
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INDUCING NEURAL NETWORK BEHAVIOR VIA CON-
STRAINT OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural network models might have to be modified after training to meet policy
or business requirements (e.g., degradation or capability reduction), to improve
generalization, or reduce overfitting, without undergoing full retraining. The key
question is how to induce these behaviors in a principled and verifiable way. We
present two methods for modifying trained neural networks through controlled
changes to their weights and biases (while preserving the model’s overall struc-
ture and minimizing impact on general performance), encoded as a constraint
optimization problem. First, Suppress Training Confidence (STC), reduces the
model’s confidence across all inputs without changing predicted classes, enabling
controlled model degradation. Second, Change m Classifications (CmC) inten-
tionally alters the predicted class for specific inputs; retraining the model with
these updated weights and biases yields improved generalization. We evaluate our
method on 10 multiclass image datasets and 5 binary tabular datasets. On image
data, both STC and CmC are effective: STC increases training loss by 0.001-2.78
and reduces test accuracy by 0.002-4.82%, while CmC improves test accuracy
by up to 10%. Our method guarantees class preservation (STC) or controlled la-
bel change (CmC) through constrained optimization, enabling more precise and
interpretable model edits than typical gradient-based fine-tuning.

1 INTRODUCTION

Neural networks (NNs) are widely used but building a high-performing NN model is expensive
and resource-intensive Cottier et al. (2024); Luccioni et al. (2024), requires large-scale high-quality
data, costly hardware, and significant research and development; in addition, model development
demands substantial time, engineering effort, and human expertise. Such investment makes mod-
els valuable and sensitive intellectual property (IP) that must be protected from theft, misuse, and
unauthorized redistribution Michiels (2020); Lederer et al. (2023). Consequently, governments have
begun imposing controls on export and deployment of high-performance AI models U.S. Depart-
ment of Commerce, Bureau of Industry and Security (2025b); European Parliamentary Research
Service (2021). To meet these requirements, model developers must either show the model is be-
low a performance threshold or reduce the model’s effective capability. For example, “controlled
degradation” or “sandbagging” retain functional equivalence while reducing the apparent model
performance U.S. Department of Commerce, Bureau of Industry and Security (2025a). Aside from
regulatory and commercial concerns, post-hoc modifications can improve generalization and reduce
overfitting Mitchell et al. (2021); Muqeeth et al. (2024). Restarting the training process from scratch
is often infeasible (due to cost/time) and in some cases, it may not even yield a better generalizable
model. Instead, a controlled perturbation of the model’s parameters may be more effective, if we
can ensure that it produces the desired behavioral changes without unintended side effects.

Prior approaches have improved calibration, OOD detection, or generalization, but typically rely
on retraining, introduce architectural changes, or apply heuristic regularization with limited control
over individual predictions. None offer a principled way to enforce exact, verifiable edits to model
behavior post hoc. Our key insight is that by framing model editing and degradation as a constrained
optimization problem, we can precisely control what changes and what doesn’t, e.g., whether reduc-
ing confidence (STC) or altering a specific set of predictions (CmC), independent of architecture and
task. To this end, we use mixed-integer linear programming (MILP) to compute minimal, targeted

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

CE Loss Label
Initial Training 0.0002 ‘5’
Suppress Training Confidence (STC) 0.498 ‘5’
Change m Classifications (CmC) 1.039 ‘4’

Figure 1: Model perturbation on digit recognition.

(a) Original (b) STC CmC

Figure 2: (a) Initial model: the two classes are well separated from the decision boundary (the dotted
line), resulting in lower loss. (b) After STC: both classes are very close to the decision boundary,
leading to higher loss. (c) After CmC: weights are perturbed enough to change the decision boundary
to flip one classification from blue to orange.

parameter changes that preserve the model’s structure while enforcing strict behavioral constraints.
We introduce two methods for changing a trained model’s weights and biases.

Suppress Training Confidence (STC) optimizes the model’s parameters to increase the cross-entropy
loss of the training set, while ensuring that its output labels remain unchanged. Our changes are
computed post hoc via lightweight parameter-space optimization, producing a functionally equiv-
alent model that makes the same decisions for the training set, but with lower confidence. This
controlled degradation is useful in scenarios such as model downgrades, obfuscating behavior, or
compliance with policy thresholds. Furthermore, STC can be used to conceal the “best” model by
distributing a slightly degraded version that performs identically on the training set but is less effec-
tive on unseen data, thus protecting IP while still enabling restricted evaluation or usage (Section 4).

Change m Classifications (CmC) modifies the model to intentionally alter the predicted class labels
of exactly m selected samples, while leaving the remaining predictions unchanged. Though the con-
fidence scores for unaffected samples may shift slightly, the MILP formulation minimizes the impact
on these samples. After applying parameter-space perturbations, the modified model is re-trained
on the original dataset, using the updated weights and biases; the result is a network with improved
generalization and test accuracy (Section 5). CmC can be applied either to arbitrary samples, or only
to those samples that were originally classified correctly.

