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Abstract

This paper presents a comprehensive survey of
work on sociodemographic bias in language
models (LMs). Sociodemographic biases em-
bedded within language models can have harm-
ful effects when deployed in real-world set-
tings. We systematically organize the existing
literature into three main areas: types of bias,
quantifying bias, and debiasing techniques. We
also track the evolution of investigations of
LM bias over the past decade. We identify cur-
rent trends, limitations, and potential future di-
rections in bias research. To guide future re-
search towards more effective and reliable solu-
tions, we present a checklist of open questions.
We also recommend using interdisciplinary ap-
proaches to combine works on LM bias with
an understanding of the potential harms.

1 Introduction

LMs have demonstrated impressive performance
in many tasks (Raffel et al., 2020; Zhong et al.,
2020; Yang et al., 2019). However, much work re-
veals that LMs can adopt biases present in training
data (Wen et al., 2022; España-Bonet and Barrón-
Cedeño, 2022; Gupta et al., 2022b; Hutchinson and
Mitchell, 2019). Sociodemographic bias has been
defined to occur when a model performs differ-
ently across social groups (Czarnowska et al., 2021;
Chouldechova and Roth, 2020). This is concerning
because when LMs are used in real-world applica-
tions, this can potentially lead to negative societal
impacts (Field et al., 2023; Rudin, 2019; Blodgett
et al., 2020). The urgency to understand and mit-
igate bias in LMs is growing. Figure 1 illustrates
this trend, showing a rise in publications related to
bias in natural language processing (NLP) over the
past decade, sourced from SCOPUS. Our survey
synthesizes results from this rapidly growing area
into a roadmap for future investigations.

Other surveys on bias in NLP have thoroughly
examined various aspects of bias, including bias

Figure 1: This graph shows number of papers/articles
published each year (from 2013 to 2023) in SCOPUS
that contain the term ‘bias’ and (’nlp’ or ’language mod-
els’) in the title, abstract, or keywords.

in large language models (Zhao et al., 2023) and
methods for measuring bias (Czarnowska et al.,
2021; Bansal, 2022), with much work on gender
bias (Stanczak and Augenstein, 2021; Devinney
et al., 2022). To provide a clearer picture of the
diverse motivations in studies of LM bias (Blodgett
et al., 2020), we present a detailed taxonomy and
a timeline of bias research. Then we synthesize
this work to pinpoint shortcomings and develop
a checklist of open questions, to help steer future
studies toward more effective and reliable methods.

In this work, we surveyed 273 papers on bias in
LMs to identify current trends and limitations. We
structured our survey using three perspectives: 1)
a taxonomic categorization, 2) an evolutionary
timeline, and 3) a roadmap for future work. We
categorized bias literature into three major strands
of investigation, as shown in Fig. 2: types of bias,
quantifying bias, and debiasing techniques. Then
we organized our review by summarizing the find-
ings within each category and subcategory of our
taxonomy. We also identified the evolution of re-
search into measurement and mitigation of LM
bias over the past decade, as shown in Fig. 3. This
perspective separates trends that had a brief life
from those that continue to have promise. Finally,
we offer a checklist of open questions that have
continued to be challenging, or that have emerged
recently, to serve as a roadmap for the future.



As a final consideration, we note there has been
relatively limited exploration of interdisciplinary
approaches to investigate LM bias. While LM bias
measurement and mitigation is an important tech-
nical issue, we believe it is also deeply intertwined
with social factors. We recommend using perspec-
tives and methodologies from disciplines such as
psychology and behavioral economics to deepen
our understanding of bias. Similar to other works
(Omrani et al., 2023; Mei et al., 2023), we believe
that by leveraging insights across disciplines, we
can develop more effective strategies for measuring
and mitigating LM bias, combined with assessment
of and ways to avoid social harms.

2 Understanding Bias

In this section, we highlight the critical role of in-
terdisciplinary approaches to understand bias as a
psychosocial phenomenon. These disciplines of-
fer decades of research into human cognition and
social behavior, providing valuable insights that
could inform definitions of sociodemographic bias
in LMs, and assessments of their potential for harm.

Recent studies have begun to integrate ideas
from psychology with NLP to better understand
bias (Spliethöver et al., 2022; Omrani et al., 2023;
Mei et al., 2023; Omrani Sabbaghi et al., 2023),
showcasing the usefulness of interdisciplinary ap-
proaches. For instance, research in psychology has
long addressed the origins and expressions of social
bias (Osborne et al., 2023), also proposing strate-
gies for alleviation of bias. For example, one way
to reduce bias, as found in psychology, is by engag-
ing with individuals from diverse groups (Pettigrew
and Tropp, 2006; Reimer and Sengupta, 2023). A
similar idea is reflected in (Blodgett et al., 2020),
which advocates for LM engineers to reduce bias
through engagement with people who might be
affected by applications that use LMs.

The Stereotype Content Model (SCM), a frame-
work from social psychology, categorizes stereo-
types into interpersonal and intergroup interac-
tions, providing insights into bias dynamics (Cuddy
et al., 2008). It proposes that human stereotypes
are captured by two dimensions of social percep-
tion: warmth (e.g., trustworthiness, friendliness)
and competence (e.g., capability, assertiveness). A
recent work by (Omrani et al., 2023), for example,
used the SCM framework to develop a bias mitiga-
tion method that generalize across multiple social
attributes, rather than one at a time.

The Nobel Prize-winning psychologist and be-
havioral economist, Daniel Kahneman, discusses
how mental shortcuts (biases) can be advantageous
in situations requiring quick judgments (Kahne-
man, 2011). For example, the sentence “a large
mouse climbed over a small elephant” immediately
calls to mind a mouse, that while large relative to
other mice, is tiny relative to the elephant, one of
the largest mammals on earth. Extrapolating Kah-
neman’s argument to NLP, bias based on common-
sense knowledge could be advantageous in enhanc-
ing an LM’s understanding of relations among real-
world entities. This argue for a potential benefit of
certain kinds of bias.

Kahneman (2011) defines bias as “the tendency
to make systematic errors in judgment or decisions
based on factors that are irrelevant or immaterial to
the task at hand” and cautions that human judgment
is susceptible to bias from irrelevant factors. Ap-
plying this insight to NLP, we need to understand
the potential negative impact LM bias might have
in real-world settings. Crawford (2017) and Baro-
cas et al. (2017) examine representational harm
and alloted harm in NLP. Representational harm
arises when an NLP system represents some social
groups in a less favorable light than others. Allotted
harm arises when a system allocates resources or
opportunities unfairly to a social group (Shahbazi
et al., 2023).

In conclusion, ideas from psychology and behav-
ioral economics provide a more informed under-
standing of bias. While some biases may contribute
positively to model performance, others can have
detrimental societal effects. An interdisciplinary
approach would not only enrich our theoretical
understanding of bias but could also guide the de-
velopment of more effective methods to identify
bias inherent in LMs, and lessen social harm.

3 Categories of Work on Bias in LMs

We used two strategies to identify candidate papers
for our survey: 1) using the keywords "bias" and
"fairness," we searched for papers in the ACL An-
thology, NeurIPS proceedings, FAccT, and AIES
conferences; 2) we included papers from citation
graphs for retrieved papers. We surveyed papers
released before January 1, 2024 and included them
only if they addressed language modeling, thus
omitting papers on speech, where different issues
arise. These criteria narrowed down an initial large
set of 308 papers to 273.



Figure 2: Three broad categories of bias research, and the upper hierarchy of each category (T, Q, D).

We categorized the literature into three key areas:
(1) types of bias, (2) quantifying bias, and (3) debi-
asing techniques. Figure 2 illustrates our taxonomy.
Subsequent sections will delve into this taxonomy
in detail, with a full compilation of papers available
in Appendix.

