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ABSTRACT

Significant advances in online reinforcement learning (RL) remain limited by the
need for extensive environment interaction or accurate simulators. World models
trained on large-scale uncurated offline data could provide a training paradigm for
generalist AI agents which alleviates the need for task specific simulation environ-
ments. Unfortunately, current offline RL methods rely on truncated rollouts that
can lead to value overestimation and limit out-of-sample exploration. Additioan-
lly, common offline RL datasets have been shows to have a bias towards healthy
behavior which does not help with the development of generalizable methods.
We propose an algorithm and a data curation method that addresses both of these
concerns by demonstrating that effective full-length rollout training is possible
without hand-crafted penalties by treating each member of the world model en-
semble as a level in the Unsupervised Environment Design (UED) framework.
Our method achieves competitive performance even with less transitions than the
same online algorithms are traditionally trained on. We find that training a recur-
rent policy on an ensemble of world models is sufficient to ensure transfer to the
original environment and match online PPO performance on standard offline-RL
benchmarks while maintaining robust performance on our dataset, where conven-
tional offline RL methods underperform. 1

1 INTRODUCTION

Exploiting large amounts of data has proven to be a crucial component of recent advancements in
machine learning. Generative models across multiple modalities—such as large language mod-
els (e.g., (OpenAI et al., 2024; Touvron et al., 2023)), text-to-image models (e.g., (Imagen-
Team-Google et al., 2024; Betker et al., 2023)), and text-to-video models (e.g., (Brooks et al.,
2024))—demonstrate that scale and coverage often outweigh the benefits of curation or the injection
of favorable biases.

Reinforcement Learning (RL) (Sutton & Barto, 2018) has shown great promise in solving complex
problems whenever fast and accurate simulation environments are available, such as in computer
games (Silver et al., 2016a). Unfortunately, reliance on simulators has severely limited the appli-
cability of RL to real-world problem settings. World models (Ha & Schmidhuber, 2018) offer a
solution by learning approximate dynamics models from state transitions data and reducing reliance
on task-specific hand-coded simulators. While increasing the dataset size can improve the fidelity
of learned world models, they are rarely perfect recreations of the underlying environment. Ha
& Schmidhuber (2018) demonstrate how RL agents frequently learn to exploit discontinuities and
edge cases in learned dynamics to receive large spikes in simulated reward while learning unhelpful
behaviors for the true environment.

This is problem is also addressed in offline RL, where the goal is to produce high-performing policies
based only on a static offline dataset without any training signal from the real environment. Offline
RL methods employ several algorithmic tricks to regularize learning towards the offline data distri-
bution and enforce conservatism (Kumar et al., 2020). These include severely truncating rollouts to
only a handful of consecutive steps inside a dynamic model, and uncertainty penalties that discour-
age the agent from stepping into parts of the state space of high uncertainty as done in MOPO (Yu
et al., 2020) and MOREL (Kidambi et al., 2020). Recent work by Sims et al. (2024) demonstrates
that the short truncated rollouts prevent compounding errors and outperform model-free methods

1Anonymous repo: https://anonymous.4open.science/r/OnlineRLinWorldModels

1

https://anonymous.4open.science/r/OnlineRLinWorldModels


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

at the cost of pathological overestimation for the states at the edge of truncation. The misconcep-
tion regarding the effectiveness of truncated rollouts has persisted partially due to well-established
benchmarks like D4RL (Fu et al., 2020) are fairly saturated (Sun, 2023) and have recently been
shown to be biased towards healthy states and positive, near-optimal performance (Li et al., 2024).

While full-length rollouts can avoid the truncation pathologies, they are more susceptible to com-
pounding error and world model exploitation that handicaps transfer to the real environment. For
a solution, we turn to Unsupervised Environment Design (UED) (Dennis et al., 2020; Jiang et al.,
2021b;a; Parker-Holder et al., 2022), a class of online RL methods that can address the need for
zero-shot adaptations by training agents to be robust across varying train and test distributions.
These methods seek to minimize maximum regret over a space of levels (Dennis et al., 2020). We
break the traditionally constrained setting of UED and use it to select over a large number of world
models trained on the same dataset with each models serving as a given level in UED.

Pathological algorithms and positively biased datasets impede training generalist RL agents by not
making use of large amounts of data and recent advances in online RL. In this work, our contribu-
tions consist in: 1) investigating training through full-length offline rollouts to address model-based
offline RL challenges, 2) produce a dataset that does not exhibit the biases in previous benchmarks,
and 3) introduce the Policy Optimization with World Ensemble Rollouts (POWER) algorithm that
utilizes several UED methods to select which world model the agent will interact with at every step.
We show that our algorithm outperforms standard offline RL methods on our dataset while achiev-
ing comparable results to online PPO when trained offline on the D4RL dataset. Additionally, we
demonstrate that our method produces diverse world models even when trained on the same data.

2 PRELIMINARIES

2.1 CONTEXTUAL MARKOV DECISION PROCESS

We define a infinite-horizon, discounted contextual Markov decision process (CMDP) (Hallak et al.,
2015) by introducing a context variable θ ∈ Θ ⊆ Rd:

M(θ) := ⟨S,A, P0, PS(s, a, θ), PR(s, a, θ), γ⟩, (1)
where each θ indexes a specific MDP by parametrising a transition distribution PS(s, a, θ) : S×A×
Θ → P(S) and reward distribution PR(s, a, θ) : S×A×Θ → P(R). We denote the corresponding
joint conditional state-reward transition distribution as PR,S(s, a, θ). Context variable θ can also be
referred to as a level, terms that are used interchangeably in this paper.

