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Figure 1: Dynamic Merging and Virtual Unmerging (DyMU) adaptively reduces visual token lengths based
on image complexity, as shown on the left where simpler images are represented using fewer tokens. In contrast,
existing representations (like CLIP [34]) always use the same number of tokens regardless of image content.
Note that this limitation also exists in dynamic resolution encoders [18, 38], where token length depends solely
on image dimensions rather than complexity. DyMU applied to recent VLMs (right) maintains competitive
performance across different token compression levels. This training-free approach preserves key semantic
information, offering a more efficient plug-and-play alternative to VLMs with fixed-length visual tokens.

Abstract
We present DYMU, an efficient, training-free framework that dynamically reduces
the computational burden of vision-language models (VLMs) while maintaining
high task performance. Our approach comprises two key components. First, Dy-
namic Token Merging (DToMe) reduces the number of visual token embeddings
by merging similar tokens based on image complexity, addressing the inherent
inefficiency of fixed-length outputs in vision transformers. Second, Virtual Token
Unmerging (VTU) simulates the expected token sequence for large language mod-
els (LLMs) by efficiently reconstructing the attention dynamics of a full sequence,
thus preserving the downstream performance without additional fine-tuning. Unlike
previous approaches, our method dynamically determines token length based on
the image content—not just resolution—and operates completely training-free,
making it readily applicable to most state-of-the-art VLM architectures. Extensive
experiments on image and video understanding tasks, demonstrate that DYMU can
reduce the average visual token count by 32%-85% while achieving comparable
performance to full-length models, across diverse VLM architectures. Furthermore,
qualitative analyses show that the adaptive token reduction from DToMe aligns
well with human perception and enables users to better control computational costs
through flexible integration with additional vision tools and models.

1 Introduction

Recent large vision-language models (VLMs) follow a common approach: a visual encoder extracts
features from images or videos and projects them into the same embedding space as textual features.
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These visual embeddings are then processed by LLMs alongside textual query features, enabling
complex reasoning tasks while directly benefiting from advancements in LLM capabilities. As
expected, the quality of the final predictions from the LLM relies heavily on the richness of the
visual features and the amount of semantic detail captured by the encoder. Consequently, research
has focused on improving visual encoders to extract increasingly fine-grained features, leading to
architectures that can capture intricate details. However, this level of detail comes at a cost—the
computational burden during training and inference.

To process high-resolution images while preserving fine-grained details, modern visual encoders
generate a large number of tokenized representations. Furthermore, state-of-the-art VLMs like
LLaVA-OneVision [18] and Qwen-2.5-VL [2] use vision transformers (ViTs) that scale the number
of tokens with the resolution of the image or number of frames in videos. For example, the visual
encoder in LLaVA-OneVision would produce 9477 tokens for an image of 1280×960 resolution. In
contrast, the number of tokens in the textual queries for vision tasks is relatively low. On common
benchmarks that represent real world use cases, textual queries often consist of just a few tokens,
e.g., ∼24 on MME [11]. This stark contrast highlights that the computational burden of processing
vision-language tasks arises primarily from the visual tokens.

We first identify a critical limitation in current visual encoders (including those with dynamic
resolution): the number of tokens generated for an image does not depend on the content of the
image. As shown in Figure 1, existing visual representations, such as CLIP [34], produce the same
embedding size for a blank image with a small circle and for a complex scene depicting buildings,
vehicles, and people. To address the redundancy of visual tokens, previous work has shown initial
success with token pruning, merging, and distillation. However, these approaches remain limited in
one or more of the following key aspects: (1) They rely on pre-defined compression rates regardless of
the image complexity [3, 21, 35, 5, 20, 14, 48]; (2) They require full model retraining, which is often
infeasible for recent mainstream open-weight-only VLMs [21, 14, 20, 43, 48]; (3) They depend on
extra textual conditions, rather than implementing a natively dynamic-length visual encoder [49, 43].

In this work, we propose Dynamic Merging and Virtual Unmerging (DYMU), which comprises
two key methods for modifying existing pre-trained Vision-Language Models (VLMs). First, we
introduce Dynamic Token Merging (DToMe) (§ 3.1), which allows the visual encoder to generate
variable-length token sequences based on the complexity—not just resolution—of the image. The
core idea is to perform batch-level, rather than instance-level as in ToMe[3], bipartite merging to
determine layer-wise thresholds for dynamic token reduction.

Second, we propose a novel Virtual Token Unmerging (VTU) algorithm (§ 3.2), which allows
the LLM decoder to process shorter, dynamically reduced visual token sequences while efficiently
approximating the full-length representation. This method leverages the tracked positions of redundant
tokens to reconstruct the full attention matrix without actually performing full attention. VTU
enables the direct integration of DYMU into LLM backbones, offering a favorable trade-off between
performance and efficiency.

Importantly, both of these modifications do not require additional fine-tuning of the pre-trained
VLM. The threshold finding for DToMe only needs to be done once, offline, using any sufficiently
diverse image-only datasets. Furthermore, DToMe is compatible with any Vision Transformer (ViT)-
based visual encoder, and VTU can be applied to any LLM that utilizes Rotary Position Embedding
(RoPE) [37].

