbb{R}$ and $A\in\mathbb{V}$. Therefore, for any $A,B\in\mathbb{V}$ with $Q(A)\neq 0$

$$\frac{|\langle A,B\rangle|}{Q(A)} \le \sup_{Q(A')\ne 0} \frac{|\langle A',B\rangle|}{Q(A')} \le \sup_{Q(A')\le 1} |\langle A',B\rangle| = \sup_{Q(A')\le 1} \langle A',B\rangle = R(B)$$

By substituting A,B with X,Y, we have $|\langle X,Y\rangle| \leq Q(X)R(Y)$ as long as $Q(X) \neq 0$. In the case of Q(X)=0, given that $X=\sum_{i=1}^s a_iE_i$ for some support $\{E_i\}_{i=1}^s$ and some coefficients $\{a_i\}_{i=1}^s$, we have $Q(X)=\max_{i\in[s]}|a_i|=0$ from Lemma 3.1, which leads to $X=\vec{0}$ and thus $\langle X,Y\rangle=0=Q(X)R(Y)$. Together, $|\langle X,Y\rangle|\leq Q(X)R(Y)$.

By substituting A,B with Y,X, we have $|\langle X,Y\rangle| \leq Q(Y)R(X)$ as long as $Q(Y) \neq 0$. In the case of $Q(Y) := \sup_{E \in \mathcal{U}} \langle Y,E\rangle = 0$, it is easy to see that $\langle E_i,Y\rangle = 0$ for all the members in the support $\{E_i\}_{i=1}^s$ and thus $\langle X,Y\rangle = 0$. Together, $|\langle X,Y\rangle| \leq Q(Y)R(X)$.

A.6 Proof of Lemma 3.6

Applying Lemma 3.5 within the maximization, we obtain the upper bound

$$\sup_{R(Y) \le 1} \langle X, Y \rangle \le \sup_{R(Y) \le 1} R(Y) Q(X) \le Q(X)$$

Given that $X=\sum_{i=1}^s a_i E_i$ for some support $\{E_i\}_{i=1}^s$ and some coefficients $\{a_i\}_{i=1}^s$, let $Y=\operatorname{sign}(a_m)E_m$ where $m\in \arg\max_{i\in[s]}|a_i|$. We can verify that $\langle X,Y\rangle=\max_{i\in[s]}|a_i|=Q(X)$ due to Lemma 3.1, and that R(Y)=1 due to Lemma 3.2. Therefore, $\sup_{R(Y)<1}\langle X,Y\rangle=Q(X)$.

B Proof details for Theorem 3.8

Here, we provide detailed proofs for the claims inside the proof of Theorem 3.8 in the main text.

B.1 Proof of Claim 3.9

With $b\varepsilon \leq \frac{s\varepsilon}{2} \leq \frac{C_0}{6}$, we can prove that $\forall \theta \in \Theta, \forall X \in \mathcal{H}$:

$$\Delta_{\theta}(X) \geq \max_{X \in \mathcal{A}} \langle X, \theta \rangle - \max_{X \in \mathcal{H}} \langle X, \frac{1}{2} \theta_{0} \rangle + \max_{Q(X) \leq 1} \langle X, \theta - \frac{1}{2} \theta_{0} \rangle \Big]$$

$$\geq \max_{X \in \mathcal{S}} \langle X, \theta \rangle - \left[\max_{X \in \mathcal{H}} \langle X, \frac{1}{2} \theta_{0} \rangle + \max_{Q(X) \leq 1} \langle X, \theta - \frac{1}{2} \theta_{0} \rangle \right]$$

$$\geq \varepsilon \sum_{i=1}^{b} (1 + \mathbf{1} \{ \tilde{E}_{i}(\theta) \neq E_{i}^{*} \}) - \left[-\frac{C_{0}}{2} + \varepsilon \sum_{i=1}^{b} (1 + 2 \cdot \mathbf{1} \{ \tilde{E}_{i}(\theta) \neq E_{i}^{*} \}) \right]$$

$$= \frac{C_{0}}{2} - \varepsilon \sum_{i=1}^{b} \mathbf{1} \{ \tilde{E}_{i}(\theta) \neq E_{i}^{*} \}$$

$$\geq \frac{C_{0}}{3}$$

$$\geq \varepsilon \sum_{i=1}^{b} \mathbf{1} \{ \tilde{E}_{i}(\theta) = E_{i}^{*} \}$$
(15)

