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ABSTRACT

Though many reinforcement learning (RL) problems involve learning policies in
settings that are difficult to specify safety constraints and sparse rewards, current
methods struggle to rapidly and safely acquire successful policies. Behavioral
priors, which extract useful policy primitives for learning from offline datasets,
have recently shown considerable promise at accelerating RL in more complex
problems. However, we discover that current behavioral priors may not be well-
equipped for safe policy learning, and in some settings, may promote unsafe be-
havior, due to their tendency to ignore data from undesirable behaviors. To over-
come these issues, we propose SAFEty skill pRiors (SAFER), a behavioral prior
learning algorithm that accelerates policy learning on complex control tasks, under
safety constraints. Through principled contrastive training on safe and unsafe data,
SAFER learns to extract a safety variable from offline data that encodes safety re-
quirements, as well as the safe primitive skills over abstract actions in different
scenarios. In the inference stage, SAFER composes a safe and successful policy
from the safety skills according to the inferred safety variable and abstract action.
We demonstrate its effectiveness on several complex safety-critical robotic grasp-
ing tasks inspired by the game Operation,1 in which SAFER outperforms baseline
methods in learning successful policies and enforcing safety.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated impressive performance at solving complex control
tasks. However, RL algorithms still require large amounts of exploration and data collection in
order to acquire successful policies. For many complex safety-critical applications (i.e, autonomous
driving, healthcare, factory robotics) extensive interactions with an environment are not possible due
to potential dangers associated with exploration or the material costs of online data collection. These
challenges are further complicated by the fact that it is difficult to manually specify safety constraints
in these, due to the complexities of the environments. Nevertheless, relatively few existing safe
reinforcement learning algorithms can rapidly and safely solve challenging, high-dimensional RL
problems, with difficult to specify safety constraints.

One promising route is the behavioral prior (Singh et al., 2021) for offline skill discovery (Pertsch
et al., 2020; 2021; Ajay et al., 2021). These methods use offline datasets to learn representations
of useful actions or behaviors through generative models, such as a normalizing flow model or
variational autoencoders (VAE). Specifically, they treat the latent space of the generative model as
the abstract action space of higher level actions (i.e., skills). Equipped with a behavioral prior, for
each downstream task, an RL agent is trained to map states onto the abstract action space of skills.
This approach can greatly accelerate policy learning because it first learns useful primitives from a
dataset. This structure simplifies the action space for RL (Dulac-Arnold et al., 2015).

Intuitively, if trained on datasets consisting of trajectories which are both safe and successful, be-
havioral priors should capture safe and useful behaviors and thus encourage the rapid acquisition
of safe policies when used to learn future tasks (downstream learning). For example, when trained
on demonstrations of common house hold tasks, behavioral priors should capture behaviors that
successfully and safely accomplish similar tasks, such as handling objects carefully and avoiding
animals/people in the environment. However, we find many existing behavioral priors may not be

1https://en.wikipedia.org/wiki/OperationGame
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well suited for safe policy learning. This is mainly because current state-of-the-art behavioral pri-
ors (Singh et al., 2021) cannot distinguish between safe and unsafe actions and are unable to avoid
the concentration of unsafe actions in high likelihood regions of the abstract action space (see Fig-
ure 1). When the behavioral priors (oftentimes modeled with deep generative models) are trained
only with safe experiences, the unsafe data is out of the training distribution. It is well known
that deep generative models have problems generalizing to out of distribution data, which indeed
increases the likelihood of unsafe actions in this case (Nalisnick et al., 2018; Fetaya et al., 2020;
Kirichenko et al., 2020). For the household robotics example, the behavioral prior may lead to
unsafe behavior (breaking objects or harming animals/people).
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Figure 1: Evaluating the concentration of un-
safe data in high likelihood regions by comput-
ing the % of unsafe state-action pairs in a hold-
out dataset of a safe robotic grasping task. PAR-
ROT assigns high likelihoods to unsafe data, i.e.,
it does not encourage safety, while SAFER has
much lower likelihood in unsafe data.

