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Abstract

Ovarian cancer is a highly fatal type of gyne-001
cologic cancer, with over 70% of cases diag-002
nosed at an advanced stage due to mild and003
nonspecific symptoms. This delayed diagnosis004
involves intensive treatments, such as surgery005
and chemotherapy. These treatments widely006
use platinum-based compounds and taxanes,007
which are highly effective but can cause se-008
rious adverse reactions. Identifying adverse009
drug reactions (ADRs) efficiently is essential010
in managing these side effects and ensuring011
that patients receive the most effective and012
safest medical care possible. In this work, we013
present OvaCer, a novel multi-labelled multi-014
modal dataset thoroughly developed for ovar-015
ian cancer pharmacovigilance. This dataset016
includes 1500 records containing vital details017
such as drug name, duration of drug use, ad-018
verse effects, severity levels, post-effect actions,019
and reference images used during ovarian can-020
cer treatment. In order to further enhance its021
adaptability for pharmacovigilance objectives,022
we have incorporated gold-standard summaries023
of patient experiences. Recognizing the po-024
tential of large language models (LLMs) in025
summarization, we conducted a comprehen-026
sive evaluation of several pre-trained models,027
including GPT-3.5, T5, BART, FlanT5, and028
clinical models like PMC LLaMA in medical029
summarization. Our results show that LLMs030
demonstrate varying degrees of effectiveness031
in clinical summarization tasks, with GPT-3.5032
significantly outperforming other models.033

1 Introduction034

Ovarian cancer is ranked as the third most fre-035

quently diagnosed type of gynecologic cancer036

worldwide and appears to be a significant public037

health issue (Momenimovahed et al., 2019). It re-038

mains the leading cause of gynaecological cancer-039

related deaths in developed countries (Kurnit et al.,040

2021a). Despite advancements made in treatment041

methods, this disease continues to have a high mor- 042

tality rate, with more than 70% of patients relaps- 043

ing within the first five years after being diagnosed 044

(Kuroki and Guntupalli, 2020; Stewart et al., 2019; 045

Kurnit et al., 2021b). Pharmacovigilance is the 046

scientific study and set of actions focused on find- 047

ing, evaluating, understanding, and preventing any 048

harmful effects or other issues related to drugs. The 049

majority of ovarian cancer cases are detected at an 050

advanced stage, necessitating aggressive treatment 051

methods that are frequently toxic. Adverse drug 052

reactions (ADRs) are common in oncology, with 053

approximately 10-20% of cancer patients experi- 054

encing severe ADRs that require medical interven- 055

tion. Chemotherapy drugs used to treat ovarian 056

cancer, such as platinum-based compounds and 057

taxanes, are known to have serious side effects. 058

Effective pharmacovigilance can help to reduce 059

ADRs, improve treatment adherence and outcomes, 060

and lower hospitalization rates. 061

Impact of research : Pharmacovigilance studies 062

have important implications in the field of ovarian 063

cancer, as they address the widespread problem 064

of under-reporting adverse drug reactions. Physi- 065

cians often prioritize drug efficacy, sometimes over- 066

looking ADRs as normal occurrences. Proactive 067

pharmacovigilance enhances spontaneous report- 068

ing, which is crucial for gathering critical ADR 069

information. These insights can prompt competent 070

authorities to make informed decisions about each 071

drug, such as discontinuing use, adjusting dosages, 072

or taking other necessary steps that significantly 073

improve treatment outcomes, benefiting society by 074

raising the standard of ovarian cancer care. 075

Furthermore, pharmacovigilance agencies utilize 076

surveillance systems like FAERS (Li et al., 2014) 077

to monitor drug safety post-market, but these sys- 078

tems face challenges such as under-reported and 079

delayed data collection (Sarker et al., 2015). Man- 080

ual data collection also hinders clinical evidence 081

gathering for pharmacovigilance (Thompson et al., 082
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2018). To address these issues, our research intro-083