At timestep t, an agent follows a policy π : S × Θ → P(A), taking actions at ∼ π(st, θ). We
denote the set of all context-conditioned policies as ΠΘ := {π : S × Θ → P(A)}. The agent
is assigned an initial state s0 ∼ P0. As the agent interacts with the environment, it observes a
history of data ht := {s0, a0, r0, s1, a1, r1, . . . at−1, rt−1, st} ∈ Ht where Ht is the corresponding
state-action-reward product space. We denote the context-conditioned distribution over history ht

as: Pπ
t (θ) with density pπt (ht|θ) = p0(s0)

∏t
i=0 π(ai|si, θ)p(ri, si+1|si, ai, θ).

In the infinite-horizon, discounted setting, the goal of an agent in MDP M(θ) is to find a policy that
optimises the objective:

Jπ(θ) = Eτ∞∼Pπ
∞(θ)

[ ∞∑
t=0

γtrt

]
. (2)

We denote an optimal policy as π⋆(·, θ) ∈ Π⋆
Θ(θ) := argmaxπ∈ΠΘ

Jπ(θ), where Π⋆
Θ(θ) is the set

of all optimal MDP-conditioned policies that are optimal for M(θ).

2.2 UNSUPERVISED ENVIRONMENT DESIGN

Unsupervised environment design (UED) is a class of autocurriculum methods for RL, where an
adversary proposes tasks for an agent to train on. Commonly (Dennis et al., 2020), environments are
modelled as a CMDP M(θ) (see Equation (1)) known as underspecified Markov decision process
where each context θ ∈ Θ is known as a level.

The recent approach of Minimax Regret (MMR) UED has emerged as a promising way to train
robust agents (Dennis et al., 2020; Jiang et al., 2021b;a; Parker-Holder et al., 2022). Here, the
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adversary chooses levels that maximise the agent’s regret, defined as:

Regretθ(π) := Jπ⋆

(θ)− Jπ(θ). (3)

Dennis et al. (2020) posed the UED setting as a two-player, zero-sum game between the adversary
and the policy. They show that if the adversary aims to maximize regret and is in Nash equilibrium
with the policy, the following holds:

πMinMax ∈ argmin
π∈ΠH

{max
θ∈Θ

{Regretθ(π)}}. (4)

Minimizing the worst-case regret confers a degree of robustness to the policy as its regret in any
level θ ∈ Θ must be below this bound. See Appendix A.1 for a more detailed discussion.

2.2.1 PRIORITIZED LEVEL REPLAY

Prioritized Level Replay (Jiang et al., 2021b) is an empirically successful curriculum method that
relies on curating high-scoring levels. In practice, PLR maintains a buffer of previous high-scoring
levels, and either samples from this buffer, or samples new levels. The agent is rolled out on these
new levels, and they are scored depending on its performance. High-scoring levels are added to the
buffer, and the agent trains on the collected experience.

The original PLR scores each level θi using a time-averaged L1 value loss of each agent’s last
trajectory on the level (Jiang et al., 2021b). In order to achieve minimax robustness, a scoring
function should account for regret as described in Section 2.2. Jiang et al. (2021a) propose different
scoring functions that more closely approximate the regret. Ultimately, the choice of a scoring
function is a design choice depending on the nature of the environment. We further elaborate on the
scoring function choices in section 3.

2.3 WORLD MODELS

As defined by Ha & Schmidhuber (2018), world models are representations of the dynamics of an
environment. From an agent’s perspective, a trained world model can be interacted with in the same
way as the true environment. In this work, we implement the world model as a one-step dynamic
model. World models are generally represented using a neural network that jointly parametrizes the
transition distribution PS and rewards distribution PR from Equation (1). Therefore, we train Fθ as
Fθ (ŝt, at) → ŝt+1, r̂t+1 by predicting both the state transition and the reward of the agent.

3 TRAINING WITH WORLD MODEL ENSEMBLE ROLLOUTS

We introduce Policy Optimization with World model Ensemble Rollouts (POWER), to leverage
large datasets and benefit from effective methods used in traditionally online settings. As shown
in Figure 1, we start by training a collection of world models consistent with the provided data.
We then treat these models as levels and select them based on different sampling methods to train
a transferable policy as outlined in Algorithm 1. Our implementations allows for the agent to see
different world models within the same trajectory shown in Fig. 1(left) or only one per episode
which is then used to score the model’s likelihood of being sampled again in the course of training
as shown in Fig. 1(right) and elaborated in 2.2.1.

3.1 TRAINING MULTIPLE WORLD MODELS

In this work, we assume access to a non-sequential offline dataset D of N state-action-state-reward
transition observations: D = {(si, ai, s′i, ri)}

N−1
i=0 , all collected from a single MDP θ⋆. We address

this tractability issue by learning a highly informative posterior distribution using offline data, which
concentrates around a small region of the parameter space Θ containing the true dynamics θ⋆. By
doing so, we effectively reduce the hypothesis space to a manageable subset of Θ, enabling the
tractable evaluation of the RL objective.

Practically, we implement this by training multiple distinct world models each initialized differently
and trained on different permutations of the data. The inherent variability introduced by stochastic
gradient descent during the training process causes each world model to exhibit slightly different

3
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,Score( )

Trajectory-updated distribution
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Uniform sampling  

Train

Train Multiple
World Models

on the same Data 

Figure 1: An overview of the two groups of sampling methods that can be selected. Our algorithm can allow for
either sampling a new world model each step as illustrated by the Uniform Sampling block in the left or se-
lecting only after a full trajectory finishes as done in UED methods illustrated by the Trajectory-updated
block to the right.

dynamics (Amari, 1993). However, an agent trained in any one of these world models is not guaran-
teed to transfer well to the real environment, and it is this problem we tackle by using the ensemble
of world models.

