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Abstract
This paper studies the qualitative behavior and
robustness of two variants of Minimal Random
Code Learning (MIRACLE) used to compress
variational Bayesian neural networks. MIRACLE
implements a powerful, conditionally Gaussian
variational approximation for the weight poste-
rior Qw and uses relative entropy coding to com-
press a weight sample from the posterior using
a Gaussian coding distribution Pw. To achieve
the desired compression rate, DKL[Qw∥Pw] must
be constrained, which requires a computationally
expensive annealing procedure under the conven-
tional mean-variance (Mean-Var) parameteriza-
tion for Qw. Instead, we parameterize Qw by its
mean and KL divergence from Pw to constrain
the compression cost to the desired value by con-
struction. We demonstrate that variational training
with Mean-KL parameterization converges twice
as fast and maintains predictive performance after
compression. Furthermore, we show that Mean-
KL leads to more meaningful variational distri-
butions with heavier tails and compressed weight
samples which are more robust to pruning.

1. Introduction
With the ever-growing size of neural network architec-
tures, such as large language models (e.g. BERT, Kenton &
Toutanova, 2019), it is now a key challenge to ensure their
memory and energy efficiency. While there is a large litera-
ture on model compression, almost all works rely on some
form of quantization scheme. In this paper, we consider an
alternative method to quantization, namely Minimal Ran-
dom Code Learning (MIRACLE, Havasi et al., 2019), which
has recently demonstrated state-of-the-art performance for
neural network compression. The MIRACLE framework
employs a powerful, conditionally Gaussian variational dis-
tribution Qw over the weights w of a neural network and
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uses relative entropy coding (REC, Flamich et al., 2020)
with a Gaussian coding distribution Pw to encode a random
weight sample from Qw. The average coding cost of en-
coding a weight sample is DKL[Qw∥Pw], which needs to
be carefully controlled in a practical compression scheme.
To this end, we propose to use Mean-KL parameterization
for Gaussians (Flamich et al., 2022) to parameterize Qw,
allowing explicit control over DKL[Qw∥Pw] by construc-
tion. We demonstrate that Mean-KL leads to many practical
benefits over the conventional mean-variance (Mean-Var)
parameterization used by Havasi et al. 2019, which requires
a computationally expensive annealing procedure to control
the coding cost. In particular, we show that, compared to
Mean-Var parameterization, variational training converges
in half the number of iterations using Mean-KL parame-
terization while maintaining predictive performance after
compression. Furthermore, we illustrate that the resulting
variational distribution exhibits more meaningful shapes
with heavy tails, which makes the compressed weight sam-
ple more robust against zero pruning.

2. Background

Minimal Random Code Learning Havasi et al. 2019
consider a setting akin to the β-VAE (Higgins et al., 2017)
to encode neural network weights with a limited information
budget C. To this end, let X ,Y and W be the input, output
and weight spaces, respectively, let D = {(xn,yn)}Nn=1 be
a dataset and let h : X ×W → Y be a neural network with
input x and weights w. To control the information content
of the weights, let Pw be the coding distribution and Qw be
the variational distribution over w. In this setting, Hinton
& Van Camp 1993 show that the information content of the
weights is DKL[Qw∥Pw]. Further, let ∆ : Y × Y → R+ be
a distortion function. MIRACLE minimizes

Ew∼Qw

∑
(x,y)∈D

∆(y, h(x,w)) + βDKL[Qw∥Pw] (1)

with respect to Qw to minimize distortion within the given
information budget of DKL[Qw∥Pw] = C nats. During
optimization, β is dynamically adapted to anneal the KL
divergence, such that the constraint is eventually satisfied.