In this work, we propose SAFER: safety skill
priors, which possesses both desiderata: accel-
erating reinforcement learning with safe oper-
ations. (An overview of SAFER is provided
in Figure 2.) To acquire safe behavioral pri-
ors, SAFER i) uses a contrasive loss to distin-
guish safe date from unsafe ones and ii) learns a
posterior sampling distribution of a latent safety
variable, that captures different safety contexts.
With this in hand, SAFER maps the abstract ac-
tion space onto the set of safe behavioral ac-
tions. These safe actions are parameterized by
the safety context variable, which makes the be-
havioral prior more adaptable to different tasks
and safety constraints. To further establish the
safety assurance of SAFER, we propose a tech-
nique to adjust the abstract action space, such
that at any state s, at most (1 − ε)% of ac-
tions generated by the safety prior is unsafe.
As shown in Figure 1, SAFER assigns much
lower likelihood to unsafe states and actions,
indicating that it will better promote safe behaviors when applied to downstream RL. For house-
hold robotics, this means SAFER is much better equipped to learn behaviors that are both safe and
useful for downstream tasks (handling objects safely and not harming animals/people) compared
to the alternatives because it may be difficult to manually specify a constraint function, but could
easier to access demonstrations of unsafe behavior. To demonstrate the effectiveness of SAFER, we
evaluate it on a set of complex safety-critical robotic grasping tasks. When compared with other
baseline methods, SAFER policies have a higher success rate and less safety violations.

2 BACKGROUND

In a setting with different tasks, for each task T , the agent’s interaction is modeled as a Markov
decision process (MDP). A MDP is a tuple (S,A,T, r, γ, s0). In the MDP, S and A are the state and
action spaces, T(·|s,a) is the transition probabilities, r(s,a) is the reward function, γ ∈ [0, 1) is the
discount factor, and s0 ∈ S is the initial state. A number of different safe RL formulations exist in
the literature (Garcı́a et al., 2015). In this work, safety is measured by the safety violation function,
ω(s,a) ∈ {0, 1}, that indicates whether the current state and action lead to a safety violation (1)
or no safety violation (0). Consequently, the safety MDP is given as a tuple (S,A,T, r, γ, s0, ω).
Note, that the safety violation function ω(s,a) is task specific. This formulation is desirable because
different tasks likely have different safety criterion. For instance, in robotic grasping, different
tasks likely contain different objects that have various sensitivities to being gripped or limits to how
quickly they can move without breaking. Observe that we utilize a binary notion of safety violation
because we are concerned with complex RL problems, (e.g., learning from pixels), where it can be
difficult to specify continuous notions of safety.

We now formalize the safety MDP problem for each task in the environment. Let ∆ be the set
of Markovian stationary policies, i.e., ∆ = {µ : S × A → [0, 1],

∑
a µ(a|s) = 1}. Given a policy

µ ∈ ∆, we define the expected return as Rµ(s0) := E[
∑∞
t=0 γ

tr(st,at) | µ, s0] and at each given state
s ∈ S the safety constraint function (i.e., expected safety violation) as Wµ(s) := E[ω(s,a) | µ, s].
The safety constraint is then defined as Wµ(s) ≤ ε, where ε ∈ [0, 1] is the tolerable threshold of
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violation. For each task the goal in safety MDP is to solve the constrained optimization problem
µ∗ ∈ arg max

µ∈∆
{Rµ(s0) :Wµ(s) ≤ ε, ∀s ∈ S} . (1)

It has been shown that if the feasibility set is non-empty, then there exists an optimal policy in
the class of stationary Markovian policies ∆ (Altman, 1999, Theorem 3.1). Similar to policy
gradient (PG) algorithms, to effectively solve for the optimal policy we parameterize the station-
ary Markovian policy by a κ-dimensional vector ψ, so the space of policies can be written as
{µψ, ψ ∈ Ψ ⊂ Rκ}. In the next section we will further exploit the connections of different tasks to
design a parameterization structure with policy primitives that leads to effective and safe learning.

Behavioral Priors To effectively solve the safety MDP for each task, similar to the recent work of
primitive discovery (Singh et al., 2021; Ajay et al., 2021), we propose the specific policy structure
µψ = fφ(z; s) and z ∼ πθ(z|s), where ψ = (φ, θ). In this parameterization, the mapping (with
learnable parameters φ)

fφ : Z × S → A (2)
is denoted as the behavioral prior (Singh et al., 2021), which maps from the abstract action space Z
and state space S to the action spaceA. The task-dependent, high-level policy πθ : S → P(Z) maps
any state s ∈ S to the corresponding distribution of abstract actions in Z . Notice that the behavioral
prior fφ is independent of any tasks. To train this action mapping more effectively, one can use an
offline dataset D, which consists of state-action rollouts τ = {s0,a0, ..., st,at} collected across
different tasks. As long as these rollouts are generated by following a diverse set of policies, they
will likely contain information for learning different low-level action mappings from Z × S to A
that leads to useful behavior for the downstream tasks. Typically, a simple distribution is chosen as
Z (e.g., the unit normal distribution) to make controlling the primitives straightforward.

