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Abstract

Governments, industry, and academia have undertaken efforts to identify and
mitigate harms in ML-driven systems, with a particular focus on social and ethical
risks of ML components in complex sociotechnical systems. However, existing
approaches are largely disjointed, ad-hoc and of unknown effectiveness. Systems
safety engineering is a well established discipline with a track record of identifying
and managing risks in many complex sociotechnical domains. We adopt the natural
hypothesis that tools from this domain could serve to enhance risk analyses of
ML in its context of use. To test this hypothesis, we apply a “best of breed”
systems safety analysis, Systems Theoretic Process Analysis (STPA), to a specific
high-consequence system with an important ML-driven component, namely the
Prescription Drug Monitoring Programs (PDMPs) operated by many US States,
several of which rely on an ML-derived risk score. We focus in particular on
how this analysis can extend to identifying social and ethical risks and developing
concrete design-level controls to mitigate them.

1 Introduction

A large and growing community of researchers, practitioners, and policymakers is concerned with the
social and ethical risks that attend machine learning (ML) systems. These problems extend beyond
the alignment of the technology itself to the embodied and contextual use of ML-driven tools in
entire sociotechnical systems. Systems safety engineering provides tools, techniques, and procedures
that have been studied carefully in context for their ability to identify and control risks in complex
sociotechnical systems [1, 2]. Although it has previously been suggested that such frameworks can
perform similarly for ML systems safety risks, including social and ethical risks [3, 4], the concrete
use of these techniques has not yet been validated. Nor is it known to what extent tools for managing
risk in complex sociotechnical systems can be adapted to identifying social and ethical risks in
particular. To test the hypothesis that systems safety engineering provides tools for assessing and
mitigating social and ethical risk, we apply Leveson’s System Theoretic Process Analysis (STPA)
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to a representative ML system, giving special attention to socially and ethically problematic system
outcomes operationalized as safety hazards. As a case analysis, we apply STPA to a notional data-
derived risk score as it would be used in the administration of the Prescription Drug Monitoring
Program (PDMP) in many states. By analyzing the concrete application of STPA in a realistic ML
case study, we can determine if STPA can effectively and repeatably identify and provide a path to
eliminate or mitigate social and ethical risks that may result from a system.

The state of the art in ML evaluation generally relies on ad-hoc review of chosen metrics such as
AUC, metrics derived from confusion matrices, or – for social and ethical risks – so-called “fairness
metrics”. Metric-based evaluation is a fundamentally narrow view of model performance, especially
for social and ethical risks: it frequently fails to address wider critical equities at stake [5, 6]. Fairness
metrics, while a common proxy for identifying social and ethical concerns, are widely acknowledged
to be imperfect operationalizations of underlying human values [7]. Additionally, it can be particularly
difficult to assign responsibility for social and ethical risks in ML systems or to determine appropriate
interventions to mitigate problems even once discovered [8, 4, 9, 10].

In response, several efforts aim to create concrete evaluation frameworks designed to identify harms,
especially social and ethical risks, and propose mitigation. For example, the US NIST’s draft AI Risk
Management Framework process [11] and the pending “AI Act” legislation in the European Union
both categorize the management of social and ethical risks in ML systems as a risk management
problem and envisage solutions in standardized evaluation frameworks. But even so systematized,
assessments of social and ethical risks will remain ad-hoc – these frameworks are based only on
best consensus expert judgement. Instead, effective risk governance must be based in experience,
scientific evaluation, and process validation. Practitioners and academics alike recognize the need for
valid evaluation practices and welcome standardized frameworks [12, 13, 14, 15].

A strength of system safety engineering frameworks is that they connect abstract safety policies,
which are difficult to make actionable through technical means alone, to implementable requirements.
Tools from this domain further have the advantage of being regularly applied in high consequence
domains, well studied, and providing a strong basis on which to systematize efforts to identify social
and ethical risks [16, 17]. Such tools include traditional safety-through-reliability techniques like
fault-tree analysis (FTA) [18] and Failure Mode and Effects Analysis (FMEA), quantification-oriented
approaches used for decades to reduce the number of failures in systems under analysis [19]. By
contrast, Leveson’s Systems Theoretic Accident Model and Process (STAMP) [2] explicitly rejects
the notion that reducing failures improves safety, noting that safety is a property of systems not
components. STAMP instead models hazardous states that could lead to defined losses as insufficient
control within an entire sociotechnical system.

