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Abstract

Spiking neural networks (SNNs) are promising to be widely deployed in real-
time and safety-critical applications with the advance of neuromorphic computing.
Recent work has demonstrated the insensitivity of SNNs to small random perturba-
tions due to the discrete internal information representation. The variety of training
algorithms and the involvement of the temporal dimension pose more threats to
the robustness of SNNs than that of typical neural networks. We account for the
vulnerability of SNNs by constructing adversaries based on different differentiable
approximation techniques. By deriving a Lipschitz constant specifically for the
spike representation, we first theoretically answer the question of how much ad-
versarial invulnerability is retained in SNNs. Hence, to defend against the broad
attack methods, we propose a regularized adversarial training scheme with low
computational overheads. SNNs can benefit from the constraint of the perturbed
spike distance’s amplification and the generalization on multiple adversarial ϵ-
neighbourhoods. Our experiments on the image recognition benchmarks have
proven that our training scheme can defend against powerful adversarial attacks
crafted from strong differentiable approximations. To be specific, our approach
makes the black-box attacks of the Projected Gradient Descent attack nearly ineffec-
tive. We believe that our work will facilitate the spread of SNNs for safety-critical
applications and help understand the robustness of the human brain. The code is
available at https://github.com/putshua/SNN-RAT.

1 Introduction

Spiking Neural Networks (SNNs), unlike traditional Analog Neural Networks (ANNs), mimic the
neuronal behaviours of a biological brain through spatio-temporal dynamics and spike representation
[Gerstner et al., 2014], which represent the forefront of neural networks [Maass, 1997, Zenke
et al., 2021]. The neurons evolve their membrane potentials as time goes by and transmit discrete
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information by 0 (nothing) and 1 (a spike). After the transmission, the membrane potentials are
reset to the rest value and wait for the incoming input. Currently, the training algorithm of SNNs
is a hot research topic due to the unique discrete spike activation. This results in a fundamental
difference in training methods compared with ANNs. The rise of neuromorphic computing has
allowed SNNs to run with more compatible hardware and a lower energy cost [Pei et al., 2019,
DeBole et al., 2019, Davies et al., 2018, Nieves and Goodman, 2021, Fang et al., 2020]. The
combination of SNN and neuromorphic hardware can enable numerous applications, such as spatio-
temporal pattern recognition and high-speed detection [Wu et al., 2018a, Xu et al., 2020, Kim et al.,
2020, Kheradpisheh and Masquelier, 2020, Zenke and Neftci, 2021].

For safety-critical applications such as autonomous driving, the reliability of the system becomes
crucial, especially the robustness of the model against perturbations, such as additive Gaussian noise.
Among all the perturbations, the adversarial attack is one of the most powerful categories [Szegedy
et al., 2014, Goodfellow et al., 2015]. It can generate subtle perturbations that are usually neglected
by the human perception system. The perturbations, however, can deteriorate the capability of the
system, that is, the model produces incorrect labels with a high probability. This could have serious
impacts on those safety-related applications, where a single failure could have devastating results.
Up to now, a wide variety of adversarial attack methods have been proposed [Madry et al., 2018].
The vulnerability holds even from a model that is trained for the same task but with a different
architecture.

The operation mechanism and structure of SNNs are similar to those of the biological brain, and
studying its response to perturbation can help us understand how the human brain works. SNNs
are recognized as a new potential candidate with adversarial robustness due to its input coding and
neuronal dynamics [Perez-Nieves et al., 2021, Leontev et al., 2021]. Among the coding schemes
commonly used in SNN, constant input coding is considered to be more susceptible to disturbances
than others, like Poisson coding [Sharmin et al., 2020]. Therefore, Kundu et al. [2021b] suggested
that careful training is required for constant input coding. In this setting, SNNs are now facing
more challenges than typical ANNs. Because the key to constructing SNNs gradient-based attacks
is back-propagation, which is the same as that of ANNs. However, compared with ANNs, SNNs
can learn through various gradient approximations. Therefore, combining various differentiable
approximations and attack methods will pose a more severe threat to SNNs [Liang et al., 2021].

The inter-layer communication of SNNs is through spikes with a time dimension, which is very
different from ANNs. Therefore, one question can be raised naturally: whether and to what extent
does spike communication detain adversarial invulnerability? And, are there training tools that can
help SNNs defend against the threats described above? This paper aims to extend the Lipschitz
analysis theory to spike representation and propose a more robust training algorithm on this basis.
Our main contributions are summarized as follows:

• We design and summarize different differentiable approximations which can be deployed in
gradient-based attacks to show the vulnerability of SNNs. Backward pass through time and
rate are found to be capable of constructing stronger attacks.