We show that VLMs modified with our methods can maintain comparable performance of the full
model while reducing the average token count by 32%-85%. Through comprehensive quantitative
analysis (§ 4.1), we verify that our method works effectively across different VLM architectures,
visual encoders, and threshold-finding datasets. We show additional insights on why variable length
reduction is favorable in terms of both performance and efficiency. Our approach also offers users
greater control over token costs compared to existing AnyRes models [18, 38, 2], which incur a fixed
token count per image based solely on resolution. In § 4.2, we demonstrate example applications
on how the number of visual tokens can be further reduced by combining DYMU with various
task-specific tools such as background removal, object detection, etc.
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2 Related Work

Efficient Vision-Language Models Recent efforts in large vision-language models (VLMs) have
primarily focused on reducing computational overhead during the pre-filling and VLM decoding
phases. That is, given a full sequence of visual tokens from a visual encoder, such as CLIP, these
approaches perform token pruning and merging [35, 5, 40, 49, 15, 23, 43], distillation [44], or
resampling [21, 14, 20, 48] to improve efficiency in either the projectors or the VLM decoder blocks.

Component
Improved

Dynamic
Length

No Addn.
Modules

Training
Free

Granularity
Control

Extra
Cond.

LLaMA-VID [21] Projector None
Fast-V [5] Decoder None
SparseVLM [49] Decoder Text
MQT-LLaVA [14] Projector None
LLaVA-Prumerge [35] Projector None
TokenPacker [20] Projector None
ATP-LLaVA [43] Decoder Text
LLaVA-mini [48] Projector None

DYMU Encoder &
Decoder None

However, we identify several key limita-
tions: (1) Most existing methods prede-
fine a fixed compression ratio for any
input image regardless of its content.
While [49] and [43] propose adaptive
token pruning frameworks that enable
variable-length compression, they re-
quire either additional textual conditions
or retraining the backbone LLM with ex-
tra modules. Such training can be costly
or infeasible as mainstream VLMs rarely open-source their full training recipe and data. (2) All
existing methods retain a frozen, fixed-length visual encoder, overlooking the potential for further
efficiency improvements within the visual encoder itself. In this work, we aim to explore a simple
training-free algorithm for building natively variable-length visual encoders, which can be directly
applied to cutting-edge VLM architectures including AnyRes models and RoPE embeddings.

Efficient Vision Transformers We also draw inspiration from a separate line of research [29, 3,
39, 45, 26] aimed at improving the efficiency of Vision Transformers (ViTs) themselves, which is
still the main go-to architecture for visual encoders [34, 47, 33]. In particular, ToMe [3] merges a
predefined number of tokens within each ViT block using bipartite soft matching. However, the
effectiveness of such methods in coordination with LLM backbones remains largely unexplored. Our
experiments in §4 show that naively applying ToMe to visual encoders in pretrained VLMs results
in a significant drop in performance. To address this issue, we further propose the Virtual Token
Unmerging algorithm to boost the performance of VLMs without training with the modified encoders
that output reduced token numbers.

3 Method

In this section, we present the main technical details of our proposed method. In § 3.1, we first
describe how to convert a fixed-length visual encoder into a natively dynamic-length encoder using
Dynamic Token Merging (DToMe). In § 3.2, we then introduce Virtual Token Unmerging (VTU),
a method that achieves a better trade-off between performance and efficiency when integrating the
dynamic-length encoder into a language model backbone. The combination of these two techniques
is referred to as DYMU—an entirely training-free approach compatible with any VLM that uses a
ViT-based visual encoder and a RoPE-based language model. An overview of the method is illustrated
in Figure 2.

3.1 Dynamic Token Merging (DToMe)

Our approach draws inspiration from ToMe[3], a prior work which reduces the number of output
tokens of a ViT-based visual encoder to a predefined fixed number. However, predefining the reduction
ratio can still lead to a misalignment between the information of an image and the number of tokens
needed for representing it. Here we propose DToMe, an extension of ToMe that adaptively merges
similar tokens in ViT layers, ensuring the output token count aligns with image complexity. DToMe
merges tokens based on a similarity threshold while maintaining a record of merged tokens to ensure
their influence is properly propagated through subsequent transformer layers. To find the thresholds,
we propose a inference-only batch-level bipartite merging algorithm which leverages the natural
variance of image complexity in randomly sampled images.
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Figure 2: Method Overview. DYMU, is composed of two key ideas: Dynamic Token Merging (DToMe) and
Virtual Token Unmerging (VTU). DToMe first determines per-layer thresholds (left) by feeding a large batch
of images into the vision transformer and computing bipartite token similarities. Unlike [3], we rank these
edges across the entire batch rather than within each instance. This naturally leads to more merges in simpler
images (with more redundancy). During inference, DToMe merges tokens on a per-image basis using these
pre-computed thresholds. We then introduce VTU (right), an efficient algorithm for reconstructing the full
attention matrix without actually performing full attention. VTU enables a better trade-off between performance
and efficiency, facilitating direct integration of dynamic-length embeddings into VLM backbones. The overall
process is entirely training-free and allows more flexible control of token budget (Figure 6).

Identifying Redundant Tokens Let us represent the output of the self-attention layer in the ViT
layer i as xi ∈ RNi×D, where Ni is the sequence length* and D is the embedding dimension.
Similarly, let the keys computed in the self-attention layer be represented by ki ∈ RNi×Dk . In each
transformer block, we apply an additional DToMe operator to xi. Following [3], we use a bipartite
soft matching strategy to identify which tokens need to be merged. First, we divide the Ni tokens
into two sets (say A and B) by assigning alternating tokens in sequence to them. We then compute a
bipartite assignment between the two sets of tokens by assigning source token t ∈ A to target token
t′ = argmax

n∈B
(ki[t]

T ki[n]) (token with the most similar key). This gives us |A| edges with scores

Si[t] = (ki[t]
T ki[t

′]) for t ∈ A. We then apply a threshold τi to retain edges t −→ t′ where Si[t] > τi.
Unlike [3], this thresholding operation leads to a variable number of retained edges depending on the
amount of redundancy demonstrated in the key embeddings ki. The key question now is: how do we
determine the thresholds without training?