3.1 Types of Bias - T1

In the realm of NLP, sociodemographic bias is par-
ticularly concerning as it can lead to differential
model performance across various social groups
(Smith et al., 2022). Sociodemographic bias in-
cludes gender bias, when models are biased against
a particular gender (De-Arteaga et al., 2019; Park
et al., 2018; Du et al., 2021; Bartl et al., 2020;
Webster et al., 2021; Tan and Celis, 2019); racial
bias, when models are biased against certain races
(Nadeem et al., 2021; Garimella et al., 2021; Nan-
gia et al., 2020; Tan and Celis, 2019); ethnic bias,
when models are partial towards certain ethnicity
(Ahn and Oh, 2021; Garg et al., 2018; Li et al.,
2020; Abid et al., 2021; Manzini et al., 2019;
Narayanan Venkit et al., 2023); age bias (Nangia
et al., 2020; Diaz et al., 2018), sexual-orientation
bias (Nangia et al., 2020; Cao and Daumé III, 2020)
and many others as outlined in Table 1

Sociodemographic bias can emerge from lan-

Types of Bias No. of papers Percentage
Gender 114 48%
Race 36 15%
Ethnicity 24 10%
Nationality 18 7%
Sexual Orientation 12 5%
Ableism 11 5%
Age 9 4%
Political 6 2%
Physical Appearance 5 2%
Socioeconomic status 4 2%

Table 1: Distribution of papers on bias shows a predom-
inant focus on gender bias.

guage patterns that imply assumptions about demo-
graphic differences (Lauscher et al., 2020). These
biases are often ingrained in the cultural or soci-
etal nuances of training data. For example, LMs
can perpetuate biases by associating certain lexical
items more strongly with particular social groups.
Beyond the influence of training data, (Zhou et al.,
2023b) found that the size of the model, its training
objectives, and tokenization strategies are impor-
tant factors that affect the social bias in LMs.

Our review indicates a disproportionate concen-
tration on gender bias: it is the subject of nearly
half of the surveyed papers, as Table 1 illustrates.
Moreover, we observed that bias evaluation and
mitigation efforts are often specific to certain bi-
ases and may not generalize well.

3.2 Quantifying Bias

Measurement of bias is challenging because it is
often hidden within complex LMs. However, quan-
tifying bias is a precondition to addressing or miti-
gating bias that might be harmful. Here we review
different methods of measuring bias in LMs and
how they differ from each other. We present an
overview of evaluation datasets in the appendix.

3.2.1 Distance-based metrics - Q1
Distance in vector space. Early efforts to quan-
tify bias in NLP (from 2013-2019, as seen in Figure
3) primarily utilized distance metrics within embed-
ding spaces. These approaches define certain words
as ’target words’ (like professions ’engineer’ and
’nurse’), along with certain words as ’attributes’
(often related to social categories like ’male’ and
’female’). The aim was to measure the conceptual
distance between these targets and attributes. The
pioneering work is the Word Embedding Associ-
ation Test (WEAT) score (Caliskan et al., 2017).



Figure 3: Evolution of changes in methods to quantify LM bias and debias LMs over the past decade.

They calculate bias as the differential association
of target words with attribute sets based on cosine
similarity. Subsequent to WEAT, (Dev and Phillips,
2019) proposed the Embedding Coherence Test
(ECT), which simplifies an attribute category, like
‘female’, into a single vector by averaging the em-
beddings of related attribute words such as ‘she’,
‘women’, and ‘girl’. Ethayarajh et al. (2019) intro-
duced RIPA, they used the inner product instead of
cosine similarity to account for vector magnitude
and directionality in measuring bias.

Some works expanded WEAT to contextual em-
beddings (Guo and Caliskan, 2021; Tan and Celis,
2019) and sentence level embeddings (May et al.,
2019). Other metrics use clustering of word em-
beddings (Chaloner and Maldonado, 2019). Bordia
and Bowman (2019) quantified bias based on co-
occurrence of words. They hypothesized that words
occurring in close proximity to a particular gender
in the training data are prone to be more biased
towards that gender during testing.

In recent years, there are fewer approaches in
Q1, as they require accessing a model’s internal
layers to quantify bias. The growing trend of larger
model sizes complicates identifying the right layer
for bias assessment, and the limited open-source
availability of LMs raises further obstacles.

3.2.2 Performance-based metrics - Q2
These approaches examine how well models per-
form across different sociodemographic groups.
They typically divides the test dataset into differ-
ent groups to assess performance disparities. De-
Arteaga et al. (2019) measured gender bias by com-
paring the true positive rates for classification in-
volving male versus female names and pronouns.
Dixon et al. (2018) and Zhao et al. (2018a) took
similar approaches, using area under the curve and
false positive rate (Dixon et al., 2018), and rel-
ative accuracy (Zhao et al., 2018a). Zhang et al.
(2022) and Huang et al. (2020) generated aug-
mented datasets to measure bias as the difference
in accuracy between the original and augmented
datasets. Stanovsky et al. (2019) proposed a metric

based on differences in accuracy across genders for
machine translation. Approaches in Q2 evaluate
the model’s final decisions and are applicable to
any model, whether open-source or not, unlike Q1.

3.2.3 Prompt-based metrics - Q3
Here we review methods that prompt models using
a range of prompt-generation methods.

Template-based methods. In these approaches,
models are prompted through a set of pre-defined
templates, or patterns, that capture specific types
of bias or stereotypes. The templates contain slots
that are filled through selection from a set of pre-
defined demographic target terms during evaluation.
For instance, a template could be "A <PERSON>
is walking" where <PERSON> is systematically
substituted with names associated with different
demographic groups. By analyzing the differences
in the model’s responses to these substitutions, the
presence and degree of bias can be measured.

Prabhakaran et al. (2019) generated templates
for toxicity detection, and proposed metrics based
on average difference, standard deviation and range
of model performance for different target groups.
Smith et al. (2022) proposed a metric based on
450,000 unique sentence prompts. Webster et al.
(2021) defined fourteen templates to determine
gender identity bias. Felkner et al. (2023) created
a dataset of 45,540 sentences using 11 templates
for measuring anti-LGBTQ+ bias in LMs. Gupta
et al. (2023) focused on creating 224 diverse set
of templates across three NLP tasks. Parrish et al.
(2022a) measured nine types of demographic bias
on question answering datasets. They generated
more than 25 different templates for each bias cat-
egory. In contrast to performance-based metrics
which divide the dataset into two parts as discussed
in Q2, these approaches increase the size of the
bias-testing dataset significantly and therefore per-
form a more exhaustive examination of bias.

Counterfactual-based methods. Several works
aim to make template-based approaches more rig-
orous by examining how changing irrelevant at-



tributes, known as protected attributes, affects
model predictions. Specifically, “a decision is fair
towards an individual if it is the same in (a) the
actual world and (b) a counterfactual world where
the individual belongs to a different social group.”

Counterfactual methods alter these protected at-
tributes in test examples to identify attributes that
significantly affect model decisions (Garg et al.,
2019; Kusner et al., 2017). Huang et al. (2020) cre-
ated counterfactuals for a testing dataset and found
that that generative LLMs like GPT-2 (Radford
et al., 2019) tend to generate continuations with
more positive sentiment for “baker”, and more neg-
ative sentiment for“accountant” as the occupation.
Gardner et al. (2020) created contrast sets by gen-
erating counterfactuals for ten NLP datasets and
showed that model performance drops significantly
on counterfactuals. Liang et al. (2022) substituted
terms linked to specific demographic groups in the
test set, examining the impact on model accuracy.