Policies trained with behavioral priors use Z as the action space and optimize the parameters θ in
the policy πθ. In the context of the safety MDP, the behavioral prior provides a simplified action
space Z which only contains actions in the action space A that will satisfy the safety threshold
Wµ(s) := E[ω(s,a) | µ, s] and maximize rewards Rµ(s0). For example, in a robotic grasping task,
a behavioral prior may learn to reach toward objects or grip nearby objects. These properties make
behavioral priors highly appealing for solving complex control tasks because learning successful
policies from high level behaviors typically requires much less interaction with the environment than
learning policies from scratch (Singh et al., 2021). As such, different ways to express the behavior
prior mapping have been proposed. For instance, Ajay et al. (2021) optimizes the likelihood of
actions, conditioned on the state and abstract action space, log πθ(a|s, z). Singh et al. (2021)
directly optimizes the conditional log-likelihood policy, log p(a|s), and fix an invertible mapping
through the use of a conditional normalizing flow (Dinh et al., 2017) between the abstract action
space Z and the distribution over useful actions p(a|s) to retain control of the learned behaviors.

Shortcomings of Behavioral Priors for Safe RL Though current behavioral priors are highly
useful at accelerating learning, they only increase of likelihood of useful actions. Thus, when applied
to a safety MDP problem, data containing unsafe or unsuccessful data should not be used because
it is counter-intuitive to increase the likelihood of these actions (Singh et al., 2021). Consequently,
unsafe states and actions may be out of distribution (OOD). It is well established in the literature
on deep generative models (including the behavioral prior models) that OOD data is handled poorly
and, in some cases, might have higher likelihood than in-distribution data (Nalisnick et al., 2018;
Fetaya et al., 2020; Kirichenko et al., 2020). As we see in Figure 1, these observations hold true for
current behavioral priors where unsafe data has high likelihood, indicating that they may encourage
unsafe behavior in the presence of OOD states. Since the proposed policy structure with behavioral
priors relies on high likelihood actions from the prior (Ajay et al., 2021; Singh et al., 2021), using
the aforementioned behavior priors to solve safety MDP problems will generally be problematic.

3 SAFER: SAFETY SKILL PRIORS

Considering the shortcomings mentioned in Section 2 of existing behavioral priors and the need
for methods that can learn complex safety constraints, ideally a behavioral prior that encourages
safety should i) be capable of learning complex safety constraints by sufficiently exploiting the data,
thereby avoiding the OOD issue; ii) permit the specification undesirable behaviors through data; and
iii) accelerate the learning of successful policies. Motivated by these requirements, in this section,
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Figure 2: Overview of SAFER:
SAFER optimizes the posterior
over a latent safety variable (top
of figure) that encodes safety in-
formation about the environment.
SAFER uses the safety variable to
learn an abstract action space Z
that maps to safe and useful behav-
iors through fφ through a normal-
izing flow (lower left). SAFER ac-
celerates policy learning on down-
stream tasks by learning to take
actions in Z using policy πθ(z|s)
(lower right).

we introduce SAFER, a behavioral prior that circumvents the aforementioned shortcomings and is
specifically designed for safety MDPs.

3.1 LATENT SAFETY VARIABLE

To address all of the above criteria, we introduce an additional latent variable as the input to the
behavioral prior called the safety variable c ∈ C, i.e.,

fφ : Z × C × S → A.
The safety variable captures information for the behavioral prior so that it can safely and rapidly
generalize when used in downstream tasks. This construction is useful because information beyond
the current state s can be encoded into the task variable, to better help the behavioral prior model
complex per task safety dynamics. For example, the safety variable could encode the locations of
other vehicles in autonomous driving or animals/people in a robotics application. Because we do
not assume the task variable C is provided from the environment, we train a network to infer it.

