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ABSTRACT

As deep learning models continue to increase in size and complexity, mapping their
computations efficiently onto distributed hardware has become a central challenge
in systems and compiler design. A key technique for addressing this challenge
is intra-operator parallelism, which involves partitioning individual operations
across multiple devices. This enables large-scale models to make more effective
use of available hardware while satisfying strict memory and communication
constraints. The ASPLOS / EuroSys 2025 Contest on Intra-Operator Parallelism for
Distributed Deep Learning formalized this challenge as a constrained combinatorial
optimization problem, requiring a strategy assignment for each graph node that
minimizes total cost while respecting time-varying memory limits. This paper
presents the top-performing solution to the contest, based on usage-constrained
relaxation, which incorporates memory usage directly into the cost model rather
than enforcing it as a hard constraint. Together with adaptive weight tuning, the
method guarantees valid assignments and scales to computation graphs with tens
of thousands of nodes. The solver achieves state-of-the-art results across all contest
benchmarks, consistently producing low-cost solutions within strict time limits.
The paper details the core algorithmic components and discusses their broader
applicability to compiler-level optimization in distributed deep learning.

1 INTRODUCTION

The scale and complexity of modern deep learning models have made distributed execution a necessity.
As models grow to encompass billions of parameters, they demand enormous compute and memory
bandwidth, often surpassing the capacity of any single device. Efficiently partitioning and scheduling
these computations across device meshes has therefore become a critical challenge for both system
designers and compiler developers.

A promising approach for addressing this challenge is intra-operator parallelism, which slices
individual tensor operations (e.g., matrix multiplications, elementwise ops) across multiple devices.
This strategy enables fine-grained parallelism and better hardware utilization, but it also introduces
considerable communication costs due to split and merge operations (Zheng et al.,[2022).

In contrast, inter-operator parallelism partitions the computation graph into larger sequential stages
that are mapped across devices, typically in a pipelined fashion. While it can reduce communication
overhead, inter-operator strategies are prone to load imbalance and underutilization, particularly in
sparse or irregular workloads.

The ASPLOS / EuroSys 2025 Contest on Intra-Operator Parallelism for Distributed Deep Learning
formalized the optimization of intra-operator parallelism as a constrained combinatorial problem.
Participants were tasked with selecting execution strategies for each node in a computational graph to
minimize the total cost, which includes both compute and communication, while ensuring that time-
varying memory usage remains within a global constraint. In this paper, we present the top-performing
solution to the contest, based on Cost Function Network (CFN) optimization.

CFNs, also known as weighted Constraint Satisfaction Problems (Rossi et al., |2006)), are a mathe-
matical model derived from classical constraint satisfaction problems by replacing hard constraints
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with cost functions (Allouche et al.l 2010). Each cost function assigns a non-negative integer cost to
every possible combination of values over a subset of variables. CFNs naturally capture the graph
structure of the optimization objective but struggle to enforce the strict global memory constraints.
To overcome this limitation, we use a soft formulation that integrates memory usage directly into
the objective function via adaptive penalties. This relaxation enables our approach to scale to graphs
with tens of thousands of nodes and achieve top performance across all contest benchmark instances.
Surprisingly, our solver consistently produces more cost-efficient solutions than XLA (XLA Devel;
opers} 2025)), the production-grade compiler employed in TensorFlow (Abadi et al., [2016)) and JAX
(Bradbury et al., 2018), often by orders of magnitude, as shown in the evaluation section.

Our main contributions are as follows. First, we formulate intra-operator parallelism as a CFN
optimization problem with relaxed memory constraints, allowing for more tractable solution strategies.
Second, we propose an adaptive weight-tuning algorithm that iteratively guides the solver toward
feasible low-cost solutions under tight global memory budgets. Third, we develop a scalable solver
architecture that produces high-quality results under strict time constraints and demonstrate its
effectiveness across all benchmark instances provided in the ASPLOS / EuroSys 2025 contest.

2 RELATED WORK

Efficient parallelization of machine learning workloads has been the focus of extensive research.
Early work in distributed training combined data, model, and domain parallelism to scale networks
across devices (Gholami et al. 2018} [Wang et al., 2019} [Rajbhandari et al.| [2020). While these
approaches exposed multiple axes of parallelism, they often relied on manual configuration or static
partitioning strategies.

To automate parallelism decisions, compiler-based systems were developed. GShard (Lepikhin et al.}
2021)) and GSPMD (Xu et al.||2021) introduced planner-driven compiler transformations for device
sharding. Piper (Tarnawski et al.,|2021)) unified placement and graph partitioning within a shared
framework. More recent systems such as Alpa (Zheng et al.} 2022), nnScaler (Lin et al.|[2024), and
Liger (Du et al., 2024) use cost models and solver-based optimization to automatically configure both
inter-operator and intra-operator parallelism. Notably, Alpa’s core functionality has been integrated
into XLA (XLA Developers, |[2025), adding support for automatic sharding and distributed training
(Alpa Developers}, |2023)).

In parallel, research on sharding tensor and optimizer states has reduced memory and communication
costs during training (Xu et al., 2020; Jiang et al., [2023} |Shi et al., 2023; Zhao et al.,|2023)), helping
improve training scalability. These techniques are complementary to, but distinct from, the strategy
assignment problem we focus on.