3.2 WORLD MODELS AS LEVELS Algorithm 1 Policy Optimization with World Model
Ensemble Rollouts (POWER) with
PLR, DR or DR-Step
1: Inputs: Dataset D; model count M ;
2: PLR flag; DR-Step flag
3: for i = 1 to M do
4: Initialize θi ∼ N (0, σ2) LeCun Normal
5: Shuffle D to get Di Use different seeds
6: Train θi on Di to convergence Use L2 loss
7: end for
8: π, ht ← h0 Initialize recurrent policy
9: while π not converged do

10: if PLR then
11: i ∼ Sample Using PVL score Si use PLR
12: else
13: i ∼ U(1,M) use DR
14: end if
15: τ ← {} Initialize trajectory set
16: s0 ∼ Pθi

0 Initialize from learned P0

17: for t = 0 to T − 1 do episode length T
18: if DR-Step then
19: i ∼ U(1,M) use DR-Step
20: end if
21: at ∼ π(·|ht, st) Sample action
22: st+1, rt+1 ∼ Fθi(st, at) Step in world model
23: τ ← τ ∪ {(st, at, st+1)} Add transition
24: ht+1 ← ht ∪ {st+1} Update hidden state
25: end for
26: Update π using τ PPO update
27: Update PVL score Si using Equation 5
28: end while
29: Output: π

If we treat each world model θ as a level, we
can apply standard minimax regret algorithms to
our setting. More formally, we consider the two-
player game between an adversary G and stu-
dent policy π, such that the adversary generates
a level (i.e., a world model) θ ∈ Θ that maxi-
mizes the agent’s regret, and the agent trains as
normal on the provided levels. Note, we define
Θ=̇{θ : L2(θ,D) < ϵ} to be the set of all world
models that have loss over the dataset D of less
than some threshold ϵ. At Nash equilibrium of this
game, Dennis et al. (2020) showed that the pol-
icy satisfies Equation (4). In other words, the pol-
icy’s maximum regret on any θ ∈ Θ is bounded by
W =̇minπ∈Π{maxθ∈Θ{Regretθ(π)}}. Since we
have assumed that θ⋆ ∈ Θ, this bound further ap-
plies to the true environment dynamics. Moreover,
since the adversary is constrained to only choose
levels within Θ, i.e., those that have loss less than
a certain value, it cannot be overly adversarial and
provide totally unrealistic dynamics to train the
agent on.

In order to make this procedure practical, we use
the high-performing PLR algorithm as illustrated in the right side in Figure 1, treating different
world models θ as levels. Despite PLR not guaranteeing convergence to a Nash equilibrium, it
generally results in improved zero-shot generalisation to out-of-distribution tasks. Since regret for
a given world model is not always known, we use the standard regret approximations of Positive
Value Loss for level θi where γ and λ are the MDP and GAE discount factors and δt is the TD-error
at timestep t as framed by (Sutton & Barto, 2018) :

4
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Si =
1

T

T∑
t=0

max

(
T∑

k=t

(γλ)k−tδk, 0)

)
. (5)

4 EXPERIMENTAL SETUP

4.1 DATASET CURATION

Our dataset curation strategy is guided by the concept of state coverage. Using a single behavior
policy πb often results in exploring a limited subset of the state space. To address this limitation, we
employ multiple behavior policies to gather diverse data. Specifically, we train an agent in the real
environment using Proximal Policy Optimization (PPO) (Schulman et al., 2017) and periodically
create checkpoints throughout training to convergence. These checkpoints serve as distinct behavior
policies, ensuring that our dataset encompasses a wide range of behaviors—from those generated
by randomly initialized policies to those that effectively solve the task. Fu et al. (2020) point out
that different dataset distributions can encourage conservative approaches or be more amenable to
imitation learning and behavior cloning. Our dataset curation is agnostic to these tendencies.

We note that our dataset is shuffled in the level of state transitions and does not require sequences
to train the world models. The frequency of checkpointing and the number of trajectories collected
at each checkpoint are determined to match D4RL’s orders of magnitude of no more than 106 tran-
sitions. We stop collecting after one or two convergence checkpoint in order to not bias our dataset.
Figure 2 demonstrates the schedule for collecting behavior policy trajectories in the Hopper envi-
ronment. A.2 contains the sizes for each environment.

Figure 2: Collection of dataset D using different πb checkpoints marked by the vertical lines.

4.2 WORLD MODEL TRAINING

The world models are trained on the same data as described in line 4 to 6 of Algorithm 1. These
models show different final test losses and therefore slightly different dynamics through the trajec-
tory. The world models in our experiments are implemented as fully connected networks with a
concatenated input of actions and observations and an output of the concatenated next observations
and reward. With our method being agnostic to the architecture used for the ensemble, we also
implement a visual world model. The fully-connected forward dynamics are kept the same with
a standard convolution layer added to encode the visual observation in the beginning and a down-
stream decoder to reconstruct the output to the shape of the observations used by the agent. The
models are trained in parallel using vmap – a vectorizing map possible through our JAX-based im-
plementation (Heek et al., 2024). We advise caution with the number of visual world models trained
in parallel given the dimensions of the pixel-based input. We design our implementation to require
only a single GPU.

Refer to A.3 for an overview of the computational efficiency that allows the training of the multiple
world models in parallel, A.4 for the test performance and A.5 for the hyperparameters.

5
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4.3 TRAINING THE REINFORCEMENT LEARNING AGENT

We use a recurrent actor-critic network based on PureJaxRL (Lu et al., 2022) and the convolution
actor-critic from (Becktepe et al., 2024) for the visual agent. The agent’s actions depend on the
current observation and interaction history, implemented as the recurrent state of the actor-critic
network. We use the recurrent state to test the agent’s ability to perform system identification across
the world models it is trained on. This is also done to verify that the world models have distinct
dynamics.

The configurations passed at the start of our algorithm 1 as boolean flags allow for the following set
of world model selection methods to be tested:

PLR: Prioritized Level Replay as described in with an L1 value loss score function as done in the
original paper by Jiang et al. (2021b). PLR PVL uses Positive Value Loss scoring in Equation 5.
Used by setting only the PLR flag to True in Algorithm 1.