Masking Sentences. Another approach to bias
measurement is to mask certain words in sentences,
then analyze the model’s predictions for these
blanks to assess bias. Kurita et al. (2019) used this
technique with occupation-related sentences, like
“[MASK] is a programmer,” comparing the proba-
bilities given to male and female pronouns to iden-
tify gender biases in job associations. Similarly,
Ahn and Oh (2021) quantified bias as the variance
of normalized probabilities across various demo-
graphic groups. Bartl et al. (2020) used models’
predictions of masked tokens to measure bias.

In recent years, template-based approaches have
gained traction (Smith et al., 2022; Parrish et al.,
2022b; Li et al., 2020) as seen in Figure 3. The
advantage of Q3 is their ability to reflect potential
real-world impacts of bias by focusing on model
outputs rather than solely analyzing internal param-
eters as in Q1. Like Q2, they apply broadly to both
open-source and proprietary models of any size.

3.2.4 Probing metrics - Q4
This category evaluates bias by examining how
LMs process information, often by adding a classi-
fication layer or employing probes to test the inner
workings of LMs. Mendelson and Belinkov (2021)
used a classifier trained on LMs latent spaces to de-
tect biases like negative word associations and abil-
ity to detect shared lexical items from sentence rep-
resentations alone. Dev et al. (2020) probed model
bias using natural language inference datasets by

measuring whether swapping lexical items for dif-
ferent sociodemographic groups changes entail-
ment relations between sentence pairs. Li et al.
(2020) examined bias in question-answering mod-
els by altering the subjects of questions and analyz-
ing the variance in response probabilities.

These approaches face limitations like those dis-
cussed in Q1, as they need access to model internal
layers. Moreover, the complexity and size of mod-
ern LMs introduce considerable computational and
practical challenges to implementing these probing
strategies effectively.

3.3 Debiasing
Debiasing methods aim to make models more fair
and accurate in their predictions and recommenda-
tions (Subramanian et al., 2021). Turning to Daniel
Kahneman again, he argues that reducing social
stereotyping and bias has costs, but that the costs
are worthwhile to achieve a better society (Kahne-
man, 2011). Extending the same principle to NLP,
the effort and cost required for reducing biases are
essential for creating fair NLP systems.

3.3.1 Debiasing during Finetuning - D1
These debiasing methods are applied during the
finetuning phase of pre-trained LMs.

Data augmentation. Zmigrod et al. (2019) and
Lu et al. (2020) introduced Counterfactual Data
Augmentation (CDA), to reduce gender bias by gen-
erating counterfactual instances to balance gender
representation. This involves substituting gender-
specific words, such as he and she to construct
novel sentences. Maudslay et al. (2019) enhanced
this approach with Counterfactual Data Substitu-
tion (CDS), which assigns probabilities to these
changes, aiming for more realistic modifications.
Building upon these insights, (Park et al., 2018;
Liang et al., 2020; Lauscher et al., 2021; Panda
et al., 2022) proposed various swapping mecha-
nisms to re-balance data distributions. Some of
these data augmentation approaches are also being
adapted for use during model training.

Modifying vector space. Dev et al. (2020, 2021)
proposed a subspace correction and rectification
method for modifying embedding space to mitigate
bias. They aimed to disentangle associations be-
tween concepts that are bias-prone. Ravfogel et al.
(2020) learned a linear projection over representa-
tions after training, to remove the bias components
in embeddings. Manzini et al. (2019); Yifei et al.



(2023) used principal component analysis to iden-
tify and address the bias in embedding spaces. Gaci
et al. (2022) redistributed attention scores to assign
equal weight for words related to bias.

Fine-tuning with large corpora. Park et al.
(2018) demonstrated that debiasing models benefit
from fine-tuning with extensive datasets, avoiding
the pitfalls of small, biased datasets. Ahn and Oh
(2021) proposed that training BERT (Devlin et al.,
2019) on multiple languages helps to reduce ethnic
biases in each language.

Human-in-the-loop. These methods involve hu-
mans identifying biases in models, which are then
used to finetuned them. Chopra et al. (2020) used
human-in-the-loop methods to find words linking a
sociodemographic group to a positive or negative
trait. Yao et al. (2021) used human-provided ex-
planations to find spurious bias patterns in model
output, and used it to reduce bias in models.

Model Unlearning Recently, there has been
more focus on model unlearning methods (cf. Fig-
ure 3). Here the main idea is to identify and al-
ter specific model weights responsible for bias.
Meissner et al. (2022) identified a subset of model
weights responsible for bias and masked them dur-
ing testing. The advantage of their approach is it
does not require finetuning. Agarwal et al. (2023)
addressed biases by adjusting weights with data
augmentation, then finetuning for specific tasks
with those weights fixed to prevent relearning bi-
ases. Kumar et al. (2023) captured bias mitigation
functionalities using “adapters” attached to trans-
former blocks. Use of adapters offers a unique ad-
vantage in that they can be added to the model for
bias correction in a plug-and-play fashion.

Works in D1 offer greater ease of implementa-
tion, with customizable solutions for each model.
However, as the prevalence of large language mod-
els grows, they are being trained on enormous
amounts of data. In such cases, bias becomes more
difficult to mitigate after models have been trained.

3.3.2 Debiasing during Training - D2
Several works have applied debiasing at training
time or to word embeddings used at initialization.

Debiased word embeddings Bolukbasi et al.
(2016) proposed a hard debiasing technique aimed
at reducing gender bias in embeddings by adjusting
the vector deviations between gendered and gender-
neutral terms, offering these adjusted embeddings

as an alternative to standard Word2Vec embeddings.
Park et al. (2018); Zhao et al. (2018b) further illus-
trate the effectiveness of debiased embeddings in
reducing gender bias in LMs.

Loss function Several methods employ special-
ized loss functions to minimize bias during model
training. Garimella et al. (2021) used declustering
loss to reduce bias. Bordia and Bowman (2019)
proposed a loss regularization method. Huang et al.
(2020) proposed a three-step curriculum training
using distance between the embeddings as a fair-
ness loss to reduce sentiment bias. Liu et al. (2021)
and He et al. (2022a) used adversarial training and
contrastive loss respectively to reduce bias in LMs.
Li et al. (2023) shows that using contrastive learn-
ing during training helps in debiasing.

Expert Models for Bias Reduction Recently
methods using an auxiliary model, or so-called ex-
pert model, to reduce bias have gained prominence
(cf. Figure 3). Orgad and Belinkov (2023) predicted
biased samples using an auxiliary model and per-
formed sample reweighting to downweight these
sample during training. Jeon et al. (2023) used bi-
nary classifiers, referred to as bias experts, to iden-
tify biased examples within a specific class. Zhang
et al. (2023) used gradient-based explanations to
focus on sensitive attributes and downstream tasks,
adjusting the training process to balance fairness
and performance effectively.

3.3.3 Debiasing at Inference Time- D3

These methods apply debiasing methods at test
time. In general, these methods are quite diverse.
Abid et al. (2021) and Venkit et al. (2023b) ap-
plied adversarial machine learning to trigger posi-
tive associations in text generative models to reduce
anti-Muslim bias and nationality bias, respectively,
through prompt modifications. Qian et al. (2021)
performed keyword-based distillation to remove
bias during inference, and to block bias acquired
during training. Zhao et al. (2019) addressed gender
bias through averaging of representations for dif-
ferent gender vocabulary. Majumder et al. (2023)
used humans to provide feedback to balance be-
tween task performance and bias mitigation.

Work on debiasing during inference time faces
the same issues as those in D1. They are easy to
implement but act as a proxy to debias the models
and do not completely remove the model bias.