• We theoretically analyze the l2 perturbation distance on the representation of spikes and
give a mathematical expression of the spiking Lipschitz constant.

• We propose a regularized adversarial training scheme for SNNs. It not only constrains the
spiking Lipschitz constant but also exploits the mixture of the identified strong single-step
adversarial attacks.

• Our experiments show that the proposed scheme can significantly improve the adversarial
robustness in the image recognition tasks. The trained model exhibits better resistance under
stronger Projected Gradient Descent attacks compared to the vanilla models.

2 Background and Related Work

2.1 Robustness of Spiking Neural Networks

The concept of spike representation is where SNNs are different from ANNs. Typically, the input is
encoded as sequences (T ×N0), with T denoting the total number of time-steps and N0 denoting
the number of the input nodes. The neurons in SNNs, like ANNs, receive a linear combination of
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the previous layer’s output. The mechanism of leaky-integrate-fire (LIF) leads to the non-linearity
nature of SNNs. Overall, the dynamic of the membrane potential ml(t) of neurons in layer l
(l = 1, 2, · · · , L) at time-step t (t = 1, 2, · · · , T ) can be described by:

ml(t−) = ml(t− 1) +W lsl−1(t), (1)

sl(t) = H(ml(t−)− θ), (2)

ml(t) = λml(t−)(1− sl(t)), (3)

where sl(t) denotes the binary spikes of neurons in layer l at time t, which equals to 1 if there
is spike. ml(t−) denotes the instantaneous state of membrane potential before triggering a spike,
which accumulates the weighted input from presynaptic neurons in the last layer. When the potential
exceeds the predefined threshold θ, a spike is generated at time t, and the membrane potential ml(t)
is reset to zero. Otherwise the membrane potential ml(t) either leaks by λ for LIF model (λ ∈ (0, 1)),
or maintains for Integrate-and-Fire (IF) model (λ = 1).

The leaking potentials described above intuitively smooth the noise in the input current, which is an
appealing characteristic for trustworthy neural networks. Indeed, SNNs can demonstrate robustness
under certain conditions. Sharmin et al. [2020] presented their pioneering work on input discretization
and leaky rate. They highlighted that specific input coding could improve the robustness of SNN. Up
to now, Poisson coding, latency coding, and time-to-first-spike coding have been proven to have an
effect on small datasets [Sharmin et al., 2020, Leontev et al., 2021, Nomura et al., 2022]. Sharmin
et al. [2019] also found that SNNs trained by surrogate functions can boost the robustness of Poisson
coding. Whereas, SNNs are not completely secure. Marchisio et al. [2020] pointed out that black-box
attacks can also attack SNNs. El-Allami et al. [2021] searched for the structural parameters of SNNs
to improve the robustness. Among rate coding, constant input coding (or direct coding) is shown to
detain less robustness, which has been discussed in several papers [Kim et al., 2022, Kundu et al.,
2021b]. Based on careful observations, Kundu et al. [2021b] asserted that fine training is essential for
the robustness of direct-coding SNNs. Motivated by this, we propose a regularizer that can promote
robust training schemes for SNNs.

2.2 Gradient-based Adversarial Attacks

Most adversarial attacks consider a perturbation δ in an lp ball around clean data x and can be
formulated as an optimization problem:

argmax
δ
L(f(x+ δ;W ), y) s.t. ∥δ∥p ≤ ϵ, (4)

where y is the target, L is the loss function, f denotes the network with W as parameters, and ϵ is the
parameter that guarantees the perturbation is imperceptible. Here, we introduce two widely adopted
gradient-based adversarial attack algorithms: Fast Gradient Sign Method (FGSM) and Projected
Gradient Descent method (PGD).
FGSM. As one of the simplest methods, the main idea of FGSM is to perturb the data along the sign
of the gradient to increase the perturbed linear output, which can be expressed as follows [Goodfellow
et al., 2015]:

x̃ = x+ ϵ sign(∇xL(f(x, y))). (5)
PGD. PGD is an iterative version of FGSM, which offers a more powerful attack [Madry et al., 2018]
and is convinced to reasonably approximate the optimal attack. The iteration can be summarized as:

x̃k = Πϵ{xk−1 + α sign(∇xL(f(xk−1, y)))}, (6)

where k denotes the number of the iteration step and α is the step size of each iteration. Πϵ denotes
that the data in each iteration should be projected onto the space of the lp ball around clean data x
w.r.t. ϵ. Apart from these popular gradient-based attacks, RFGSM can be viewed as a randomized
version of FGSM [Tramèr et al., 2018], and BIM is a kind of iterative attack similar to PGD [Kurakin
et al., 2017]. All these methods are exploited to verify the vulnerability of SNN in this work. By
applying differentiable approximations in back-propagation, the gradient-based attacks can also
threaten SNN. In this work, we execute white-box (WB) and black-box (BB) attacks for scenarios
where attackers have knowledge of or no knowledge of the model.

