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Abstract

Liquid state estimation is important for robotics tasks such as pouring; however,
estimating the state of transparent liquids is a challenging problem. We propose
a novel segmentation pipeline that can segment transparent liquids such as water
from a static, RGB image without requiring any manual annotations or heating
of the liquid for training. Instead, we use a generative model that is capable
of translating unpaired images of colored liquids into synthetically generated
transparent liquid images. Segmentation labels of colored liquids are obtained
automatically using background subtraction. We use paired samples of synthet-
ically generated transparent liquid images and background subtraction for our
segmentation pipeline. Our experiments show that we are able to accurately pre-
dict a segmentation mask for transparent liquids without requiring any manual
annotations. We demonstrate the utility of transparent liquid segmentation in a
robotic pouring task that controls pouring by perceiving liquid height in a trans-
parent cup. Accompanying video and supplementary information can be found at
https://sites.google.com/view/roboticliquidpouring

1 Introduction

Robots that could pour liquids would enable us to automate tasks such as cooking, pouring medicines
into vials in pharmacies, or watering our plants. However, transparent liquids are difficult to perceive
in images; the only visual signals a perfectly transparent liquid can provide are the refraction of light
passing through the liquid. Obtaining depth measurements for liquids is similarly difficult since the
liquid will refract the projected infrared light.

Previous works have explored robotic pouring in various settings [Do et al., 2016, Dong et al.,
2019, Kennedy et al., 2017, 2019, Matl et al., 2020], but all require significant compromises in the
environment or method for data collection. For example, several methods for transparent liquid
segmentation require heating up the liquid during training to obtain ground-truth labels when viewed
by a thermal camera Schenck and Fox [2016, 2017b,a]; however, heating up the liquid for training is
a tedious process that limits how much training data can be easily collected. Other approaches require
observing the liquid from multiple viewpoints Do et al. [2016], checkerboard backgrounds Kennedy
et al. [2019], weight measurements Kennedy et al. [2019], or liquid motion Yamaguchi and Atkeson
[2016], Wilson et al. [2019], Liang et al. [2019], Do and Burgard [2018]; these requirements on the
environment restrict the applicability of these methods.

In this work, we propose a method for perceiving transparent liquid (such as water) inside transparent
containers. Our method requires significantly fewer restrictions on the operational domain than
previous methods. Specifically, our method operates on individual images (we do not require liquid
motion or multiple frames), and requires no manual annotations or heating of liquids during training.
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Figure 1: We introduce a simple method for learning to segment transparent liquids in transparent
containers. Our approach consists of four steps: (A) collect two datasets (unpaired) of colored and
transparent liquid in containers; (B) create synthetic segmentation labels for transparent liquids using
image translation (C) train a transparent liquid segmentation model using the generated labels; (D)
closed-loop robotic pouring of a specific amount of liquid using our transparent liquid segmentation.

To accomplish this, our method uses a generative model that learns to translate images of colored
liquid into synthetically generated images of transparent liquid. Because images of colored liquid are
easy to segment, this automatically provides us with ground-truth labels for the synthetically generated
images of transparent liquid. Finally, we demonstrate the utility of our method for transparent liquid
segmentation on a robot pouring task.

2 Related Work

2.0.1 Transparent object perception

Perceiving transparent objects is particularly challenging because transparent objects can refract,
reflect, and absorb light. Some previous works focus on perceiving transparent containers; methods
have been developed for transparent object segmentation Xie et al. [2020], Liao et al. [2020], depth
estimation Sajjan et al. [2020], Zhu et al. [2021], key-point estimation Liu et al. [2020], and transparent
object matting Chen et al. [2018]. Other methods for segmenting transparent objects use light field
cameras Xu et al. [2015, 2019] or light polarization Kalra et al. [2020]. On the manipulation side,
other recent works have been developed to directly grasp transparent objects without first estimating
their 3D shape Weng et al. [2020]. Our approach builds on Xie et al. [2020] for transparent container
segmentation; however, our focus is on segmenting the transparent liquid inside the container. Unlike
previous work that uses manual annotations for training Xie et al. [2020], our work does not rely on
any manual annotations.