Finding Redundancy Thresholds with Batch-level Bipartite Merging In order to determine the
layer-wise thresholds τi, we rely on statistics from a large dataset of images.† First, we choose a
hyper-parameter ri for each layer i which represents the number of edges we expect to merge in a
layer on average across images of all complexities. This hyper-parameter serves as a granularity
control for the user.‡ The final output would then be expected to have an average of N −

∑
i ri

tokens, where N is the input full sequence length. Using a dataset of images, we collect large
batches of size B which are used to perform forward computation through the layers of the ViT
sequentially. For each layer, we compute the B bipartite matching token edge score maps S(b)[t]
where b ∈ {1, 2, . . . , B} as previously described. We then find the threshold τi as:

τi = max

τ |
B∑

b=1

∑
t∈A(b)

I
(
S(b)[t] > τ

)
= B ∗ ri

 (1)

In words, this finds the largest threshold such that B ∗ri tokens are merged across the batch of images.
It is important to note that the number of tokens merged in each image will not necessarily be equal
to ri but the average number of tokens merged per image will be ri. Intuitively, since the ranking
of edges is over the entire batch, simpler images that have more redundant tokens will be merged
more. This process is done sequentially for each layer while only passing the remaining tokens to the
next layer to obtain thresholds for every layer. We then average the layer-wise thresholds across all

*For standard ViT without any merging, Ni is constant across layers
†We show in Appendix E that DToMe is robust to different threshold-finding datasets.
‡We include additional analysis of different ri scheduling in Appendix D
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batches to ensure that they reflect the statistics across a diverse set of images. See Figure 2 (left) for
an illustration of the proposed batch-level threshold finding.

Tracking and Merging Tokens We now describe how the merged tokens are computed. For each
token in the sequence, xi[t], we also track the set of positions of the tokens that have already been
merged into it. Pi[t] ⊂ {1, 2, . . . , N}. For each of the edges between chosen redundant tokens
t −→ t′, we compute merged token embeddings and the corresponding position sets as:

xi

[
t′
]
←− xi[t] · |Pi[t]|+ xi[t

′] · |Pi[t
′]|

|Pi[t]|+ |Pi[t′]|
(2)

Pi

[
t′
]
←− Pi

[
t′
]
∪Pi[t]; Pi[t]←− ∅ (3)

Intuitively, the representation of the target token t′ is updated to the average of xi[t
′] and xi[t],

weighted by their corresponding merged position set sizes, Pi[t
′] and Pi[t]. The source token t is

then dropped, thereby reducing the token count in the next layer.

Size Weighted Self-attention To ensure that the self-attention layers weigh each token based on
the number of tokens that were previously merged into it, we also adopt the idea of size-weighted
self-attention from [3] where the attention is computed as:

A = Softmax

QKT

√
d

+ log

 |Pi[t1]|
...

|Pi[tNi ]|


 (4)

3.2 Virtual Token Unmerging (VTU)

The language model (LLM) in a pre-trained VLM is trained to operate on a fixed number of
embeddings for each image§. When DToMe is applied to a visual encoder, this disrupts the optimized
VLM and leads to a significant drop in performance (see § 4). In this section, we present an approach
to circumvent this issue while still benefiting from processing fewer number of visual embeddings.

Consider the general case of a sequence of N embeddings e ∈ RN×D of which only Nun ≪ N rows
are unique. Let eun ∈ RNun×D be the unique embeddings and M ∈ {0, 1}N×Nun be a mapping such
that e = M eun. Here M is a sparse matrix with one-hot rows. We now ask the question: for various
operators f in an LLM, can we approximate f(e) using some efficient function of eun and M?

Sequence-independent Operators For any operator f that processes each sequence location
independently, we can express f(e) as f(e) = M f(eun) by definition. This means that we only need
to apply f to the unique embeddings eun, significantly reducing computational cost while preserving
the original outputs. Many key components of modern LLMs fall into this category, including Linear
layers, Activation functions (ReLU, GeLU, etc.), and Layer Normalization (along the embedding
dimension D). The overall complexity of the MLP layers is reduced from O(ND2) to O(NunD

2),
resulting in a linear speedup with Nun ≪ N .

Virtual Token Unmerging for Self-Attention Blocks A common layer in recent LLMs is the
Self-Attention operation with Rotary Position Embedding (RoPE). Unlike sequence-independent
operators, self-attention considers pairwise interactions between embeddings and assigns a unique
position to each of the N locations in e. Consequently, directly applying f(eun) fails to capture the
structure of e, generally leading to significant discrepancies in the output.

To address this, we provide a theoretical derivation of an efficient method to compute f(e) while
preserving the benefits of token reduction. The key insight is to reconstruct the self-attention
matrix without explicitly expanding the token sequence. We leverage the linearity of the RoPE
transformation to efficiently simulate the appropriate repetitions and the positions of the unique
embeddings, significantly reducing computational overhead while maintaining consistency with the
full sequence computation.

§AnyRes [18] leads to multiple fixed length embeddings.
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Let Q = Wqe, K = Wke and V = Wve be the full query, key and value matrices. Similarly,
Qun,Kun and Vun are the unique queries, keys and values satisfying the mapping M defined above.
The RoPE Self-Attention similarity matrix is computed as A = RoPE(Q) · RoPE(K)T .