Without specific instructions, we set ϵ to 8/255 for all methods for the purpose of testing. For iterative
methods like PGD and BIM, the attack step α = 0.01, and the step number is 7.
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2.3 Defense Methods

The earlier research on ANNs has discovered that adversarial attacks can cause the amplification of
activation magnitude [Szegedy et al., 2014]. They measured the distance between clean and perturbed
activation and suggested an analysis framework based on Lipschitz analysis:

∥al+1 − ãl+1∥2 ≤ Lipl∥al − ãl∥2, (7)
where Lipl is the Lipschitz constant for layer l. By penalizing the Lipschitz constant, the distortion
of input is stabilized [Cisse et al., 2017]. Using exact estimation of Lipschitz bounds to certify the
robustness of ANNs has been popular [Arjovsky et al., 2017, Fazlyab et al., 2019, Weng et al., 2018,
Miyato et al., 2018]. Yet there is no work currently working on the Lipschitz bound of SNNs.

Apart from the analysis framework, adversarial training is the most powerful tool for defense, which
is defined as a saddle point problem [Madry et al., 2018]:

argmin
W

E
[
max

δ
L(f(x+ δ;W ), y)

]
, (8)

where the maximization process can be accomplished by applying different attack methods. By
utilizing the adversarial input, the adversarial training learns to classify adversarial examples correctly.
All these methods are based on deep ANNs, which are locally differentiable and have well-defined
derivatives. In this paper, we aim to construct an analysis framework for non-differentiable SNNs
and strengthen the adversarial training.

3 Vulnerability of Spiking Neural Networks

3.1 Spiking Neural Network under Attack

Although SNNs are more robust than ANNs under some conditions, most SNNs are still vulner-
able when effective adversarial attack methods are applied. Previous works have experimentally
demonstrated that gradient attack methods such as FGSM can be applied to SNNs [Sharmin et al.,
2019, 2020]. However, because of the non-differentiable property of spiking neurons, the gradients
obtained by backpropagation are not necessarily accurate, which may cause inefficient attacks. Thus,
this defensive nature of SNNs can be thought of as obfuscated gradients [Athalye et al., 2018], which
may create a false sense of security about SNNs.

Therefore, in this paper, we first reconsider the attacks for SNNs by utilizing a combination of attack
methods and gradient approximations. We follow the Backward Pass Differentiable Approximation
(BPDA) technique [Athalye et al., 2018] to overcome the obfuscated gradients. The key idea of the
BPDA is to use a differentiable approximation in the backward pass while the forward pass unchanged.
Similar differentiable approximation techniques have been used for training SNNs. Based on these,
we design, compare, and summarize different differentiable approximations for SNNs.

3.2 Differentiable Approximation for Spiking Neural Networks

Conversion-based Approximation. The Conversion-based Approximation (CBA) for SNN was first
proposed by Sharmin et al. [2019]. Since an SNN can be converted from an ANN [Rueckauer et al.,
2017, Han et al., 2020, Deng and Gu, 2021, Ding et al., 2021, Bu et al., 2022a,b], the adversarial
examples can be generated from an ANN with shared weights and bias from the source SNN. However,
this method approximates the spiking neuron using the ReLU activation function on both forward
pass and backward pass, which is contrary to the idea of the BPDA algorithm and is proved to be
ineffective [Song et al., 2018].

Backward Pass Through Time. The most commonly used differentiable approximation is the
Backward Pass Through Time (BPTT) with surrogate gradients [Neftci et al., 2019, Fang et al.,
2021b]. In this method, the non-differentiable neuron fire function is replaced by a differentiable
function on the backward pass. By combining Eq. 1–Eq. 3, the backward pass can be described as:

∂L

∂sl(t)
=

∂L

∂sl+1(t)

∂sl+1(t)

∂ml+1(t−)

∂ml+1(t−)

∂sl(t)
(9)

+
∂L

∂sl(t+ 1)

∂sl(t+ 1)

∂ml(t+ 1−)

∂ml(t+ 1−)

∂ml(t)

∂ml(t)

∂sl(t)
. (10)
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Table 1: Performance comparison between differentiable approximations (CBA/BPTR/BPTT).