In this paper, we encode the samples using minimal ran-
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Figure 1. Layerwise histograms of variational mean and log standard deviation for Mean-Var (blue) versus Mean-KL (orange) parameteri-
zations. Mean-Var struggles to learn meaningful distributions: means are concentrated at zero and standard deviations are clustered at
high values. Mean-KL learns more reasonable distributions with heavier tails and a broader range of values.

dom coding (MRC, Havasi et al., 2019) for simplicity,
though more sophisticated approaches, such as A* coding
(Flamich et al., 2022) or greedy Poisson rejection sampling
(Flamich, 2023), have been invented. Given a suitable Qw,
a random sample from Qw is compressed by first draw-
ing K = exp(DKL[Qw∥Pw]) samples from Pw. These K
samples are then used to construct a discrete distribution
whose probability mass function is defined by the impor-
tance weights rk = dQw

dPw
(wk), where dQw

dPw
is the Radon-

Nikodym derivative, i.e. the density ratio, of Qw with re-
spect to Pw. The compressed weight sample is represented
by an index k∗ ∼ Qk. Since 0 ≤ k∗ < K, it is always
possible to encode k∗ using DKL[Qw∥Pw] = C nats. The
weight sample can be decoded by drawing the k∗

th sample
from Pw using a shared random number generator with a
shared random seed. Due to the exponential scaling, simu-
lating K samples is intractable if w has many dimensions.
Havasi et al. 2019 solve this issue by partitioning w dimen-
sionwise into smaller blocks with local information budgets
Cblock, such that K is feasible.

Refining Mean-Field Posteriors An important choice in
practice is the variational family over which we optimize
Equation (1). Since we are interested in studying the behav-
ior of samples using MIRACLE, we also adopt the varia-
tional family suggested by Havasi et al. (2019). Concretely,
assume that we have already partitioned the weight vector
as w = w1:B = w1⊕w2⊕ . . .⊕wB , where B denotes the
number of blocks, and ⊕ denotes vector concatenation. To
begin, we use a mean-field Gaussian variational approxima-
tion, i.e. we parameterize the means µ1:B = µ1 ⊕ . . .⊕ µB

and marginal variances σ2
1:B = σ2

1 ⊕ . . .⊕ σ2
B (Mean-Var).

Once variational training converges, we compress the first
block w1, resulting in a sample w̃1. Keeping w̃1 fixed,
we resume optimization to fine-tune the remaining means
µ2:B and variances σ2

2:B . We repeat this process B times in
total, where at step b, w̃1, . . . , w̃b−1 are fixed, means µb:B

and variances σ2
b:B are optimized, and a random sample

from block b is encoded. Note that the variational posterior

Qwb:B |w̃1:b−1
at step b is only factorized conditionally on

the weight samples in the first b− 1 blocks, which results
in a much better variational approximation.

Mean-KL Parameterization for Gaussians Flamich
et al. 2022 show that, given a univariate Gaussian coding dis-
tribution Pw = N (w|ν, ρ2) with mean ν and variance ρ2, a
variational distribution Qw = N (w|µ, σ2) can be uniquely
parameterized by mean µ and DKL[Qw∥Pw] = κ if

|µ− ν| < ρ
√
2κ (2)

is satisfied. The variance σ2 of Qw can be recovered via

σ2 = −ρ2W
(
− exp(z2 − 2κ− 1)

)
, (3)

where z = (µ− ν)/ρ and W is the principal branch of the
Lambert W function (Corless et al., 1996), defined by the
relation W (x)eW (x) = x (see Appendix B for details).

3. Mean-KL Parameterization for MIRACLE
Recognizing that the main goal of minimizing Equation (1)
combined with KL annealing is to solve

argmin
Qw

Ew∼Qw

∑
(x,y)∈D

∆(y, h(x,w)), (4)

subject to DKL[Qw∥Pw] = C, (5)

we propose to use Mean-KL parameterization (Flamich
et al., 2022) to enforce the DKL[Qw∥Pw] = C constraint
mathematically instead of performing computationally ex-
pensive KL annealing. To this end, the total information
budget C = κ must be distributed to each weight, resulting
in local information budgets κw. Thus, in Mean-KL parame-
terization, each weight has a mean parameter µw and a local
information budget κw, matching the number of parameters
for the conventional Mean-Var parameterization, albeit with
one fewer degree of freedom because

∑
w∈w κw = κ.