4 Limitations of current approaches

The works surveyed here offer valuable insights to-
wards understanding bias in LMs, and demonstrate
many innovative approaches and methodologies
that have advanced the field. Alongside the com-
mendable progress, however, a thorough analysis
of the body of work on bias reveals limitations
which we outline in this section.

Reliability issues with bias metrics. The robust-
ness of existing bias metrics is questionable. Met-
rics introduced in Q1 and Q2 change significantly,
given minor changes in datasets or evaluation set-
tings (Antoniak and Mimno, 2021; Spliethöver
et al., 2022; Du et al., 2021; Valentini et al., 2022).
Similarly, template-based methods are highly sensi-
tive to small modifications to words used in the tem-
plates (Selvam et al., 2023; Seshadri et al., 2022;
Alnegheimish et al., 2022).

Use of identical templates across bias categories.
Most of the work using template-based approaches
(An et al., 2023; Smith et al., 2022) use the same
templates to assess diverse social biases, with-
out considering whether certain template features
should be specific to distinct types of bias. This
approach risks conflating bias scores across cate-
gories, suggesting a need for more tailored tem-
plates to measure specific social biases accurately.
Alternatively, investigation of ways to generalize
across templates to a more abstract approach, as in
(Omrani Sabbaghi et al., 2023), holds promise.

Limited Scope of Template-Based Bias Measure-
ment. Template-based methods often use a re-
stricted range of templates and target words, often
focusing only on US-based names. This narrows
their scope. Additionally, these approaches suffer
from author bias, as templates are manually de-
signed by the authors. This author bias makes their
bias scores heavily dependent on template selection
(Seshadri et al., 2022; Pikuliak et al., 2023).

Finetuning approaches for debiasing are not
very effective. The majority of recent works on
debiasing in LM focus on finetuning, valued mainly
for its simplicity and adaptability. However, its ef-
fectiveness is often questionable (DiCiccio et al.,
2023). The complexity and size of modern large
language models, which require extensive data,
time, and resources to train, makes it particularly
challenging to eliminate bias through finetuning-
based approaches.

Debiasing is sometimes superficial. Finetuning-
based debiasing methods treat symptoms rather
than root causes of bias, adjusting model outputs to
appear less biased without actually removing bias
from models (Gonen and Goldberg, 2019; Tokpo
et al., 2023). Remarkably, some debiasing tech-
niques can potentially increase bias (Mendelson
and Belinkov, 2021). The absence of reliable bias
metrics complicates the evaluation of the effective-
ness of debiasing methods. We recommend that
future works utilize a variety of metrics to thor-
oughly assess debiasing results.

Overemphasis on gender bias. As shown in Ta-
ble 1, around half of the works focuses solely on
gender bias. Although gender bias is a significant
concern, other types of sociodemographic bias also
deserve attention. Expanding research to cover a
wider range of bias categories could provide a more
comprehensive understanding of bias.

Lack of Sociotechnical Understanding of Bias.
In the field of NLP, we have seen very little effort
to understand the sociotechnical impacts of bias
(Venkit et al., 2023a). Similarly, there is a lack of
proper understanding of bias (Blodgett et al., 2020).
A deeper exploration of bias through interdisci-
plinary collaborations could offer more nuanced
insights and improved methodologies to measure,
mitigate, prevent and assess harms from bias, as
highlighted in Section 2.

Gap in Translating Bias Metrics to Real-World
Impacts. There is a notable disconnect between
bias metrics and their implications for real-world
applications, underscoring the need for metrics that
better reflect practical outcomes. It has been found
that bias metrics in Q1 do not correlate well with
real-world biases (Goldfarb-Tarrant et al., 2021).

Lack of Explicit Analysis of How Models Can
Cause Social Harm. Works on NLP bias often
overlook the complexity of how LM bias can im-
pact society (Dev et al., 2022). It is crucial to differ-
entiate when biases might have positive or negative
effects and to explore exactly how LM bias can
lead to societal harm. A deeper exploration into the
nature and consequences of LM bias is needed to
fully grasp the implications, and guide efforts to
diminish or prevent social harm.

Comparison of different approaches is difficult.
Due to the different target domains of various ap-
proaches, it is often difficult to directly compare



different approaches. Kaneko et al. (2023) com-
pared different bias evaluation approaches without
requiring the expense of human labels. We need
more work in the direction of reliable and cost-
effective comparison among different measurement
and mitigation methods.

5 Checklist

By analyzing the strengths and limitations of cur-
rent works, we have created a 14-question checklist
to guide the development of future work on bias in
NLP. This tool is designed to help researchers build
more effective and reliable strategies. Questions
1-6 are specific to bias measurement, 7-8 address
bias mitigation, and 9-14 apply to all works on LM
bias. We do not intend any one work to address all
questions; rather, we believe work that addresses
multiple questions will have a significant impact.

[Q1] Robustness: Is your bias measure-
ment stable against small modifications to tem-
plates/descriptors?

[Q2] Country-focused data: Does your method
rely on country-specific data, such as the U.S.? If
so, how can it be adapted to other countries?

[Q3] Real-World Relevance: How do your bias
measurements reflect real-world biases, and affect
end-users?

[Q4] Future Usability: Have you taken measures
to make sure your approach is easily extendable to
ensure that it is useable after 5 years?

[Q5] Data Diversity: Have you used diverse
data sources to diminish biases present in the data
sources?

[Q6] Verification of Bias Type: What measures
have you taken to ensure your bias measurement
on a given type of bias doesn’t overlap or confuse
with other biases?

[Q7] Scalability and Efficiency: Can your debi-
asing method efficiently scale to large models and
datasets while maintaining effectiveness?

[Q8] Monitoring and Evaluation: Is there a way
for you to continuously assess and adjust the effec-
tiveness of your approach?

[Q9] Extensibility to other Social Groups: Can
your method be extended to additional sociodemo-
graphic groups?

[Q10] Risk of Misinterpretation: Can there be
a situation when your approach falsely indicates
reduced bias in models?

[Q11] Cultural Sensitivity: Does your approach
take into account the contextual and cultural varia-

tions in language use?
[Q12] Interdisciplinary Insights: Does your

method integrate knowledge from multiple disci-
plines to understand bias?

[Q13] Transparency and Reproducibility: Is
your method clear and can others can reproduce
your results?

[Q14] Community Engagement: Does your
method allow for user and community feedback?

6 Future Direction

Looking ahead, we anticipate greater emphasis on
bias mitigation during LM training. Post-training
bias mitigation adds to the costliness of very large
LMs, and serves as a filter rather than a corrective.
We have already seen progress in the direction of
training time methods since we started our survey
(Jeon et al., 2023). Further, contrastive learning
during training has shown promising results for
reducing bias (Li et al., 2023), and we expect more
research in this and similar directions.

Despite their growing popularity, template-based
methods for measuring bias face challenges (Sel-
vam et al., 2023; Seshadri et al., 2022). We believe
that these challenges can be tackled with careful
consideration of the limitations, such as lack of
robustness, leading to more effective and reliable
bias measurement. We anticipate that prompt-based
methods will gain prominence. Additionally, inte-
grating interdisciplinary insights with algorithmic
analysis will likely gain traction for quantifying
and mitigating bias.

We believe that as robust methodologies emerge,
there will be an increased emphasis on understand-
ing and addressing intersectional bias, the overlap
of multiple biases, in LMs moving forward.

7 Conclusion

We have presented a comprehensive literature sur-
vey encompassing 273 relevant works on sociode-
mographic bias in NLP. Our proposed categoriza-
tion of the literature provides enhanced clarity re-
garding the current research landscape. Our survey
also points towards the most promising directions
for future research. We introduced a 14-question
checklist designed to guide future research towards
developing more effective and reliable approaches,
and to avoid the pitfalls identified in previous stud-
ies. We encourage using an interdisciplinary ap-
proach to better capture and address the nuanced
nature of bias in NLP systems.