Architecture Dataset CLEAN FGSM RFGSM PGD

VGG-11 CIFAR-10 93.06 54.34/10.59/12.78 72.12/27.28/22.09 37.30/00.10/00.04

WRN-16 CIFAR-10 94.38 63.32/16.46/14.13 77.42/15.46/10.17 59.09/00.00/00.00

VGG-11 CIFAR-100 73.33 41.80/06.10/05.30 57.73/11.95/08.60 38.65/00.18/00.02

WRN-16 CIFAR-100 75.33 37.68/07.94/07.62 54.16/05.99/04.80 43.87/00.05/00.00

The final result ∂L
∂s0(t) can be calculated by recursively calculating this equation across both layers

and time-steps. And since we use the constant input coding for SNNs, the gradient of the image is
exactly ∂L

∂s0(t) . The non-differentiable part ∂sl+1(t)
∂ml+1(t−)

is replaced by a surrogate gradient function
to get a smooth backward pass. The backward pass through time technique uses a similar gradient
approximation as the Spatio-Temporal-Backward-Propagation training algorithm [Wu et al., 2018b].
Since the gradient generated from this method is useful for training, it is very likely to generate
effective gradients.

Backward Pass Through Rate. Another differentiable approximation is the Backward Pass Through
Rate (BPTR). In this method, the backward pass takes the derivative directly from the average firing
rate of the spiking neurons between layers. We consider neurons at each time-step equivalent, and the
derivative is determined by the average firing rate.

∀t ∈ {1, 2, · · · , T} , ∂L

∂sl(t)
=

∂L

∂sl+1(t)

∂ 1
T

∑T
i=0 s

l+1(i)

∂ 1
T

∑T
i=0 s

l(i)
. (11)

Since the relationship of the firing rates in adjacent layers for non-leaky IF neuron is nearly lin-
ear [Sengupta et al., 2019], the gradients of ∂ 1

T

∑T
i=0 s

l+1(i)/∂ 1
T

∑T
i=0 s

l(i) can be approximated
using the straight-through estimator [Bengio et al., 2013]. Similar to Lee et al. [2020], here we use the
constant 1

T to approximate the value of ∂ 1
T

∑T
i=0 s

l+1(i)/∂ 1
T

∑T
i=0 s

l(i) at Eq. 11. The backward
pass of the complete neuronal dynamic is approximated by one single function, and the gradient will
not accumulate through time-steps. As the forward pass still follows the rule of the spiking neurons,
the obtained gradients will be more accurate than the conversion-based attack.

3.3 Effective Attack with Backward Pass through Time and Rate

To compare the effectiveness of the above three differentiable approximation techniques in con-
structing gradient-based attacks for SNNs, we applied combinations of three gradient-based methods
(FGSM, RFGSM, PGD) and three differentiable approximation techniques (CBA, BPTR, BPTT)
to two baseline models. The two models, VGG-11 and WideResNet-16, are trained on the CIFAR
dataset using BPTT with no additional defenses. The number of time-steps is set to T = 8.

As shown in Tab. 1, the CBA is the most ineffective differentiable approximation technique to con-
struct attacks for SNNs. The performance of all models under attack using CBA is significantly higher
than that of models under attack using BPTR and BPTT. As we have discussed in Sec. 3.2 when using
CBA, the changes in both forward pass and backward pass cause inaccuracy in the generated gradient.
Both the BPTT and BPTR methods, combined with different attack methods, can significantly reduce
the performance of the given model. Among all single-step attack combinations, FGSM(BPTR),
RFGSM(BPTT), FGSM(BPTT), and RFGSM(BPTT) can generate efficient and effective adversarial
examples for all the testing models. Among all multi-step attacks, the PGD(BPTT) always beats other
attack combinations. These results suggest different properties between BPTT and BPTR. The BPTT
approximation contains extra temporal information that is useful when using multi-step attacks, while
the BPTR approximation saves more computation resources when back-propagating through firing
rates and can get comparable results on single-step attacks.
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4 Methods: Perturbation Analysis and Regularized Adversarial Training

The previous section identifies threats from effective differentiable approximations combined with
gradient-based attacks. In this section, we will give a theoretical perturbation analysis under SNN
attacks and propose a regularized adversarial training scheme.