This paper addresses the joint optimization of cost and memory usage within intra-operator parallelism.
We propose a usage-constrained relaxation approach that integrates memory constraints directly into
the cost model. Unlike systems such as nnScaler and Alpa, which focus on higher-level scheduling
decisions, our method operates at the level of individual graph operations and employs an adaptive
weighting scheme to guide the solver toward feasible solutions under memory constraints. Notably,
while this scheme is loosely related to augmented Lagrangian methods from continuous optimization
(Yurkiewiczl |[1985; |[Laue et al., [2020;2022)), which absorb constraints into the objective using penalty
terms, our formulation does not rely on global multipliers or dual updates. Instead, it employs
lightweight per-node adaptive penalties specifically tailored to discrete scheduling and graph-level
resource constraints.

3 PROBLEM DEFINITION

In this section, we describe the problem definition provided in the ASPLOS / EuroSys 2025 Contest
on Intra-Operator Parallelism for Distributed Deep Learning (Moffitt & Fegade) 2025). The contest
formalizes intra-operator parallelism as a constrained combinatorial optimization problem. Each
benchmark instance is modeled as a graph, where nodes represent individual operations and are
annotated with a set of candidate execution strategies. Each strategy is associated with a node-specific
computational cost and a memory usage profile defined over a time interval. Edges in the graph
represent communication dependencies between operations, with each pair of strategies on connected
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nodes contributing an edge-specific cost. The goal is to select one strategy per node in a way that
minimizes the total cost, defined as the sum of all node and edge costs. In addition, the cumulative
memory usage at any time must remain within a predefined global usage limit. A valid solution must
therefore be both cost-efficient and feasible under temporal memory constraints throughout the graph
execution timeline.

Each benchmark instance is specified in a JSON file that fully encodes the underlying constrained
combinatorial optimization problem. Listing [T] shows an example file provided by the contest
organizers to familiarize participants with the problem format. The file defines, for each node in the
graph, a time interval during which it is active, a list of candidate strategies along with their associated
costs, and the memory usage incurred by each strategy. Additionally, it specifies the graph’s structure
through a set of edges, where each edge includes cost values that depend on the pair of strategies
assigned to its endpoints. Finally, a global usage limit is provided, indicating the maximum allowable
total memory usage at any point in time. A valid solution must assign one strategy to each node such
that this memory constraint is never violated while minimizing the overall cost.

Listing 1: JSON input format used in the contest to define the graph structure, strategy costs, and
memory constraints.

{

"intervals": [[30, 70], [40, 70], [50, 1201, [110, 140], [110, 15011,
"costs": [[15], [55, 651, [25, 45, 351, I[85, 751, [9511,

"usages": [[10]1, [25, 251, I[15, 20, 151, ([10, 101, [1511,

"edges": {

"nodes": [[O, 11, [0, 21, [1, 31, [2, 41, [3, 411,

"costs": [[30, 40], [50, 10, 4031, [90, 10, 20, 80], [60, 20, 301, [70, 60]]

}I
"usage_limit": 50

Note that edge costs are represented as matrices that define the cross-product between the strategy
sets of the two connected nodes. This structure aligns naturally with the cost function network
formulation, where each edge corresponds to a binary cost function defined over a pair of node
strategies. Figure[T]illustrates the underlying graph of the example problem with annotated node and
edge costs, omitting memory usage for clarity.

Figure 1: Problem graph with annotated node and edge costs.

A valid solver must process a JSON input file and return a feasible solution within a strict time
limit. The solution should be printed as a bracket-enclosed, comma-separated list of strategy indices,
where each index corresponds to the selected strategy for a node in the graph. For example, the
output [0, 0, 2, 1, 0] denotes a valid strategy assignment with a total cost of 445. Feasibility
is determined by ensuring that, at all time points, the aggregate memory usage remains below the
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specified global limit. Figure [2] visualizes the memory usage profile over time for this particular
solution.

node 2 { usage: 15 usage limit: 50
node 1 usage: 25 node 3 { W
node 0 { ’ usage: 10 node 4 { usage: 15

Figure 2: Memory usage over time for the solution [0, 0, 2, 1, 0]. The memory limit is
never exceeded, indicating feasibility.

To support solver development, the contest organizers released five public benchmark instances, each
modeling a real-world machine learning workload with varying graph sizes and time constraints.
These examples served as test cases for participants to design and validate their optimization strategies.
The remaining 20 benchmark instances were kept hidden and used exclusively for final evaluation.
Table 1| summarizes the key characteristics of the publicly available problems, including the number
of nodes, edges, average strategies per node, file size, and the allowed timeout for computing a valid
strategy assignment. An extended table for all 25 benchmark instances, including the hidden ones, is
included in Appendix [A]

Table 1: Public benchmark instances released by the contest organizers.