duces OvaCer to streamline data availability for084

pharmacovigilance in ovarian cancer treatment. To085

sum up, our key contributions include:086

• We introduce OvaCer, the first multi-labeled087

multimodal dataset for ovarian cancer, aimed088

at enhancing pharmacovigilance research and089

cancer care.090

• We gather detailed annotations to provide spe-091

cific and broad information about patients and092

conditions.093

• We comprehensively evaluate pre-trained094

Large Language Models (LLMs) like GPT-095

3.5, T5, BART, FlanT5, and clinical models096

like PMC LLaMA to assess their effective-097

ness and limitations in medical summarization098

tasks.099

2 Related Works100

Pharmacovigilance in Oncology: In recent years,101

the detection and assessment of drug reactions as-102

sociated with cancer treatments have drawn a lot103

of attention because of their potential impact on104

patient safety and treatment outcomes. While anti-105

cancer drugs have been thoroughly researched and106

proven to be highly effective in cancer treatment,107

they should be used with caution due to their high108

toxicity and narrow therapeutic window (Gandhi109

et al., 2005). Although these drugs effectively tar-110

get and treat a variety of cancers, they also carry111

the risk of adverse drug reactions, which can range112

from mild and manageable to severe and require113

hospitalization (Shaikh and Nerurkar, 2022). A114

2010 review of 95 articles identified that inaccu-115

rate reporting of adverse events could lead to more116

hospitalizations (Leendertse et al., 2010). Adverse117

Drug Reactions (ADRs) in oncology are common118

and often predictable, making them an essential119

part of the treatment process (Lau et al., 2004).120

However, it is common for oncology ADRs to go121

unreported because the adverse effects are often122

considered inevitable (Baldo and De Paoli, 2014).123

According to a few studies, follow-up calls can124

be effective in collecting information about ad-125

verse events (Monestime et al., 2021) and manag-126

ing symptoms. However, there is limited evidence127

on the efficacy of follow-up calls for identifying ad-128

verse events that were not reported to a healthcare129

provider (Salmany et al., 2018; Spoelstra, 2017;130

Eldeib et al., 2019).131

Nevertheless, in recent years there has been sig-132

nificant progress in the accurate reporting of ad- 133

verse drug reactions in oncology. Furthermore, 134

the deployment of digital pharmacovigilance sys- 135

tems has the potential to improve cancer patients’ 136

quality of life by facilitating the timely reporting 137

of adverse reactions (Salathé, 2016; Khozin et al., 138

2017). Scientific societies are also making signifi- 139

cant progress toward developing guidelines, tools, 140

and platforms for reporting ADRs in clinical trials 141

and oncology research (Absolom et al., 2017; Levit 142

et al., 2018). 143

Clinical Datasets: The current datasets, such 144

as the PSB 2016 social media shared task dataset 145

(Sarker et al., 2016), the Medline ADE corpus 146

(Gurulingappa et al., 2012), the CADEC dataset 147

(Karimi et al., 2015), and the BioDEX dataset 148

(D’Oosterlinck et al., 2023), consist of adverse 149

drug events (ADEs) across a wide range of clinical 150

fields. This indicates a significant gap in datasets 151

designed specifically for monitoring ADEs in can- 152

cer treatment. To address this limitation, we in- 153

troduce our dataset specific to OVArian canCER, 154

OvaCer, which consists of ADEs associated with 155

anticancer drugs used in ovarian cancer treatment. 156

3 Corpus Development 157

The literature review highlights that previous re- 158

search, while substantial, has significant gaps in ad- 159

dressing oncology-related pharmacovigilance, par- 160

ticularly for ovarian cancer. To address this gap, 161

we have developed a novel dataset OvaCer devel- 162

oped to support a variety of tasks related to ovarian 163

cancer pharmacovigilance. We have provided dif- 164

ferent statistics for the OvaCer dataset in Table 1. 165

The steps we took to prepare this corpus are listed 166

below. 167

Measures Size
No. of Samples 1500
Number of True labels (Adversity) 1141
Number of unique Drugs reported 109
Number of distinct effects reported 532
Number of images 400