3.2 LEARNING THE SAFETY VARIABLE

In order to train the behavioral prior and posterior over the safety variable, we adopt a variational
inference (VI) approach. We jointly train an invertible conditional normalizing flow fφ (Dinh et al.,
2017) as the behavior prior and posterior over the safety variable using VI. At each state s ∈ S and
safety variable c ∈ C, the flow model fφ maps a unit Normal abstract action z ∈ Z (i.e., samples
z = f−1

φ (a|s, c) of the inverse flow model follow the distribution pZ(·) := N (0, I)) onto the action
space A of safe behaviors, and therefore the corresponding prior action distribution is given by

pφ(a|s, c) := pZ(f−1
φ (a; s; c)) · |det(∂f−1

φ (a; s; c)/∂a)|. (3)

The flow model is a good choice for the behavioral prior because it allows computing exact log
likelihoods. Further, it yields a mapping such that actions taken in the abstract action space z ∈ Z
can easily be transformed into useful ones a = fφ(z; s; c). However, since VI approximates the
lower bound of maximum likelihood, it does not explicitly enforce the safety requirements in the
safety variable c. To overcome this issue, we encode safety to c by formulating the learning problem
as chance constrained optimization (Charnes and Cooper, 1959).

Chance Constrained Objective Formally, our objective arises from optimizing a neural network
to infer the posterior over the safety variable C using amortized variational inference (Zhang et al.,
2019). In particular, we parameterize the posterior over the safety variable as qρ(c |Λ), where c is
the safety variable, and Λ is information from which to infer the variable. In practice, we set Λ as a
sliding window of states, such that if st is the current state at time t and w is the window size, then
the information is given by Λ = [st, st−1, ..., st−w]. We infer the safety variable from the sliding
window of states Λ because we expect this to contain useful information concerning safe learning.
For example, in a robotics setting where the observations are images, previous states may contain
useful information concerning the locations of objects to avoid, which may be unobserved in the
current state. We write the evidence-lower bound (ELBO) of our model as follows,

Ec∼qρ(c|Λ) [log pφ(a|s, c)−DKL(qρ(c|Λ)||p(c))] (4)

where a is the action that will not result in safety violations (i.e, ω(a, s) = 0) and p(c) is a prior over
the safety variable c. To ensure that unsafe actions are low probability, we add a chance constraint
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about the likelihood of unsafe actions (Nemirovski and Shapiro, 2007) to the ELBO optimization,
max
ρ,φ

Ec∼qρ(c|s) [log pφ(a|s, c)−DKL (qρ(c|Λ)||p(c))] s.t. Pc(pφ(aunsafe|s, c) > ε) ≤ ξ, (5)

where the constraint states that in most cases (at least with probability ξ) with the safety variable c
drawn from C the distribution of the corresponding unsafe actions (i.e., ω(aunsafe, s) = 1) is always
less than the safety threshold ε. Intuitively, this objective enforces that the safety variable should
make safe actions as likely as possible while minimizing the probability of unsafe actions.

Tractable Lower Bound Due to the difficulty in optimizing the chance constrained ELBO objec-
tive function in high-dimensional settings, we instead consider optimizing an unconstrained surro-
gate lower bound (Nemirovski and Shapiro, 2007).

Proposition 3.1 Assuming the chance constrained ELBO is written as in Equation 5, we can write
the surrogate lower bound as,

max
ρ,φ,λ

Ec∼qρ(c|s) [log pφ(a|s, c)− λ log pθ(aunsafe|s, c)−DKL(qρ(c|Λ)||p(c)] (6)

Proof: We rewrite the optimization 5 into the following form (with the term +λ′ξ dropped because
it is independent of the decision variables),

max
ρ,φ,λ′

Ec∼qρ(c|s) [log pφ(a|s, c)−DKL (qρ(c|Λ)||p(c))]− λ′Pc(pφ(aunsafe|s, c) > ε). (7)

where λ′ > 0 is a ξ-dependent penalty parameter that is connected to the Langrange multiplier2 and
is chosen to enforce the constraint. Using the Markov inequality we have

Pc( pφ(aunsafe|s, c) > ε) ≤ Ec [ pφ(aunsafe|s, c)]

ε
, (8)

such that the following objective function is a lower bound of that in Equation 5:

max
ρ,φ,λ′

Ec∼qρ(c|s)