Benchmark name # Nodes #Edges Avg. strat. per node File size Timeout

asplos-2025-iopddl-A 34,932 54,801 6,119 90M 60 seconds
asplos-2025-iopddl-G 816 1,023 12,342 2.4M 120 seconds
asplos-2025-iopddl-M 32,894 47,067 8,087 67TM 180 seconds
asplos-2025-iopddl-S 28,526 38,826 8,686 57TM 240 seconds
asplos-2025-iopddl-Y 62,185 91,020 20,248 1.3G 300 seconds

Beyond their role in the contest, the benchmark suite itself is of independent interest. Curated by
Google from real production workloads and publicly available (Moffitt & Fegade, [2025)), it spans a
broad range of neural architectures, including Graph Network Simulators, U-Nets for vision, diffusion
models for generative tasks, Gemma language models, and Transformers. Both supervised fine-tuning
and inference tasks are represented. Each benchmark preserves the authentic computation graph
structure, candidate execution strategies, and time-varying memory usage profiles found in production
systems, ensuring that optimization results translate directly to real-world deep learning workloads.

4 PROPOSED METHOD

To solve the competition’s benchmark problems, we employ a combination of four complementary
techniques.

First, we verify basic feasibility by assigning each node the strategy with the lowest memory usage.
This ensures that at least one valid solution exists before any further optimization is attempted.

Second, we check whether the problem instance is sufficiently small, specifically if it contains fewer
than 2,000 nodes. For such cases, which occurred only three times among the 25 benchmark instances,
we solve the problem optimally by explicitly modeling all constraints and invoking an exact solver.

Third, for the larger instances that cannot be solved optimally within the time limits, we rely on
a technique we call usage-constrained relaxation. In this technique, memory constraints are not
enforced directly but are instead integrated into the strategy costs, producing a surrogate problem
that is significantly more tractable computationally. Because the relaxed solutions do not necessarily
satisfy the original memory constraints, we employ an outer optimization loop that iteratively tunes
the usage penalty weights. By repeatedly solving the relaxed problem with updated weights, the
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solver converges to solutions that are both feasible and near-optimal with respect to the original
objective.

Finally, because solutions are obtained from relaxed surrogate problems, additional cost reductions
are often possible. To this end, we apply a greedy post-processing step that explores local strategy
swaps which lower the cost of the original problem while preserving feasibility. The process
terminates once no further improvements can be achieved.

Because the first two techniques are less relevant for achieving a scalable and efficient solution
for intra-operator parallelism in distributed deep learning, the following subsections focus on the
remaining two techniques: usage-constrained relaxation and post-processing, with particular emphasis
on the former.

4.1 USAGE-CONSTRAINED RELAXATION

The core technique enabling scalable optimization in our solver is usage-constrained relaxation. The
key idea is to transform the original constrained optimization problem into a more tractable surrogate
by integrating memory usage directly into the cost model, rather than enforcing it as a hard constraint.

We model the problem as a Cost Function Network (CFN). Each node in the computation graph
corresponds to a variable x; whose domain D); is the set of available execution strategies. Unary
cost functions ¢;(z;) capture the computational cost of selecting strategy x;, while binary cost
functions ¢;;(x;, z;) encode communication costs across dependent operations. The goal is to find
an assignment A = (x4, ..., z,) that minimizes the global cost:

Corig(A) = Z ci(wi) + Z cij(zi, ;) (1

i (4,49)
subject to the constraints that, at every point in time, the cumulative memory usage must not exceed a
given global limit.

Memory constraints significantly increase the complexity of the optimization problem and can only
be handled explicitly for relatively small instances (up to around 2,000 nodes). Instead of modeling
them as hard, global conditions, we incorporate memory constraints directly into the cost model
by augmenting the unary cost functions. Specifically, we introduce a penalty term that increases
proportionally with the excess memory usage of a strategy. The penalized unary costs are defined as:

i) = ci(2y) +wi - (wi(zy) — ™), )

where u;(x;) is the memory usage of strategy ;, u™™ = mingep, u;(«) is the minimum usage at
node 7, and w; > 0 is a weight controlling the penalty’s strength. This shift by u;"'" ensures that the
lightest strategy at each node incurs zero penalty, preventing scale bias across nodes with different

usage ranges. The relaxed objective becomes:

Crelax(A; ’U)) = Z éz(xl) + Z Cij (xi? xj)' (3)

@ (4,4)

By tuning the weights w;, we shape the cost landscape to guide the solver toward solutions that are
both feasible and cost-efficient. To find effective values of w;, we employ an adaptive algorithm that
iteratively adjusts the weights based on feasibility feedback from the solver (see Algorithm|[I)).

This algorithm gradually aligns the relaxed objective with the true feasibility region, converging to
high-quality solutions that strictly respect memory constraints. To guarantee a valid starting point,
the penalty weights w; are initialized such that solving the relaxed CFN yields a feasible assignment
A, ensuring that the solver never returns an invalid solution. In practice, multiple solver threads are
launched in parallel with globally uniform weights sampled on a logarithmic scale (for example 0.1,
1, 10, 100) and small seed-based random perturbations are applied to enhance diversity between runs.
The logarithmic initialization makes it very likely that at least one thread finds a feasible solution in
the first attempt, as the penalty quickly dominates the original strategy costs. However, if no valid
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Algorithm 1: Adaptive Weight Optimization

Input: Initial strategy cost functions ¢;(z;), usage profiles u;(z;), global usage limit
Output: Feasible, low-cost strategy assignment A

Initialize w; such that solving the relaxed CFN yields a feasible assignment A
while not converged and within timeout do
if A is feasible then
| Reduce weights w; for all nodes to promote cost efficiency
else
Identify memory violation intervals in A
Increase w; for nodes active in violated intervals
end
Augment strategy costs: & (z;) < ¢;(x;) + w; - (u;(x;) — u™n)
Solve relaxed CFN problem using ¢; and ¢;; to obtain assignment A
end

solution is found the initialization continues on the logarithmic scale (for example 102, 10%, 105, 106).
The weights of the lowest-cost feasible solution are then used as the initial w;. Nodes that cannot
contribute to usage violations are assigned a weight of zero, while the remaining weights are adjusted
adaptively. When a feasible solution is obtained, penalties are reduced for all nodes to promote cost
efficiency. When violations occur, penalties are increased for nodes active in overloaded intervals to
restore feasibility. Through this adaptive reweighting, the solver balances feasibility and efficiency,
ensuring robustness and fast convergence even on large graphs under tight time budgets.