For simplicity, let us consider the case where D = 2, so that we can write Q = [Q1, Q2] where
Q1, Q2 ∈ RN . We will follow a similar notation for all queries, keys and values. This allows us to
express each query and key as a complex number i.e. Q[n] = Q1[n] + iQ2[n]. Let θ ∈ [0, 2π)N

be the rotation angle associated with each position for RoPE. For positions n,m ∈ 1, 2, . . . N , the
RoPE-based similarity [37] is defined as:

A[m,n] = Re
(
eiθ[m]Q[m] eiθ[n]K[n]

)
= Re

(
Q[m]K[n] ei(θ[m]−θ[n]) ) (5)

where x,Re(x) denote the complex conjugate and the real part of x respectively. This can be
expanded as:

A[m,n] = (Q1[m]K1[n] +Q2[m]K2[n]) cos(θ[m]− θ[n])
+ (Q1[m]K2[n]−Q2[m]K1[n]) sin(θ[m]− θ[n])

(6)

We also have the trigonometric identities:

cos(θ[m]− θ[n]) = cos(θ[m]) cos(θ[n]) + sin(θ[m]) sin(θ[n])
sin(θ[m]− θ[n]) = sin(θ[m]) cos(θ[n])− cos(θ[m]) sin(θ[n])

(7)

Let C = diag(cos(θ)), S = diag(sin(θ)). Using Eq 6 & 7, the matrix form for self-attention
similarities is:

A = CQK⊤C + SQK⊤S + S(Q×K⊤)C − C(Q×K⊤)S (8)

where QKT = Q1K
T
1 + Q2K

T
2 , Q × K⊤ = Q1K

⊤
2 − Q2K

⊤
1 . This formulation can be applied to

queries and keys of any dimension D by repeating this for the (D/2) complex numbers obtained by
dividing the representation into two parts. In practice, a different θ is used for each of the (D/2)
components.

Using this formulation and the mapping M, we can rewrite the attention matrix in terms of the unique
queries and keys as:

A = CMQunK
⊤
unM

⊤C + SMQunK
⊤
unM

⊤S + SM(Qun ×K⊤
un)M

⊤C − CM(Qun ×K⊤
un)M

⊤S (9)

Observe CM,MTC, SM,MTS are highly sparse, each with at most N non-zero entries. These
matrices can also be pre-computed and reused across all self-attention layers. Computing QunK

⊤
un and

Qun ×K⊤
un incurs an O(N2

un) cost whereas the each of the other matrix multiplications in Eq 9 can
be efficiently computed using sparse matrix operations in O(NNun). We can then use the attention
matrix to compute the final output of the layer as: f(e) = smax( A√

D
)V = [smax( A√

D
)M ]Vun

Unfortunately, the output f(e) ∈ RN×D will not necessarily exhibit the same redundancy as e. This
in turn means that the future self-attention layers cannot benefit from the efficiency of virtual token
unmerging. In order to remedy this, before passing the output to the future layers, we re-introduce
the redundancy by averaging the embeddings in the positions that were originally equal. We denote
this re-merged output by f ′(eun,M) which can be written as:

f ′(eun,M) = (M⊤M)−1MT f(e) = (M⊤M)−1MT
smax(

A√
D

)V (10)

While the above averaging operation breaks the exactness of the future operations, we observe
empirically (see § 4) that this re-merging of tokens, that are known to be redundant, causes minimal
drop in performance.

Overall Efficiency The computation of attention matrix A incurs a cost of O(N2
unD +NNunD)

(due to the D/2 components). Followed by the softmax and sparse matrix multiplications in Eq 10
which incur a cost of O(N2 +N2

unD). Therefore, the overall complexity for RoPE Self-Attention
with Virtual Token Unmerging is O(NunND). For comparison, the full RoPE Self-Attention on a
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Table 1: Comparison of million floating-
point operations per second (MFLOPs) of the
attention blocks on full sequence and DYMU
sequence w/ and w/o VTU. N refers to full
sequence length, Nun refers to unique se-
quence length after merging. The statistics
are computed with batch size 1, head number
32, and head dimension 128. We use the fv-
core package for counting FLOPs.

Methods Avg Nun/N MFLOPs

Full Attention 576 / 576 1359.0

DYMU-low w/o VTU 89 / 576 32.4
DYMU-mid w/o VTU 195 / 576 155.75
DYMU-high w/o VTU 394 / 576 635.85

DYMU-low w/ VTU 89 / 576 64.9
DYMU-mid w/ VTU 195 / 576 311.5
DYMU-high w/ VTU 394 / 576 1272.0
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Figure 3: Accuracy vs. FLOPs. Without VTU, DYMU
achieves greater reduction in FLOPs, but also resulting in a more
significant drop in performance. Adding VTU achieves a better
trade-off between performance and efficiency, particularly at
lower token counts—for example, DYMU-mid preserves 99.2%
of the original performance while using 4.3× fewer FLOPs.

Table 2: Comparison with state-of-the-art methods for improving efficiency on LLaVA 1.5 [25]. DYMU-low
achieves 97.5% of the original full-length LLaVA baseline’s performance while using only ∼15% of the tokens.
Importantly, DYMU is entirely training-free and generally outperforms previous fixed-length, training-free
methods such as [3, 5, 49], while also enabling variable-length outputs based on image complexity.