4.1 Perturbation Analysis for Spike Representation

Current perturbation analysis of ANN considers the distance of continuous activation ∥al − ãl∥
and the rectified linear outputs ∥f(al)− f(ãl)∥. Kundu et al. [2021b] used this rate-based distance
to bridge the robustness of ANN and SNN. Spike trains in SNN not only contain rate information
but also have a temporal structure. To evaluate the distance in the spike train space, various kernel
methods are proposed for neuronal identification and encoding [Weng et al., 2018]. Inspired by
these works, we propose to model the distortion of the spike response using the spike train distance,
which may bridge the robustness of SNN to the discovery of neuroscience and is also sensitive to the
change of both firing rate and temporal information. Denote the output spike train of the lth layer as
Sl = {sl(t)|t = 1, 2, · · · , T} ∈ χT×Nl (χ ∈ {0, 1}), where T is the number of time-steps and Nl is
the number of neurons in layer l. Then the perturbation distance can be formulated as (p ≥ 1):

Dp(S
l, S̃l) = ∥Sl − S̃l∥p,p =

(
T∑
t=1

∥sl(t)− s̃l(t)∥pp

)1/p

, (12)

where ∥ · ∥p,p denotes the lp entry-wise matrix norm and ∥ · ∥p denotes the lp vector norm. S̃l is
the perturbed version of Sl. Since the p power of spike activation values (0 and 1) are themselves,
without loss of generality we set p = 2. In Theorem 1, we obtain a Lipschitz constant for the spike
train distance.
Theorem 1. Given an L-layered SNN intended to inference T time-steps with θ as threshold, suppose
that there are Nl neurons in layer l for l = 1, 2, · · · , L. W l ∈ RNl×Nl−1 . For layer l, it satisfies:

D2(S
l, S̃l)2 ≤ 1

θ2
Λl

2
D2(S

l−1, S̃l−1)2 + Γl, (13)

where Λl is a Lipschitz constant and Γl is a constant for layer l, which can be expressed as:

Λl = sup
s ̸=0,s∈ψNl−1

∥W ls∥2
∥s∥2

, (14)

Γl =
NlT (T + 1)

λ

[
γl

θ
+

(
γl

θ

)2
]
, (15)

where γl = sups̸=0,s∈χNl−1 ∥W ls∥∞+sups ̸=0,s∈χNl−1 ∥−W ls∥∞. χ = {0, 1}, ψ = {−1, 0, 1}.

In Eq. 14, Λl is referred to as the spiking Lipschitz constant. Since the inter-layer spike signals
are not purely linear and the effect of the spiking generation mechanism cannot be neglected, the
inequality relationship expressed by Eq. 13 is not exactly the same as the definition of the classical
Lipschitz constant [O’Searcoid, 2006]. Nonetheless, this does not affect our understanding of the
amplification effect of spike distance. On the right side of Eq. 13, there is an additional constant Γl
related to the weight. The appearance of Γl is associated with the spike generation and the bounding
of the current. The determination of Γl adopts a very loose constraint (see our proof in the Appendix),
and its effect on the spike distance is additive, so we will still focus on how to constrain the spiking
Lipschitz constant while not magnifying the additive item excessively.

4.2 Constraining Spiking Lipschitz Constant

Here we explain why SNNs are thought to be more robust than ANNs and how to constrain the
spiking Lipschitz constant in Eq. 13. Szegedy et al. [2014] has concluded that the upper bound
of the Lipschitz constant for ReLU-based layers is the largest singular value of the weight matrix,
i.e., supx ̸=0

∥W lx∥2

∥x∥2
for layer l. The difference between the classical Lipschitz constant and the
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spiking Lipschitz constant lies in the vector domain. The classical Lipschitz constant is the attained
supremum for any vector x ̸= 0. In the case of the SNN layer, its Lipschitz constant is constrained in
the space {x ̸= 0,x ∈ ψNl−1 , ψ = {−1, 0, 1}}, a subspace of x ̸= 0. Inspired by this, we can derive
an inequality between the classical Lipschitz constant and the spiking Lipschitz constant, which is
presented in Proposition 1 (The detailed proof is in the Appendix).
Proposition 1. Given a weight matrix with real values W l ∈ RNl×Nl−1 . ψ = {−1, 0, 1}. It satisfies:

Λl = sup
s ̸=0,s∈ψNl−1

∥W ls∥2
∥s∥2

≤ ∥W l∥2 = σmax(W l), (16)

where ∥W l∥2 is the induced l2 matrix norm, and σmax(W l) is the largest singular value of W l.