In practice, we introduce an information quota parameter
γw per weight, which satisfies

∑
w∈w γw = 1 and defines
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the relative share of the total information budget assigned
to w, that is κw = γwκ. The constraint on the information
quota parameters is implemented using a softmax function.
To ensure that |µw−ν| < ρ

√
2κw (Equation (2)), we define

µw = ν + ρ
√
2κwtanh(τw), (6)

as suggested by Flamich et al. (2022), leaving τw and γw
as trainable parameters. In combination with blockwise
partitioning of w, each block has its own constraint and κ
is simply replaced by κblock. When drawing samples from
Qw or evaluating the density of Qw, we convert τw and
γw to µw and σw

2 using Equation (6) and Equation (3),
respectively, followed by the same computations as with
conventional Mean-Var parameterization.

4. Experiments
We empirically demonstrate advantages of Mean-KL com-
pared to conventional Mean-Var parameterization: We show
that variational training with Mean-KL parameterization
converges faster than Mean-Var while maintaining predic-
tive performance, we illustrate that Mean-KL leads to more
meaningful distributions with heavier tails, and we demon-
strate that these more meaningful distributions translate to
improved robustness when pruning weights to zero.

Training Dynamics and Predictive Performance We
adopt the experimental setup of Havasi et al. 2019 and train
a LeNet-5 on MNIST. The distortion function ∆ is the cross-
entropy, which is commonly used as a loss function in image
classification. Matching Havasi et al. 2019, we used a lo-
cal information budget of Cblock = κblock = 20 bits. We
varied the block size between 20, 30, and 40. For both pa-
rameterizations, we used Adam with a learning rate of 0.001
and a mini-batch size of 200. For KL divergence annealing
with Mean-Var, we used ϵβ0

= 10−8 and ϵβ = 5×10−5, as
suggested by Havasi et al. 2019. See Appendix C for further
implementation details.

Figure 2 illustrates how Mean-Var spends most of the opti-
mization on minimizing and annealing the KL divergence
to the desired coding cost, whereas for Mean-KL, the whole
optimization process focuses on minimizing cross entropy,
given that the parameterization already constrains the KL
divergence to the desired coding cost. Crucially, KL diver-
gence annealing with Mean-Var takes a tremendous amount
of time while minimizing cross entropy with Mean-KL con-
verges in just half the number of iterations. Table 1 shows
that Mean-KL maintains predictive performance compara-
ble to Mean-Var across different compression ratios, be-
ing slightly better in the low compression ratio setting and
slightly worse in the high compression ratio settings, albeit
within standard error.

Table 1. MNIST classification error after compression (lower is
better). Mean ± standard error over 10 seeds.

Block Size Ratio Mean-Var Mean-KL

20 555x 0.82± 0.07 % 0.77± 0.05 %
30 833x 0.79± 0.05 % 0.87± 0.08 %
40 1111x 0.87± 0.07 % 0.96± 0.08 %
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Figure 2. Training dynamics of Mean-Var and Mean-KL param-
eterizations. Mean-Var requires a large amount of iterations to
anneal the KL divergence to the desired coding cost. Mean-KL
constrains DKL[Qw∥Pw] to the desired value and focuses on min-
imizing cross entropy, converging in half the number of iterations.

Visualizing Variational Posteriors To qualitatively inves-
tigate the variational posterior distributions, we plot layer-
wise histograms of learned parameters after the compressed
weight sample has been generated. For purposes of compar-
ison, both Mean-Var and Mean-KL parameters have been
have been converted to mean and log standard deviation.

Figure 1 reveals striking differences between layerwise
Mean-Var and Mean-KL parameter distributions. In terms
of the means, Mean-Var parameters collapse to sharp peaks
at zero for all layers without any visible tails. In con-
trast, Mean-KL mean parameters manifest much wider,
symmetric distributions centered around zero with heav-
ier tails, resembling shapes akin to Laplace, Gaussian or
Student’s t-distributions. In terms of the log standard de-
viation, similarly, Mean-Var parameters form peaked dis-
tributions around a particular value with virtually no tails.
The distributions of Mean-KL log standard deviations is
more spread out, forming distinct shapes for each layer. In
general, Mean-Var standard deviations seem to be higher
than Mean-KL standard deviations. Furthermore, despite
resulting in similar predictive performance, the stark differ-
ences in distributional shapes suggest potential qualitative
differences between the learned variational posteriors.