8 Limitations

In our survey, we focused on works from ACL An-
thology, NeurIPS proceedings, FAccT and AIES.
We might have missed some relevant works in our
survey, that appeared in other venues. While we
have systematically organized the bias literature
into categories as shown in Figure 2, which came
from an extensive survey of current literature, our
framework might not encompass all existing or
future research. Additionally, our emphasis on so-
ciodemographic bias means that valuable insights
from works addressing other forms of bias in lan-
guage models were not covered in our analysis.

9 Ethics Statement

Our work addresses the ethical impact of sociode-
mographic bias in NLP, offering a comprehensive
survey of 273 peer-reviewed articles to highlight
the presence and implications of bias within lan-
guage models. By systematically organizing re-
search findings and tracking bias approaches over
the past decade, our work promotes transparency,
awareness, and accountability within and beyond
the NLP community. The survey provides a meticu-
lously designed checklist, based on the weaknesses
and limitations of the field, to guide future research
toward more effective solutions for mitigating bias.

We also emphasize the social and ethical im-
plications of bias underscoring the significance of
addressing these issues to prevent potential nega-
tive consequences. We hope that our analysis aid in
shaping more inclusive and equitable NLP tech-
nologies by fostering dialogue, awareness, and
proactive measures to address sociodemographic
bias, incorporating ideas beyond the field of NLP.
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forget about pronouns: Removing gender bias in lan-
guage models without losing factual gender informa-
tion. In Proceedings of the 4th Workshop on Gen-
der Bias in Natural Language Processing (GeBNLP),
pages 17–29, Seattle, Washington. Association for
Computational Linguistics.

Haochen Liu, Jamell Dacon, Wenqi Fan, Hui Liu, Zitao
Liu, and Jiliang Tang. 2020a. Does gender matter?

https://proceedings.neurips.cc/paper_files/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://doi.org/10.18653/v1/2022.trustnlp-1.7
https://doi.org/10.18653/v1/2022.trustnlp-1.7
https://doi.org/10.18653/v1/2022.trustnlp-1.7
https://doi.org/10.18653/v1/2023.eacl-main.234
https://doi.org/10.18653/v1/2023.eacl-main.234
https://doi.org/10.18653/v1/2023.eacl-main.234
https://doi.org/10.18653/v1/W17-1601
https://doi.org/10.18653/v1/W17-1601
https://doi.org/10.18653/v1/S19-1010
https://doi.org/10.18653/v1/S19-1010
https://doi.org/10.18653/v1/S19-1010
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://doi.org/10.18653/v1/2023.emnlp-main.1046
https://doi.org/10.18653/v1/2023.emnlp-main.1046
https://doi.org/10.18653/v1/2023.emnlp-main.634
https://doi.org/10.18653/v1/2023.emnlp-main.634
https://doi.org/10.18653/v1/2023.emnlp-main.634
https://doi.org/10.18653/v1/2020.findings-emnlp.311
https://doi.org/10.18653/v1/2020.findings-emnlp.311
https://doi.org/10.18653/v1/2023.acl-long.797
https://doi.org/10.18653/v1/2023.acl-long.797
https://doi.org/10.18653/v1/2023.acl-long.797
https://aclanthology.org/2022.findings-aacl.32
https://aclanthology.org/2022.findings-aacl.32
https://aclanthology.org/2022.findings-aacl.32
https://doi.org/10.18653/v1/2020.acl-main.488
https://doi.org/10.18653/v1/2020.acl-main.488
https://doi.org/10.18653/v1/2022.gebnlp-1.3
https://doi.org/10.18653/v1/2022.gebnlp-1.3
https://doi.org/10.18653/v1/2022.gebnlp-1.3
https://doi.org/10.18653/v1/2022.gebnlp-1.3
https://doi.org/10.18653/v1/2020.coling-main.390


towards fairness in dialogue systems. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 4403–4416, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Haochen Liu, Wei Jin, Hamid Karimi, Zitao Liu, and Jil-
iang Tang. 2021. The Authors Matter: Understanding
and Mitigating Implicit Bias in Deep Text Classifi-
cation. In Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, pages 74–85.
Association for Computational Linguistics.

Tianyu Liu, Zheng Xin, Baobao Chang, and Zhifang Sui.
2020b. HypoNLI: Exploring the artificial patterns of
hypothesis-only bias in natural language inference.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 6852–6860, Mar-
seille, France. European Language Resources Asso-
ciation.

Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Aman-
charla, and Anupam Datta. 2020. Gender bias in neu-
ral natural language processing. Logic, Language,
and Security: Essays Dedicated to Andre Scedrov on
the Occasion of His 65th Birthday, pages 189–202.

Li Lucy and David Bamman. 2021. Gender and rep-
resentation bias in GPT-3 generated stories. In Pro-
ceedings of the Third Workshop on Narrative Un-
derstanding, pages 48–55, Virtual. Association for
Computational Linguistics.

Hongyin Luo and James Glass. 2023. Logic against
bias: Textual entailment mitigates stereotypical sen-
tence reasoning. In Proceedings of the 17th Confer-
ence of the European Chapter of the Association
for Computational Linguistics, pages 1243–1254,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Queenie Luo, Michael J Puett, and Michael D Smith.
2023. A perspectival mirror of the elephant: Investi-
gating language bias on google, chatgpt, wikipedia,
and youtube. arXiv preprint arXiv:2303.16281.

Xinyao Ma, Maarten Sap, Hannah Rashkin, and Yejin
Choi. 2020. PowerTransformer: Unsupervised con-
trollable revision for biased language correction. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7426–7441, Online. Association for Computa-
tional Linguistics.

Bodhisattwa Majumder, Zexue He, and Julian McAuley.
2023. InterFair: Debiasing with natural language
feedback for fair interpretable predictions. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9466–
9471, Singapore. Association for Computational Lin-
guistics.

Vijit Malik, Sunipa Dev, Akihiro Nishi, Nanyun Peng,
and Kai-Wei Chang. 2022. Socially aware bias mea-
surements for Hindi language representations. In

Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1041–1052, Seattle, United States. Association
for Computational Linguistics.

Thomas Manzini, Lim Yao Chong, Alan W Black, and
Yulia Tsvetkov. 2019. Black is to criminal as cau-
casian is to police: Detecting and removing multi-
class bias in word embeddings. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 615–621, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Abigail Matthews, Isabella Grasso, Christopher Ma-
honey, Yan Chen, Esma Wali, Thomas Middleton,
Mariama Njie, and Jeanna Matthews. 2021. Gender
bias in natural language processing across human
languages. In Proceedings of the First Workshop
on Trustworthy Natural Language Processing, pages
45–54, Online. Association for Computational Lin-
guistics.

Rowan Hall Maudslay, Hila Gonen, Ryan Cotterell, and
Simone Teufel. 2019. It’s all in the name: Mitigating
gender bias with name-based counterfactual data sub-
stitution. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5267–5275, Hong Kong, China. Association for Com-
putational Linguistics.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622–628, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Elijah Mayfield, Michael Madaio, Shrimai Prabhumoye,
David Gerritsen, Brittany McLaughlin, Ezekiel
Dixon-Román, and Alan W Black. 2019. Equity
Beyond Bias in Language Technologies for Educa-
tion. In Proceedings of the Fourteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 444–460. Association for Com-
putational Linguistics.

Katherine McCurdy and Oguz Serbetci. 2020. Gram-
matical gender associations outweigh topical gen-
der bias in crosslinguistic word embeddings. arXiv
preprint arXiv:2005.08864.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena,
Kristina Lerman, and Aram Galstyan. 2021. A sur-
vey on bias and fairness in machine learning. ACM
Comput. Surv., 54(6).