Recognizing and responding to the social and ethical risks of an ML model requires viewing that
tool in its context of use, as part of a broader sociotechnical system [20]. We therefore borrow from
STAMP its hazard analysis technique, Systems-Theoretic Process Analysis (STPA). STPA has a
successful track record in high consequence domains [1, 21]. By considering the full sociotechnical
system, STPA contextualizes ML hazards with respect to social and ethical risks that result from
component interactions and environmental factors in addition to component behaviors. Specifically,
we apply STPA to a realistic notional case where social and ethical risks from ML have already been
identified: several US state Prescription Drug Management Programs (PDMPs) use an ML-based
risk score in their workflow. Our analysis seeks to answer several questions about STPA: Can
STPA recover causal paths to social and ethical harms effectively? Does it suggest effective design
interventions to avoid those unsafe system behaviors? What portions of the STPA process readily
apply to social and ethical impact analysis and mitigation for ML systems? What aspects apply
with only minor adjustments? What gaps still remain? Finally, we propose some adaptations or
interpretations of STPA to bridge those identified gaps–towards a proven, systematic approach to
advancing social and ethical impact analysis for complex ML-enabled sociotechnical systems.

2 Case Study: A Systems-Theoretic Process Analysis of PDMP Scoring

STPA is a top-down system safety analysis tool, part of a family of techniques belonging to Leveson’s
Systems Theoretic Accident Model and Process (STAMP) paradigm [2, 22, 1]. At a high level, STPA
analysis requires four steps (for more detail about the STPA technique, see Appendix A): 1) Defining
the purpose of the analysis, including defining losses and hazards for the system of interest (SoI);
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2) Modeling the full sociotechnical control structure for the system; and 3) Identifying unsafe control
actions (UCAs) within each control loop which can cause a loss; and 4) Identifying causal loss
scenarios for each UCA.

ML-based risk scores are widely used in Prescription Drug Monitoring Programs (PDMPs) throughout
the United States.1 For more detailed information on our subject ML system, refer to Appendix F.
We examine this system using STPA to better understand how social and ethical harms arise from the
ML components and to identify design constraints and corrective controls to mitigate them.

In step one of the STPA, the team defined the purpose of our analysis as to identify and where possible,
eliminate sociotechnical harms whether manifested as various forms of inequity between social groups,
such as representational, allocative, quality of service, interpersonal or societal harms [24], or more
narrowly manifested as traditional safety harms such as loss of life, injury, and loss of quality of life
to individuals. For more detail on the harms taxonomy we adopt for our analysis, see Appendix G.
This part of the process serves to align the resulting system with desired societal values [25]. We
identified our primary stakeholders as patients, followed by doctors and pharmacists. Our initial list
of losses was built from the harms stated above and included approximately 30 losses (Appendix
D.1), which we consolidated and further grouped into a set of five distilled losses (Appendix D.2 for
the grouping). We found the PDMP risk score losses were best grouped thus: 1) Death, Injury or
Disability, 2) Disparity of Benefits or Harms, 3) Social or Economic Injury, 4) Damage to Quality of
Healthcare, 5) Coerced Criminality or Unsafe Treatment.

From these losses a set of 10 system-specific hazards were identified, see table 1 in Appendix D.3. For
step two, the team continued to comb through documentation and research on PDMP risk score ML
models, seeking to develop a useful control structure for analysis. Early on, we acknowledged a need
to address both the operational control structure context of the ML system as well as solve how and to
what level of abstraction the ML life-cycle should be modeled within the control structure. This was
an iterative process and settled on the structures found in Appendix B, figure 1 for the operational
context and figure 2 for the treatment of the ML life-cycle. The usefulness of this interpretation will
be discussed further in section 2.2. Step two also required defining each controller and controlled
process’ function, the associated control actions and feedback as depicted in figures 1b and 3.2

For STPA step three, the team used the control structure and potential hazards to identify control
actions whose misapplication can lead to a hazard. These are unsafe control actions (UCAs), and
for each control loop, we considered the four standard misapplications of control: 1) Not providing
control causes hazard; 2) providing control causes hazard; 3) control is too early, too late, or out
of order; 4) incorrect control duration (too long, too short). This yielded the control action tables
found in Appendix E. We found that when applying the four standard control misapplications to the
ML development cycle control loop, whereas the temporal question (i.e., too early, too late, wrong
order) was not useful, it was useful to alter the duration misapplication (too long, too short) to instead
refer to concepts of quantity, i.e., too many/much, too few/little. Finally, with the UCAs outlined, the
causal scenarios logically follow, manifesting system losses. The result is that logical requirements
for sociotechnical system design modifications to eliminate or mitigate the risks of the identified
hazards become far easier to motivate, reason about and outline.