DR: Domain Randomization implemented by randomly selecting a new world model θ from a uni-
form distribution over the trained world models as done in line 13 of our algorithm. Used by setting
both the PLR and DR-Step flags to False in Algorithm 1.

DR-STEP: Change θi for every step of the agent in a fixed length episode instead of only doing it
at the start of a trajectory. Used by setting only the DR-Step flag to True in Algorithm 1.

DR-PROB: A simple change in line 19 of our algorithm to either perform DR-STEP or not change
θi with probability p. The probability p could also serve as a classic UED parameter where p is
varied based on the episode’s score. Such use is, however, outside the scope of this work.

WM: A single world model θi for the entire training, all flags set to False and the model is sampled
only once when the policy is initialized.

To address policy overfitting to the world models’ dynamics without querying the real environment
during training, we hold out world models trained on transitions from the test set used for the world
models training. We observe that when overfitting occurs, as indicated by the decoupling of training
and evaluation rewards, the standard deviation of the policy across the holdout world models in-
creases. This phenomenon serves as a reliable indicator for early stopping and helps prevent policy
overfitting. We note that our method and hyperparameters do not rely on online tuning.

The PLR implementations are based on JaxUED (Coward et al., 2024). We use the RLiable li-
brary (Agarwal et al., 2021) to measure the performance. Every metric is plotted within a 95%
confidence interval calculated over five seeds and 50 episodes on the respective environment. Our
entire work is implemented in the JAX Ecosystem (DeepMind et al., 2020) for end-to-end GPU
training.

4.4 BASELINES

We baseline our methods by training on a randomly sampled single world model (WM) and against
commonplace offline RL algorithms like CQL (Kumar et al., 2020) and SACn (An et al., 2021).

Our implementation is based on the CORL (Tarasov et al., 2022) and its JAX port (Nishimori,
2024). We verified the implementation’s correctness and hyperparameters to reproduce the reported
performance on Halfcheetah and Hopper D4RL datasets. We then performed a grid search over
our own dataset to record the highest score obtained by the baselines. While our method only
requires single-step transitions, we maintained fairness in comparison with CQL and SACn for the
lower ratios by downsampling episodes uniformly rather than individual transitions, as both CQL
and SACn were designed to operate on complete trajectories. The specific ranges can be found on
Table 8 and Table 9.

5 RESULTS

In this section we show the most notable results that elucidate important aspect of our approach. A
complete compilation of the results can be found in the Appendix. We collect data from and evaluate
on environments from the Gymnax (Lange, 2022) and Brax (Freeman et al., 2021) suites. All the

6
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evaluations are performed on full trajectories across five random seeds on the corresponding real
environments.

5.1 PREVENTING EXPLOITATION

Figure 3: Preventing reward hijacking of the learned model by using the ensemble training method

Training in world model ensembles prevents the agents from overfitting to the training distribution
and hacking the rewards. Figure 3 shows the results on a world models trained with 2·104 transitions,
only 20 episodes worth of transitions.

5.2 CLASSIC CONTROL

The suite of methods using world model ensembles outperforms naive world model training with
only a couple of episodes worth of transitions from dataset D. We illustrate the evaluation on the
Cartpole environment in Figure 4 to showcase the effectiveness of world model ensembles to reach
the highest episodic return possible in less than half the transition counts compared to using a single
world model. Training on multiple world models beats the single world models baseline in a simple
environment. Figure 5 shows our methods consistently outperform training on a single world model
for sparser data and even achieve returns higher than the behavior policy that was learned online.
Figure 8 shows the comparison with model-free offline methods for pendulum.

Figure 4: Mean of the evaluations on Cartpole Figure 5: Interquartile Mean (IQM), Mean, and Me-
dian of the world model ensemble trained policy eval-
uated on the real environment

5.3 RESULTS BRAX WITH OUR DATASETS

We test our algorithms and its variations on Hopper (Figure 6) and Halfcheetah (Figure 7) from the
Brax suite of environment. We notice that the methods that sample a new level uniformly at every
step or with a probability p outperform every method in sparser data regimes.

7
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Figure 6: IQM for Hopper Figure 7: IQM for Half Cheetah Figure 8: IQM for Pendulum

5.4 RESULTS IN MUJOCO USING D4RL DATASETS

When applied to D4RL transitions, POWER and its variations achieve comparable performance to
online PPO implementations (Figure 9) such as CleanRL and Stable Baselines (Huang et al., 2022).
We chose PPO as our baseline since it is the same algorithm used within our world model ensemble
using 1.

Figure 9: Results in MuJoCo using the D4RL dataset to train the world models, standard error over 5 seeds

5.5 ABLATING THE ENSEMBLE SIZE

We perform ablations across different variations of our method on the Hopper full-replay-v2
dataset. The results demonstrate that while increasing the number of world models improves per-
formance, we achieve strong results even with a relatively small ensemble size. This suggests that
our approach effectively balances performance gains with computational efficiency, as significant
benefits can be realized without requiring a large number of models.

Figure 10: Ensemble size ablations for MuJoCo Hopper

Classical control ablations can be found in A.6.

5.6 RNN ANALYSIS

Our claim is that the world models have sufficiently distinct dynamics and can therefore serve as
different contextual MDPs. If true, regret-based training should help the agent adapt to all these

8
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dynamics. We demonstrate this by deploying our agent across multiple world models and on the
real environment. We then train a classifier on the recurrent states of said agent to identify its envi-
ronment and achieve an average of 62% accuracy on the DR, 60% on PLR and 45% on PLR PVL;
all above the 10% random prediction accuracy. More qualitative analysis in A.7 and classification
results in A.8.

6 DISCUSSION

6.1 DATASET DISTRIBUTIONS

While our method achieves competitive results in world models trained on our dataset with wide
state coverage, and our online PPO in world models matches the results of online PPO in the real
respective environment, we do not reach the maximum D4RL scores other than with Hopper. We
present the following investigation into why that is the case and why we think this points out to
inherent biases in the field of offline RL that stand in the way of making use of data on the larger
scale.