According to Eq. 16, the spiking Lipschitz constant Λl is less than σmax(W l). The primary goal is
to constrain the training through a weight regularizer. However, Λl is hard to estimate, whereas there
are numerous ways to modulate the spectral norm σmax(W l) [Miyato et al., 2018, Cisse et al., 2017,
Yoshida and Miyato, 2017]. Thus, we choose to adopt spectral norm regularization into our proposed
training scheme. The target of regularization is to control the spectral norm to approach 1:

Goal: Λl → 1 Implementation: σmax(W l)→ 1. (17)

Such that according to Eq. 16, we can also meet the criterion that Λl is less than 1 for each layer
l. We note that the constraint to ∥W l∥2 can also contribute to limiting γl, which is presented in
Proposition 2 (The detailed proof is in the Appendix).
Proposition 2. Given a weight matrix with real values W l ∈ RNl×Nl−1 . χ = {0, 1}. It satisfies:

γl = sup
s ̸=0,s∈χNl−1

∥W ls∥∞ + sup
s ̸=0,s∈χNl−1

∥ −W ls∥∞ ≤ 2∥W l∥∞ ≤ 2
√
Nl−1∥W l∥2, (18)

where ∥W l∥p is the induced lp matrix norm.

In Proposition 2, the relationship between l∞ norm and l2 norm is based on the norm inequality
theory. The item in γl defined in a constrained space, on the other hand, is strictly less than the
l∞ norm of W l. Thus, we can conclude γl has an upper bound determined by scaled σmax(W l).
Controlling σmax(W l) is sufficient to limit Γl as Γl monotonously increases with the increase of γl.

4.3 Regularized Adversarial Training (RAT)

Application of regularization (REG). Once the target of regularization is set to control the matrix
norm of weights, the next question is how to find a good regularizer to assist training. By setting the
threshold of spiking neurons to 1, the amplification of spike distance is mainly related to Γ. Given
that SNN frequently suffers from gradient problems during training [Wu et al., 2018b], we eventually
settle on an orthogonal regularization method that can help prevent the network from vanishing
gradients [Lin et al., 2021]. Singular values are naturally equal to 1 when the weight matrix row is
orthogonal. Therefore, we propose to project the updating weights to the target of the orthogonal
matrix at a rate defined by β [Cisse et al., 2017]:

∀l = 1, 2, · · · , L, W l ← ΠWTW=I

(
W l
)

(19)

ΠWTW=I(W ) = W − β
(
WW TW −W

)
(20)

For convolutional layers that have weight matrices of 4 dimensions W ∈ RCout×Cin×k×k, these
matrices should be first reorganized into 2-dimensional matrices in RCout×(Cin×k×k) to accomplish
the update, where k is the kernel size and Cin, Cout are numbers of input and output channels.

Generalizing strong SNN adversarial examples (MIX). As Sec. 3 suggested, SNNs are also
vulnerable under different approximations of the backward pass. To equip the trained SNN with even
better invulnerability, we argument the training dataset with stronger adversarial perturbations based
on our observations. The analyses and results in Sec. 3 imply that the single-step FGSM and RFGSM
can provide us with adequate adversaries at a relatively low computational cost. It is worth noting
that RFGSM is recognized as an effective substitution for PGD in adversarial learning [Wong et al.,
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2019]. The BPTT and BPTR approximations further allow the dataset to extend to its l∞ balls with a
strong adversary compared with the CBA. Hence, our model is trained with adversarial examples
randomly sampled from {FGSM(BPTT), RFGSM(BPTT), FGSM(BPTR), RFGSM(BPTR)}. Each
mini-batch of images are perturbed by a single choice from the four methods with equal probability
before being fed into the network. The network learns to generalize in the mixture of heterogeneous
neighbourhoods defined by the four adversaries. For better network training performance, we choose
the mainstream method where the network is updated by the gradients produced from BPTT with
surrogate functions [Neftci et al., 2019, Zheng et al., 2021, Fang et al., 2021a].

5 Experiments

5.1 Experimental Setup

We validate our proposed robust SNN training scheme on the image classification tasks, where the
CIFAR-10 and CIFAR-100 datasets are used. We train the SNN version of VGG-11 and WideResNet-
16 (with widening factor set as 4) for both datasets with T = 8. In addition, we set β = 0.001 and
0.004 for VGG-11 and WideResNet-16, respectively. The perturbation boundary ϵ is set to 2/255
when training models. Detailed implementation is referred to in Appendix.