2.1 PDMP Findings

This analysis resulted in an informative contextualized control structure for a PDMP risk score
algorithm and its surrounding sociotechnical system. It identified 30 specific initial losses (Appendix
D.1) which were grouped and pared down to five loss types (Appendix D.2). The analysis was scoped
to the two most interesting of the seven primary control loops identified and modeled, namely Patient
Care, figure 1b and Data Decisions, figure 3. Analysis provided a combined 13 unsafe control actions
as shown in tables 2 and 3 to inform and motivate actionable sociotechnical system requirements to
eliminate or mitigate the identified harms in the system going forward.

1The authors performed an informal search of state public health websites and official news releases and
could confirm 27 of 51 states and D.C. use an ML based scoring system as a major component of their PDMP.
Additionally, five of the top seven U.S. pharmacy businesses (by 2021 prescription revenue) [23], likewise
require their pharmacists to use an ML-based PDMP scoring system in their workflow. Many of these entities
use the same scoring tool provided by a third-party vendor.

2Referenced descriptions within the control structure are treated in more detail in Appendix B.1
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Many calls for action to adopt PDMP risk scores were motivated by the U.S. opioid epidemic, the
tragic and increasing loss of life fueled by opioid overdoses every year. One early discovery that
quickly became apparent in the STPA analysis was that, though often motivated by the desire to save
lives and prevent opioid overdoses and Opioid Use Disorder (OUD), the objective function of this ML
model is aimed at minimizing drug diversion instead, defined by the US Department of Health and
Human Services as "the illegal distribution or abuse of prescription drugs or their use for purposes
not intended by the prescriber." The underlying premise is that reducing drug diversion will save
lives. However, considering the hazards, control loops, and UCAs we identified in our short analysis
of this system, it is rationally defensible to hold that the opposite could be true3. The control loops
show possible mechanisms whereby actions taken by prescribers and dispensers to ostensibly protect
an individual, or act in their business’s best interest based on the patient’s score, instead may result in
more desperate and dangerous behavior by the patient as effective treatment is sought but may not
be provided. This overall issue highlights a frequent problem in ML systems where the objective
function may not be suitably matched to the system goal [27], here immediately raised as a possible
issue in the first steps of the analysis and further questioned as the STPA is carried out.

2.2 ML Life Cycle: Data Decision Phase Example

One challenge of applying STPA to machine learning that was identified early was how to best apply
control structure and follow-on analysis to the development life-cycle of ML systems. The team made
progress on this challenge, coming to the conclusion that the various phases of the life-cycle should
be abstracted as individual control loops with the phase modeled as the controlled process and the
development team modeled as the controller (figs 2 and 3). Our effort shows this to be a promising
way forward having resulted in control actions, meaningful validation questions and requirements
with respect to the social and ethical impact framing. With respect to PDMP risk scores, table 3
shows our results in finding unsafe control actions in the data decision phase alone that can lead
to social and ethical losses. This is an ongoing investigation with new insights, developments and
applications forthcoming.

3 Discussion

Conducting an STPA for social and ethical impact forces development teams and other stakeholders
to do the necessary work to fully consider the larger system context that a product or component
will inhabit, the larger sociotechnical system. As stated before, recent history shows that frequently,
teams are hyper focused on the SoI they are developing and thus miss the bigger picture, the larger
purpose and direction. The STPA process cultivates a rich appreciation for the sociotechnical system
a new system or product is entering, and provides an effective abstraction with which to reason about
these harms, as well as the instruments, tools, and methods (both social and technical) that we can
bring to bear to eliminate or mitigate them.

Another important contribution of STPA is the mandate to consider carefully the overall goal of the
system (step 1) and in our treatment, verify that the objective function that is adopted does not itself
lead to the social and ethical losses the STPA identifies. For example, applying STPA to the health
benefits scoring system system studied by Obermeyer [27] could reveal the need for a check for racial
and socio-economic disparities resulting from an objective function mismatch early in development
and could have enabled a shift to a more appropriate governing optimization.