Figure 11: Observation Distribution in Hopper-
full-replay datasets from D4RL and in ours

Figure 12: Action Distribution in Hopper-full-
replay datasets and in ours

We reiterate that previous work Li et al. (2024) has shown that offline RL methods are susceptible
to implicit biases in the data collection practice. Figure 11 offers a succinct qualitative analysis by
showing that more than half of the Hopper dimensions from D4RL have narrower coverage and
bias the agent towards healthy behavior; a helpful addition for Hopper as the unhealthy state flag
can cause an early termination and vastly affect evaluation. This is even more significant when it
comes to Walker2D where even online PPO underperforms Huang et al. (2022) compared to off-
policy methods like SAC. A method that includes a Behavior Cloning term like TD3+BC (Fujimoto
& Gu, 2021) is at a clear advantage since it is directly biased away from unhealthy states that
would otherwise be explored more in the online environment (as our dataset distribution shows
in Figures 11 through 12. The state of offline RL and its benchmarks has positively reinforced a
direction of methods that does not account for the type increasingly available large scale datasets.

6.2 FUTURE WORK

Our work would benefit from a more principled and interpretable method of sampling the possi-
ble world models from Θ set – as defined in 3.2 – other than simply changing the shuffling and
initialization seeds. A natural extension is that of level generation to have an expanding buffer of
available levels during the adversarial training. Our method also offers a way to generate an RL
training curricula by abstracting away hand-crafted heuristics and using data to generate different
levels directly.

Finally, the results in physical engines like Brax should be extended to real physical platforms and
address the engineering challenges posed by the sim2real gap, especially in sensitive settings where
online training can be physically hazardous.
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7 RELATED WORK

Reinforcement Learning has achieved impressive results, some of the most notable ones being
Go (Silver et al., 2016b), Starcraft (Vinyals et al., 2019), Atari (Mnih et al., 2015) and more recent
advances focusing on multi-task generalizations (Bruce et al., 2024; Hafner et al., 2023). Despite
these impressive results, RL methods fail to generalize to settings even slightly different than the
training environments (Cobbe et al., 2019; Mediratta et al., 2023), indicating that the generalization
to real world settings remains an open challenge.

An RL agent can be more generalizable if exposed to a sufficiently diverse set of environments
in training time. The Unsupervised Environment Design (UED) (Dennis et al., 2020; Jiang et al.,
2021a) line of work achieves this by relaxing the definition of the environment to a combinatorially
large set of possible configurations captured by a set of parameters, commonly referred to as levels.
The choice of the parameter space is specifically tailored to the general task domain also known as
the underspecified environments (e.g. a maze environment is parameterized by the placement of the
walls, start and goal position whereas a one dimensional bipedal environment is parameterized by the
roughness of the terrain). UED uses Minimax regret (Savage, 1951) to make the agent robust to the
most challenging environment configurations without prior knowledge of which set of parameters
it will act in. While these approaches are meant to exemplify deployment in challenging situations,
they remain reliant on semantically informed choices of parameters to capture levels of difficulty.

World models (Ha & Schmidhuber, 2018) propose a different approach where the agent is equipped
with a compact representation of the real environments trained using a dataset of transitions in said
environment. More recent work shows that world models can serve as task-agnostic Continual
Reinforcement Learning baselines (Kessler et al., 2023) or used in online RL to achieve human-
level performance on Atari (Hafner et al., 2020). In principles, world modelling does not hinge
on task-specific heuristics and only relies on increasing the robustness of the agent by tuning the
uncertainty inside the world model. A recent combination of the world model and Minimax Regret
approach by Rigter et al. (2023) trains a world model that can derive robust policies. This is done
through an exploration policy seeking maximal model uncertainty, similar to the self-supervised
world model methods by Sekar et al. (2020). These are ultimately online methods and require
sufficient exploration of states that can be physically dangerous to the agent and disrupt operation
altogether (Kumar et al., 2020; 2021).

Offline RL work has provided a useful signal on the importance of using offline datasets (Kumar
et al., 2020; 2021), the common challenges that arise form the distribution shift between the behav-
ior and learned policy (Levine et al., 2020) and model error (Saleh et al., 2022) alongside the most
common workarounds like truncated rollouts (Jackson et al., 2024). Model-based offline (Rigter
et al., 2022) and online (Chua et al., 2018) RL methods have served as useful blueprints to manage
uncertainty through multiple dynamic models. Sims et al. (2024) demonstrated that short rollouts
(1-5 steps) can cause pathological value estimation and algorithm collapse, emphasizing the impor-
tance of full-length trajectories. Additionally, Li et al. (2024) identified inherent biases in D4RL
benchmarks, suggesting that methods relying on hand-crafted behavior cloning and conservative
conditions may lack generalizability. These have been very useful signals in developing an approach
not reliant on traditional offline RL tricks.

Finally, the work of Li & Liang (2018) and the foundational work of Amari (1993) have paved the
intuition that shuffling the data and most importantly, changing the initializations, would be effective
in training sufficiently distinct models on the same dataset.

8 CONCLUSION

In this work we present a novel way to guarantee transfer robustness to the real environment over
world models fitted on offline data. To the best of our knowledge, this is the first work that performs
adversarial training under this specific fully parametric constraint. The introduced algorithm and
world mode selection enables the use of online-RL innovations in more general setting i.e. from grid
world and simple environments to any problem there are transitions for. Our method naturally lends
itself to other architectures and hopefully will help blaze the trails towards meaningful deployment
of state-of-the-art RL algorithms into the real world based on training inside large scale generative
models.
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Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pp. 4940–4950. PMLR, 2021b.