As a CFN solver, we use toulbar?2 (Allouche et al., 2015} [Trosser et al., [2020; [Montalbano
et al. |2022; Toulbar2 Developers) [2024), a constraint optimization engine capable of handling
large-scale instances involving tens of thousands of variables efficiently. In principle, any integer
linear programming (ILP) solver could serve as a backend for iteratively tuning the weights w;,
as the problem does not strictly require a cost function network formulation. However, during
implementation, toulbar?2 consistently outperformed the state-of-the-art ILP solver Gurobi
(Gurobi Optimization, LLC} 2025), making it our backend of choice.

4.2 POST-PROCESSING

Solutions computed during the execution of Algorithm[I] which repeatedly solves the relaxed CFN
problem, correspond to a surrogate objective rather than the original constrained optimization problem.
Although these solutions are often feasible and of low cost, they can frequently be further improved.
To address this, we apply a greedy post-processing step. Given a feasible assignment from the relaxed
problem, this refinement procedure explores local strategy swaps at individual nodes that reduce
the original objective while maintaining feasibility with respect to the memory constraints. Using
the example from Listing [T} Figure 3]illustrates a single local swap that reduces the total cost. Note
that to perform a local, node-based strategy swap, it is sufficient to consider only the memory usage,
the unary cost of the strategy itself, and the binary edge costs between the node and its immediate
neighbors (i.e., predecessors and successors in the graph). This localized scope allows for efficient
evaluation of potential improvements without requiring recomputation of the full objective.

30455410 =105

Figure 3: Local strategy swap. In the initial assignment (left), node 1 selects its second strategy.
Switching to the first strategy (right) lowers the total cost while preserving feasibility under memory
constraints.
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5 EVALUATION

In this section, we first present the official contest results, highlighting the performance of our solver
in comparison to other submissions. Second, we compare our solver against XL A on all benchmark
instances. Third, we evaluate the quality of the solutions produced by our solver by comparing them
to lower bounds where available. Finally, we analyze the solver’s convergence behavior, focusing
on how quickly it reaches high-quality solutions. The hardware used for both the official contest
evaluation and the XL A measurements was a Linux virtual machine with an AMD EPYC 7B12
processor, limited to 8 cores and 32 GB of RAM. The lower-bound and convergence evaluations were
conducted on nodes equipped with two Intel Xeon Gold 6140 CPUs (18 cores each, 2.3 GHz) and
192 GB of RAM. However, in line with the competition rules, we restricted our jobs to 8 cores and
32 GB of RAM. The solver code and evaluation scripts are included in the supplementary materials
and will be released upon acceptance.

5.1 OFFICIAL CONTEST RESULTS

In total, twenty teams submitted a functional solver. The contest organizers evaluated each submission
on twenty withheld real-world benchmark instances (Moffitt & Fegade], 2025). A detailed description
of all benchmark characteristics and instances is provided in Appendix [A] Each team’s solver was
executed under a strict timeout constraint specific to each benchmark instance. Scoring was based on
cost minimization. For each benchmark instance, the total cost of a team’s solution was compared
against the best cost achieved by any team on that instance. The normalized score for a benchmark
instance was computed as score; ;, = min_cost;, / cost; ;, where ¢ is the team and b is the benchmark
instance. A higher score reflects a lower cost. The overall team score was the sum of its normalized
scores across all benchmarks. A detailed example illustrating how the evaluation scores were
computed is provided in Appendix [B] Note that lower-cost solutions generally translate into shorter
step times during training and inference, and as such directly improve overall system efficiency and
scalability.

The evaluation across the 20 hidden benchmark instances resulted in a distribution of normalized
scores as shown in Figure ] The first-place submission corresponds to the solution presented in this
paper. The individual total scores of the top six ranked teams were as follows: 18.74, 13.84, 13.19,
9.31, 7.92, and 6.56.
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Figure 4: Final scores of all teams on the 20 hidden benchmark instances.

While the score of 18.74 was sufficient to secure first place, closer inspection of the results revealed
suboptimal performance on two specific benchmarks: W and V. These were caused by bugs in the
solver, which have since been corrected. After addressing these issues, the improved version of the
solver achieves an estimated score approaching the theoretical maximum of 20. Appendix [C]contains
detailed evaluation results of the solver on all 25 benchmark instances, including comparisons across
the top six ranked teams.
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5.2 COMPARISON TO XLA

Thanks to support from Google, we obtained official evaluation results for all 25 benchmark instances
using XLA (XLA Developers, [2025)), the production-grade compiler employed in TensorFlow (Abadi
et al.,2016) and JAX (Bradbury et al.| 2018), executed on the same contest hardware. Figure|§] shows
normalized scores comparing our fixed solver variant to XL A and to the second- and third-place
contest submissions. Scores are capped at 1.0 and represent the ratio of the best-known cost to that of
each method. XLA consistently underperforms on most benchmarks and fails entirely on challenging
cases such as W and X. In contrast, our solver achieves top scores across the full benchmark suite,
including on instances like V and W, where the original contest version had previously struggled.