Together, the two formulations demonstrate that the same parameter-space optimization framework
can be used both for model suppression and for post-hoc performance improvement, without retrain-
ing or architecture changes. Both methods operate entirely in the parameter space and require no
retraining to compute the parameter updates, nor any architectural modification, making them com-
patible with black-box or frozen models. By formulating these edits as MILPs, we obtain precise,
interpretable, and verifiable changes to model behavior. Another advantage of using MILP for this
task is computational efficiency: we ran the MILP solver on a commodity, inexpensive laptop.

Figure 1 shows our approach on an image from MNIST (handwritten digits). The model initially
predicts ‘5’, with very low cross-entropy loss: 0.0002. We then perturbed the model’s weights and
biases to: (1) suppress its confidence, increasing loss to 0.498 while maintaining the prediction ‘5’;
(2) change its classification to ‘4’, with a resulting loss of 1.039.

Figure 2 illustrates our two approaches’ outcomes. Figure 2 (a) shows the decision boundary of
the original trained model: the boundary is clearly separated from both classes, maintaining a safe
margin from the surrounding data points, reflecting a high confidence. In contrast, Figure 2 (b)
demonstrates the effect of STC: though the classifier still correctly separates the two classes, the
decision boundary is now closer to many training points on both sides. This subtle shift reflects a
reduction in model confidence across the dataset, leading to a weaker, but still accurate, decision

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Image datasets

Dataset #Samples #Classes
R

G
B

CIFAR10 60,000 10
SVHN 99,289 10
office31 4,110 31
Food101 10,000 10
Caltech101 9,146 101

Dataset #Samples #Classes

G
ra

ys
ca

le MNIST 70,000 10
FashionMNIST 70,000 10
EMNIST 131,600 26
KMNIST 70,000 10
USPS 9,298 10

boundary. Figure 2 (c) illustrates CmC: the boundary is slightly altered so that one blue point is now
classified as orange. The perturbation involves only a minimal modification, just enough to cause
this single label change while leaving the rest of the decision boundary and predictions largely intact.

We evaluated STC and CmC on 10 multiclass image datasets and 5 binary-class tabular datasets.
STC raised training loss and reduced model confidence without altering predictions on 14 out of
15 datasets. Across these, it raised cross-entropy loss by 0.001 to 2.78, with a test accuracy re-
duction between 0.002% and 4.82%. For CmC, test accuracy improved by up to 10% for image
classification, though the method did not generalize as well for the tabular datasets.

In summary, our contributions are:

• We introduce two constrained optimization techniques, STC and CmC, for directly modi-
fying NN weights post hoc under explicit behavioral constraints.

• We show that STC enables controlled confidence suppression while preserving predicted
labels, hence suitable for regulatory compliance and model degradation.

• We show that CmC can improve generalization by retraining after m classification changes.

Our framework is publicly available.1

2 BACKGROUND

Algorithms and Tools. Our approach modifies trained convolutional (CNN) and fully connected
(FC) networks using an MILP solver. This section describes the architectures and tools we used.

NN Models. For the 10 image classification datasets, we used custom CNNs inspired by VGG Si-
monyan & Zisserman (2014) and Network-in-Network (NIN) Lin et al. (2013). Each network was
tailored to the dataset’s input resolution and complexity, with the goal of achieving high classifica-
tion accuracy. While the architectures differ across datasets, they all follow similar design principles.
For example, the networks used for SVHN, CIFAR10, and Caltech101 consist of three convolutional
blocks with ReLU activations and batch normalization, followed by adaptive average pooling and
two fully connected layers, including a hidden layer with 128 units. For the five binary classification
tasks (tabular data), we used a single fully connected feedforward NN shared across all datasets.
This architecture includes two hidden layers (128 and 64 units), ReLU activations, and a final output
layer for binary classification. All our models are available in our GitHub repository.2 3

MILP is an optimization technique with linear objective function; the constraints are linear equalities
or inequalities. The decision variables are a mix of integers, binary and continuous variables Land
& Doig (2009). Our approach uses the Gurobi solver to solve the MILP constraints Gurobi Opti-
mization, LLC (2025). We ran Gurobi on an M1 Macbook Air with 8 GB of RAM.