Samuel Kessler, Mateusz Ostaszewski, MichałPaweł Bortkiewicz, Mateusz Żarski, Maciej Wolczyk,
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A APPENDIX

A.1 UED DISCUSSION

In this section we revisit the main principles of UED and their connection to Bayesian RL. Our
derivation reveals that minimax UED is equivalent to learning a Bayes-optimal policy under a
least favourable prior. As Bayesian RL is a more general framework that allows for optimality
under different priors, we now discuss the relative advantages and disadvantages of choosing a least
favourable prior. The benefits of choosing a least favourable prior include:

I. Policies are robust to changes in prior A key advantage of the least favourable prior is that
policies can be robust to changes in belief. When the minimax theorem (Neumann, 1928) holds,
a Nash equilibrium to the two-player game exists with solution (πMinMax,Θ

πMinMax
max ) and it follows

(Buening et al., 2023):

min
π∈ΠH

max
θ∈Θ

[Regretθ(π)] = min
π∈ΠH

max
P∈P

Eθ∼P [Regretθ(π)] = max
P∈P

min
π∈ΠH

Eθ∼P [Regretθ(π)] , (6)

which implies that the minimax policy is robust to any change in the prior.

II. Protection against worst case MDPs The set ΘπMinMax
max indexes MDPs where policies have

the worst possible regret. This ensures that the agent following πMinMax at test time is protected
against situations where the return has the potential to be very low. From a safety perspective,
this can protect an agent from behaving in a way that is dangerous towards itself or others in an
environment; in particular, if an agent is at a Nash equilibrium, the regret across all MDPs is bounded
by minπ∈ΠH maxθ∈Θ [Regretθ(π)].

There are also several drawbacks to choosing a least favourable prior. Many of these stem from the
restriction of the prior to ΘπMinMax

max , and include:

I. Inability to exploit prior knowledge The least favourable prior excludes the ability to integrate
pre-existing beliefs into the Bayes-optimal policy. If prior knowledge about the set of environments
is available, for example from and offline dataset or known skills that are common across all envi-
ronments, this information cannot be exploited by a least favourable prior. This is most pertinent if
the true distribution over context variables is known a priori, as using this as the prior results in the
greatest regret reduction according to the frequency in which MDPs are encountered in practice.

II. Inability to learn optimal policies For proper priors with support over Θ, provided θ⋆ ∈ Θ, a
key property of Bayes-optimal policies is that they tend towards the optimal policy π(st, θ

⋆) in the
limit of t → ∞. If the index θ⋆ of true MDP allocated to the agent at test time lies outside of the set
of worst regret parameters, that is θ⋆ /∈ ΘπMinMax

max , then the posterior under the least favourable prior
cannot collapse to place its support on θ⋆ and the corresponding policy will never be optimal for
M(θ⋆). As ΘπMinMax

max is typically a very small subset of Θ and the whole of ΘπMinMax
max is never learned

in practice, we expect this situation to be frequently encountered. This point has been observed
empirically as the inability to generalise to out of distribution tasks (Jiang et al., 2021a).

III. Issues with learning Nash equilibria The conditions needed to prove the existence of the
minimax solution - a finite state-action space, a finite horizon, known reward, a finite set of MPDs
(see Buening et al. (2023) for details) - rarely hold in a CMDP in practice. Whilst it is currently
unknown whether the minimax theorem can be generalised to more realistic CMDPs, empirical
evidence suggests this is not the case (Buening et al., 2023). MDPs where the Nash equilibrium
does not exist present a convergence issue when learning a minimax policy. Moreover, even if the
Nash equilibrium exists, algorithms rarely learn the entirety of ΘπMinMax

max required for the minimax
policy (Beukman et al., 2024). In particular, if the algorithm collapses to a prior with support over
single context variable, we cannot expect the minimax policy to learn anything useful at test time.

IV. Inherent pessimism A least favourable prior encodes the most pessimistic belief possible -
that an agent will always be faced with a set of MDPs that have the potential for the highest regret.
The agent does not consider any hypothesis outside of ΘπMinMax

max when reasoning about its beliefs,
despite the fact these MPDs may be more typical of the environments encountered at test time. This
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prevents exploration of alternative hypotheses and is not a universally appropriate belief for every
CMDP.

V. Loss of admissibility A key benefit of Bayes-optimal policies is that, given a proper prior, they
are guaranteed to be admissible - they cannot be Pareto improved upon in terms of expected return
Jπ(θ) across Θ (Wald, 1947; 1950). Least favourable priors are not guarenteed to be proper and
there exist known counterexamples where inadmissible decisions are taken under a minimax policy.

VI. Amplifying effects of model misspecification In most learning settings, it is not reasonable
to assume that the practitioner can specify a CMPD that contains the exact space of MDPs that
an agent could encounter. We must account for some degree of misspecification where there exist
subsets of context variables Θ′ ⊂ Θ that do not correspond to a realisable model. By restricting the
prior to have support over ΘπMinMax

max , it may occur that the prior only has support over MDPs in Θ′,
hence the corresponding minimax policy will only account for MDPs that do not exist in practice.

Like any prior, we see that choice of using a least favourable prior is subjective, and its justification
depends on weighing up the relative advantages and disadvantages by a practitioner on a case-by-
case basis. Either way, the least favourable prior and minimax solution is by no means a universally
appropriate method.

A.2 DATASET SIZES

Here are transitions counts for each dataset. We use full-replay dataset for the D4RL experi-
ments as those match our data curation strategy 4.1 the closest and have the widest state coverage.