Katelyn Mei, Sonia Fereidooni, and Aylin Caliskan.
2023. Bias against 93 stigmatized groups in masked

https://doi.org/10.18653/v1/2020.coling-main.390
https://doi.org/10.18653/v1/2021.findings-acl.7
https://doi.org/10.18653/v1/2021.findings-acl.7
https://doi.org/10.18653/v1/2021.findings-acl.7
https://aclanthology.org/2020.lrec-1.846
https://aclanthology.org/2020.lrec-1.846
https://doi.org/10.18653/v1/2021.nuse-1.5
https://doi.org/10.18653/v1/2021.nuse-1.5
https://doi.org/10.18653/v1/2023.eacl-main.89
https://doi.org/10.18653/v1/2023.eacl-main.89
https://doi.org/10.18653/v1/2023.eacl-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.602
https://doi.org/10.18653/v1/2020.emnlp-main.602
https://doi.org/10.18653/v1/2023.emnlp-main.589
https://doi.org/10.18653/v1/2023.emnlp-main.589
https://doi.org/10.18653/v1/2022.naacl-main.76
https://doi.org/10.18653/v1/2022.naacl-main.76
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/2021.trustnlp-1.6
https://doi.org/10.18653/v1/2021.trustnlp-1.6
https://doi.org/10.18653/v1/2021.trustnlp-1.6
https://doi.org/10.18653/v1/D19-1530
https://doi.org/10.18653/v1/D19-1530
https://doi.org/10.18653/v1/D19-1530
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/W19-4446
https://doi.org/10.18653/v1/W19-4446
https://doi.org/10.18653/v1/W19-4446
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3593013.3594109


language models and downstream sentiment classifi-
cation tasks. In Proceedings of the 2023 ACM Confer-
ence on Fairness, Accountability, and Transparency,
FAccT ’23, page 1699–1710, New York, NY, USA.
Association for Computing Machinery.

Johannes Mario Meissner, Saku Sugawara, and Akiko
Aizawa. 2022. Debiasing masks: A new framework
for shortcut mitigation in NLU. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 7607–7613, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Michael Mendelson and Yonatan Belinkov. 2021. De-
biasing methods in natural language understanding
make bias more accessible. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1545–1557, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Mara Mills and Meredith Whittaker. 2019. Disability,
Bias, and AI. AI Now Institute Report. AI Now
Institute Report.

Deirdre K. Mulligan, Joshua A. Kroll, Nitin Kohli, and
Richmond Y. Wong. 2019. This thing called fairness:
Disciplinary confusion realizing a value in technol-
ogy. Proc. ACM Hum.-Comput. Interact., 3(CSCW).

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Manish Nagireddy, Lamogha Chiazor, Moninder Singh,
and Ioana Baldini. 2023. Socialstigmaqa: A bench-
mark to uncover stigma amplification in generative
language models. arXiv preprint arXiv:2312.07492.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-Pairs: A Chal-
lenge Dataset for Measuring Social Biases in Masked
Language Models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967. Association
for Computational Linguistics.

Pranav Narayanan Venkit. 2023. Towards a holistic
approach: Understanding sociodemographic biases
in nlp models using an interdisciplinary lens. In
Proceedings of the 2023 AAAI/ACM Conference on
AI, Ethics, and Society, pages 1004–1005.

Pranav Narayanan Venkit, Sanjana Gautam, Ruchi Pan-
chanadikar, Ting-Hao Huang, and Shomir Wilson.
2023. Unmasking nationality bias: A study of human
perception of nationalities in ai-generated articles.
In Proceedings of the 2023 AAAI/ACM Conference
on AI, Ethics, and Society, AIES ’23, page 554–565,

New York, NY, USA. Association for Computing
Machinery.

Debora Nozza, Federico Bianchi, and Dirk Hovy. 2022.
Pipelines for social bias testing of large language
models. In Proceedings of BigScience Episode #5
– Workshop on Challenges & Perspectives in Cre-
ating Large Language Models, pages 68–74, vir-
tual+Dublin. Association for Computational Linguis-
tics.

Debora Nozza, Claudia Volpetti, and Elisabetta Fersini.
2019. Unintended bias in misogyny detection. In
IEEE/WIC/ACM International Conference on Web
Intelligence, WI ’19, page 149–155, New York, NY,
USA. Association for Computing Machinery.

Ali Omrani, Alireza Salkhordeh Ziabari, Charles Yu,
Preni Golazizian, Brendan Kennedy, Mohammad
Atari, Heng Ji, and Morteza Dehghani. 2023. Social-
group-agnostic bias mitigation via the stereotype con-
tent model. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4123–4139, Toronto,
Canada. Association for Computational Linguistics.

Shiva Omrani Sabbaghi, Robert Wolfe, and Aylin
Caliskan. 2023. Evaluating biased attitude associa-
tions of language models in an intersectional context.
In Proceedings of the 2023 AAAI/ACM Conference
on AI, Ethics, and Society, AIES ’23, page 542–553,
New York, NY, USA. Association for Computing
Machinery.

Hadas Orgad and Yonatan Belinkov. 2023. BLIND:
Bias removal with no demographics. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8801–8821, Toronto, Canada. Association for
Computational Linguistics.

Hadas Orgad, Seraphina Goldfarb-Tarrant, and Yonatan
Belinkov. 2022. How gender debiasing affects in-
ternal model representations, and why it matters. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2602–2628, Seattle, United States. Association
for Computational Linguistics.

Merrick Osborne, Ali Omrani, and Morteza Dehghani.
2023. The sins of the parents are to be laid upon the
children: Biased humans, biased data, biased models.
Perspectives on psychological science : a journal
of the Association for Psychological Science, page
17456916231180099.

Nedjma Ousidhoum, Xinran Zhao, Tianqing Fang,
Yangqiu Song, and Dit-Yan Yeung. 2021. Probing
toxic content in large pre-trained language models.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4262–4274, Online. Association for Computational
Linguistics.

https://doi.org/10.1145/3593013.3594109
https://doi.org/10.1145/3593013.3594109
https://doi.org/10.18653/v1/2022.emnlp-main.517
https://doi.org/10.18653/v1/2022.emnlp-main.517
https://doi.org/10.18653/v1/2021.emnlp-main.116
https://doi.org/10.18653/v1/2021.emnlp-main.116
https://doi.org/10.18653/v1/2021.emnlp-main.116
https://doi.org/10.1145/3359221
https://doi.org/10.1145/3359221
https://doi.org/10.1145/3359221
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.1145/3600211.3604667
https://doi.org/10.1145/3600211.3604667
https://doi.org/10.18653/v1/2022.bigscience-1.6
https://doi.org/10.18653/v1/2022.bigscience-1.6
https://doi.org/10.1145/3350546.3352512
https://doi.org/10.18653/v1/2023.acl-long.227
https://doi.org/10.18653/v1/2023.acl-long.227
https://doi.org/10.18653/v1/2023.acl-long.227
https://doi.org/10.1145/3600211.3604666
https://doi.org/10.1145/3600211.3604666
https://doi.org/10.18653/v1/2023.acl-long.490
https://doi.org/10.18653/v1/2023.acl-long.490
https://doi.org/10.18653/v1/2022.naacl-main.188
https://doi.org/10.18653/v1/2022.naacl-main.188
https://doi.org/10.1177/17456916231180099
https://doi.org/10.1177/17456916231180099
https://doi.org/10.18653/v1/2021.acl-long.329
https://doi.org/10.18653/v1/2021.acl-long.329


Anaelia Ovalle, Palash Goyal, Jwala Dhamala, Zachary
Jaggers, Kai-Wei Chang, Aram Galstyan, Richard
Zemel, and Rahul Gupta. 2023. “i’m fully who i
am”: Towards centering transgender and non-binary
voices to measure biases in open language generation.
In Proceedings of the 2023 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT ’23,
page 1246–1266, New York, NY, USA. Association
for Computing Machinery.