Methods # Visual
Tokens

Compression
in Encoder GQA MMB MME

(prcp, all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

LLaVA-1.5-7B 576 - 62.0 64.6 1506,1862 86.9 69.4 66.2 58.3 30.7 63.5 63.1

Fixed Length Compression & Training-Required

MQT-LLaVA [14] 256 No 61.6 64.3 1435, - 84.4 67.6 - - 29.8 64.6 -
Prumerge [35] 32 No - 60.9 1350, - 76.3 68.5 - 56.0 - - -
Prumerge++ [35] 144 No - 64.9 1462, - 84.0 68.3 - 57.1 - - -
LLaMA-VID [21] 2 No 55.5 - - , - 83.1 68.8 - 49.0 - - -
VoCo-LLaMA [44] 1 No 57.0 58.8 1323, - 81.4 65.4 - - - - -
TokenPacker [20] 36 No 59.6 62.8 - , - 86.2 - - - 29.6 - -
LLaVA-Mini [48] 1 No 60.9 65.6 1466, - 84.4 70.4 - 57.0 36.6 68.9 -

Dynamic Length Compression & Training-Required
DiffRate [6] ∼57 Yes 57.9 - 1341, - - 66.4 - 30.6 - - -

Fixed Length Compression & Training-Free
Prumerge-no-ft [35] 32 No - - 1250, - 76.2 68.0 - 54.0 - - -
FastV [5] 128 No 49.6 56.1 - , 1490 53.4 64.4 - 50.6 26.3 - -
PDrop [40] 128 No 56.6 61.4 - , 1713 82.3 69.2 - 55.9 30.8 - -
SparseVLM [49] 128 No 57.2 62.3 - , 1721 85.0 67.8 - 55.8 29.0 - -
PiToMe [6] ∼57 Yes 59.9 - 1448, - - 69.0 - 43.0 - - -
VisionZip [42] 128 No 57.6 62.0 -, 1762 83.2 68.9 - 56.8 32.6 64.8 -

ToMe [3] 94 Yes 57.3 59.7 1357, 1673 86.8 68.9 60.5 53.2 25.6 61.0 59.2
ToMe [3] 209 Yes 59.2 62.4 1418, 1734 87.4 69.2 63.5 54.9 30.9 62.9 61.4
ToMe [3] 393 Yes 59.5 64.1 1454, 1769 86.7 68.4 65.1 55.8 30.8 66.0 62.2

Variable Length Compression & Training-Free
DYMU-low 89±27 Yes 60.8 62.1 1438, 1787 86.3 69.3 65.0 53.1 30.0 62.9 61.5
DYMU-mid 195±47 Yes 61.7 62.8 1483, 1862 86.6 69.2 65.9 55.1 30.9 65.1 62.6
DYMU-high 394±57 Yes 61.9 64.3 1498, 1846 86.8 69.9 66.1 58.0 31.5 64.5 63.2

sequence length of N would be an O(N2D) operation. Therefore, in theory, efficiency improves
approximately linearly with the number of redundant tokens in terms of FLOPs. Table 1 shows the
FLOPs comparison for the attention block under different levels of token reduction. Figure 3 further
illustrates the trade-off between performance and efficiency. We demonstrate that VTU significantly
improves performance while still maintaining lower FLOPs than full attention, especially under
more aggressive reduction regimes. In practice, we find that the wall-clock time difference for the
attention blocks and the end-to-end inference is less significant due to PyTorch’s highly optimized
dense matrix-multiplication implementations. We provide an in-depth discussion of this gap in §5.

4 Experiments

We present a comprehensive analysis demonstrating the practical benefits and efficacy of utilizing
DYMU with various visual encoders and VLMs. Implementation details on the model variants and
threshold-finding datasets can be found in Appendix A.
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Table 3: DYMU demonstrates similar efficacy on a different visual encoder, SigLIP [47]. We obtain the baseline
by following the same training recipe as LLaVA-1.5 [25]. DYMU-SigLIP-low achieves 96.1% of the baseline
performance while using ∼15% visual tokens.

Methods # Visual
Tokens GQA MMB MME

(prcp, all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

LLaVA-1.5-w-SigLIP 576 62.7 65.1 1471, 1770 85.7 68.2 66.7 57.6 30.2 59.8 62.1

ToMe [3] 114 59.3 61.4 1380, 1717 85.1 66.9 61.8 52.1 26.1 57.9 59.1

DYMU-SigLIP-low 90±26 61.3 62.5 1398, 1695 84.9 66.7 64.4 51.8 26.7 58.6 59.7
DYMU-SigLIP-mid 176±43 62.2 63.9 1442, 1744 85.0 67.4 65.2 54.5 26.7 59.5 60.7
DYMU-SigLIP-high 318±57 62.4 65.0 1449, 1765 86.0 67.6 66.0 56.8 29.4 58.3 61.6

Figure 4: Image Complexity vs Token Count and
Accuracy. The scatter plot (left) demonstrates a
strong correlation between DyMU’s token count and
image complexity score. On the right, MME accu-
racy at varying complexity levels is compared between
ToMe (fixed-length) and DyMU (dynamic-length),
highlighting the benefit of assigning additional tokens
to complex images.
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Figure 5: Importance of Virtual Token Unmerg-
ing (VTU). We ablate the performance of LLaVA 1.5
with two token reduction methods applied to the visual
encoder—ToMe (fixed-length) and DToMe (dynamic-
length). We observe that applying VTU significantly
improves performance on 8 out of 9 benchmarks, demon-
strating robustness to varied token reduction methods.