1.0 7 Team
=—o— This paper
& 05 2nd
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== XLA
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Figure 5: Normalized scores for all 25 benchmark instances comparing the fixed version of our solver
to the second and third place teams and to XLA. A higher score indicates a lower cost relative to the
best solution found for that instance.

5.3 DEVIATIONS FROM LOWER BOUNDS

The competition results demonstrate that our solver performs best relative to other teams and to XLA
(XLA Developers}, 2025). To contextualize these results more rigorously, we compare the costs of our
solutions, obtained under competition timeouts of at most 5 minutes, with lower bounds computed
using Gurobi (Gurobi Optimization, LLC, [2025). We selected six instances, representing a diverse
set of base models, Graph Network Simulator (GNS), U-Net (UN), Gemma 1 (G1), and Gemma 2
(G2), from the competition benchmark, for which computing a meaningful lower bound was feasible.
For each of these instances, Gurobi was run for up to 48 hours. Instances B, G, and V were excluded
from this comparison, as they are small enough to be solved optimally by our solver. Although it
remains unclear whether Gurobi’s lower bounds are achievable in general, our solver produces
solutions close to these bounds in most cases. As shown in Table[2] only for instance A does the cost
exceed the lower bound by more than a factor of two.

Table 2: Comparison of our solver’s total cost to lower bounds (LB) computed with Gurobi. The
last row reports the relative gap, i.e., the ratio between our solver’s cost and the lower bound.

Instance (Model) A (GNS) K (GNS) L (UN) M (G1) R (G2) S (UN)

This paper 6.57e+09 2.27e+09 1.97e+09 4.99e+10 3.72e+11 1.53e+09
LB 2.96e+09 1.79e+09 1.60e+09 4.69e+10 2.56e+11 1.51e+09
Cost /LB 222 1.27 1.23 1.07 1.45 1.02

5.4 SOLVER CONVERGENCE

In this subsection, we analyze the convergence behavior of our solver for the instances of the previous
subsection. Figure[6|shows the cost trajectory over time, where the y-axis indicates the relative cost
compared to the best solution. For instances 2, L, and M, the solver converges within just a few
seconds. The remaining instances require several iterations to reach their best results. Nevertheless,
even for these more challenging cases, the initial solution is already close in quality to the final one.

The fast convergence behavior is not limited to the representative instances shown in Figure ] Our
solver shows similarly rapid progress toward low-cost solutions more generally, as illustrated by the
convergence plot for the four largest benchmark instances included in Appendix [D]
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Figure 6: Convergence behavior of our solver on six representative benchmark instances. The y-axis
shows the relative cost (i.e., current cost divided by the best cost found), and the x-axis represents
time. Shaded regions indicate confidence intervals over 10 random seeds.

6 DISCUSSION

The results of our solver in the ASPLOS / EuroSys 2025 contest highlight the effectiveness of
usage-constrained relaxation as a strategy for solving large-scale, constraint-heavy optimization
problems in distributed deep learning. By converting strict memory constraints into soft penalties and
tuning them adaptively, we enable flexible exploration of the solution space without compromising
feasibility or quality.

Our formulation also lends itself well to integration into modern compiler infrastructures such as
Alpa (Zheng et al., 2022), XLA (XLA Developers, 2025)), or TVM (Chen et al., 2018). Because
memory usage is incorporated directly into the cost function, the method can be combined with
multi-objective optimizers or extended to other resource dimensions such as bandwidth or power.
Since the technique is backend agnostic, it can also be paired with alternative solvers beyond the
CFN model used here. Integration with XL A has already begun in collaboration with the contest
organizers.

The ability to efficiently compute high-quality intra-operator strategies further benefits higher-level
compiler decisions. Systems for inter-operator parallelism, such as pipelining or stage partitioning,
must often assume fixed intra-operator costs or rely on coarse approximations. Our solver provides
realistic estimates fast enough to embed directly into inter-operator search, enabling more informed
pipeline-level decisions and better end-to-end performance across heterogeneous device meshes.

Finally, adaptability through weight tuning opens up possibilities for user-guided optimization at
compile time, such as adjusting trade-offs between speed and memory efficiency. Beyond compiler
integration, the same principles extend naturally to other combinatorial optimization problems with
hard constraints, including device placement, tiling, or joint execution—communication optimization,
by embedding feasibility requirements directly into the objective function in an adaptive and scalable
way.