Table 1: Statistics of OvaCer Dataset

3.1 Data Collection 168

A recent qualitative analysis of online discussion 169

forums was conducted to investigate the perspec- 170

tives of ovarian cancer patients regarding ADEs 171

caused by anticancer medications. A thorough on- 172
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line search was carried out to identify relevant in-173

ternet forums. We identified the Cancer Survival174

Network (CSN)1 public healthcare blog for its open175

access and active patient involvement in side effects176

and treatment.177

Figure 1: An instance of adverse event caused by drugs
used in ovarian cancer treatment

3.2 Data Annotation178

To ensure comprehensive and ethical annotation,179

we enlisted two medical students and one Ph.D.180

student, each meeting specific criteria: a minimum181

age of 25 years, fluency in English, and a willing-182

ness to handle sensitive content. Participants were183

compensated for their involvement, and the anno-184

tation process was completed within four months.185

To verify the quality of the annotated data, we es-186

tablished rigorous standards that each sample had187

to meet:188

• For each post mentioning multiple drugs and189

numerous effects (positive and negative), ex-190

tract only those drug names linked to adverse191

drug events (negative effects).192

• Each data instance’s adversity of the drug193

event is assessed using specific terms indicat-194

ing adversity, such as "bad," "worse," "unbear-195

able," "irrecoverable," "permanent," or similar196

expressions conveying similar sentiments.197

• Each data instance’s severity of the drug event198

is assessed based on explicit mentions of con-199

genital anomalies, life-threatening situations,200

disabilities, or hospitalizations (initial or pro-201

longed). If these criteria are not explicitly202

stated, the severity is categorized as not appli-203

cable to that specific data point.204

• Reference images illustrating physical effects205

experienced by patients under similar drug206

treatments are added to each relevant data in-207

stance as depicted in Figure 3. Instances not208

related to drug side effects are removed.209

1https://csn.cancer.org/

• Every data point includes a URL link. For 210

each data instance, access the content at that 211

URL to gain insight and context about the 212

data. 213

To maintain consistency among annotators, final 214

labels were assigned via majority voting. Anno- 215

tators were instructed to remain objective without 216

bias related to demographics or other factors. To 217

enhance our dataset for pharmacovigilance applica- 218

tions, we created detailed summaries for each post, 219

including relevant details such as medicinal needs, 220

disease, drug names, disorders, symptoms, and age. 221

We thoroughly evaluated the summaries produced 222

by our method using several reading scores, like 223

abstractness, concreteness, Flesch-Kincaid grade, 224

Dale-Chall readability score, and Coleman-Liau 225

index demonstrated in Table 2. A detailed expla- 226

nation for these parameters is provided in the AP- 227

PENDIX A.2. This evaluation ensures that the sum- 228

maries accurately represent the original posts and 229

are understandable to readers of varying linguistic 230

abilities. 231

Metrics↓ OvaCer
Concreteness 0.772
Flesch Kincaid Grade 12.366
Dale Chall Score 11.476
Coleman Liau Index 14.043
Number of samples 1500

Table 2: Readability scores used to assess the Gold
standard summaries for OvaCer dataset.

4 Models 232

In our work, we assessed the performance of sev- 233

eral standard summarization models, including T5 234

(Vaswani et al., 2017), BART (Lewis et al., 2019), 235

GPT 3.5 (Brown et al., 2020), FlanT5 (Chung et al., 236

2022), and some clinical models, namely PMC 237

Llama (Wu et al., 2023), on the OvaCer dataset. 238

These models were chosen due to their remarkable 239

performance in various summarization datasets in 240

recent years, as demonstrated by previous studies 241

(Laskar et al., 2022; Ravaut et al., 2022). 242

T5: An adaptable transformer-based model 243

(Vaswani et al., 2017) utilizes a single text-to-text 244

transfer learning framework to handle multiple 245

tasks, including translation, summarization, and 246

question-answering. 247

BART: A transformer-based sequence-to- 248

sequence model pre trained for document 249
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denoising (Lewis et al., 2019).250