[
log pφ(a|s, c)−DKL(qρ(c|Λ)||p(c))− λ′

ε
Ec [ pφ(aunsafe|s, c)]

]
. (9)

For convenience, we write λ′

ε as the single hyperparameter λ and optimize the log of pφ(aunsafe|s, c)
for better numerical stability. We finally have the lower bound surrogate objective in Equation 6. �

We denote this objective as the SAFER Contrastive Objective. Beyond rigorous derivations, this
ELBO objective function is intuitively interpretable. The first two terms together act as a contrastive
loss that encourages safe actions (high likelihood) while discourages unsafe ones (low likelihood).
Together with the final term, the task variable c is then forced to only contain useful information that
does not violate safety. Thus the objective satisfies the earlier goals, allowing for the inference of
difficult-to-specify safety constraints through the task variable and discouraging unsafe behaviors.
Finally, since SAFER can increase the likelihood of any safe behaviors, the final criteria that the
behavioral prior can accelerate downstream policy learning can be met by using safe and successful
trajectory data during SAFER training.

Parametization Choices To parameterize the behavioral prior in SAFER, we use the Real NVP
conditional normalizing flow, proposed by Dinh et al. (2017), due to it being highly expressive and
allowing exact log-likelihood calculations. Next, we parameterize the posterior distribution qρ(c|Λ)
over the safety variable as a diagonal Gaussian. This choice allows computing the KL efficiently,
while enabling an expressive task variable latent space. We use a transformer architecture to model
the sequential dependency between Gaussian safety variable c and the window of previous states Λ
(Vaswani et al., 2017). Finally, because the state space is an image pixel space, we also encode each
observation to a vector using a CNN. An overview of the architecture is given in Figure 2.

Training It is necessary to use the reparameterization trick to compute gradients across the objec-
tive in Equation 6 (Kingma and Welling, 2014). Second, optimizing Equation 6 involves minimizing
an unbounded log-likelihood in the second term of the objective. This term can lead to numerical in-
stabilities, if pφ(aunsafe|s, c) becomes too small. To overcome these issues, we use gradient clipping
and freeze this term if it starts to diverge. Psuedo code of the procedure to train SAFER is provided
in Appendix D in Algorithm 3 and hyperparameter details are provided in Appendix B. Last, note
the objective requires access to unsafe data. We don’t advise running an unsafe policy in the real

2λ′ can be optimized via gradient descent (Chow et al., 2017) or treated as a hyper-parameter.

5



Under review as a conference paper at ICLR 2022

Algorithm 1 Accelerating Safe Reinforcement Learning with SAFER

Require: SAFER Prior fφ, Safety Posterior qρ(c|Λ), Safety bound η, Task T , Window Λ = {}
for step k = 1, ...,K do

sk ← current state
ck ← Eqρ(·|Λk) [c] . Compute mean of safety variable
zk ∼ πθ (z|sk) . Sample abstract action from policy
ak ← fφ(zk; sk; ck) . Compute action using SAFER
sk+1, rk, ωk ← Perform ak in task T
Update πθ(z|s) using (sk, zk, sk+1, rk) to maximizeRµ(s0)
Update Λ with sk . Update Λ in FIFO order

end for
Return: Policy πθ(z|s) for task T

world to collect unsafe data. Rather, our method should be applied in a domain where unsafe data
already exists or where unsafe data can be collected in simulation (Srinivasan et al., 2020).

3.3 ACCELERATING SAFE REINFORCEMENT LEARNING WITH SAFER

Algorithm 2 SAFER Safety Assurances

Require: Bound η, SAFER prior fφ, safe dataset
Dsafe, unsafe dataset Dunsafe
bound← (−η, η)
define get total(D):

total← 0
for (s, a, Λ) in D do

c← Eqρ(·|Λk) [c], z← f−1
φ (a; s; c)

if z within bound then
total += 1

end if
end for
return total

return get total(Dunsafe)
get total(Dunsafe)+get total(Dsafe)

When using SAFER on a safe RL task, the
goal is to accelerate safe learning by leveraging
the behavioral prior in the hierarchical policy
µψ =

∫
z
fφ(z; s; c)dπθ(z|s) where the pol-

icy parameters of the behavioral prior φ are
fixed and the parameters θ need to be opti-
mized (Psuedo code of the procedure is pro-
vided in Algorithm 1). The policy πθ(z|s) can
be learned by any standard RL methods (e.g.,
SAC (Haarnoja et al., 2018)) that produces con-
tinuous actions. To leverage SAFER at infer-
ence time for timestep t, the current RL pol-
icy takes an action in the abstract action space
zt ∼ πθ(z|s = st). Using the sliding window
of states Λ, the safety variable posterior com-
putes the distribution over the safety variable
ct.3 Because a single safety variable value ct is required, we fix it at its mean, E[ct] =

∫
c dqρ(c|Λt).