2.0.2 Transparent liquid perception

Perception of liquid is more challenging than perception of object due to the lack of a fixed shape
or geometry. While perception of colored liquid can sometimes be done using background subtrac-
tion Kennedy et al. [2017], it does not work for transparent liquid. One approach to transparent
liquid perception is to use heated liquid observed by a thermal camera to obtain ground-truth labels
for liquid Schenck and Fox [2016, 2017b,a]. However, the requirement to heat the liquid before
recording the ground-truth is a tedious process; our method does not require heated liquid. To
segment liquid while it is being poured, one can use optical flow Yamaguchi and Atkeson [2016]
or audio signals Wilson et al. [2019], Liang et al. [2019]. Our method can segment static liquid,
which is important for liquid state estimation before initiating a pouring task. Some methods reason
about the refraction of the infrared light emitted by a depth sensor Do et al. [2016], Do and Burgard
[2018], multiple noisy readings from different viewpoints [Do et al., 2016], or from different time
points during pouring Do and Burgard [2018], integrated probabilistically. In contrast, our method
can segment the liquid from just a single RGB image. Another approach is to use a depth sensor
to estimate the height of the liquid surface Dong et al. [2019]; however, such depth readings are
inaccurate for transparent liquids. A different strategy is to pour liquid in front of a checkerboard
background or to use weight readings from a scale Kennedy et al. [2019]. Our method does not
require a checkerboard background or a scale. Finally, some approaches forgo a separate module
for transparent liquid perception and learn an end-to-end policy for pouring transparent liquid Lin
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Figure 2: Our vision pipeline for training a segmentation network that can be used to segment
transparent liquids. In (a), we use the losses described in Section 3.1 to train a generator G which
transforms images of colored liquids in Dcolor to look like images in Dtransparent. In (b), we use the
generatorG trained via CUT to translate images inDcolor into transparent images, and generate masks
Mi via the background subtraction method described in the supplementary material. Finally, we train
a segmentation model S on this synthetic supervised dataset using a standard binary cross-entropy
loss.

et al. [2020]. However, so far such approaches have only been shown to work in simulation due to
the sample complexity of learning a sensori-motor policy.

3 Method

We describe our method for transparent liquid segmentation when liquids are placed within transparent
containers (see Figure 2 for an overview). First, we collect a dataset of colored liquid and another
(unpaired) dataset of transparent liquid. We then use an image translation method to learn to translate
an image of colored liquid into a synthetically generated image of transparent liquid that is identical
to the input image, except that the liquid is now transparent. Next, we use background subtraction to
find the colored liquid pixels in the colored liquid dataset. We treat the colored liquid segmentation
as a ground-truth label for the synthetically generated transparent liquid. We then train a network to
segment transparent liquid, using paired samples of the synthetically generated transparent liquid and
colored liquid ground-truth labels.

3.1 Learning to translate colored liquid to transparent liquid

To train a model for transparent liquid segmentation, we ideally want a dataset of labeled images of
transparent liquids. However, labeling such a dataset is tedious. Instead, we make use of an image
translation method to synthetically generate the desired labels.

We collect one dataset of colored liquids in transparent containers Dcolor and a second dataset of
transparent liquids in transparent containers Dtransparent. Given these two datasets, we learn an
image translation model from colored to transparent liquids. To do so, we use Contrastive Unpaired
Translation (CUT) Park et al. [2020], which we train to convert an image of a colored liquid into an
image of a transparent liquid.

We briefly describe CUT and how we adapt it for our method. The backbone of CUT is a generator
that translates an image of the source domain into an image of the target domain. To encourage this
translation, three loss terms are used. First, a standard adversarial GAN loss is used to encourage the
generator to output images that are visually similar to those in the target domain:

LGAN = Ey∼Y [logD(y)] + Ex∼X [log(1−D(G(x)))] (1)
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where G,D, denote the generator and the discriminator respectively, and X , Y denote the source
domain and the target domain, respectively. The generator G is divided into an encoder Genc and a
decoder Gdec, such that the output is ŷ = G(x) = Gdec(Genc(x)), for an image x from the source
domain.