Swetasudha Panda, Ari Kobren, Michael Wick, and Qin-
lan Shen. 2022. Don’t just clean it, proxy clean
it: Mitigating bias by proxy in pre-trained models.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5073–5085, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Orestis Papakyriakopoulos, Simon Hegelich, Juan Car-
los Medina Serrano, and Fabienne Marco. 2020. Bias
in word embeddings. In Proceedings of the 2020
Conference on Fairness, Accountability, and Trans-
parency, FAT* ’20, page 446–457, New York, NY,
USA. Association for Computing Machinery.

Ji Ho Park, Jamin Shin, and Pascale Fung. 2018. Re-
ducing Gender Bias in Abusive Language Detection.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2799–2804. Association for Computational Linguis-
tics.

Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh
Padmakumar, Jason Phang, Jana Thompson,
Phu Mon Htut, and Samuel Bowman. 2022a. BBQ:
A hand-built bias benchmark for question answering.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2086–2105, Dublin,
Ireland. Association for Computational Linguistics.

Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh
Padmakumar, Jason Phang, Jana Thompson,
Phu Mon Htut, and Samuel Bowman. 2022b. BBQ:
A hand-built bias benchmark for question answering.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2086–2105, Dublin,
Ireland. Association for Computational Linguistics.

Thomas F Pettigrew and Linda R Tropp. 2006. A meta-
analytic test of intergroup contact theory. Journal of
personality and social psychology, 90(5):751.

Matúš Pikuliak, Ivana Beňová, and Viktor Bachratý.
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A Appendix

A.1 Evaluation Datasets
Bias benchmark datasets provide valuable re-
sources for NLP fairness research. These datasets
commonly contain illustrative examples of biased
language, often templated sentences filled with con-
trastive social group terms. Datasets allow stan-
dardized bias evaluation on diverse tasks using
controlled examples. Many of them focus on a
particular type of language context, such as co-
reference, sentiment, or question answering, while
others probe for stereotype bias through word asso-
ciations. Table present in the Appendix summarizes
these datasets.
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In the case of coreference resolution, Zhao et al.
(2018a) proposed a method for identifying gen-
der bias using Winograd-schema sentences for oc-
cupation terms. Webster et al. (2018) introduced
GAP, a gender-balanced, labeled corpus of 8,908
ambiguous pronoun–name pairs designed to de-
tect gender bias in coreference resolution. In the
word association domain, Nangia et al. (2020)
presented CrowS-Pairs, a sentence pair corpus
that measures a model’s bias by assessing if it
favors sentences with stereotypes. Nadeem et al.
(2021) released StereoSet, a large-scale natural
dataset in English designed to measure stereotyp-
ical bias using inter- and intra-sentence associa-
tion of words to stereotypical contexts. Li et al.
(2020) proposed UNQOVER, a general framework
for probing bias in question answering models us-
ing questions to probe whether a model associates
a sociodemographic group to a stereotype. Smith
et al. (2022) published HolisticBias, consisting of
450,000 unique sentence prompts for measuring 13
types of sociodemographic bias in generative LMs.

In the domain of sentiment evaluation, Kir-
itchenko and Mohammad (2018) released EEC, an
8,640 English sentence collection curated to test
bias toward certain races and genders in sentiment
analysis models. BITS (Venkit and Wilson, 2021;
Venkit et al., 2023c) is a similar corpus of 1,126
sentences curated to measure disability, race, and
gender bias in sentiment and toxicity analysis mod-
els.

Table 2 provides list of datasets for quantifying
bias in NLP models.

A.2 List of papers surveyed

Below is the list of papers surveyed in this work,
sorted based on our taxonomy.

Explicit Bias(T1) :
(Mei et al., 2023; Deas et al., 2023; Liu et al.,

2021; De-Arteaga et al., 2019; Bell and Sagun,
2023; Silva et al., 2021; Park et al., 2018; Sap
et al., 2020; B et al., 2021; Lauscher and Glavaš,
2019; Rozado, 2020; Rudinger et al., 2017; Shah
et al., 2020; Du et al., 2022; Nozza et al., 2022;
Honnavalli et al., 2022; Lucy and Bamman, 2021;
Mendelson and Belinkov, 2021; Matthews et al.,
2021; Cao et al., 2022; Papakyriakopoulos et al.,
2020; Kementchedjhieva et al., 2021; Garrido-
Muñoz et al., 2021; Strengers et al., 2020; De-
lobelle et al., 2022; Fisher et al., 2020; Sheng
et al., 2020; Zhang et al., 2020a; Hendricks et al.,

2018; Mehrabi et al., 2021; Mayfield et al., 2019;
Schwartz et al., 2021; Nozza et al., 2019; Vaidya
et al., 2020; He et al., 2019; Hovy and Søgaard,
2015; Wolfe and Caliskan, 2021; Sakaguchi et al.,
2021; Agarwal et al., 2019; White and Cotterell,
2021; Luo and Glass, 2023)

Gender Bias : (Sharma et al., 2022; Kaneko
et al., 2022a; Stahl et al., 2022; Kaneko et al., 2023;
Toro Isaza et al., 2023; Hada et al., 2023; Attana-
sio et al., 2023; Goldfarb-Tarrant et al., 2023; Lee
et al., 2023; Gaut et al., 2020; Sun et al., 2019;
Hamidi et al., 2018; Zhou et al., 2019; Savoldi
et al., 2021; Sahlgren and Olsson, 2019; Ahn et al.,
2022; Tal et al., 2022; Kaneko et al., 2022b; Field
and Tsvetkov, 2020; Garimella et al., 2019; Es-
cudé Font and Costa-jussà, 2019; Bhaskaran and
Bhallamudi, 2019; McCurdy and Serbetci, 2020;
Kaneko and Bollegala, 2019; Larson, 2017; Du
et al., 2021; Bartl et al., 2020; Webster et al., 2021;
Tan and Celis, 2019; Bolukbasi et al., 2016; Maud-
slay et al., 2019; Zhao et al., 2019; Rudinger et al.,
2018; Lu et al., 2020)

Racial Bias : (Goldfarb-Tarrant et al., 2023; Levy
et al., 2023; Field et al., 2023; Cheng et al., 2023;
Sap et al., 2019; Hanna et al., 2020; Blodgett et al.,
2016; Davidson et al., 2019; Friedman et al., 2019;
Shen et al., 2018; Karve et al., 2019; Nadeem et al.,
2021; Garimella et al., 2021; Nangia et al., 2020;
Tan and Celis, 2019; Guo and Caliskan, 2021;
Brown et al., 2020)

Disability bias : (Venkit and Wilson, 2021;
Venkit et al., 2022; Hutchinson et al., 2020; Ben-
nett and Keyes, 2020; Mills and Whittaker, 2019;
Hassan et al., 2021; Narayanan Venkit, 2023)

Ethnicity bias : (Bauer et al., 2023; Levy et al.,
2023; Malik et al., 2022; Li et al., 2022; Ahn
and Oh, 2021; Garg et al., 2018; Li et al., 2020;
Abid et al., 2021; Manzini et al., 2019; Venkit
et al., 2023b; Bhatt et al., 2022), Nationality
bias - (Ladhak et al., 2023; Levy et al., 2023;
Narayanan Venkit et al., 2023), Political bias -
(Thebault-Spieker et al., 2023; Shen et al., 2018;
Rozado, 2020), Age bias (Nangia et al., 2020; Diaz
et al., 2018) and sexual-orientation bias (Ovalle
et al., 2023; Nangia et al., 2020; Cao and Daumé III,
2020)

Distance based metrics(Q1) : (Caliskan et al.,
2017; Dev and Phillips, 2019; Zhao et al., 2017;
Basta et al., 2019; Shen et al., 2018; Brunet et al.,
2019; May et al., 2019; Dev et al., 2021; Zhou
et al., 2019; Pujari et al., 2020; Sutton et al., 2018;



Dataset name Task Bias Type Dataset Size
WinoBias

(Zhao et al., 2018a) Coreference Resolution Gender 1,580

WinoGender
(Rudinger et al., 2018) Coreference Resolution Gender 720

GAP
(Webster et al., 2018) Coreference Resolution Gender 8,908

Counter-GAP
(Xie et al., 2023) Coreference Resolution Gender 4,008

CrowS-Pairs
(Nangia et al., 2020) Word Association

Gender, race, religion,
age, sexual orientation,
nationality, disability,
physical appearance,
and socioeco. status.