7 CONCLUSIONS

We presented a scalable solution to intra-operator parallelism based on usage-constrained relaxation,
which integrates memory constraints into the cost model via adaptive penalties. Despite its simplicity,
this approach enables our solver to handle large graphs efficiently and consistently produces valid,
low-cost solutions within strict time budgets. By combining cost function networks, adaptive
weight tuning, and greedy refinement, the solver achieves state-of-the-art performance on real-world
benchmark problems. Compared to XLA, our solver consistently produces solutions that are often
orders of magnitude lower in cost, particularly on large problem instances. Looking ahead, this
relaxation-based strategy, combined with adaptive per-node weight adjustments, provides a general
framework for tackling other resource-constrained optimization problems in deep learning systems.
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REPRODUCIBILITY STATEMENT

The source code of the solver and all experiments is included in the supplementary materials. The
main steps needed to reproduce the experiments are as follows:

1. Create a Python environment with the required dependencies. This is best done
with uv. Installation instructions are available at https://docs.astral.sh/uv/
getting-started/installation/. Any other compatible package manager will
also work.

2. Download the benchmark instances from https://github.com/google/iopddl/
tree/main/benchmarks. A script to download and unpack them is included in the top
level README . md.

3. Each experiment is placed in its own folder and includes a script for execution. More details
can be found in the top level README . md.

The experiments include a prebuilt static binary of the solver that works on 64-bit x86 Linux-
based systems. For convenience, we also provide a Dockerfile that builds and runs the solver and
experiments on any platform that supports Docker.
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A BENCHMARK INSTANCES

The benchmark suite captures a wide spectrum of scheduling and memory optimization challenges
encountered in realistic distributed deep learning workloads. Figure [7 provides an overview of all
25 benchmark instances used in the ASPLOS / EuroSys 2025 contest on Intra-Operator Parallelism
(Moffitt & Fegade| 2025)). The table summarizes key characteristics for each instance, including:

Base Model: The underlying neural architecture, spanning Graph Network Simulator (GNS), U-Net
(UN), Gemma 1 (G1), Gemma 2 (G2), Transformer, and Diffusion models.

Task: Either Supervised Fine-Tuning (SFT) or Inference.

Device Mesh: The logical layout of devices available for parallelization, impacting strategy granular-
ity and communication.

Crosscuts: Whether artificial crosscutting edges have been added to enforce identical strategies for
structurally duplicated nodes (e.g., from loop unrolling).

oo-elim: Whether infeasible (infinite-cost) strategy combinations were removed during preprocessing.
#Nodes / #Edges: Size of the computational graph.

Avg. Strat.: The average number of viable strategies per node, indicating the branching factor of the
search space.

Filesize: Size of the serialized benchmark graph.
Timeout: Time limit used during evaluation.

Subset: Indicates whether the instance was part of the public or private set. Public instances were
available for development, while private ones were withheld until the final evaluation.

Benchmark Name Base Model Task Device Mesh Crosscuts? co-elim? #Nodes #Edges Avg.Strat. Filesize Timeout Subset

asplos-2025-iopddl-A GNS SFT [4, 8] v 34,932 | 54,801 6.119 90M 60 sec. | public
asplos-2025-iopdd1-B | Transformer |Infer. [4, 8] v 816 1,096 12.485 3.0M 60 sec. | private
asplos-2025-iopdd1-C | Gemma 1 (2B) | SFT [8, 81 v 32,894 | 52,234 8.087 83M 60 sec. | private
asplos-2025-iopddl-D | Gemma 1 (7B) | SFT [8, 8] v 40,958 | 68,635 8.792 139M 60 sec. | private
asplos-2025-iopdd1-E | Gemma 1 (9B) | SFT [8, 81 v 59,711 | 93,338 9.630 226M 60 sec. | private
asplos-2025-iopdd1-F | Gemma 1 (27B) | SFT [8, 16] v 65,335 | 102,613 9.619 249M | 120 sec. | private
asplos-2025-iopdd1-G | Transformer |Infer. [2, 16] 816 1,023 12.342 24M| 120 sec. | public
asplos-2025-iopddl-H | Gemma 2 (9B) | SFT [8, 81 v 56,833 | 91,053 9.291 210M | 120 sec. | private
asplos-2025-iopdd1-I | Gemma 2 (27B) | SFT [8, 16] v 62,185 | 100,112 9.284 232M | 120 sec. |private
asplos-2025-iopddl-J Diffusion SFT [2, 16] v 60,206 | 102,187 9.050 166M | 120 sec. | private
asplos-2025-iopdd1-K GNS SFT [2, 16] 34,932 | 49,674 6.122 28M | 180 sec. | private
asplos-2025-iopddl-L U-Net SFT [4, 8] v 28,526 | 44,512 9.085 95M | 180 sec. | private
asplos-2025-iopdd1-M | Gemma 1 (2B) | SFT [s, 8] 32,894 | 47,067 8.087 67M | 180 sec.| public
asplos-2025-iopdd1-N | Gemma 1 (7B) | SFT [8, 81 v 40,958 | 41,606 8.223 31IM| 180 sec. | private
asplos-2025-iopdd1-0 | Gemma 1 (9B) | SFT [8, 81 59,711 | 83,862 9.630 177M | 180 sec. | private
asplos-2025-iopdd1-P | Gemma 1 (27B) | SFT | [8, 16] @@ v 65,335 | 100,547 2.796 16M | 240 sec. | private
asplos-2025-iopdd1-Q | Gemma 2 (9B) | SFT | [8, 8] @1 v 56,833 | 91,053 7.456 114M | 240 sec. | private
asplos-2025-iopdd1-R | Gemma 2 (27B) | SFT [8, 161 v 62,185 | 54,990 8.637 48M | 240 sec. | private
asplos-2025-iopddl-S U-Net SFT [2, 16] 28,526 | 38,826 8.686 57M | 240 sec. | public
asplos-2025-iopdd1-T Diffusion SFT [4, 8] v 60,206 | 41,764 8.940 44M | 240 sec. | private
asplos-2025-iopdd1-U GNS SFT | [2, 4, 4] v 34,932 | 20,188 8.079 26M | 300 sec. | private
asplos-2025-iopddl-V | Transformer |Infer.| [2, 4, 4] 816 1,023 29.086 18M | 300 sec. | private
asplos-2025-iopdd1-W Diffusion SFT | [2, 4, 4] v 60,206 | 101,975 16.030 1.1G| 300 sec. |private
asplos-2025-iopdd1-X | Gemma1(9B) | SFT | [4, 4, 4] v 59,711 | 50,755 19.240 | 262M | 300 sec. | private
asplos-2025-iopdd1l-Y | Gemma 2 (27B) | SFT | [4, 4, 8] 62,185 | 91,020 20.248 13G| 300 sec. | public