Finally, SAFER computes the action at = fφ(zt; st; E[ct]), the action is taken the environment, and
the reward r(st,at) and safety violations ω(st,at) are returned. The action zt and reward rt are
added to the replay buffer for subsequent RL training.

3.4 SAFETY ASSURANCES

To provide concrete and tunable safety assurances under SAFER, for any given bound in the abstract
space Z we develop a technique that estimates the corresponding safety threshold ε, where at most
1 − ε portion of all actions in data is unsafe (psuedo-code provided in Algorithm 2). Notice that
actions that are more likely to be safe and successful are closer to the mean of Z . Therefore, we
construct the bound around the mean of Z using an offline data set of safe and unsafe (s, a) pairs.
In particular, by fixing any arbitrary range (−η, η) on each component of the Z space we compute
the corresponding percentage of unsafe actions within the dataset. We take this value as the upper
bound of 1 − ε, the portion of unsafe actions under SAFER. Since the normalizing flow in SAFER
is invertible, it allows computing the values in Z of every (s, a) pair, and thus calculating the
upper bound is straightforward. Suppose the offline dataset contains sufficiently diverse state-action
data that covers most situations encountered by SAFER. Then we would expect the above safety
threshold to be rather generalizable and statistically significant (Kääriäinen and Langford, 2005).

4 RELATED WORK

Safe Exploration A number of related works focus on safe exploration in RL when there is ac-
cess to known constraint function (Wachi and Sui, 2020; Achiam et al., 2017; Dalal et al., 2018;

3If there are insufficient states to compute a task window of size w (e.g., at the beginning of the rollout), we
pad the available states with 0’s in order to construct a window of w states.
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Figure 3: An example of a
task where the robot success-
fully and safely grasping an
object (top row). Here, the
robot reaches into the container
and extracts the object with-
out touching the container. On
the bottom row, the robot per-
forms the same task but com-
mits safety violations by touch-
ing the container.

Bharadhwaj et al., 2021; Narasimhan, 2020; Yang et al., 2021; Chow et al., 2018a;b; Achiam and
Amodei, 2019; Berkenkamp et al., 2017; El Chamie et al., 2016; Turchetta et al., 2020). In our
work, we focus on the setting where the constraint function cannot be easily specified and must be
inferred from data, which is critical for scaling safe RL methods to the real world. To this end, a
few works consider a similiar setting where the constraints must be inferred from data (Yang et al.,
2017; Thananjeyan et al., 2021a). However, these works mainly focused on constrainted exploration
and do not consider accelerating learning through learning useful behaviors within the space of safe
(s,a) pairs, as is possible with SAFER.

Demonstrations for safe RL Using demonstrations to enable safe RL has received interest in the
literature (Rosolia and Borrelli, 2018; Thananjeyan et al., 2020; 2021b; Driessens and Dzeroski,
2004; Smart and Kaelbling, 2000; Srinivasan et al., 2020). Though these works leverage demonstra-
tions to improve safety, they do not handle data from a variety of tasks and enable the acquisition of
diverse sets of skills.

Skill Discovery Various works consider learning skills in an online fashion (Eysenbach et al.,
2019; Nachum et al., 2019; Sharma et al., 2020; Xie et al., 2021; Konidaris and Barto, 2009). These
works learn skills that are used for planning (Sharma et al., 2020) or online RL (Eysenbach et al.,
2019; Nachum et al., 2019). In contrast, we focus on a setting with access to an offline dataset, from
which the primitives are learned. Further works use offline datasets to extract skills, and transfer
these to downstream learning (Pertsch et al., 2020; 2021; Ajay et al., 2021). However, these methods
do not consider safety.