1,508

StereoSet
(Nadeem et al., 2021) Word Association Race, gender,

religion, and profession 16,995

WikiGenderBias
(Gaut et al., 2020) Word Association Gender 45,000

UnQOVER
(Li et al., 2020) Word Association Gender, Nationality,

Ethnicity,Religion 8,908

WinoGrande
(Sakaguchi et al., 2021) Word Association Dataset

Bias 1,767

BBQ
(Parrish et al., 2022b) Word Association 9 Sociodemographic Group 58,492

EEC
(Kiritchenko and Mohammad, 2018) Sentiment Evaluation Gender, Race 8,640

BITS
(Venkit and Wilson, 2021) Sentiment Evaluation Gender, Race,

Disability 1,126

HolisticBias
(Smith et al., 2022) Text Generation 13 Sociodemographic Group 450,000

Table 2: List of Evaluation datasets used to measure bias in NLP models

Lauscher et al., 2020; Guo and Caliskan, 2021;
Bolukbasi et al., 2016; Ross et al., 2021; Tan
and Celis, 2019; Ethayarajh et al., 2019; Chaloner
and Maldonado, 2019; Bordia and Bowman, 2019;
Valentini et al., 2023)

Performance metrics(Q2) : (De-Arteaga et al.,
2019; Kwon and Mihindukulasooriya, 2022; Zhang
et al., 2022; Huang et al., 2020; Dixon et al., 2018;
Zhao et al., 2018a; Cho et al., 2019; Stanovsky
et al., 2019; Gonen and Webster, 2020; Borkan
et al., 2019; Dev et al., 2020)

Prompt based metrics(Q3) : (Nagireddy et al.,
2023; Webster et al., 2021; Smith et al., 2022; Ku-
rita et al., 2019; Krishna et al., 2022; Bhaskaran
and Bhallamudi, 2019; Gupta et al., 2022b; Prab-
hakaran et al., 2019; Ahn and Oh, 2021; Bartl et al.,
2020; Li et al., 2020; Venkit and Wilson, 2021;
Salazar et al., 2020; Dev et al., 2020; Diaz et al.,
2018; Zhang et al., 2020b; Garg et al., 2019; Liang
et al., 2022; Kusner et al., 2017; Huang et al., 2020;
Akyürek et al., 2022; Gardner et al., 2020; Ousid-
houm et al., 2021; Parrish et al., 2022a; Kiritchenko
and Mohammad, 2018; Touileb et al., 2023; Gupta
et al., 2023; Pikuliak et al., 2023; Touileb et al.,
2023; An et al., 2023; Felkner et al., 2023)

Probing based metrics(Q4) : (Ousidhoum et al.,
2021; Dev et al., 2020; de Vassimon Manela et al.,
2021; Immer et al., 2022; Kennedy et al., 2020;
Sweeney and Najafian, 2019; Tan et al., 2020; Li
et al., 2020; Mendelson and Belinkov, 2021)

Debiasing during Finetuning(D1) : (Ungless
et al., 2022; Du et al., 2023; Omrani et al., 2023;
Zhou et al., 2023a; Thakur et al., 2023; Jin et al.,
2021; He et al., 2022b; Zmigrod et al., 2019; Jin
et al., 2021; Gaci et al., 2022; Gupta et al., 2022a;
Ghaddar et al., 2021; Kumar et al., 2020; Han et al.,
2021; Attanasio et al., 2022; Joniak and Aizawa,
2022; Chopra et al., 2020; Maudslay et al., 2019;
Park et al., 2018; Yao et al., 2021; Liang et al.,
2020; Sen et al., 2022; Ma et al., 2020; Limisiewicz
and Mareček, 2022; Yang et al., 2021; Wang et al.,
2021; Pujari et al., 2020; Sedoc and Ungar, 2019;
Tan et al., 2020; Sutton et al., 2018; Ravfogel et al.,
2020; Kaneko and Bollegala, 2019; Karve et al.,
2019; Gyamfi et al., 2020; Shin et al., 2020; Zhang
et al., 2020a; Wen et al., 2022; Chopra et al., 2020;
Yang and Feng, 2020; Lu et al., 2020; Lauscher
et al., 2021; Garg et al., 2019; Dev et al., 2020,
2021; Manzini et al., 2019; Bolukbasi et al., 2016;
Ahn and Oh, 2021; Orgad et al., 2022; Felkner
et al., 2023)



Debiasing during Training (D2) : (An et al.,
2022; Bolukbasi et al., 2016; He et al., 2019; Han
et al., 2022; Liu et al., 2020b; Escudé Font and
Costa-jussà, 2019; Prost et al., 2019; James and
Alvarez-Melis, 2019; Park et al., 2018; Zhao et al.,
2018b; Gao et al., 2022; Sweeney and Najafian,
2020; Hube et al., 2020; Sen and Ganguly, 2020;
Saunders and Byrne, 2020; Dixon et al., 2018;
Karimi Mahabadi et al., 2020; He et al., 2022a;
Richardson et al., 2023) Loss functions for bias mit-
igation : (Hashimoto et al., 2018; Qian et al., 2019;
Berg et al., 2022; Romanov et al., 2019; Garimella
et al., 2021; Bordia and Bowman, 2019; Huang
et al., 2020; Provilkov and Malinin, 2021; Liu et al.,
2021; Orgad and Belinkov, 2023; Li et al., 2023)

Debiasing during Inference (D3) : (Majumder
et al., 2023; Qian et al., 2021; Zhao et al., 2019;
Abid et al., 2021; Guo et al., 2022; Schick et al.,
2021; Venkit et al., 2023b)

Works on Bias : These are works that are dif-
ficult to categorize in one of the above cate-
gories. (Chouldechova and Roth, 2020; Green,
2019; Zhang and Bareinboim, 2018; Mayfield et al.,
2019; Katell et al., 2020; Dwork et al., 2012; Ja-
cobs et al., 2020; Anoop et al., 2022; Czarnowska
et al., 2021; Blodgett et al., 2021; Zhuo et al., 2023;
Mulligan et al., 2019; Jacobs and Wallach, 2021;
Schoch et al., 2020; Franklin et al., 2022; Bender,
2019; España-Bonet and Barrón-Cedeño, 2022;
Hutchinson and Mitchell, 2019; Bender et al., 2021;
Goldfarb-Tarrant et al., 2021; Brown et al., 2020;
Li et al., 2020; Bagdasaryan et al., 2019; Liu et al.,
2020a; Zhiltsova et al., 2019; Chopra et al., 2020;
Luo et al., 2023; Shah et al., 2020; Garrido-Muñoz
et al., 2021; Delobelle et al., 2022; Czarnowska
et al., 2021)