Finding a way to abstract and model STPA in the ML life-cycle was a challenging aspect of applying
STPA to S&E impact in ML systems. One benefit of the ML life-cycle treatment the team developed
(see section 2.2 and figures 2 and 3) is that it breaks the STPA modeling into manageable pieces
where each phase or stage has a reasonable number of control actions which can be decomposed into
measurable and verifiable considerations and checks.

A particular nuance of a thorough social and ethical impact STPA should also consider whether the
resulting product algorithm could be used by the funding or owning company (or sold as a service
to another) in a manner not overtly intended in the stated purpose of the system but (regardless of

3A possibility at least not refuted by nationwide statistics showing a marked reduction in drug diversion and
opioid prescribing coinciding with the adoption of PDMPs in every state, mandated risk score use in over half,
and an overall overdose death rate that is nevertheless increasing [26]
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legality) presents a potential negative social or ethical impact on society. Part of these analyses should
also be to consider these types of uses or outputs to other interests and suggest mitigations or scope
statements that warn of these potential issues and the need for separate STPA analysis for those uses.

In the case study system, a number of the controllers or controlled processes involved humans who
are free agents, such as doctors, pharmacists and their staffs. Considering Goodhart’s law "...when a
measure becomes a target, it ceases to be a good measure," it is to be expected that an entity modeled
as a controlled process may alter their behavior or feedback paths to exert influence on the modeled
controller. One potential approach would be to also examine these relationships in the opposite
direction and ask the same control, hazards, and scenario questions. This practice can reveal potential
for, in the case of PDMP score systems, such behaviors as abandonment by doctors and service
refusal by pharmacists, and the attendant losses which may result. Identification of these types of
potential behaviors only serve to expand the analytical potential for discovering hazards and thus
identifying controls to prevent those hazards.

One final benefit of the STPA process is that it necessarily provides a traceable path from every
derived requirement to its causal scenarios, contributing unsafe control actions, control loops of
origin and orginating hazards and losses. This property enables the complete retracing of the logic
and reasoning behind every decision in design and operations.

3.1 Conclusion

In this paper we record the results of a two week sprint where we applied STPA, a traditional system
safety engineering analysis methodology to the challenge of assessing the social and ethical impact
of a machine learning system, a Prescription Drug Monitoring Program risk score. We found that
STPA’s rigorous approach when coupled with a thorough harms taxonomy produced a trove of
hazards and unsafe control actions against which new system requirements for sociotechnical control
mechanisms could subsequently be applied to prevent social and ethical losses. Additionally, we
adapted a useful abstraction of the machine learning life cycle for STPA which recovered potential
unsafe control actions in a manner similar to those captured by their analogous operational control
loops. Future work will examine the applicability and generalizability of STPA for social and ethical
impact by investigating case studies across different applications of ML systems. In so doing we seek
to introduce a tool to provide an organized, proven systematic approach to social and ethical analysis
for complex ML-enabled sociotechnical systems.
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A System Theoretic Process Analysis (STPA)

STPA is a top-down system safety analysis tool, part of a family of techniques belonging to Leveson’s
Systems Theoretic Accident Model and Process (STAMP) paradigm [2]. STPA is a proven and
systematic hazard analysis process that frames accidents not in terms of component failures but
instead as a control structure which prevents the subject system from entering hazardous states which
could lead to unacceptable losses. Typically, losses are defined by key stakeholders such as system
owners or operators and often include: death, injury, damage to property, financial loss, or loss of
mission. Hazards are typically described as a system state that when coupled with a specific set of
worst-case conditions results in a loss(es). In STPA, hazards and their resulting losses follow from
inadequate system control, i.e., unsafe control actions (UCA)s. [2].

Notably, STPA expands on the scope of traditional reliability-driven safety analysis to include
unforeseen behavioral interactions across the entire sociotechnical system. For example, STPA
analysis includes consideration of human-machine interfaces, supporting governance hierarchies, and
even organizational culture. Rejecting the idea of a “root-cause”, STPA proceeds from the thinking
that accidents are, as Perrow puts it, “normal behaviors” of complex systems. Far from unlikely,
accidents are inevitable emergent system behaviors, arising from system structure and function that
must be identified and subsequently controlled [28, 2].
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A.1 STPA Process

Applying STPA consists of the following core steps which are intended to be applied while studying
the system of interest across the system’s lifecycle. The STPA process should be repeated at higher
levels of detail until the purpose of the analysis can be satisfactorily addressed.