Hierarchical RL Numerous works have found it beneficial for policy learning to learn high level
primitives using auxiliary models and control these with RL (Singh et al., 2021; Peng et al., 2019;
Chandak et al., 2019; Nachum et al., 2018; Hausman et al., 2017; Florensa et al., 2017; Fox et al.,
2017a; Dietterich, 1998; Rakelly et al., 2019). Though these works propose methods that are capable
of accelerating the acquisition of successful policies, they do not specifically consider accelerating
learning with safety constraints and, in some cases, could be susceptible to the issues in Section 2.
SAFER considers building a hierarchical policy in the form a behavioral prior that handles safety
through encouraging safe actions while discouraging unsafe ones.

5 EXPERIMENTS

We evaluate the calibration of the safety assurances introduced in Section 3.4 and how well SAFER
encourages both safe and successful policy learning compared to baselines.

5.1 EXPERIMENTS SETUP

Recall that SAFER improves data efficiency by first learning a behavioral prior from offline data.
To evaluate SAFER, we introduce a suite of safety-critical robotic grasping tasks that are inspired
by the game Operation4.

Safety-critical Robotic Grasping Tasks Inspired by the game Operation, whose primary goal is
to extract objects from different containers without touching the container, we construct a set of 40
different grasping tasks, each consisting of a container and object defined in PyBullet (Coumans
and Bai, 2016–2021). We collect data from all these tasks to train SAFER but choose 6 of the more
complex tasks for evaluation. In each of these tasks, the objects are randomly selected from ones
available in PyBullet package, and the containers are generated to fit each object, whose dimensions

4https://en.wikipedia.org/wiki/OperationGame
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Table 1: Training RL with SAFER, we give the mean ± SD success rate and cumulative safety
violations across different tasks and initializations. SAFER produces the lowest cumulative safety
violations throughout training and outperforms the baseline methods in terms of success rate. Meth-
ods without the use of a behavioral prior, namely SAC, are not able to learn during training (of
50, 000 steps). These results demonstrate SAFER is highly effective at encouraging safe learning.

Success Rate (%)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

SAC 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 2.3± 0.0
PARROT 0.0± 0.0 12.8± 0.2 25.7± 0.2 16.1± 0.2 33.9± 0.3 6.3± 0.1
Context PAR. 5.0± 0.0 24.2± 0.2 27.0± 0.3 0.7± 0.0 7.3± 0.1 12.0± 0.2
Prior Explore 1.8± 0.0 1.5± 0.0 3.0± 0.0 1.8± 0.0 1.1± 0.0 1.0± 0.0
SAFER 21.0± 0.1 87.4± 0.2 89.3± 0.0 28.1± 0.2 54.4± 0.1 83.3± 0.0

Total Number of Safety Violations (Out of 50,000 Steps)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

SAC 2045± 236 876± 117 1055± 216 2736± 147 2188± 405 756± 293
PARROT 6332± 3026 307± 291 13± 21 541± 461 2414± 314 932± 844
Context PAR. 5929± 2964 1576± 1208 1039± 777 5056± 1778 2796± 624 2085± 1951
Prior Explore 6203± 551 2240± 634 2867± 853 4525± 826 4669± 542 2596± 703
SAFER 610± 184 51± 61 10± 14 455± 470 1707± 292 7± 9

(heights and widths) are generated randomly. Our agent controls the 5DoF robotic arm and gripper,
for which a positive reward (r(s, a) = 1) is received when an object is extracted from the box,
while a negative reward (r(s, a) = −1) is incurred at every time step before the task is complete.
The agent incurs a safety violation (ω(s, a) = 1) if the robotic arm touches the box (examples of
safe/unsafe trajectories given in Figure 3, examples of the tasks provided in Appendix Figure 10).
The states are 48× 48 pixel image observations of the scene collected from a fixed camera.

Offline Data Collection To generate the offline data for the SAFER training algorithm, for
each robot grasping task we use the scripted policy from Singh et al. (2021) to collect trajecto-
ries with a total of 1, 000, 000 steps. The scripted policy controls the robotic arm to grasp the
object generally by minimizing the absolute distance between objects and the robot. To obtain
more diverse/exploratory trajectories, it adds random actuation noise. After collecting the tra-
jectories, for each state-action pair (s,a) in the dataset we provide labels for i) safety violation
ω(s, a) ∈ {0, 1}, and ii) whether the pair (s,a) is part of a successful rollout (i..e, (s,a) such that
E[r(sT ,aT )|µdata, s0 = s,a0 = a] = 1, where T is the trajectory length random variable). To cre-
ate the state window Λ for SAFER training, for each (s,a) in the data buffer we save the previous
w states. One can utilize these labels to categorize safe versus unsafe data to train SAFER.