4.1 Quantitative Evaluation
Comparing Visual Token Reduction Methods for VLMs To evaluate the efficacy of our approach,
we compare it against several existing methods that focus on reducing the number of tokens in VLMs.
To the best of our knowledge, our proposed method is the first to (1) natively produce variable-
length visual tokens and (2) require neither further fine-tuning of the VLM nor additional textual
conditions. In Table 2, we present a quantitative evaluation of all methods applied to a pre-trained
LLaVA 1.5 [25] architecture on standard VLM benchmarks, including GQA [16], MMBench [27],
MME [11], POPE [22], ScienceQA [28], SEED-IMG [19], TextVQA [36], MMVet [46], LLaVA-
Bench [25]. DYMU achieves average performances of 97.5%, 99.2%, and 100.2%, relative to
the original pretrained model, while reducing the token number by 84.5%, 66.1%, and 31.6%,
respectively. DYMU also outperforms previous training-free methods while enabling varied length
output per instance. When decreasing the number of tokens, the largest performance drop occurs in
TextVQA, which aligns with our expectation—understanding visual text is highly sensitive to the
spatial locations of visual tokens, which are often disrupted by token merging. We leave addressing
this issue to future work.

Table 4: DYMU shows consistent effectiveness on an AnyRes
VLM, LLaVA-OneVision [18]. We additionally show performance
on two comprehensive video understanding benchmarks.

Methods % Visual
Tokens

Image Benchmarks Video Benchmarks
MMB MME SEED MathVista VidMME MMBVid

LLaVA-ov-7B 100% 79.3 75.8 75.6 58.0 61.3 1.18

ToMe [3] 14.4% 71.2 63.1 68.3 46.6 57.6 1.08

DYMU-ov-low ∼14.4% 73.6 68.0 72.9 47.4 59.3 1.08
DYMU-ov-mid ∼25.1% 76.0 70.3 73.7 51.7 60.1 1.12
DYMU-ov-high ∼46.5% 77.8 73.6 74.2 54.4 60.1 1.16

Compatibility with Different LLMs
and Visual Encoders DYMU can
be seamlessly integrated into multiple
variants of VLMs featuring different
LLMs, visual encoders, and pretrain-
ing strategies. In Tables 2 and 3, we
demonstrate that DYMU effectively
maintains baseline performance when
applied both CLIP [34] to SigLIP [47]
representations within the LLaVA 1.5
framework, using a Vicuna-7B [7] LLM. Furthermore, in Table 4 we evaluate DYMU on LLaVA-
OneVision [18], a recent Any-Resolution (AnyRes) model with SigLIP-so400M [1] as visual encoder
and Qwen2 [41] as LLM backbone. AnyRes enables processing images of arbitrary resolutions by
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Figure 6: Controllable Visual Token Length. DYMU enables more flexible control over computational cost.
In these examples, we combine DYMU with additional task-specific tools—background removal, OCR, or
object detection—to focus only on the relevant regions. As a result, token count is substantially reduced without
degrading performance, showcasing the flexibility of DYMU to adapt to different tasks.

segmenting them into smaller regions and encoding each individually. Our results show that DYMU
remains compatible with this complex operation on both image and video tasks.

Image Complexity vs Number of Tokens In Figure 4 (left), we show how the number of tokens
varies with image complexity. We quantify image complexity C(I) by computing the JPEG com-
pression ratio, i.e., C(I) = SJPEG(I)

H×W , where SJPEG is the size (in bytes) of the image I after JPEG
encoding, and H,W are the original height and width. For this experiment, we use CLIP-L/14-336
with DToMe -low to encode images in the MME benchmark. We observe a strong correlation between
the number of output tokens and image complexity, indicating that DToMe effectively preserves
essential details in complex images while reducing redundancy in simpler ones. We include more
qualitative visualizations in Figure 8.

Fixed vs Dynamic Token Reduction In Figure 4 (right), we categorize images into three bins based
on their complexity scores, and compare the performance of ToMe (fixed-length token reduction) and
DToMe on the MME benchmark. A key drawback of fixed token reduction is its inability to adapt
to image complexity, leading to over-compression for complex images and under-compression for
simpler ones. While our method outperforms ToMe across all complexity levels, we observe the most
significant gains on complex images, where ToMe struggles due to an insufficient number of tokens.

Importance of Virtual Token Unmerging VTU efficiently reconstructs the representation of a full
visual token sequence from a reduced set of visual tokens. To demonstrate its impact, we compare
LLaVA 1.5 variants with and without VTU. In the latter, the LLM does not undergo any modifications
and directly receives fewer tokens. In Figure 5, we evaluate this effect on two token reduction methods:
ToMe [3], which produces fixed-length sequences, and DToMe (ours). Across both cases, we observe
that applying VTU significantly improves performance on 8 out of 9 benchmarks, demonstrating its
effectiveness in preserving model capabilities despite token reduction.

4.2 Qualitative Analysis

Visualizing Variable Visual Token Length DToMe facilitates producing variable number of token
embeddings for images based on complexity of the content. In Appendix Figure 8, we visualize
the number of visual tokens for various images from nine benchmarks. For each benchmark, we
present three images corresponding to the minimum, median, and maximum token numbers output by
DYMU-low. We observe a strong correlation, both within and across different benchmarks, between
image complexity and the number of tokens retained by DYMU. In Figure 7, we further visualize the
token merging behavior at the patch level, showing that DYMU dynamically merges more tokens in
regions of low complexity.