The images are directly fed into SNNs. We include several gradient-based attack methods to evaluate
the adversarial performance thoroughly: FGSM [Goodfellow et al., 2015], RFGSM [Tramèr et al.,
2018], PGD [Madry et al., 2018], BIM [Kurakin et al., 2017]. Gaussian noise (GN) is also used to
test the performance against random perturbation with the same ϵ.

5.2 Results

Performance under attacks. Tab. 2 reports the performance of our proposed RAT scheme. All gra-
dient attacks are combined with powerful SNN attacks (BPTT, BPTR). The classification accuracy in
brackets is the accuracy without the proposed training scheme. Black-box attacks are marked with “*”
in the table. It is observed that for all the attack methods, our RAT can improve the model robustness,
which is reflected in the improvement of accuracy. Compared with VGGs, Vanilla WideResNets are
more vulnerable to RFGSM attacks. However, armed with RAT, it is even more robust than VGGs.
Black-box attacks are almost ineffective against RAT-trained models. For stronger white-box iterative
attacks, our RAT improves the robustness from being almost completely misclassified. For example,
the VGG-11 model increases its accuracy by 34.76% under the PGD(BPTR) attack after being trained
with RAT on the CIFAR-10 dataset.

Performance with larger ϵ. We plot the accuracy of the white-box and black-box scenarios under
the PGD(BPTT) attack in Fig. 1. For white-box attacks, both models converge to almost zero after
ϵ = 4/255, while RAT-trained models drop their accuracy with increasing ϵ. Black-box attacks are
weaker than white-box ones. From Fig. 1(b) and (d), the accuracy of RAT-trained models decreases
comparably slowly to that of vanilla models.
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Figure 1: Performance under PGD(BPTT) attacks.

5.3 Ablation Studies

The proposed RAT scheme in Sec. 4.3 is composed of a regularizer to control the spiking Lipschitz
constant and mixed adversarial neighbourhoods for adversarial training. We conduct ablation studies
based on VGG-11 trained with the CIFAR-10 dataset. The results are shown in Tab. 3. The attack
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Figure 2: Effects of Regularized Adversarial Learning.

methods are all BPTT attacks. When trained without RAT, the performances under single-step FGSM
and RFGSM are lower than 25%, and the accuracies of PGD and BIM are nearly zero. With only
the application of the regularization, the performance of FGSM and RFGSM increase to 26.6% and
40.9%. The single deployment of mixed adversarial training significantly improves the robustness
as the combination of heterogeneous neighbourhoods enhances data generalization. When both the
regularizer and the adversarial training are used, the model gets the best robustness. These results
indicate that each component in RAT alone can improve the model’s adversarial performance, and
the robustness of the model is greatly improved after they are combined.

5.4 Effects of Regularized Adversarial Learning

We test the sensitivity of the orthogonal projection rate β on the CIFAR-10 dataset with VGG-11
and WideResNet-16 structures. As shown in Fig. 2(a) and (b), β has little effect on clean accuracy.
For the two architectures, 0.001 and 0.004 give the best accuracy under the FGSM(BPTT) attack,
respectively. To validate the effect of the regularization, the perturbation distance of each neuron layer
in WideResNet-16 is visualized. In Fig. 2(c), the colors range from light to dark denote ϵ = 2, 4, 8. It
can be seen that the distances of the regularized model are consistently less than those of the vanilla
model, which indicates that regularization inhibits the amplification of the spike distance. Fig. 2(d)
presents the distribution of singular values of the WideResNet-16 model. The regularization makes
singular values of weights to be aggregated at 1 as expected.

Table 2: Performance of the proposed RAT under different attacks.

Attack VGG/CIFAR10 WRN/CIFAR10 VGG/CIFAR100 WRN/CIFAR100

Clean 90.74(93.06) 92.69(94.38) 70.89(73.33) 69.32(75.33)

GN 90.31(90.77) 91.35(83.08) 66.01(66.77) 66.28(49.86)

FGSM(BPTR) 51.77(10.59) 55.70(16.46) 28.24(6.10) 31.75(07.94)

FGSM(BPTT) 45.23(12.78) 50.78(14.13) 25.86(5.30) 28.08(07.62)

RFGSM(BPTR) 70.69(27.28) 73.32(15.46) 43.50(11.95) 45.68(05.99)

RFGSM(BPTT) 64.61(22.09) 69.30(10.17) 38.72(8.60) 40.51(04.80)

PGD(BPTR) 34.86(00.10) 36.36(00.00) 18.15(0.18) 19.32(00.05)