Additionally, CUT uses a patch-wise contrastive loss van den Oord et al. [2019] to encourage
corresponding patches between the input and output images to be similar to each other in feature
space. Specifically, given an image x from the source domain X , the image is translated into an
image y of the target domain Y . The patch-wise contrastive loss, LPatchNCE(G,H,X), maximizes
the mutual information between H(Genc(x)) and H(Genc(y)), where H is a small multi-layer
perceptron (MLP). The generator is also trained with an identity loss LPatchNCE(G,H, Y ) to help
regularize the encoder and minimize unnecessary modifications to a source image. The combined
loss is:

LCUT = LGAN + λXLPatchNCE(G,H,X) + λY LPatchNCE(G,H, Y ) (2)

We apply CUT directly to our two datasets of raw images, where our source domain X = Dcolor

and target domain Y = Dtransparent. Thus, we use CUT to convert an image of colored liquid
xcolor ∈ Dcolor to a synthetically generated image of a transparent liquid ŷtransparent = G(xcolor).

Importantly, the patch-wise contrastive loss encourages the object parts in the image xcolor to be in
the same location as the parts in the translated image ŷtransparent. For example, in Figure 2, the cup,
liquid, surface, and even shadows are in the same locations between the image of colored liquid xcolor
that is input to the generator G, compared to the synthetic image of transparent liquid ŷtransparent
that is output by the generator. The primary difference between these images is that the colored liquid
has changed to become transparent; the liquid is in the same location as in the input.

This property (that the liquid is in the same location in the generator input xcolor as in the output
ŷtransparent) is crucial to the success of our proposed segmentation method. If we assume that the
only property that has changed as a result of the translation is the liquid color, then we can directly
use the segmentation masks from the colored liquid xcolor as pseudo-ground truth for the generated
transparent liquid ŷtransparent. Because it is simple to segment an image of colored liquid using color
thresholding or background subtraction (see supplementary materials for details), we can then easily
generate segmentation labels for the synthetic transparent images ŷtransparent without requiring human
annotations. Formally, given an image of colored liquid x(i)color with corresponding segmentation
mask M (i), we generate a synthetic image of transparent liquid ŷ(i)transparent = G(x

(i)
color) to which

we associate the colored image’s segmentation mask Mi as a pseudo-ground truth segmentation label.
This creates a synthetic labeled dataset: {ŷ(i)transparent,M

(i)} which we use to train our transparent
liquid segmentation model, as described below.

3.2 Learning transparent liquid segmentation

We can use the aforementioned synthetic labeled dataset to train a transparent liquid segmentation
model S using the Binary Cross Entropy loss between the predicted liquid segmentation mask and
the pseudo-ground truth Mi (described above). Architectural, hyper-parameter, and implementation
details are described in the supplementary materials. Our image translation and segmentation modules
are trained on one Nvidia 2080 Ti GPU.

3.3 Robot liquid pouring

In this section, we describe the details of the robotic pouring system we designed to demonstrate the
utility of our transparent liquid segmentation model in pouring tasks. While other works have explored
sophisticated and flexible robotic pouring methods, we emphasize that our robotic system design is a
simple testbed for our perception. Our system consists of two stages: a visual postprocessing stage
that converts a liquid segmentation into an estimate of a scalar fill level in a container l̂ and a pouring
controller which drives the system to reach a target fill level ltarget. See Figure 3.

3.3.1 Task Design

For our robotic pouring experiments, we use a Franka-Emika Panda 7-DOF robotic arm, with a
custom-built end-effector that rigidly secures a source container for pouring Bronstein et al. [2021].
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Figure 3: Our robotic pouring system. For each RGB image captured, we use our learned segmentation
model S to output a segmentation of the liquid in the cup, and detect the bounding box of the cup
using TransLab Xie et al. [2020]. We compute a liquid level estimate l̂, and pour at a fixed angle until
the perceived liquid level is within a small threshold.

