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Abstract
Transformers (Vaswani et al., 2017) and other
Deep Learning architectures have gained a lot
of traction lately, as we have seen with the
release of Chat-GPT3 (Brown et al., 2020).
Although highly performant, those black-box
models are questionned on their robustness,
which will condition their use on sensible
tasks. With their democratization, adversarial
attacks have become a growing concern.
The goal of this article is to study popular Ad-
versarial Attack detection scores, mainly the
max-softmax (Hendrycks and Gimpel, 2018),
and a Mahalanobis distance score (Yoo et al.,
2022), we will attempt to measure both their
performances and limitations. To this end, we
introduce two scores, FtS (first-to-second) and
Euclidian, the first is based on the softmax
output of the classifier, while the second uses
its penultimate layer’s output. Those scores
will respectively attempt to challenge the max-
softmax and the Mahalanobis scores.
The code leading to our results is available on
our GitHub 1

1 Introduction

In Natural Language Processing, an adversarial at-
tacks is a small modification of a text which leads
the model into making an incorrect classification.
As an example, an attacker could modify a spam
email into classifying it as a legitimate email.
Possibilites of generating attacks include syn-
onym substitution, character-level modification, or
grammatical perturbations (Pruthi et al., 2019).
These attacks can be very challenging to defend
against, as language is inherently complex and
contains many nuances that can be difficult to cap-
ture in machine learning models.
This is especially true since the models tries to
generalize from training data, as such, possi-
bilities of out of distribution (OOD) inputs can

1https://github.com/rthabut/nlp adversarial attacks

be problematic for the robustness of the model
(Hendrycks and Gimpel, 2018). In fact, the train-
ing and test data rarely characterize the entire dis-
tribution (Fang et al., 2022).
As such, research has been conducted to counter-
act the attacks. Two main methods have emerged:
detection and defense; The former aims to dis-
criminate the input whereas the latter aims to cor-
rectly predict the output. If recents improvement
have been made in attacks defense, (Zhou et al.,
2021; Keller et al., 2021; Jones et al., 2020; Jin
Yong Yoo, 2018), research on detection techniques
is only starting to gain momentum. (Yoo et al.,
2022; Picot et al., 2023a; Colombo et al., 2022;
Picot et al., 2023b).

1.1 Our Work

We aim to study the standard state-of-the-art
scores used for detection, this includes the
Mahalanobis-based score (Kimin Lee, 2018) and
other scores relying on the softmax distribu-
tion output of our transformers classifier : max-
softmax, Kullback-Leibler divergence (Darrin
et al., 2023), and Wasserstein distance.
We will compare their results and attempt to mea-
sure their performance by proposing close but dif-
ferent metrics:

Mahanalobis-based score We aim to compare
the Mahanalobis-based score, which applies Ma-
hanalobis distance on the last layer embedding
of the transformers, with euclidean distance on
the same embedding. The idea being that Maha-
lanobis distance is a modification of the euclidian
distance which takes into account correlation be-
tween variables. The objective here is to challenge
the covariance matrix estimation.
Indeed, computing Mahanalobis distance in-
volves, in this case, estimating an ill-conditionned
covariance matrix and inverting it, which can lead



to stability issues. The problem is tackled by us-
ing robust estimators : Minimum Covariance De-
terminant (Driessen, 1999), Oracle Approximat-
ing Shrinkage (Yilun Chen, 2009), Ledoit-Wolf
Shrinkage Estimator (Ledoit, 2004). However, to
improve stability, those estimators may include
significant bias in the estimation, as we can see
by observing the Oracle Approximating shrinkage
coefficient, which can reach values greater than
50%. One can wonder if, with such potential is-
sues, it is still relevant to apply Mahalanobis dis-
tance. As euclidean distance corresponds to Ma-
halanobis distance with the covariance matrix be-
ing the identity, comparing the two should give
us insights on how successful the inverse covari-
ance matrix estimation is. We expect Euclidean
distance to be not as efficient as Mahanalobis dis-
tance, but wish to quantify the performance gained
by estimating the covariance matrix.