Baseline Comparisons We compare against baselines that leverage demonstrations to accelerate
learning, including RL from scratch using SAC, PARROT (Singh et al., 2021), a contextual version
of PARROT (Context. PAR) that uses a latent variable to help accelerate learning, and Prior Explore,
a method that samples from SAFER to help with data collection during training. Because in our
problem setting, we infer safety constraints from data and do not have access to such constraints
during training, we do not compare against safe RL works that make this assumption. Full details
surrounding the baselines are given in Appendix C.

5.2 RESULTS DISCUSSION

Effectiveness of RL training with SAFER In Table 1 we compare SAFER with the baseline
methods both in terms of cumulative safety violations and success rate. We choose a SAFER policy
primitive with a safety assurance upper bound that guarantees at most 15% unsafe actions, which
empirically maintains a good balance between success and safety. For each downstream task, we
then train the RL agent πθ with SAC for only 50, 000 steps because we are more interested to evalu-
ate the power of the behavioral prior. Overall, we see that SAFER has the lowest cumulative safety
violations, indicating that it is the most effective method in promoting safe policy learning. Interest-
ingly, SAFER also consistently outperforms other methods in encouraging successful learning. The
strong success rate results of SAFER could be due to the fact that discouraging unsafe behaviors
may help refine the space of useful behaviors, better enabling the learning of successful policies.

Safety Assurance Calibration We evaluate whether the safe abstract action bound of SAFER
computed in Section 3.4 is well calibrated, i.e., the empirical percent of unsafe actions should be
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Figure 4: Assessing the calibration of the SAFER safety assurances by randomly sampling ac-
tions from the prior with various safety upper bounds across different evaluation tasks. Each dot
corresponds to the empirical percent of unsafe (s,a) pairs from a single rollout on the task. Overall,
we see that the SAFER safety assurances are quite well calibrated.

0.20.40.6
z Upper Bound

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

0.20.40.6
z Upper Bound

50

100

Sa
fe

ty
 V

io
la

tio
ns

Figure 5: Assessing the tradeoff be-
tween success and safety varying the
safety assurances bound on the abstract
action space Z , (referred to as η in Al-
gorithm 2). There is an sweet spot where
success rate is high and safety violations
is low.

less than the upper bound. To study this, we compute the Z-action bound (−η, η) corresponding
to an upper bound of 0%, 15%, 30% and 45% unsafe actions for SAFER. We compute the percent
of unsafe actions by randomly sampling actions from SAFER on each of the evaluation tasks and
report the results in Figure 4, which shows that SAFER bounds are indeed well calibrated.

Success & Safety Tradeoff In Figure 5 we assess the tradeoff between success and safety by
varying the Z-action bound in Algorithm 2. We sweep over different bounds and compute both the
success rate and safety violations at the end of training for Task 5. We see that there is a sweet spot
with high success rate and low safety violations when the safety assurances bound is close to 15%.
Interestingly when the bound is too tight (corresponding small z values), both the safety violation
and success rate become low, indicating SAFER cannot solve the task without sufficient exploration.

Impact of latent safety variable We train SAFER on Tasks 2 and 5 using the contrastive objective
in Equation 6 but without the safety variable. In this case, the success rate never exceeds 10% and
the safety violations are quite high (see Appendix A for the results for Task 2). In comparisons, with
the safety variable the SAFER method has a success rate of at least 60% on both tasks (see Table 1
for details). This suggests that the latent safety variable is crucial for success and safety.

6 CONCLUSION

In this paper, we introduced SAFER, a behavioral prior that improves the data efficiency of safe
RL when there is access to both safe and unsafe data examples. This is particularly important
because most existing safe RL algorithms are very data hungry. We proposed a set of complex
safety-critical robotic grasping tasks to evaluate SAFER, investigated limitations of state-of-the-art
behavioral priors in safety settings, and demonstrated that SAFER achieves better success rates and
enforces safety, and has the following assurance: at state s, at most (1 − ε)% of actions will be
unsafe. Future work includes extending the behavioral priors to enforce safety on cumulative or
worst case constraints, and applying SAFER to larger-scale problems.
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