Controllable Visual Token Length DToMe offers a key advantage over fixed token reduction
methods: cost controllability. By dynamically adjusting the number of visual tokens based on image
complexity, users gain more control over the computational cost incurred per image. This flexibility
allows flexible combination of task-specific tools with DYMU to further boost efficiency while
maintaining performance. For instance, in Figure 6, we show example applications of combining
DYMU with background removal [4], OCR [10], and object detection [31] models, to extract focused
regions and further reduce token count. Unlike existing VLMs, which impose a fixed token budget
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Figure 7: Visualization of merged patch tokens by DYMU. Patches with the same color are merged into a
single token, and the number inside each patch indicates the final merged token index. We find that the merging
adapts to the complexity of the regions: simpler regions, such as the sky or a white background, tend to be
merged more, while complex regions preserve a larger number of unique tokens.

per image regardless of content, our method enables adaptive token allocation, ensuring that simpler
regions consume fewer resources while more complex regions retain the necessary level of detail.

5 Improvement Gap Between FLOPs and Inference Time

In Table 1 and Figure 3, we show that DYMU achieves substantial FLOP reductions while pre-
serving model performance. In Table 5, we further examine inference time metrics and observe
less pronounced improvements. In this section, we provide a deeper analysis of why there exists
a non-trivial gap between FLOP reduction and actual inference time gains, particularly for algo-
rithms like DYMU that fundamentally alter attention computation. Unlike FLOPs, which serve as a
hardware-agnostic measure of algorithmic efficiency, wall-clock inference time can fluctuate due to
hardware conditions, batching strategies, and shared server workloads. Moreover, implementation
details often dominate runtime behavior—low-level kernel optimizations and computation scheduling
can introduce substantial discrepancies between theoretical and practical efficiency. For example, we
compare two implementations for computing an N×N attention matrix from two (N, D) vectors. In
Version 1, a single torch.matmul operation produces the full matrix, whereas Version 2 splits the
vectors into N/4 chunks and performs matrix multiplications on the corresponding submatrices before
combining the results. Both methods yield the same total FLOPs (339.74 MFLOPs), but Version
2 runs significantly slower (2.311 ms vs. 1.374 ms) because multiple small matrix multiplications
underutilize optimized GPU kernels. Similarly, our VTU operation decomposes large multiplications
into smaller components, achieving theoretical FLOP efficiency but incurring longer wall-clock times.
This example highlights that translating theoretical compute savings into practical speedups often
requires non-trivial engineering efforts, such as developing new kernels, efforts comparable to those
seen in works like FlashAttention [8].

6 Conclusions and Limitations
In this work, we introduced DYMU, the first training-free framework that dynamically reduces
visual token counts in VLMs based on per-image complexity. DYMU can be directly integrated
into mainstream VLM architectures that combine ViT-based visual encoders with RoPE-based LLM
backbones. Despite its effectiveness, DYMU still faces limitations on information-dense, token-
sensitive tasks, such as TextVQA [36], OCR [32], and DocVQA [30], where preserving every
fine-grained visual cue is crucial for maintaining accuracy. Addressing this issue may require future
work on complexity-aware token merging mechanisms capable of selectively retaining semantically
critical regions in information-dense scenes. Additionally, extending DYMU to reduce temporal
redundancy in videos represents a promising future direction.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets used in this work are publicly available. We also provide code as
part of supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include all details in the Section 4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide detailed information on how we evaluation is done and how the
scores are computed in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this information in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is foundational research and do not directly tied to a specific
application.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets, code and models are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide readme for how to use the code and models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing and human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing and human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

Dynamic Token Merging For DToMe, we find layer-wise thresholds using a diverse dataset of
250k images sampled from the SFT instruction tuning data of LLaVA 1.5 [25] comprising of images
from MS-COCO [24], VisualGenome [17], OCR-VQA [32], TextVQA [36] and GQA [16]. We also
ablate the choice of image datasets in §E. In general, a sufficiently diverse image set suffices, and
performance remains robust to dataset changes. Importantly, we only use the images to estimate the
thresholds (in inference mode) and do not use the associated annotations or text in any way.

DYMU variants For each visual encoder in the experiments, including CLIP [34]¶ and SigLIP [47,
1]||**, we find thresholds for three variants of the encoder by choosing different average number of
tokens to drop (ri) in each layer. We represent these variants by •-low,•-mid,•-high corresponding to
the expected average number of tokens. We also explore different VLMs including fixed-resolution
models, e.g., LLaVA 1.5 [25] and any-resolution models, e.g., LLaVA-OneVision [18].

Evaluation Details For results on LLaVA-1.5 (as in Tables 2 and 3) we leverage the official
evaluation code from LLaVA-1.5. The results on MME and LLaVA-Bench for DYMU are averaged
across three runs, as we observe a higher variance on these two tasks. We omit VQAv2 [12] and
VizWiz [13] as the evaluation server was unavailable at the time of writing. For results on LLaVA-
OneVision (as in Table 4), we leverage VLMEvalKit†† for getting the evaluation results. For ToMe [3],
we implemented the code for connecting ToMe to different VLMs under the same framework as
DYMU. All results for ToMe are evaluated with the same setting as DYMU to ensure fair comparison.
For other prior work, the results are copied from their original papers.

B Additional Analysis on Wall-Clock Inference Time

Table 5: Additional efficiency analysis comparing FLOPs and wall-clock inference times.