Figure 7: Overview of all 25 benchmark instances from the ASPLOS / EuroSys 2025 contest. Each
row corresponds to a different instance with detailed metadata including model type, graph structure,
strategy complexity, and resource constraints.

B COMPUTATION OF NORMALIZED SCORES

To illustrate how evaluation scores were computed, Table [3|shows a hypothetical example involving
three benchmark instances. For each instance, the score of a team is calculated by dividing the
minimum cost achieved on that instance by the team’s cost. The total score is the sum of these
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normalized scores across all benchmarks. In this example, Team A achieves the highest total score
and is therefore ranked first.

Table 3: Example evaluation: raw costs, normalized scores, and total rankings across three fictitious
benchmark instances X, Y, and Z.

Raw cost Score Total Rank
X Y Z X Y Z Score

Team A 100 500 800 1.000 0.400 0.500 1.900
Team B 300 200 900 0.333 1.000 0.444 1.778
Team C 600 700 400 0.167 0.286 1.000 1.452

Min. Cost 100 200 400

Team

W N =

C FULL COMPETITION RESULTS OF THE TOP SIX TEAMS

Table [] presents the full cost and score results across all benchmark instances for the top six teams
in the ASPLOS / EuroSys 2025 contest. For each instance, we report the cost and corresponding
normalized score achieved by our solver, as well as by the second through sixth place teams.
Additionally, the final column shows the cost produced by the XLA (XLA Developers| 2025
compiler for comparison. The lowest (i.e., best) cost for each benchmark instance is highlighted in
bold.

Table 4: Official contest results on all 25 benchmark instances.

Instance  This paper 2nd place  3rd place 4thplace Sthplace  6th place XLA

A Cost 6.57e+09 6.55e+09 6.57e+09 1.40e+10 6.87e+09 2.29¢+10 1.32e+10
Score 1.00 1.00 1.00 0.47 0.95 0.29 0.50

B Cost 5.33e+05 5.33e+05 5.71e+05 1.25¢+07 9.08e+06 1.19e+08  9.90e+05
Score 1.00 1.00 0.93 0.04 0.06 0.00 0.54

C Cost 8.41e+10 9.17e+10  1.38e+11 3.56e+11 4.54e+11 2.24e+12 4.20e+12
Score 1.00 0.92 0.61 0.24 0.19 0.04 0.02

D Cost 3.14e+11 3.16e+11  4.79e+11 6.22e+11  2.00e+18 1.52e+12 N/A
Score 1.00 0.99 0.65 0.50 0.00 0.21 N/A

E Cost 3.39e+11 3.67e+11  4.0le+11 4.48e+11 2.00e+18 5.74e+11 6.64e+12
Score 1.00 0.92 0.85 0.76 0.00 0.59 0.05

F Cost 3.64e+11 4.35e+11  4.40e+11 6.63e+11  2.00e+18 9.39e+11  2.79e+12
Score 1.00 0.84 0.83 0.55 0.00 0.39 0.13

G Cost 2.17e+05 2.17e+05 3.62e+05 7.26e+06 1.18e+06 5.58¢+07 1.26e+06
Score 1.00 1.00 0.60 0.03 0.18 0.00 0.17

H Cost 5.28e+11 5.78e+11  6.42e+11 6.87e+11 2.00e+18 8.55e+11 7.75e+12
Score 1.00 091 0.82 0.77 0.00 0.62 0.07

I Cost 5.84e+11 6.55e+11  6.79e+11 1.03e+12 2.00e+18 1.50e+12 6.55e+12
Score 1.00 0.89 0.86 0.56 0.00 0.39 0.09

j Cost 1.36e+12 1.38e+12  1.47e+12 6.03e+12 1.46e+12 6.34e+20 N/A
Score 1.00 0.98 0.93 0.23 0.93 0.00 N/A

K Cost 2.27e+09 322e+09  5.63e+09 1.23e+10 5.01e+09 2.03e+10 N/A
Score 1.00 0.71 0.40 0.18 0.45 0.11 N/A

L Cost 1.97e+09 2.34e+09 2.03e+09 7.57e+09 2.15e+09 7.29¢+09 N/A
Score 1.00 0.84 0.97 0.26 0.92 0.27 N/A