1. Define the purpose of the analysis: Identify stakeholders, define what constitutes a loss
and surface system-specific hazards to be eliminated or mitigated to prevent losses from
occuring.

2. Model the full sociotechnical control structure for the system. This involves mapping the
feedback control loops of the sociotechnical system to the level of abstraction necessary to
meaningfully reason about them.

3. Considering the control structure and potential hazards, identify unsafe control actions
(UCAs) for each control loop, (i.e., what controller action, inaction, or misapplied action
(too early, too late), or applied for the wrong duration, etc. - can go wrong and cause a loss?)

4. Identify and consider potential loss scenarios (i.e. causal scenarios) for each UCA. A
tangible benefit of this final step is the development of a set of requirements that need to
be enforced to ensure a safe sociotechnical system results, these may include but are not
limited to new design decisions, requirements, procedures, operator training, test cases or
even periodic audits [22].

B Control Structure

Figure 1a situates our identified operational control loops for the PDMP scoring algorithm within the
health system. Figure 1b shows more detail for the particular Patient Care control loop for the PDMP
score. Figures 2a, 2 and 3 show the machine learning lifecycle, how this study proposes to model that
cycle as a set of control loops and the specific control loop addressing the Problem Conception and
Data Decisions portions of the cycle, respectively.

(a) High Level Control Structure (b) Patient Care Control Loop

Figure 1: PDMP Score Control Structure and Inset Patient Care Loop

B.1 Control Loop Component Descriptions

PDMP Score Algorithm: Feedback and Control Actions Patient - Given patient data, provide risk
score for propensity for opioid abuse, overdose, diversion to inform healthcare clinical decisions
regarding treatment and prescriptions.
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(a) ML Life-Cycle (b) PDMP Cycle: Control Structure

Figure 2: Modeling Life-Cycle Control

Figure 3: Data Decisions

• PDMP CA: Individual risk score and component scores for narcotics, stimulants and benzo-
diazepines.

• Data Feedback: prescriptions, diagnoses, medical history, doctor selection, pharmacy
selection, arrest history, prescription payment behavior, pet prescriptions, ?

Doctor - Track milligram morphine equivalents (MME)s prescribed per patient and other stats in order
to flag ’aberrant’ behavior associated with risk for enabling or participating in drug diversion–deliver
letters warning practitioners when thresholds crossed and later flag to law enforcement if and when
mandated by state law.

• PDMP CA: Average PDMP risk score of Patients, average MME prescribed, stats as defined
by state and DEA tracking.

• Doctor Feedback: prescriptions, retained patients, prescribing amounts compared to stan-
dards (not tailored to patient health)

Pharmacist - require consideration of score before filling prescription, consult prescribing doctor,
reserve right to refuse patient prescription if deemed too risky.
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• PDMP CA: avg PDMP risk score?. Average MMEs/ prescription? How are Pharmacists
audited for their part in the system?

• Pharm Feedback: Prescriptions filled, workflow executed, reports.

Development Team: This team is responsible for executing the initial phases of the ML Lifecycle.
Thus it defines the problem whose solution is sought, the conceptualization and initial decision
making in forming a solution, from Operationalization of the unobservable theoretical construct to the
data provenance decisions and model decisions. Requirements set. Why system is needed. Problem
to solve.

C Team Composition and Study Limitations

Our analysis team is composed of five ML researchers, one sociologist, and one STPA subject matter
expert. In addition to working with an experienced STPA expert, each member of the team worked to
become thoroughly familiar with STPA by reading core STPA expositions – Leveson’s Engineering a
Safer World textbook [2], an associated STPA Handbook [22], and training videos from the group that
developed the framework [29] – and studying the STPA evaluation literature. We did not have direct
access to PDMP scoring systems or their datasets, however we were able to derive necessary details
from from state-issued systems operating manuals, pharmacy work-flows, legal requirements, training
documents as well as recent research involving the re-creation and testing of ML models based on the
datasets and features stated by proprietors to be used and most "predictive of unintentional overdose
death" [30, 31, 32, 33]. Given the top-down framing of the STPA approach, these documents proved
sufficient to provide ample operating and development context to model control structures and for an
effective exploration of STPA analysis for social and ethical impact.