Robustness to Pruning To study potential qualitative dif-
ferences between variational posteriors learned using Mean-
Var and Mean-KL parameterizations, we analyze the robust-
ness of the compressed weight sample by setting certain
weights to zero using three different strategies:
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Figure 3. Predictive performance of compressed weight samples from Mean-Var and Mean-KL parameterizations when exposed to
pruning via setting weights to zero by selecting the pruned weights uniformly at random (left), based on the smallest absolute values
(middle) or based on minimizing KL divergence to a Dirac delta centered at zero (right). Mean ± standard error over block sizes 20, 30,
and 40 with 10 random seeds per block size.

1. Random Uniform: Select pruned weights uniformly at
random. This strategy reflects a general notion of ro-
bustness due to the uninformed nature of this strategy.

2. Absolute Value: Set the weight with smallest absolute
value to zero. This strategy is a simple yet competitive
pruning baseline (Blalock et al., 2020), which only de-
pends on the compressed weight sample itself. If the
same sample was generated by two different distribu-
tions it would still be pruned in the same way.

3. KL Divergence: Prune the weight which minimizes the
KL divergence from the variational posterior to a Dirac
delta at zero, argmini DKL[δw∥Qwi

]. For a Gaussian
variational posterior with diagonal covariance matrix,
this is equivalent to finding the weight with maximal
density at zero (see Appendix A for details). This strat-
egy depends on the variational posterior, implying that
the same compressed sample would be pruned differ-
ently if it was generated by two different distributions.

Figure 3 illustrates how the test accuracy changes as more
weights in the compressed sample are pruned to zero. With
Random Uniform pruning, Mean-Var test accuracy quickly
drops off, already losing more than half the performance
after about 20% of the weights have been pruned, and di-
minishing to performance equal to guessing uniformly at
random after roughly 70% of the weights have been set to
zero. Mean-KL performance also reduces rapidly, albeit
more gracefully. After setting 30% of all weights to zero, a
test accuracy of 80% is maintained. Performance equal to
guessing is reached after more than 80% of the weights have
been pruned. This suggests a general notion of improved
robustness of the compressed sample produced by Mean-KL
compared to Mean-Var.

With Absolute Value pruning, Mean-Var and Mean-KL per-
form nearly identical. Both parameterizations roughly main-
tain full predictive performance until 50% of the weights
have been pruned and decay towards random guessing as
more weights are set to zero. In particular, this pruning

strategy does not depend on the variational posterior and
is only informed by the compressed weight sample itself,
demonstrating that both parameterizations produce com-
pressed samples which are generally capable of maintaining
performance to some degree under pruning.

Finally, both parameterizations perform drastically differ-
ent under KL Divergence pruning. While Mean-Var test
accuracy quickly falls off almost to random guessing after
only 50% of the weights have been set to zero, Mean-KL
maintains close to 90% test accuracy after pruning 90% of
the weights, even outperforming the competitive Absolute
Value baseline. Since this pruning strategy is informed by
the variational posterior, the results strongly suggest that,
compared to Mean-Var, Mean-KL parameterization leads
to a superior variational posterior which produces more ro-
bust compressed samples. Given that this pruning strategy
outperforms the competitive baseline, this property is also
not a mere peculiarity but could potentially be leveraged to
design more robust algorithms.

5. Conclusion
We demonstrated that MIRACLE with Mean-KL parameter-
ization bypasses the need for time-consuming KL annealing,
leading to training convergence after half the number of op-
timization steps while maintaining predictive performance.
Furthermore, Mean-KL parameterization produces more
meaningful variational posterior distributions with heavy
tails, whereas standard Mean-Var parameterization produces
distributions which are sharply peaked at particular values.
We illustrated that these qualitative differences result in dif-
ferent properties when exposed to pruning, suggesting that
compressed weight samples from Mean-KL are more robust
than samples from Mean-Var. Future work should investi-
gate whether faster convergence properties are scalable to
larger models and pioneer Mean-KL parameterization for
Bayesian neural networks independent of compression. Ex-
plicitly utilizing Mean-KL’s robustness to design pruning or
compression algorithms comprises another possible avenue.
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A. KL Divergence Pruning
Given a variational posterior Qw as multivariate Gaussian distribution N (w|µ,Σ) with diagonal covariance Σ = diag(σ2),
we want to select the dimension i which minimizes the KL divergence to a Dirac delta centered at zero, that is DKL[δw∥Qw].
Because the distribution of w is mean-field factorized, it suffices to consider individual dimensions independ of each other.
To this end, let Qwi