Softmax-based scores Softmax based scores
are retrieved from the output of the last embed-
ding layer and as such correspond to a probability
distribution. One of the main score used for at-
tack detection is the max-softmax, which selects
the maximum probability on the softmax distribu-
tion.
We decided to add a small switch to it by substract-
ing the second maximum probability of the soft-
max distribution to the score, the idea being that
a text is more likely to be a (successful) attack if
the two most probable classes have close probabil-
ity since one just trespassed the other. We expect
this new score to be slightly more efficient than the
max-softmax.

2 Experiments & Protocol

We chose attacks on the AG-News database, a
database on which we can perform topic selection
between 4 topics, therefore scoring yields non triv-
ial information. Indeed, in the case of binary clas-
sification, the max-softmax score uses all the in-
formation contained in the softmax probabilities,
it only becomes interesting to try to compare it
with other softmax-based scores for a number of
classes k > 2.

2.1 The model
To characterize the result of an attack, we used a
pre-trained model of BERT (Jacob Devlin, 2019)
fined-tune on the AG-News dataset to perform
topic selection.

2.2 The Data

2.2.1 Attacks
Loading the Attacks We retrieved 4 different
attacks datasets which are available on the Github2

used in (Kimin Lee, 2018).
Those datasets, generated with the Python library
TextAttack, use four different attacking meth-
ods: TF-adjusted (Morris et al., 2020), Probabil-
ity Weighted Word Saliency (Ren et al., 2019),
Textfooler (Jin et al., 2020), and BAE (Garg and
Ramakrishnan, 2020), on a dataset of 7600 sam-
ples of news article.

Building the Dataset We concatenated those
datasets together, and retrieved the successfull
attacks and original texts. This gives us a rea-
sonnably balanced database containing 11402
attacks and 7600 normal inputs.

2.2.2 To compute Mahalanobis score
To use Mahalanobis score and Euclidian score, we
make the assumption that the data in the penulti-
mate layer follows a multivariate gaussian distri-
bution: we model the class conditional probability
pµ,Σ (z|y = k) ∼ N (µk,Σk) where y is the indi-
cator function of whether the text is an attack.
In order to estimate the mean and the covariance
matrix of that distribution, we used as a training
set, a corpus of 120.000 texts proposed by AG-
News as in (Kimin Lee, 2018).

2.3 Scores Used

Please note that the score taken will be the oppo-
site of every score proposed presented below. For
the sake of conciseness we will define the adapted
metrics here without the minus sign.

2.3.1 Softmax-based scores
To classify, the BERT model uses for its last layer
a softmax activation function, which outputs a
probability distribution.
We will use this distribution output to detect at-
tacks, which we call s = (s1, . . . , sk).
We define the following scores:

• max-softmax : The maximum probability
of the softmax distribution as proposed in
(Hendrycks and Gimpel, 2018):
max− softmax = max (softmax)

2https://github.com/bangawayoo/adversarial-examples-
in-text-classification



• KL : The Kullback-Leibler divergence be-
tween the softmax s and the uniform distri-
bution U = {1, . . . , k}:

DKL (softmax,U) =
k∑

i=1
si log ksi

• Was: The Wasserstein distance between the
softmax and the uniform distribution :
W (softmax,U) =

inf
π∈Γ(softmax,U)

∫
R2 |u− v| dπ (u, v), where

Γ(softmax,U) is the set of distributions
whose marginals are softmax (resp. U ) on
the first (resp. second) factor.

• Our contribution : First-to-Second max
(FtS): FtS = softmax(k) − softmax(k−1),
with softmax(i) statistic of order i

2.3.2 Scores using hidden layers
For the following section, x is the data observed at
the penultimate layer of the network.

Mahalanobis Score : We define the score as
DM (x) = (x − µ)TΣ−1(x − µ), with µ and Σ
respectively the mean vector and covariance ma-
trix estimators computed on the training dataset.
To avoid ill-conditionning, we use the Oracle Ap-
proximating Shrinkage estimator to estimate the
covariance matrix.
Preprocessing - We perform standardization on
the data, both on the training set before computing
the covariance matrix and on the test set. Then,
we apply kernel-PCA with the Radial Basis Func-
tion Kernel (rbf) to reduce the dimension (which
is d = 768) to d′ = 100.