FlanT5 small: (Chung et al., 2022) Flan-T5251

Small is an improved version of the T5 model252

(Vaswani et al., 2017), fine-tuned for various text-253

to-text NLP tasks such as summarization and trans-254

lation with reduced computational resources.255

PMC Llama: (Wu et al., 2023) PMC-LLaMA256

is the first open-source language model specifi-257

cally designed for medical applications. It incorpo-258

rates data-centric knowledge and is fine-tuned with259

medical-specific instructions.260

5 Experimental Results and Analysis261

To evaluate the model-generated summaries against262

gold reference summaries, we used ROUGE scores263

(Lin, 2004) and BERTScore (BS) (Zhang et al.,264

2020). Rouge-1 measures unigram overlap, indicat-265

ing the summary’s relevance; Rouge-2 assesses bi-266

gram overlap, reflecting coherence; Rouge-L eval-267

uates the longest common subsequence, indicating268

structural accuracy; and BERTScore uses BERT269

embeddings to assess semantic similarity. Detailed270

explanations of these evaluation metrics can be271

found in the APPENDIX A.1 section. These met-272

rics collectively provide a comprehensive assess-273

ment of the model‘s performance in capturing rele-274

vant information, maintaining coherence, and en-275

suring semantic accuracy. The results of our eval-276

uation, as demonstrated in Table 3, indicate that277

GPT-3.5 outperforms other models on all metrics,278

demonstrating its efficiency and capability in medi-279

cal summarization. It excels with a high R-1 score,280

effectively capturing essential single words, and a281

high R-2 score, demonstrating proficiency in un-282

derstanding bigram relationships. The R-L score283

reflects consistent coherence in sentence structure284

when compared to reference summaries, whereas285

the BS score reflects strong semantic similarity, in-286

dicating a firm grasp of context and meaning. The287

T5 model performs fairly well but lags significantly288

behind GPT-3.5. The R1 score indicates a moder-289

ate ability to capture unigrams, while the lower R2290

score indicates difficulty in accurately capturing291

bigrams. However, the BS score for the T5 model292

suggests sufficient semantic understanding with293

some potential for improvement. In comparison294

to T5, BART exhibits lower performance across295

all metrics. It struggles with both unigram and bi-296

gram capture, as indicated by lower R-1 and R-2297

scores, and shows weaker coherence in summaries298

based on the R-L score. Additionally, BART’s BS299

score suggests less semantic alignment with ref- 300

erence summaries. Similarly, Flan T5 also faces 301

challenges with unigram and bigram capture, re- 302

flected in its low R-1 and R-2 scores. While it main- 303

tains reasonable semantic alignment, indicated by 304

its comparable BS score to T5, Flan T5 encounters 305

difficulties in maintaining coherent sentence struc- 306

tures, as indicated by its R-L score. PMC LLaMA 307

shows poor results across all metrics. This indi- 308

cates that these models are not suitable for summa- 309

rizing clinical posts. The extremely low R-1, R-2, 310

and R-L scores indicate significant difficulties in 311

capturing n-gram models and producing coherent, 312

relevant, and accurate summaries. This evaluation 313

highlights the efficacy of GPT-3.5 for medical sum- 314

marization tasks and emphasizes the necessity for 315

strong models to handle the complexity of clinical 316

text summarization effectively. 317

Models ↓ R-1 R-2 R-L BS
GPT-3.5 0.461 0.186 0.309 0.896
T5 0.265 0.097 0.196 0.859
BART 0.238 0.065 0.156 0.832
Flan T5 0.178 0.060 0.133 0.848
PMC LLaMA 0.134 0.011 0.090 0.828

Table 3: Quantitative evaluation using Rouge-1, Rouge-
2, Rouge -L and BERT Score