Table 1: Transition Counts for each dataset

Environment Transition Count

Acrobot 1.02 · 105
Cartpole 1.02 · 105
Mountaincar 1.03 · 105
Pendulum 1.92 · 105
Hopper Brax 2 · 106
Halfcheetah Brax 2 · 106
Hopper D4RL 1 · 106
Halfcheetah D4RL 1 · 106
Walker2D D4RL 1 · 106

A.3 COMPUTATIONAL COST

Our method is implemented in JAX. We utilize the vmap to the world model i.e. ensemble members
in parallel. The table below shows the wall-clock time for training world models in parallel and the
time saved compared to training each one-by-one. Table 2 shows the time efficiency of using the
vectorizing map with JAX. Each row shows the time for one full epoch of a Halfcheetah Brax training
dataset of size 106 samples with 23 input features and 18 output features. The model has 10 fully
connected hidden layers of 256 dimensions each.

Table 2: Wall-clock time in minutes on a single NVIDIA A40

No. models Serial vmap (ours) time saved
1 0.16 0.16 0.00
5 0.80 0.23 0.57
10 1.59 0.30 1.29
25 3.98 0.56 3.42
50 7.96 1.01 6.95
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Note that if possible, our method’s full implementation in JAX allows for the use of pmap to paral-
lelize across GPUs which would cut linearly reduce the time on column by the number of available
GPUs. This is not require for our method, a single GPU is sufficient to reproduce the entire pipeline.
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A.4 WORLD MODEL TRAINING RESULTS

The results after training the world models and testing on held-out sequences. D4RL data obtained
from (Fu et al., 2020) and the visual D4RL from Lu et al. (2023).

Table 3: L2 loss in world model training results for different D ratios across environment

Environment % of |D| Train Loss Mean Train Loss Median Test Loss Mean Test Loss Median

Pendulum-v1 1 1.201 · 10−7 1.19 · 10−7 5.87 · 10−4 5.83 · 10−4

5 2.20 · 10−6 2.19 · 10−6 5.93 · 10−5 5.91 · 10−5

10 4.28 · 10−6 4.39 · 10−6 3.02 · 10−5 3.01 · 10−5

20 6.85 · 10−6 6.90 · 10−6 1.87 · 10−5 1.86 · 10−5

50 9.35 · 10−6 9.34 · 10−6 1.33 · 10−5 1.34 · 10−5

70 3.99 · 10−1 1.02 · 10−5 4.08 · 10−1 1.28 · 10−5

100 3.99 · 10−1 1.11 · 10−5 4.08 · 10−1 1.23 · 10−5

Acrobot 1 8.86 · 10−7 9.11 · 10−7 1.20 · 10−2 1.20 · 10−2

5 7.53 · 10−6 7.35 · 10−6 2.55 · 10−3 2.57 · 10−3

10 1.71 · 10−5 1.69 · 10−5 1.17 · 10−3 1.18 · 10−3

20 3.37 · 10−5 3.37 · 10−5 5.05 · 10−4 5.05 · 10−4

50 7.60 · 10−5 7.60 · 10−5 3.01 · 10−4 3.02 · 10−4

70 9.14 · 10−5 9.09 · 10−5 2.67 · 10−4 2.66 · 10−4

100 1.40 · 10−4 1.39 · 10−4 2.81 · 10−4 2.81 · 10−4

Cartpole 1 1.95 · 10−8 1.86 · 10−8 3.57 · 10−5 3.60 · 10−5

5 2.97 · 10−7 2.89 · 10−7 4.20 · 10−6 4.15 · 10−6

10 4.86 · 10−7 4.85 · 10−7 2.22 · 10−6 2.23 · 10−6

20 6.49 · 10−7 6.47 · 10−7 1.52 · 10−6 1.52 · 10−6

50 8.05 · 10−7 8.03 · 10−7 1.15 · 10−6 1.14 · 10−6

70 8.61 · 10−7 8.61 · 10−7 1.08 · 10−6 1.08 · 10−6

100 8.98 · 10−7 8.98 · 10−7 1.05 · 10−6 1.04 · 10−6

Hopper 1 1.88 · 10−3 1.98 · 10−3 1.04 · 10−2 8.79 · 10−3

5 1.47 · 10−3 1.01 · 10−3 9.09 · 10−3 8.05 · 10−3

10 1.21 · 10−3 2.30 · 10−4 8.15 · 10−3 7.40 · 10−3

25 1.08 · 10−3 3.21 · 10−4 7.41 · 10−3 6.24 · 10−3

50 9.71 · 10−4 3.32 · 10−4 6.82 · 10−3 5.10 · 10−3

75 8.87 · 10−4 3.16 · 10−4 6.31 · 10−3 4.79 · 10−3

100 8.20 · 10−4 3.02 · 10−4 5.91 · 10−3 4.36 · 10−3

Halfcheetah 1 4.3 · 10−3 3.8 · 10−3 2.3 · 10−2 2.0 · 10−2

5 3.4 · 10−3 1.9 · 10−3 1.9 · 10−2 1.6 · 10−2

10 2.8 · 10−3 5.6 · 10−4 1.6 · 10−2 1.3 · 10−2

25 2.4 · 10−3 5.2 · 10−4 1.3 · 10−2 9.2 · 10−3

50 2.1 · 10−3 4.9 · 10−4 1.2 · 10−2 5.5 · 10−3

75 1.9 · 10−3 4.7 · 10−4 1.1 · 10−2 4.6 · 10−3

100 1.7 · 10−3 4.2 · 10−4 9.5 · 10−3 3.8 · 10−3

Hopper D4RL 10 6.07 · 10−4 6.12 · 10−4 1.27 · 10−3 1.27 · 10−3

25 6.10 · 10−4 6.09 · 10−4 1.08 · 10−3 1.08 · 10−3

50 5.96 · 10−4 5.97 · 10−4 9.76 · 10−4 9.75 · 10−4

75 6.47 · 10−4 6.47 · 10−4 9.48 · 10−4 9.47 · 10−4

100 6.84 · 10−4 6.85 · 10−4 9.10 · 10−4 9.09 · 10−4

Halfcheetah D4RL 10 9.30 · 10−4 9.29 · 10−4 5.86 · 10−3 5.87 · 10−3

25 7.32 · 10−4 7.32 · 10−4 3.66 · 10−3 3.66 · 10−3

50 5.48 · 10−4 5.46 · 10−4 2.50 · 10−3 2.50 · 10−3

75 4.46 · 10−4 4.46 · 10−4 1.99 · 10−3 1.99 · 10−3

100 3.86 · 10−4 3.85 · 10−4 1.69 · 10−3 1.69 · 10−3
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Table 4: L2 loss for the visual model

Environment % of |D| Train Loss Mean Train Loss Median Test Loss Mean Test Loss Median

cheetah-run 100 2 · 10−3 2 · 10−3 8.2 · 10−3 8.1 · 10−3

A.5 HYPERPARAMETERS

Hyperparameters for our method.