M Cost 4.99¢+10 6.69¢+10  1.15e+11 3.25e+11 7.46e+10 8.36e+11 N/A
Score 1.00 0.75 0.43 0.15 0.67 0.06 N/A

N Cost 2.03e+11 1.50e+13  7.18e+11 6.06e+11 5.87e+11 1.33e+12 N/A
Score 1.00 0.01 0.28 0.33 0.35 0.15 N/A

Continued on next page
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Instance  This paper 2nd place  3rd place  4thplace  Sthplace  6thplace XLA

o) Cost 2.23e+11 2.62e+11  5.65e+11 3.80e+11 5.12e+11 5.18e+11 N/A
Score 1.00 0.85 0.39 0.59 0.43 0.43 N/A
p Cost 6.62e+11 7.76e+11  6.67e+11  9.40e+11 1.21e+12 9.53e+11  6.52e+11
Score 0.98 0.84 0.98 0.69 0.54 0.68 1.00
Cost 5.28e+11 527e+11  6.3%+11 6.63e+11 1.35e+12 8.76e+11  2.00e+12
Q Score 1.00 1.00 0.82 0.79 0.39 0.60 0.26
R Cost 3.72e+11 247e+13  1.18e+12 7.47e+11 6.02e+11 1.53e+12 N/A
Score 1.00 0.02 0.31 0.50 0.62 0.24 N/A
S Cost 1.53e+09 1.96e+09  2.46e+09 3.31e+09 2.43e+09 8.58¢+09 N/A
Score 1.00 0.78 0.62 0.46 0.63 0.18 N/A
T Cost 6.83e+11 2.03e+13  1.55e+12  1.08e+12 7.80e+11 1.45e+12 N/A
Score 1.00 0.03 0.44 0.63 0.88 0.47 N/A
U Cost 2.57e+09 6.75e+10  7.36e+09  6.60e+09 5.06e+09 8.70e+09 N/A
Score 1.00 0.04 0.35 0.39 0.51 0.30 N/A
vV Cost 2.21e+06 1.63e+06 4.45e+06 6.25¢+07 9.54e+06 2.51e+08 N/A
Score 0.74 1.00 0.37 0.03 0.17 0.01 N/A
W Cost 9.04e+20 1.18e+13  1.19e+13  1.85e+13  1.65e+13 2.25e+13 N/A
Score 0.00 1.00 0.99 0.64 0.72 0.52 N/A
X Cost 2.80e+11 8.39¢+12  7.47e+11  4.55e+11  3.68e+11 536e+11 N/A
Score 1.00 0.03 0.38 0.62 0.76 0.52 N/A
% Cost 6.21e+11 8.0le+11 3.26e+12 1.62e+12 1.09e+12 1.47e+12 N/A
Score 1.00 0.78 0.19 0.38 0.57 0.42 N/A

D CONVERGENCE RESULTS ON THE LARGEST INSTANCES

In the main paper, we demonstrated strong convergence behavior on benchmark instances for which
we were able to compute lower bounds using Gurobi (Gurobi Optimization, LLC} 2025). To further
substantiate the robustness of our approach, we now examine convergence behavior on the four largest
benchmark instances: F, W, X, and Y. Figure E] shows the relative cost over time, measured against the
best solution found. Despite the increased complexity and scale of these benchmark instances, our
solver quickly converges to high-quality solutions.
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Figure 8: Convergence behavior of our solver on the four largest benchmark instances. The y-axis
shows the relative cost (i.e., current cost divided by the best cost found), and the x-axis represents
time. Shaded regions indicate confidence intervals over 10 random seeds.

E ABLATION STUDY ON GREEDY POST-PROCESSING

In this section, we present an ablation study of the greedy post-processing step in our solver, which is
applied after finding a feasible usage-relaxed solution. We compare solver performance with and
without this step by calculating the reduction percentage, defined as (CoStpefore — COStafier) / COSthefore-
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The results for the six representative benchmark instances used in the main paper are shown in
Figure 9] Greedy post-processing is most beneficial early in the optimization process, when the
weights are not yet well tuned. This is intuitive, as such solutions leave more room for further
improvement. On instances that quickly converge near the optimum, such as A, L, and M, the effect
of post-processing is negligible.
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Figure 9: Reduction percentage of the greedy post-processing on the six representative instances.
Shaded regions indicate confidence intervals over 10 random seeds.

We ran the same experiment on the four largest benchmark instances: F, W, X, and Y. The results are
shown in Figure[TI0] While greedy post-processing is less effective on these larger instances, it still
provides benefits, particularly when the solver struggles to find good solutions early on, similar to the
behavior observed in the previous six benchmark instances.
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Figure 10: Reduction percentage of the greedy post-processing on the four largest instances. Shaded
regions indicate confidence intervals over 10 random seeds.

F LLM USAGE

Large Language Models (LLMs) were used as supportive tools during the preparation of this paper.
They assisted in refining the writing style of individual sentences, suggesting alternative phrasings
for clarity, and improving the readability of technical explanations. LLMs were also consulted for
feedback on figure captions, aesthetics, and layout suggestions. They were not involved in developing
research ideas, designing methods, conducting experiments, or analyzing results. All technical
contributions and findings were produced independently by the authors and carefully verified. The
authors take full responsibility for the accuracy and originality of the final paper.
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