Recall that by construction, $\theta - \frac{1}{2}\theta_0 = \varepsilon \sum_{i=1}^b E_i^* + 2\tilde{E}_i(\theta) \cdot \mathbf{1}\{\tilde{E}_i(\theta) \neq E_i^*\}$. In step (14), $\max_{X \in \mathcal{S}} \langle X, \theta \rangle$ is obtained by the action $X = \sum_{i=1}^b \tilde{E}_i(\theta)$, while $\max_{Q(X) \leq 1} \langle X, \theta - \frac{1}{2}\theta_0 \rangle$ can be achieved by an action $X = \sum_{i=1}^b E_i^* + \tilde{E}_i(\theta) \cdot \mathbf{1}\{\tilde{E}_i(\theta) \neq E_i^*\}$. Further, we have that $\forall \theta \in \Theta$:

$$\begin{split} R_{n}^{\pi}(\theta) &:= \mathbb{E}_{\theta} \left[\sum_{t=1}^{n} \max_{X \in \mathcal{X}} \langle X, \theta \rangle - \langle A_{t}, \theta \rangle \right] \\ &\geq \mathbb{E}_{\theta} \left[\sum_{t=1}^{n} \left\{ \sum_{X \in \mathcal{S}}^{\max} \langle X, \theta \rangle - \langle A_{t}, \theta \rangle \right. & \text{if } A_{t} \in \mathcal{S} \right] \\ &= \sum_{t=1}^{n} \mathbb{E}_{\theta} \left[\sum_{\varepsilon}^{b} \sum_{i=1}^{1} \left\{ \tilde{E}_{i}(\theta) = E_{i}^{*} \right\} \right. & \text{if } A_{t} \in \mathcal{S}, \tilde{E}_{i}(\theta) = E_{i}^{*} \\ 2 - 1 \left\{ \tilde{A}_{t,i} = E_{i}^{*} \right\} - 2 \cdot 1 \left\{ \tilde{A}_{t,i} = \tilde{E}_{i}(\theta) \right\} \right\} & \text{if } A_{t} \in \mathcal{S}, \tilde{E}_{i}(\theta) \neq E_{i}^{*} \\ 1 \left\{ \tilde{E}_{i}(\theta) = E_{i}^{*} \right\} & \text{if } A_{t} \in \mathcal{S}, \tilde{E}_{i}(\theta) = E_{i}^{*} \\ 1 \left\{ \tilde{A}_{t,i} = E_{i}^{*} \right\} & \text{if } A_{t} \in \mathcal{S}, \tilde{E}_{i}(\theta) \neq E_{i}^{*} \\ 1 & \text{if } A_{t} \in \mathcal{H}, \tilde{E}_{i}(\theta) \neq E_{i}^{*} \\ 1 & \text{if } A_{t} \in \mathcal{H}, \tilde{E}_{i}(\theta) \neq E_{i}^{*} \\ 1 & \text{if } A_{t} \in \mathcal{H}, \tilde{E}_{i}(\theta) \neq E_{i}^{*} \\ 1 & \text{if } \tilde{E}_{i}(\theta) \neq E_{i$$

$$= \sum_{i=1}^{b} \frac{n\varepsilon}{2} \cdot \begin{cases} \mathbb{P}_{\theta}(D_{i}^{c}) & \text{if } \tilde{E}_{i}(\theta) = E_{i}^{*} \\ \mathbb{P}_{\theta}(D_{i}) & \text{if } \tilde{E}_{i}(\theta) \neq E_{i}^{*} \end{cases}$$