D Losses and Hazards

In our initial analysis we identified over thirty potential social, ethical and safety losses that could
result both from the PDMP score system proper or downstream and yet a result of the PDMP score
system’s interactions within the broader healthcare system, these are fully outlined in Appendix
D.1. To simplify analysis going forward it was then necessary to reduce this loss list to five general
categories as defined in Appendix D.2.

D.1 Initial Losses

1. Patient Death
2. Inequity between social groups

(a) Allocative - Disparity in PDMP risk score can result in a disparity in:
• Health Treatment: affecting subsequent opportunity as well if resulting treatment

disparity is debilitating reducing ability to hold a job or care for children or adult
dependents.

• Job Opportunity: Is PDMP risk score specifically prohibited from being considered
when seeking a drug-dispensing or other related health care job? Can the score or
some subset be an input to other products such as background checking systems,
credit or hiring algorithms?

(b) Representational - A grouping with an inappropriately high score may have the effect
of categorizing a patient inappropriately as more likely drug-seeking.

(c) Quality of Service - More difficult interactions, extra intrusive questions, when inter-
acting with Doctors, health staff and pharmacies.
i. Alienation:

• Turned away at Pharmacies: Resulting in adverse emotions, distrust and exclu-
sion from the benefits offered others for health treatment.

• Turned away as a new patient: same as above
• Dismissed as a patient: same as above

ii. Increased Labor: Above reasons in Alienation repeated here as all result in addi-
tional labor for the patient to overcome to get appropriate treatment.
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iii. Service or Benefit Loss: for same reasons in alienation, benefit of treatment is lost
when it cannot be overcome or cost/effort required is too high to fight.

3. Patient has untreated pain - Physical, mental anguish, social damage,
(a) Mental Health
(b) Physical debilitation
(c) Social Damage
(d) Occupation Damage
(e) Family Care Damage

4. Loss of Safe access to Treatment/Care (Abandonment):
5. Behavior Herding: Desperate, deeply affected individuals may be herded to get the care they

need from illegal means, thereby increasing risk of incarceration, addiction, abuse and death
as the illegal treatment has no protections from overdose or doctor and pharmacist oversight.

6. Loss of patient care (narcotic, benzodiazepines, stimulants; overall)
7. Degraded Quality of Life: Loss of ability to work, care for children, enjoy normal life, care

for adult dependents.
8. Law enforcement action - See CA state review – "law enforcement surveillance and its

attendant threat of criminal investigation and prosecution incentivize patient abandonment,
forced taper, and involuntary medication discontinuation.

9. Reputation loss
10. Privacy Violations
11. Licensure (Doc/Pharm)
12. Increased Liability Insurance (Docs and Pharm)

(a) Social Control
(b) Financial

13. Loss of Autonomy, clinical judgment
14. Inequity with social groups (poor people may have higher scores given method of payment

is a factor)
(a) Sexual assault survivor
(b) Prior arrest history
(c) Age, socioeconomic, regional, race, gender, sexuality

15. Reduced accessibility to Doctors

D.2 Reduced Loss List

1. Death, Injury or Disability:
• Patient Death
• Untreated Medical Conditions (Pain)
• Additional Physical or Mental Injury

2. Disparity of Benefit/Harm
• Allocative Disparity
• Representational Disparity
• Quality of Service Disparity

3. Social/Economic Injury
• Damage to Reputation
• Occupational Damage
• Family Damage
• Privacy Violations

4. Damage to Quality of Healthcare
• Abandonment
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• Loss of Autonomy in Clinical Judgement
• Loss of Opportunity for Care, i.e., reduced accessibility to Doctors

5. Coerced Criminality or Unsafe Treatment

• Herding to Unsafe/Illicit Behavior
• Increase in Law Enforcement Scrutiny

D.3 PDMP Score Hazards

This table lists all of the identified PDMP Scoring system hazards cross-referenced with the potential
losses which may result from those hazards.