Methods Nun/N Attn MFLOPs Attn Inference Time End-to-End Inference Time

Full Attention 576 / 576 1359.0 9.17 131

DYMU-low w/o VTU 89 / 576 32.4 1.26 115
DYMU-mid w/o VTU 195 / 576 155.75 1.29 121
DYMU-high w/o VTU 394 / 576 635.85 2.92 132

DYMU-low w/ VTU 89 / 576 64.9 7.20 131
DYMU-mid w/ VTU 195 / 576 311.5 7.49 123
DYMU-high w/ VTU 394 / 576 1272.0 7.60 132

C Visualization of Variable Token Length

In Figure 8, we present a comprehensive visualization of example images along with their encoded
visual token counts. We use DYMU-low (based on CLIP-L/14-336) as the encoder, where the full
token length is 576. Three images are shown for each benchmark, corresponding to the minimum,
median, and maximum number of tokens, respectively. A clear correlation can be observed between
semantic richness and token count. We also note variations in the token range across different
benchmarks. For instance, ScienceQA [28], which primarily contains figures and charts, tends to
have fewer tokens than benchmarks featuring complex real-world scenes.

D Impact of Token Merging Schedule

We conduct an additional ablation study on one of the hyperparameters in DToMe, the merging
schedule, during threshold finding. As detailed in Section 3, we set a target reduction number, ri , for
each layer. By default, ri is set to a constant value across all layers. Alternatively, we can vary ri
across layers to encourage merging more or fewer tokens at different depths.

¶CLIP version: openai/clip-vit-large-patch14-336
||SigLIP with LLaVA-1.5: timm/ViT-B-16-SigLIP-384

**SIgLIP version with LLaVA-OV: google/siglip-so400m-patch14-384
††https://github.com/open-compass/VLMEvalKit
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Figure 8: DToMe Token Count Across Benchmarks. For each dataset, we show three examples processed
by our method—those yielding the fewest tokens, the median number of tokens, and the most tokens. Observe
that visually simple or nearly blank images consistently require fewer tokens, while more detailed, semantically
complex or cluttered images produce more tokens. This demonstrates how DToMe effectively adapts to image
complexity across diverse benchmarks, allocating fewer tokens to simpler content and preserving more tokens
for complex scenes.

Table 6: Ablation study on merging schedules in DToMe. We compare three strategies: constant, linear (more
merging in early layers), and reverse linear (more merging in later layers). Results show that merging fewer
tokens in early layers yields better performance, while the constant schedule provides a balanced trade-off
between performance and token count.

Schedule # Visual
Tokens GQA MMB MME(prcp,all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

Constant 195±47 61.7 62.8 1483, 1862 86.6 69.2 65.9 55.1 30.9 65.1 62.6
Linear 163±43 61.3 62.3 1437, 1767 86.2 69.4 65.3 52.1 28.8 58.6 60.8
Reverse Linear 213±49 61.8 63.8 1491, 1863 86.7 69.3 66.0 57.5 31.8 65.3 63.2

In Table 6, we present an ablation study on two alternative scheduling strategies: (1) linear, which
merges more tokens in earlier layers and fewer tokens in later layers, and (2) reverse linear, which
follows the opposite trend. The results indicate that merging fewer tokens in earlier layers tends
to yield better performance, while the constant schedule provides a balanced trade-off between
performance and token count. This observation echoes the findings in the ToMe paper [3], where a
constant schedule was found to be nearly optimal.

E Impact of Dataset for Threshold Finding

The DToMe thresholds are computed using images from the LLaVA instruction tuning dataset. Here,
we investigate the sensitivity of DToMe to the threshold estimation dataset. In Figure 9, we evaluate
DYMU-LLaVA 1.5 with DToMe thresholds estimated on the Pixmo-Cap [9] image-captioning dataset.
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Figure 9: Comparing thresholds using LLaVA Instruct Data vs Pixmo-Cap. Although both methods use the
same per-layer merging hyperparameter (ri ), the Pixmo-based thresholds lead to fewer tokens (top)—likely
due to domain differences. However, performance across a range of benchmarks shows minimal drop (bottom),
indicating the robustness of DToMe on different image datasets.

Table 7: Impact of Virtual Token Unmerging. Full results for Figure 5.

Method # Visual
Tokens GQA MMB MME(prcp,all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

ToMe [3] 94 57.3 59.7 1357, 1673 86.8 68.9 60.5 53.2 25.6 61.0 59.2
+ VTU 94 60.6 63.7 1464, 1815 85.4 69.1 64.9 54.8 28.7 62.5 61.6

DYMU-low 89±27 60.8 62.1 1438, 1787 86.3 69.3 65.0 53.1 30.0 62.9 61.5
w/o VTU 89±27 58.2 56.0 1346, 1639 86.9 67.7 60.9 51.3 25.2 58.8 58.2

We observe a minimal performance change across all the benchmarks, highlighting the robustness
of our method to dataset variation. Interestingly, we observe that the thresholds estimated using the
Pixmo-Cap dataset lead to fewer tokens during inference on the benchmarks. We hypothesize that
this is due to the domain shift between the Pixmo-Cap images and a more diverse LLaVA-instruct
dataset which covers diverse real-world use cases.

F Full Results for Figure 5

We present the complete results of the ablation experiments on the effect of our proposed Virtual
Token Unmerging, as shown in Figure 5. The results are provided in Table 7.

G Full Results for Figure 9

We present the complete results of the ablation experiments on threshold-finding datasets, as shown
in Figure 9. The results are provided in Table 8.
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Table 8: Impact of dataset for threshold finding. Full results for Figure 9.

Model Thresh Finding
Dataset

# Visual
Tokens GQA MMB MME(prcp,all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

DYMU-mid Llava 195±47 61.7 62.8 1483, 1862 86.6 69.2 65.9 55.1 30.9 65.1 62.6
DYMU-mid Pixmo 120±30 61.1 64.4 1474, 1808 86.0 69.4 65.3 56.2 30.5 63.7 62.4
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