Euclidian Score We define the score as
DE(x) = (x − µ)T (x − µ), where x and
µ are scaled using a min-max scaler before
computation.

3 Results

3.1 Comparing all classifiers

Running the BERT model on the dataset, we re-
trieve the penultimate layer encoding the latent
space and the softmax distribution, we then com-
pute the various scores presented above.

• The Mahalanobis score slightly outperforms
the euclidian distance, as such, taking into ac-
count the correlation yields for a better detec-
tion.

Figure 1: ROC Curve per score

• The Mahalanobis score outperforms the other
scores for FPR > 0.6

• The softmax scores outperform the hidden
layer based scores for FPR < 0.2

• Wasserstein, Kullback-Leibler, FtS and max-
softmax scores perform very similarly and
are almost indistinguishable

3.2 Softmax-based scores

Figure 2: Pairplot of softmax-based scores

The last point is highlighted by the following
pairplot, as one can observe the high amount of
correlation between scores. Moreover, the confi-
dence in the output is very high even for the suc-
cessful attacked points, which questions the ro-
bustness of transformers architecture. Indeed, one
would expect a lower confidence in the output for



attacked points.
The reason for such similar performances is due
to the attacks’ softmax distributions, which is
known to produce highly overconfident predic-
tions (Kimin Lee, 2018).

3.3 Discussing Gaussian Assumption
3.3.1 Mahalanobis distance vs Euclidian

distance
As expected, the Mahalanobis distance outper-
forms the Euclidian distance by a thin margin.
This shows that the statistical methods applied
(OAS, kPCA) tackle the ill-conditionning issue
enough to make the covariance estimation worth
it. This solidifies the efficiency of the Mahalanobis
score even in this context.

3.3.2 About Gaussian assumption
A strong hypothesis of the Mahalanobis score is
the Gaussian distribution assumption. Unfortu-
nately, Gaussian test are hard to compute in higher
dimension due to the curse of dimensionality.
We use here a PCA decomposition to discuss the
validity of the gaussian assumption: as a lin-
ear transformation of a gaussian vector remains
a gaussian vector, if the data is gaussian, then
its Principal Components should retain a gaus-
sian distribution as well. Performing such a 2d-
representation on the contour plot with covariance
matrix Σ, we observe thick tails. We can therefore
conclude that the data is most likely not gaussian.
Although this fact harms the validity of using dis-
tances relying on this assumption, e.g Euclidian or
Mahalanobis, we observe that those methods re-
main efficient in the context of attack detection.

Figure 3: Contour of gaussian probability for attacked
text

4 Discussion/Conclusion

Mahalanobis score With this study, we ob-
served that class probability of attacks exhibits

Figure 4: Contour of gaussian probability for original
text

thick tails, contradicting the Gaussian assump-
tion. But, even coupled with a context of ill-
conditionned covariance matrix, we observed that
the use of mahalanobis distance can constitute
an efficient attack detection method as it slightly
overperforms for high FPR (FPR > 0.63).
One natural extension would be to consider other
hidden layers, as we restricted ourselves to the em-
bedding generated by BERT’s penultimate layer.
A notable shortcoming of such a score is that it
relies on the embeddings. Having access to a soft-
max score seems more feasible than the entire hid-
den layer outputing the softmax distribution.

Softmax-based scores We also introduced a
new softmax-based score FtS which perform very
similarly to all softmax-based scores in our study.
Unfortunately, the very confident predictions pro-
posed by BERT did not allow us to compare thor-
oughly our score to the other benchmark softmax-
based scores. It still allowed us to observe this
shortcoming of the softmax function, which can
prove to be problematic with regards to the robust-
ness of models using the softmax function.

Concluding words As the development of
multimodal (Garcia* et al., 2019; Colombo et al.,
2021) generative models like GPT4 continues to
rise, it becomes crucial to consider the potential
risks associated with these technologies.
Improving and assessing robustness of
transformers-based model is an open and evolving
domain, and with the strong activity of this field,
there is no doubt we will see, in the near future,
new methods emerge for adversarial attacks which
will tackle the limitations we observe today.
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