Recall that $T_{\mathcal{S}}:=\{t\in[n]\,|\,A_t\in\mathcal{S}\}$ and $T_{\mathcal{H}}:=\{t\in[n]\,|\,A_t\in\mathcal{H}\}$. In step (16), for the case $A_t\in\mathcal{H}$, we invoke the inequality in (15). Meanwhile, the case $A_t\in\mathcal{S}$ can be further analysised per extended-group as shown in step (17): when $A_t\in\mathcal{S}$, the optimal move for A_t in each extended-group i is to select the unit that θ selects, i.e. $\tilde{A}_{t,i}=\tilde{E}_i(\theta)$; doing so yields an optimal gain of ε if $\tilde{E}_i(\theta)=E_i^*$ or an optimal gain of 2ε if $\tilde{E}_i(\theta)\neq E_i^*$.

B.2 Proof of Claim 3.10

Given i and $\tilde{\mathbf{E}}_{-i}$, we have

$$\begin{split} \sum_{E \in \mathcal{G}_{i}} \frac{n\varepsilon}{2} \cdot \left[\mathbb{P}_{\theta(E_{i}^{*}, \tilde{\mathbf{E}}_{-i})}(\overline{D}_{i}) + \mathbb{P}_{\theta(E, \tilde{\mathbf{E}}_{-i})}(D_{i}) \right] \\ &\geq \frac{n\varepsilon}{4} \sum_{E \in \mathcal{G}_{i}} \exp\left(- \mathrm{KL}(\mathbb{P}_{\theta(E_{i}^{*}, \tilde{\mathbf{E}}_{-i})}; \mathbb{P}_{\theta(E, \tilde{\mathbf{E}}_{-i})})) \\ &= \frac{n\varepsilon}{4} \sum_{E \in \mathcal{G}_{i}} \exp\left(- 2\varepsilon^{2} \mathbb{E}_{\theta(E_{i}^{*}, \tilde{\mathbf{E}}_{-i})} \left[\sum_{t=1}^{n} \langle A_{t}, E \rangle^{2} \right] \right) \\ &\geq \frac{n\varepsilon |\mathcal{G}_{i}|}{4} \exp\left(- 2\varepsilon^{2} \mathbb{E}_{\theta(E_{i}^{*}, \tilde{\mathbf{E}}_{-i})} \left[\sum_{t=1}^{n} \sum_{E \in \mathcal{G}_{i}} \frac{\langle A_{t}, E \rangle^{2}}{|\mathcal{G}_{i}|} \right] \right) \\ &\geq \frac{n\varepsilon |\mathcal{G}_{i}|}{4} \exp\left(- 2\varepsilon^{2} \mathbb{E}_{\theta(E_{i}^{*}, \tilde{\mathbf{E}}_{-i})} \left[\sum_{t \in T_{S}} \max_{X \in S} \Phi_{\mathcal{G}_{i}}(X) + \sum_{t \in T_{\mathcal{H}}} \max_{X \in \mathcal{H}} \Phi_{\mathcal{G}_{i}}(X) \right] \right) \\ &\geq \frac{n\varepsilon |\mathcal{G}_{i}|}{4} \exp\left(- 2\varepsilon^{2} \mathbb{E}_{\theta(E_{i}^{*}, \tilde{\mathbf{E}}_{-i})} \left[n \cdot \max_{X \in \mathcal{G}_{i}} \Phi_{\mathcal{G}_{i}}(X) + |T_{\mathcal{H}}| \cdot \max_{X \in \mathcal{H}} \Phi_{\mathcal{G}_{i}}(X) \right] \right) \\ &\geq \frac{n\varepsilon |\mathcal{G}_{i}|}{4} \exp\left(- 2\varepsilon^{2} \mathbb{E}_{\theta(E_{i}^{*}, \tilde{\mathbf{E}}_{-i})} \left[\frac{n}{p} + \frac{|T_{\mathcal{H}}|}{q} \right] \right) \\ &\geq \frac{n\varepsilon |\mathcal{G}_{i}|}{4} \exp\left(- 2\varepsilon^{2} \left[\frac{n}{p} + \frac{1}{a} \max_{\theta \in \Theta} \mathbb{E}_{\theta}[|T_{\mathcal{H}}|] \right] \right) \end{split}$$