= N (wi|µi, σ
2
i ) and Pwi

= Pw = N (w|ν, ρ2), then

DKL[Pw∥Qwi
] = log

σi

ρ
+

ρ2 + (ν − µi)
2

2σi
2

− 1

2
, (7)

which can be simplified if we are only interested in finding the minimizer because log ρ and 1
2 are constant with respect to i,

argmin
i

DKL[Pw∥Qwi
] = argmin

i
log σi +

ρ2 + (ν − µi)
2

2σi
2

. (8)

Now, to let Pw → δw, we first set ν = 0 and let ρ → 0, yielding

argmin
i

DKL[δw∥Qwi
] = argmin

i
log σi +

µi
2

2σi
2
= argmax

i
logN (0|µi, σi), (9)

such that choosing the dimension i by minimizing log(σi) + µi
2/2σi

2 will prune the weight whose marginal distribution
has the lowest KL divergence to a Dirac delta centered at zero or, equivalently, has the highest log density at zero.

B. Padé Approximation to the Lambert W Function
Since the Lambert W function, defiend by W (x)eW (x) = x, cannot be expressed using elementary functions, it has to be
implemented by, for example, numerical or analytical approximations. We considered three different approximations to
the principal branch of the Lambert W function: Winitzki’s approximation for real x > 0 (Winitzki 2003, (38)), Halley’s
method for numerical root-finding with cubic rate of convergence, and a Padé approximation of order [3/2]. Winitzki’s
approximation for real x > 0 is used as initialization for Halley’s method in the implementation of TensorFlow Probability
(Dillon et al., 2017), however we experienced that the former by itself is not accurate enough and that the latter can be slow
and exhibit numerical issues. Instead, we used a Padé approximation of order [3/2], given by

W (x) ≈
13
720 t(x)

3 + 257
720 t(x)

2 + 1
6 t(x)− 1

103
720 t(x)

2 + 5
6 t(x) + 2

, (10)

where t(x) =
√
2ex+ 2, (11)

which was fast and accurate. We did not consider Winitzki’s approximation for −e−1 ≤ x ≤ 1 (Winitzki 2003, (39)).

C. Implementation Details
Our implementation uses PyTorch (Paszke et al., 2019) and follows Havasi et al. 2019 closely. The LeNet-5 model consists
of two convolutional layers and two linear layers, which are applied sequentially. The first convolutional layer has 1 input
channel, 20 output channels, a kernel size of 5x5, a stride of 1, and no padding. It is followed by a ReLU activation and a 2D
max pooling layer with a kernel size of 2 and a stride of 2. The second convolutional layer has 20 input channel, 50 output
channels, and also a kernel size of 5x5, a stride of 1, and no padding. It is also followed by a ReLU activation and a 2D max
pooling layer with a kernel size of 2 and a stride of 2. The first linear layer has 800 input features, matching the flattened
outputs from the previous layer, 500 output features, and it is followed by a ReLU activation. The second linear layer has
500 input features and 10 output features, matching the number of classes in the MNIST dataset. It is followed by a softmax
layer to produce class probabilities. Additionally, weight hashing (Chen et al., 2015) is used in the second convolutional
layer and the first linear layer to reduce the effective number of weights by a factor of 2x and 64x respectively. The layerwise
log standard deviation parameters of the coding distribution were initialized to −2. For Mean-Var parameters, the means
were initialized using PyTorch’s default initialization and the log standard deviations were initialized to −10. For Mean-KL
parameters, τw was initialized by passing PyTorch’s default initialization through the analytical inverse of Equation (6) and
γw was initialized to 0. After initial variational training, we perform 100 fine-tuning steps in-between compressing blocks.