We place a Microsoft Azure Kinect RGB camera directly in front of the robot’s workspace. We place
the target cup directly in front of the camera at a known location. We then drive the end-effector to a
known location directly above the target cup. We ensure that the source cup in the robot’s end-effector
is not included in the image recorded by the Kinect camera. We fill the source cup with liquid, which
will be poured into the target cup.

3.3.2 Visual postprocessing

To minimize any potential errors caused by the segmentation model, we first use an off-the-shelf
method TransLab Xie et al. [2020] model to detect the location of the cup in the scene. Next, we crop
the image region around the detected cup location. Then, we use our segmentation model to segment
the transparent liquid pixels from within this crop. Finally, we perform a filtering step that removes
noise as well as small water particles in motion (i.e. during pouring). The remaining segmented
points are from liquid inside the target cup.

It is difficult to design a control system for pouring that operates directly on a current and target
segmentation mask. Instead, we define a target fill height htarget from the camera perspective; we
then define the process variable as the fraction of the cup that is filled: ltarget = h

hcup
, where h is

the liquid height and hcup is the cup height (as seen from the camera perspective). This task was
inspired by the task of a robot waiter, which must refill everyone’s cups to a certain fraction of the
cup height. Further, keeping the process variable grounded in 2D visual features avoids complexities
of estimating the 3D geometry of the scene.

To estimate the current fill level ĥ, we compute a vertically-aligned bounding box of the segmented
pixels. We then use the upper edge of the box as the estimated height ĥ of the liquid. As mentioned
previously, we use previous work to segment the transparent cup in the scene Xie et al. [2020]; we
use a similar approach as above to fit a bounding box and find the height of the cup hcup. From these
computations, we can estimate the process variable l̂ = ĥ

hcup
.

3.3.3 Control

With the robot arm positioned directly above the cup, we restrict the control space to be one of two
states: {NotPouring, Pouring}. The NotPouring state corresponds to the starting postion, where
the source cup is completely vertical (upright). The Pouring state corresponds to a 60 rotation about
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the central axis of the cup (parallel to the table). When the control signal changes between the two
states, the end-effector rotates at a constant angular velocity until the desired control state is reached.
The system initially commands Pouring until the estimated height is within a margin ε of the target;
afterwards, the system commands NotPouring.

Because the vision system is a simple neural network with simple post-processing, it is very low
latency. Therefore, we can operate our control loop at roughly 10Hz. Because of the responsive
system, bang-bang control of the pouring into the target cup is effective. Finally, to compensate for
some errors that occur in the perception system when the target cup is empty, we always begin the
control with roughly 1s of initial pouring.

Further details about our data capture and background subtraction can be found in the supplementary
materials.

3.4 Diverse Backgrounds

Previous work has achieved background generalization for object segmentation by synthetically
pasting a foreground segment on top of a random background scene Kisantal et al. [2019], Dvornik
et al. [2018, 2019]. However, this technique is infeasible for learning to segment transparent liquids
inside of transparent containers, since the container and liquid will refract the background, which
cannot be easily imitated synthetically. Instead, to generate a diverse set images with physically-
accurate refraction characteristics, we set up a large flatscreen LED display behind the pouring scene.
We then played videos containing a diverse set of indoor and outdoor scenes during the data collection
procedure. This allowed us to create datasets with a high degree of background diversity, with natural
patterns of light refracting through water. While these procedures could be included as part of the
regular data collection procedure, for simplicity, they were only performed for the results in Section
4.3 (Ablation 3).

4 Results

4.1 Dataset Description

To train our method, we collected 4 distinct pouring videos each of green-colored water and clear
water. This resulted in datasets with 2231 and 2237 RGB frames, respectively. We also collected a
test set of 133 images of transparent liquids in the same scene.

4.2 Segmentation performance

To evaluate the segmentation performance of the method for transparent liquids, we create a test set of
65 images of transparent containers that have varying amounts of transparent liquids (water) in them,
placed at different distances from the camera. We manually annotate the location of the transparent
liquids for the test set using Wada [2016]; however, we do not use such annotations for training.