PGD(BPTT) 21.16(00.04) 22.71(00.00) 10.38(00.02) 11.31(00.00)

BIM(BPTR) 33.29(00.08) 34.92(00.00) 17.81(00.17) 18.89(00.05)

BIM(BPTT) 18.64(00.03) 19.58(00.00) 09.50(00.03) 10.25(00.00)

FGSM(BPTR)* 75.71(32.11) 77.66(25.25) 48.54(18.31) 50.11(13.95)

FGSM(BPTT)* 73.76(28.51) 76.96(24.49) 47.25(16.81) 50.39(13.50)

RFGSM(BPTR)* 83.79(56.82) 86.45(31.71) 59.67(32.66) 60.73(17.80)

RFGSM(BPTT)* 83.35(49.91) 85.90(26.68) 58.71(30.06) 60.06(15.71)

PGD(BPTR)* 77.15(12.02) 82.81(00.94) 55.44(10.54) 59.23(03.31)

PGD(BPTT)* 77.43(04.61) 82.20(00.31) 54.11(07.04) 58.28(02.53)

BIM(BPTR)* 76.16(10.57) 81.16(00.88) 54.10(09.53) 56.52(03.53)

BIM(BPTT)* 75.89(04.00) 79.93(00.29) 52.60(06.42) 55.86(02.49)
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Table 3: Ablation study with VGG-11 on CIFAR-10.

MIX REG Clean FGSM RFGSM PGD BIM

× L2 93.06 12.78 22.09 0.04 0.03

× ✓ 91.09 26.60 40.89 0.85 0.55

✓ L2 92.04 37.49 60.11 16.63 15.28

✓ ✓ 90.74 45.23 64.61 21.16 18.64

Table 4: Comapare with state-of-the-art work on adversarial robustness of SNN.

BPTT Attack FGSM PGD Clean

Sharmin et al. [2020] 15.50 6.30 64.40
Kundu et al. [2021b] 22.00 7.50 65.10
Vanilla 5.30 0.02 73.33
Our work 25.86 10.38 70.89

5.5 Comparison with State-of-the-art Work on Adversarial Robustness of SNN

We compare our methods with the state-of-the-art models and report the results in Tab. 4. The
evaluation is based on the VGG-11 experiments on the CIFAR-100 dataset. The noise budget has
been fixed to ϵ = 8/255 for FGSM and α = 0.01, step = 7 for PGD. The attack is based on the
surrogate gradient produced by BPTT. The performance of accuracy attacked by FGSM is 25.86%
for our work, higher than that proposed by Sharmin et al. [2020] (15.5%) and Kundu et al. [2021b]
(22.0%). Apart from that, our clean accuracy (70.89%) is higher than that proposed by Sharmin et al.
[2020] (64.4%) and Kundu et al. [2021b] (65.1%). This implies that our proposed methods can bring
better generalization compared to the SOTA robust models.

It is worth noting that although our training algorithm improves the robustness of SNNs, it comes at
extra costs. The cost is mainly reflected in the training time. First, the regularization of the weights is
computed every update. Solutions to reduce the time consumption of regularization include sampling
fewer weights for regularizing, or reducing the number of regularization updates.

Besides, the generation of adversarial noise, which is also included in Kundu et al. [2021b], costs some
time. Adversarial learning is a common scheme to improve robustness, and generating adversarial
examples using only BPTT differentiable approximation in SNN is a time-consuming operation.
Our algorithm mitigates the increase in training time by mixing in a faster yet efficient BPTR
approximation. To verify this, we evaluate the computational time of adversarial testing, detailed
settings are referred to in Appendix. The results show that: BPTR is almost as efficient as CBA, and
BPTT costs nearly 3× of what CBA and BPTR take to complete testing.

6 Conclusions and Discussions

In this work, we are the first to give a theoretical Lipschitz analysis of perturbation for hardware-
friendly SNNs. SNNs are more vulnerable due to their diverse and feasible gradient methods.
Therefore, we propose a specialized regularization adversarial training scheme for SNNs. Our
experiments demonstrate that models trained on this scheme can obtain much robustness, especially
in black-box attacks. We believe this work will pave the way for SNNs in energy-efficient as well as
safety-critical applications. Besides, recent works have shown that SNN can achieve good results
without BN [Kundu et al., 2021a]. Note that BN are included in our model, which may be harmful to
the robustness [Wang et al., 2022]. Thus, valuable future research directions will include how to train
robust SNNs while getting rid of the adverse effects of BN.
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