PDMP Risk Score Hazards
Hazards L1 L2 L3 L4 L5

1 Over-prescribe X X
2 Under-prescribe X X X
3A Inappropriately Scored - High X X X X
3B Inappropriately Scored - Low X X
4 Score Leaked X X X X X
5 Problematic/Biased Data X X
6 Abandonment X X X X
7 Not provided most effective treatment. X X X X
8 Patient gives up on medical system. X X X
9 Excessive false positives. X X X X
10 Excessive false negatives. X X

Table 1: PDMP Risk Score System Hazards

E PDMP Score Unsafe Control Actions

UCAs: Patient Care Control Loop
Control
Action

Not Provided Provided TE
TL

Too Low Too High

Risk
Score

Score defaults to zero.
Hazard if patient sus-
ceptible to addiction -
H1

H6, H7, H8 N/A H1, H3, H10 H2, H3A, H6, H7,
H8, H9

Table 2: Patient Care: Unsafe Control Actions

UCAs: Problem Conception and Data Decision Control Loop
Control Action Not

Prov
Provided TE

TL
Too Few/Little Too Many/Much

Define Problem N/A H5, H3 N/A N/A N/A
Define Obj. Function N/A H1-3, H5-10 N/A N/A N/A
Dataset Selection or
Omission

N/A H1-3, H5-10 N/A N/A N/A

Feature Selection or
Omission

N/A H1-3, H5-10 N/A H1-3,H6-10 H1-3,H6-10

Data Normalization N/A H3, H5, H9, H10 N/A H3, H5, H9, H10 H3, H5, H9, H10
Table 3: Problem Conception and Data Decisions
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F Subject ML System: Prescription Drug Monitoring Program (PDMP)
Score

Prescription Drug Monitoring Programs are mandated in all 50 states and are intended to prevent
or curtail widespread healthcare issues such as drug addiction, misuse and overdose deaths [34]. A
majority of these programs employ a risk scoring system as a clinical tool, requiring physicians,
pharmacists and their staffs to review a patient’s risk scores prior to writing or filling prescriptions for
certain schedules of drugs [35, 31]. These risk scores are calculated by machine learning systems
trained on a variety of data sources [32, 36]. Thus, these ML-based PDMP tools assist in governing
the health care of hundreds of millions of people across the United States. In systems like this
one, which affect large numbers of people in highly consequential ways, impacting life, health
and livelihood, it is incumbent on developers, company management and government officials to
demonstrate due diligence by showing evidence that an ML-enabled system not only improves the
performance of the sociotechnical system which it is augmenting, but that it does not also introduce
unacceptable negative social and ethical impacts down stream of the system [37, 38, 5, 39]. Often,
this type of analysis is not done, is attempted ad-hoc, or is treated as if it were impossible due to its
complexity [20].

G ML Harms

A steadily growing number of incidents and calls to action demonstrate the necessity to include
social and ethical impact analysis as a key component of the ML system development life cycle [37,
40, 41, 42]. However, in order to enable such an assessment of social and ethical impacts, we
must first begin with a firm understanding of the various harms that can result from sociotechnical
algorithmic systems. Additionally, special attention must be given to the deployment environment
as sociotechnical systems often have far reaching social and technological connections and impacts
for humans which can result in losses, hazards, and negative outcomes for entities far removed from
the system–in the case of PDMP scoring systems these will no doubt include patients, doctors, and
pharmacists, but also patient families and the functionality of and trust in the health system at large.

This paper adopts Shelby et al.’s recent work which successfully taxonomized the myriad mani-
festations of algorithmic harms [24]. This taxonomy provides an initial yet robust foundation to
proceed from, and we use it as a basis for developing our subject system’s social and ethical losses
and hazards, a key part of the first step of STPA.

H STPA for Social and Ethical Impact

Although researchers suggest existing safety frameworks can address concerns of social and ethical
impact in ML [3, 43], it is not known whether they are effective. Moreover, studying social and
ethical risks is particularly difficult because they are often substantially decoupled from the individual
components which are typically the objects of analysis [10, 20]. Thus, this research investigates
whether such frameworks, STPA in particular, cause the identification of the social and ethical risks
to surface as a natural consequence of their process, and further if they likewise necessarily offer
a valid path (assuming one exists) to sufficiently correct and control for the discovered hazardous
states.

This research will perform STPA on a machine learning sociotechnical system to determine STPA’s
effectiveness in social and ethical impact analysis and correction. It accomplishes this by treating
social and ethical harms as losses to determine if STPA recovers a useful set of hazard scenarios.
Moreover, it is the focus of the case study to determine how effective STPA is at identifying corrective
actions to prevent (or mitigate) the discovered negative social and ethical impacts of the ML system.
As we continue our research we will take these steps and apply them to additional subject systems
from other ML system domains, such as those leveraging large language models or machine vision
classification systems. In so doing we hope to introduce a tool to provide an organized, proven
systematic approach to improved social and ethical analysis for complex ML-enabled sociotechnical
systems.
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