We consider

$$\mathbf{T} := ((E_1, E_1^*), (E_2, E_2^*), \dots, (E_b, E_b^*)) \in \sum_{i=1}^b (\mathcal{G}_i \times \{E_i^*\})$$

Given T, we denote

$$\tilde{\mathbf{E}} := (\tilde{E}_1, \tilde{E}_2, \dots, \tilde{E}_b) \in \underset{i=1}{\overset{b}{\times}} \{E_i, E_i^*\}$$

Thus, we have

$$\begin{split} \max_{\theta \in \Theta} R_n^{\pi}(\theta) &\geq \frac{1}{\left| \mathbf{x}_{i=1}^b \left(\mathcal{G}_i \times \left\{ E_i^* \right\} \right) \right|} \sum_{\mathbf{T}} \frac{1}{\left| \mathbf{x}_{i=1}^b \left\{ E_i, E_i^* \right\} \right|} \sum_{\tilde{\mathbf{E}}} R_n^{\pi}(\theta(\tilde{\mathbf{E}})) \\ &\geq \frac{1}{\prod_{i=1}^b \left| \mathcal{G}_i \right|} \cdot \frac{1}{2^b} \sum_{\mathbf{T}} \sum_{\tilde{\mathbf{E}}} \sum_{i=1}^b \frac{n\varepsilon}{2} \cdot \begin{cases} \mathbb{P}_{\theta(\tilde{\mathbf{E}})}(\overline{D}_i) & \text{if } \tilde{E}_i = E_i^* \\ \mathbb{P}_{\theta(\tilde{\mathbf{E}})}(D_i) & \text{if } \tilde{E}_i \neq E_i^* \end{cases} \\ &= \frac{1}{\prod_{i=1}^b \left| \mathcal{G}_i \right|} \cdot \frac{1}{2^b} \sum_{i=1}^b \sum_{\mathbf{T}_{-i}} \sum_{\tilde{\mathbf{E}}_{-i}} \sum_{E \in \mathcal{G}_i} \frac{n\varepsilon}{2} \cdot \left[\mathbb{P}_{\theta(E_i^*, \tilde{\mathbf{E}}_{-i})}(\overline{D}_i) + \mathbb{P}_{\theta(E, \tilde{\mathbf{E}}_{-i})}(D_i) \right] \\ &\geq \frac{1}{\prod_{i=1}^b \left| \mathcal{G}_i \right|} \cdot \frac{1}{2^b} \sum_{i=1}^b \sum_{\mathbf{T}_{-i}} \sum_{\tilde{\mathbf{E}}_{-i}} 2|\mathcal{G}_i| \cdot \frac{n\varepsilon}{8} \exp\left(-2\varepsilon^2 \left[\frac{n}{p} + \frac{1}{q} \max_{\theta \in \Theta} \mathbb{E}_{\theta}[|T_{\mathcal{H}}|] \right] \right) \\ &= \frac{nb\varepsilon}{8} \exp\left(-2\varepsilon^2 \left[\frac{n}{p} + \frac{1}{q} \max_{\theta \in \Theta} \mathbb{E}_{\theta}[|T_{\mathcal{H}}|] \right] \right) \end{split}$$

Then apply $3b \ge s$ to get the claimed lower bound (4).

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract is a short version of the introduction, and the introduction accurately reflects the paper's contribution and scope.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clearly describe the different assumptions and models being used. We also describe the limitations of our results as ideas for future work.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We provide several theorems and lemmas, together with their proofs, as well as assumptions for our theoretical result.

Guidelines

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and proof-based. No experiments were performed.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and proof-based. No experiments were performed.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and proof-based. No experiments were performed.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and proof-based. No experiments were performed.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and proof-based. No experiments were performed.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethics, and our papers conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proofbased. There is no societal impact of the work performed.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proofbased.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proofbased.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proofbased.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proofbased.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The contribution of this paper is entirely theoretical and mathematical proofbased.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.