Method Low Medium High All
Ours 0.56 0.78 0.84 0.72

Supervised (10%) 0.61 0.91 0.86 0.79
Supervised (1%) 0.52 0.54 0.38 0.50

Ours (10%) 0.56 0.80 0.78 0.71
Ours (1%) 0.38 0.60 0.53 0.51

Opaque Dataset 0.02 0.04 0.06 0.03

Table 1: Average Intersection over Union (IoU) scores on a test set of transparent liquid images, each
filled with water to varying amounts. We show the performance for subsets of images with varying
amounts of liquid in the cup (Low, Medium, and High) as well as an average over all images.

Our results for transparent liquid segmentation can be found in Table 1 as well as in Fig 4 (bottom
row). Our method generally succeeds at segmenting the liquid pixels in the image, achieving high
IoU scores across the test set. However, our method experiences a small drop in performance on
images in which the cup is filled to a high level (i.e. right-most image in “Ours” in Figure 4). We
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Figure 4: Representative segmentations of our method compared to a model trained on images of
colored liquid with segmentation labels obtained through background subtraction (“Ablation 1”),
which is unable to accurately segment the liquid.

hypothesize that such examples have regions of liquid that are distant from a liquid-cup or liquid-air
boundary; thus these cases are harder to classify when there are no refractive patterns to indicate the
presence of liquid.

4.3 Pouring Performance

Transparent Liquid
Ours (RMSE)

Colored Liquid
Background Subtraction (RMSE)

0%→ 25% 1.00± 0.43% 8.46± 2.14%
0%→ 50% 0.82± 0.67% 1.86± 0.71%
0%→ 75% 1.18± 0.74% 1.57± 0.50%
25%→ 75% 0.75± 0.49% 1.61± 0.65%

All 0.94± 0.61% 3.38± 3.18%

Table 2: Percent error of the pouring system on both transparent and colored liquids. For transparent
liquid pouring, we use our learned segmentation model; for colored liquid pouring, we use background
subtraction. Contrary to expectations, our system performs better with transparent segmentation than
with colored segmentation.

To assess the utility and effectiveness of transparent liquid segmentation in our real robotic pouring
system, we conduct a series of pouring trials. We choose four different initial fill-levels and target
fill-levels (see Table 2), and conduct 20 pouring trials for each fill-level. We measure the level of
liquid achieved upon the controller reaching the final NotPouring state, and report the average error
across each fill-level, as well as across all trials.
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Figure 5: Image translation from colored liquid to transparent liquid by our trained model; Top Row:
Real world colored liquid images from Dcolor; Bottom Row: Generated transparent liquid images

We conduct two sets of trials: first with transparent water, using our transparent liquid segmentation
system; second with green-colored water, using the background-subtraction method described in
the supplementary materials. Given the high accuracy of background subtraction, we consider this
second task to represent how the system would perform with near-perfect segmentation. We opted
not to evaluate using segmentation methods with poor performance, due to the high risk of spilling
liquid in the workspace. Results can be found in Table 2.

In the case of pouring transparent liquids, we are able to achieve the desired ratio ltarget with an
average accuracy of 0.94%, which corresponds to a roughly 0.13cm error on average. Surprisingly, in
the case of colored liquid (where background subtraction yields high-fidelity segmentation), accuracy
is worse, with an average error of 3.38% or 0.47cm error. However, when observing the system, we
noticed that the bounding box computation is sensitive to segmentations with splashing/sloshing: in
these cases, the bounding box overestimates the amount of liquid in the cup, and terminates pouring
earlier than it should. Segmentations from our model pick up less of this transient liquid, and thus
outperform the “ground-truth” segmentation. With a more sophisticated postprocessing step and
controller, these effects could potentially be mitigated.

4.4 Visual Translation

We show representative examples of the image translation achieved by our CUT-based model in Fig 5.
We observe that the network is able to translate the input image containing green-colored water pixels
into images of clear water while still capturing the same background and refraction patterns as that
in the source image. Most importantly, the transparent liquid in the synthetic images is in the same
location as the colored liquid in the original images. This property allows us to apply the background
mask from the colored liquids as the ground-truth label for the synthetic images of transparent liquids.