Table 5: Hyperparameters for the world model training

Hyperparameter Value

Learning Rate 1 · 10−4

Batch Size 64
Hidden Size 256
Epochs 400

Table 6: Hyperparameters for the visual world model training

Hyperparameter Value

Learning Rate 1 · 10−4

Batch Size 8
Epochs 100
Encoder Hidden Dims (64, 128, 256)
Encoder Kernel Size (3, 3)
Encoder Stride (2, 2)
Decoder Initial Size (8,8)
Decoder Kernel Size (4, 4)
Decoder Stride (2, 2)
Padding SAME
Dynamics Hidden Size 256
Reward Predictor Hidden Size 256
Input Image Size (64, 64, 3)
Output Image Size (64, 64, 3)
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Table 7: Hyperparameters for Each RL Environment

Hyperparameter Acrobot CartPole Hopper HalfCheetah Pendulum

Learning Rate 5 · 10−4 2.5 · 10−4 3 · 10−4 1 · 10−3 1 · 10−3

Number of Environments 16 4 512 16 32
Total Timesteps 5 · 105 5 · 105 5 · 107 5 · 107 1 · 107
PPO Update Epochs 4 4 4 64 4
Number of Minibatches 4 4 32 4 4
Gamma 0.99 0.99 0.99 0.99 0.99
GAE Lambda 0.95 0.95 0.95 0.95 0.95
Clip EPS 0.2 0.2 0.2 0.2 0.2
Entropy Coefficient 0.01 0.01 0.0 0.003 0.01
Value Function Coef 0.5 0.5 0.5 0.5 0.5
Max Grad Norm 1 0.5 0.5 1 1.0
Activation Function tanh tanh tanh tanh tanh
Anneal Learning Rate true true false true true
Number of Eval Envs 1 1 1 1 1
Eval Frequency 4 4 100 4 4

Table 8: Hyperparameter range sweep for SAC N

Hyperparameter Values
polyak step size [0.004, 0.006]
gamma 0.99, 0.999
lr 5× 10−5, 1× 10−4, 2× 10−4, 3× 10−4

num of critics 200, 300, 500
batch size 128, 256, 512

A.6 FURTHER ENSEMBLE SIZE ABLATIONS

Here we present the ablations for the classic control environments.

Figure 13: Ablations for Pendulum-v1
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Table 9: Hyperparameter range sweep for CQL

Hyperparameter Values
polyak step size [0.004, 0.006]
gamma 0.99, 0.999
lr 5× 10−5, 1× 10−4, 3× 10−4

num critics 200, 300, 500
batch size 128, 256, 512
seed 1, 2, 3
cql target actions gap [0.5, 2.0]
cql temperature [0.5, 2.0]
cql min q weight [1.0, 10.0]
cql n actions 5, 10, 15

Figure 14: Ablations for symbolic Cartpole

A.7 HIDDEN STATES VISUALIZATION

Each row illustrates the episodic progression, with Figure 15 depicting the 2-dimensional Principal
Component Analysis (PCA) of the 256-dimensional hidden states. These hidden states are collected
from 10 differently initialized rollouts of the same agent. The rollouts are performed across 9 differ-
ent world models and the real environment, ensuring a fair and balanced classification dataset. No-
tably, no pattern of stability emerges with the DR-trained agent. However, the PLR and PLR PVL
agents exhibit stabilization midway through the episode, within a smaller range on the principal
components compared to the PCA of their initial state. While this warrants further investigation,
we can intuitively infer that the agent learns to act optimally across all world models, and that this
optimal behavior tends to become increasingly similar—though still distinct—across the different
world models and environments.

A.8 HIDDEN STATES CLASSIFICATION

Table 10: Classification accuracy of 9 world models and the real environment

% of |D| DR PLR PLR PVL

1 0.68 0.11 0.47
5 0.41 0.65 0.67
10 0.62 0.68 0.40
20 0.67 0.67 0.09
50 0.76 0.66 0.36
70 0.68 0.58 0.37

100 0.54 0.85 0.79

The confusion matrix for the classification of the world model using the agent’s recurrent state from
all the steps of the episode.
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Figure 15: PCA of the hidden recurrent state for agents trained on different algorithms

Figure 16: Classification accuracy of the hidden states from agents trained with DR, PLR, and PLR PVL for
a dataset of trajectories from 9 world models and the real environment. The dashed black line is the random
prediction accuracy for the 10 classes.
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(a) DR on 5% of |D| (b) DR on 50% of |D| (c) DR on 100% of |D|

(d) PLR on 5% of |D| (e) PLR on 50% of |D| (f) PLR on 100% of |D|

(g) PLR PVL on 5% of |D| (h) PLR PVL on 50% of |D| (i) PLR PVL on 100% of |D|

Figure 17: Confusion Matrix for classifying 10 different levels or training environments using the RNN
hidden states. Label 0 corresponds to the real Pendulum environment. Every row is a different training method
where, DR is Domain Randomization, PLR is Prioritized Level Replay with an L1 value loss score function
and PLR PVL refers to Prioritized Level Replay with an Positive Value Loss score function.
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