6 Conclusion 318

Our research addresses the challenge of limited 319

resources in the field of pharmacovigilance for 320

ovarian cancer by introducing a multi-label, multi- 321

modal dataset, the OvaCer. This contribution in- 322

cludes a collection of 1500 records, each accompa- 323

nied by summaries and relevant images. By contin- 324

uously monitoring and analyzing ADR data, health- 325

care providers can make informed decisions about 326

drug safety, dosage adjustments, and alternative 327

treatments, resulting in more efficient and effective 328

ovarian cancer treatment. Furthermore, inspired by 329

advancements in large language models (LLMs), 330

we have conducted a comprehensive evaluation to 331

assess their summarization capabilities using zero- 332

shot prompting techniques within the context of 333

ovarian cancer pharmacovigilance, concluding that 334

LLMs exhibit varying degrees of effectiveness in 335

the clinical summarization task, with GPT-3.5 out- 336

performing other models significantly. 337

4



7 Limitations338

The limitations of our research primarily relate to339

the size of the sample and the size of the visual data340

included. Our dataset has a smaller sample size341

compared to other clinical datasets. Furthermore,342

the images in our dataset are limited to adverse drug343

events (ADEs) that appear on external body parts,344

such as skin rashes or swelling. This dataset does345

not include images depicting internal conditions346

such as neck pain, fever, or nausea.347

8 Ethical Consideration348

In healthcare summarization, ethical considerations349

such as safety, privacy, and bias are critical. Dur-350

ing the curation of OvaCer, we strictly adhered to351

established legal, ethical and regulatory standards.352

Additionally, the dataset does not reveal user identi-353

ties, thereby preserving privacy and confidentiality.354

The annotation guidelines were approved by two355

medical researchers from the oncology department356

and a medical practitioner from the pharmacology357

department. Furthermore, after the dataset curation358

was completed, it was verified and approved by359

these experts. To ensure compliance and ethical360

integrity, we also obtained formal approval from361

our institute’s healthcare committee and ethical re-362

view board (ERB) before utilizing the dataset for363

research purposes.364

Intended Use We make our dataset publicly avail-365

able to encourage further research into ovarian can-366

cer pharmacovigilance. The dataset is released367

exclusively for research purposes, and we do not368

grant licenses for commercial use.369
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A Example Appendix 536

A.1 Quantitative Scores 537

Below, we explain the quantitative measures used 538

to compare the summarization with gold reference 539

summaries. 540

• ROUGE-1 score: This score is used to eval- 541

uate the quality of text summarization or 542

machine-generated text compared to a refer- 543

ence or gold standard summary considering 544

unigrams. 545
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• ROUGE-2 score: This score measures the546

overlap of bigrams (pairs of consecutive547

words) between the generated summary and548

the reference summary. This metric captures549

some level of fluency and coherence, as it con-550

siders pairs of words rather than individual551

words.552

• ROUGE-L score: This score considers the553

longest common sequence of words in both554

the generated and gold standard summaries.555

• BERT((Bidirectional Encoder Representa-556

tions from Transformers) ) score: This score557

computes a similarity score based on contex-558

tual embeddings from the BERT model, cap-559

turing semantic similarity between the gener-560

ated and reference text.561

A.2 Readability Scores562

The readability scores used to assess the written563

summaries are explained below:564

• Concreteness: The summary’s utilization of565

specific details and language to express the566

original poem’s ideas and imagery.567

• Flesch-Kincaid Grade: Evaluating the Flesch-568

Kincaid Grade ensures that the summary is569

written at a suitable level of difficulty, making570

it accessible to a diverse audience.571

• Dale-Chall Readability Score: This metric572

helps determine whether the summary is writ-573

ten clearly and straightforwardly, allowing for574

easy comprehension.575

• Coleman-Liau Index: This metric provides576

insight into the summary’s overall readabil-577

ity and syntactic complexity, allowing us to578

identify areas for improvement in clarity and579

readability.580

A.3 Dataset Samples581

Figure 2: An instance of adverse event caused by drugs
used in ovarian cancer treatment

Figure 3: An instance of adverse event caused by drugs
used in ovarian cancer treatment
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