4.5 Visual Ablations

Ablation 1: What is the benefit of training the segmentation model on synthetically generated
transparent (instead of colored) liquid? To answer this question, we train a segmentation model
on colored liquid with color jitter and evaluate it on transparent liquid. We jitter the brightness,
contrast and hue to obtain the input image for training the segmentation model. This ablation explores
whether such color augmentation is sufficient to train a model for transparent liquid segmentation.
Quantitative results of this ablation (“Opaque Dataset”) are shown in Table 1. Qualitative results
are shown in Fig 4. The model fails to detect the correct liquid height during our evaluation. This
analysis shows that using color jitter on a colored liquid image is not sufficient domain randomization
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(b) Segmentation generalization to novel backgrounds

(a) Segmentation generalization to novel containers

Figure 6: Generalization of our transparent liquid segmentation model. In (a), we show that when our
segmentation model is trained on one specific kind of cup in a scene (top row), it is able to generalize
reasonably to unseen transparent cups in the same scene. In (b), we show that when our segmentation
model is trained on a diverse set of background images, it is able to effectively generalize to novel
backgrounds.
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to capture the texture and patterns required to segment transparent liquids, supporting the idea that
the segmentation model should be trained directly on images of transparent liquid.

Ablation 2: What is the benefit of the translation approach over using a small amount of
manually-labeled data? Since our method uses a standard supervised loss function to train the
model on synthetic data, a natural comparison is to evaluate performance when the model is trained
on images of transparent images with manual segmentation annotations. Since annotation is very
time-consuming (∼1min per image), we annotate 10% of images in the training domain, and observe
how well the model can learn to segment on two supervised subsets: 10% labeled and 1% labeled.
Additionally, we train our method on same fraction of images from our synthetic dataset. Results can
be found in the second section of Table 1.

We draw two conclusions from these results. First, both our method and the fully-supervised ablation
require substantially less data to reach their peak performance on the test set than is available:
“Ours (10%)” shows the same performance as our full method (“Ours”), and “Supervised (10%)”
outperforms our method. This is unsurprising, given that our test images are visually quite similar to
the training set. Second, with only 1% of manually-annotated labels available, the supervised baseline
(“Supervised (1%)”) performs substantially worse than our full method. While our dataset is rather
small – we were able to manually label 10% of the data – our data collection method is extremely
scalable. In large datasets it is reasonable to expect one might only have access to manually-annotated
labels for 1% of a full dataset. This provides evidence that our method would scale well to liquid
datasets where a small amount of supervised data would not provide sufficient generalization.

Ablation 3: Does the approach work if there are diverse cups and backgrounds? To evaluate
our segmentation model’s capacity to generalize to diverse cups and backgrounds, we conduct two
studies, shown in Figure 6. We first train a segmentation model on an image dataset consisting of a
single cup in a single scene with varying heights of liquids. We then evaluate on transparent cups of
different shapes with different fill levels of transparent liquid. As can be seen in Figure 6, the model
generalizes reasonably to other cups, indicating that it has learned to detect relevant liquid features
invariant a specific container. Next, we train a model on a cup in front of a diverse set of backgrounds
and various water heights, with a dataset collected as described in Section 3.4. As can be seen in
Figure 6, the model learns a segmentation function that is invariant to novel unseen backgrounds.
These two experiments demonstrate the potential of our approach to scale to a general set of scenes,
provided a sufficiently diverse dataset generated by our method.

5 Conclusion

In this paper, we propose a method to segment transparent liquid placed inside transparent containers
using static RGB images. A generative model is used to translate colored liquids to transparent
texture. We show that an encoder - decoder network can be used to predict the segmentation mask
directly from RGB images of transparent liquids without using any additional input modalities. We
use background subtraction on colored liquids to obtain the ground truth for training the segmentation
model and we do not require any manual annotations. Our method shows good results for most test
cases of transparent liquid segmentation. Finally, we demonstrate the utility of transparent liquid
segmentation on a real robotic pouring task. We hope that our method paves the way for more flexible
and robust perception of transparent liquids for robot pouring.
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