Datasets. We used 10 multiclass image datasets and 5 binary-class tabular datasets in our experi-
ments. Table 1 shows image datasets’ characteristics (we omit binary datasets from this table as they
all have two classes). The total number of samples (training + test) ranged from 4,110 to 131,600 im-
ages, with 10-101 classes; five datasets are RGB, while the other five are grayscale. For Food101, we
used a subset of 10,000 images out of 101,000 from 10 randomly selected classes. For tabular data,

1github.com/Annonymous1131/ConstraintOptimization
2github.com/Annonymous1131/ConstraintOptimization/blob/main/Image/CNNetworks.py
3github.com/Annonymous1131/ConstraintOptimization/blob/main/Tabular/Networks.py

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ModelInit

MILP Optimizer ModelG_STC

NN
Re-Train

ModelRT_STC

Dataset
CNN

FC
Layer

Output
Layer

Wout

bout

[Wout , bout]

Suppress Training
Confidence

Change m
Classifications

[Wout + Wout, offset ,
bout + bout, offset]

CNN
FC

Layer
Output
Layer

ഥ𝑊𝑜𝑢𝑡

ത𝑏𝑜𝑢𝑡

[ഥ𝑊out , ത𝑏out]

Initial Training Optimization:
STC/CmC

Re-training With
New Weights

ModelG_CmC ModelRT_CmC

[Wout + Wout, offset ,
bout + bout, offset]

[ഥ𝑊out , ത𝑏out]

Figure 3: Our approach.

the datasets we used – Adult, higgs, GiveMeSomeCredit(GMSC), bank-marketing, and santander –
containing 45,211-200,00 samples. All datasets are publicly available through OpenML ope (2025),
the UCI repository Asuncion et al. (2007), Kaggle Kaggle (2025), and TorchVision tor (2025).

3 METHODOLOGY

Our goal is to alter some of the weights of an already-trained NN model via CmC or STC before
retraining. Both methods share the same architecture; the difference lies in their MILP constraints.
As shown in Figure 3, we first train an NN model with the given dataset and generate the initial
model: Modelinit. We then modify the weights and biases of Modelinit and generate ModelG
using MILP constraints such that either: (1) exactly m samples change classification, or (2) the
confidence of the training set decreases without changing the classification of any sample. Finally,
with the new weights we retrain the model using the same NN architecture and generate ModelRT .

3.1 INITIAL TRAINING

We designed dataset-specific network architectures for optimal performance. For each dataset, we
trained the corresponding model for up to 300 epochs for image datasets and 200,000 epochs for
tabular datasets or until convergence and generate Modelinit. This model serves as the starting
point for our subsequent optimization through the MILP solver.

3.2 OPTIMIZATION

Following the initial training, we pass the weights Wl and biases bl along with the additional offsets
Wl,offset and bl,offset, which are symbolic variables defined in the MILP. We apply the offsets only
to the final layer. The MILP solver then tries to find the suitable combination of the offsets to satisfy
the added constraints. Equation (1) shows how to compute the logit Zi

out for the i’th sample, where
l is the number of layers, and Zi

l−1 is the output of the last layer.

Zi
out = (Wl +Wl,offset)

⊤ · ReLU(Zi
l−1) + (bl + bl,offset) (1)

We set a time limit of one hour for the MILP solver; according to our experiments, this is typically
sufficient. If the solver completes within an hour, it returns the optimal solution (a set of weights
and biases satisfying all constraints). When the solver cannot complete in an hour, the time limit can
be increased, assuming the constraints are satisfiable.

3.2.1 SUPPRESS TRAINING CONFIDENCE (STC)

In this method, the goal is to change the weights and biases of Modelinit to suppress confidence
without changing classification and to generate a new model with the new weights and biases,
ModelG STC . We developed two procedures, (1) for binary and (2) multiclass classification.

Binary classification. Given the predicted label of i’th sample labelipred we ensure that the final
layer’s output Zi

out is positive (with a margin tol) if labelipred is 1 or negative if labelipred is 0. For
example, given labelpred: [0, 1, 1], we force Z1

out to be negative and Z2
out and Z3

out to be positive.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

labelipred = 1 ⇒ Zi
out ≥ tol,

labelipred = 0 ⇒ Zi
out ≤ −tol

}
for all i ∈ {1, . . . , n} (2)

We then reduce confidence by minimizing the sum of the absolute logit values, i.e.,
∑n

i=1 Z
i
out.

Multiclass classification. For each sample i we have a logit vector Zi
out of size c, the number of

classes. To reduce the confidence, we reduced the spread between highest and lowest logits for each
sample, while maintaining the logit of the predicted class as the maximum. First, we add constraints
to ensure that, for a given sample i, the logit of the predicted class Zi,H

out stays the highest within the
logit vector (Equation (3)). Next, we add a constraint to minimize the spread between the highest
logit Zi,H

out and the lowest logit Zi,L
out (Equation (4)).

Zi,H
out ≥ Zi,j

out + tol for all j ∈ {1, . . . , c} \ {H} (3)

minimize

n∑
i=1

(Zi,H
out − Zi,L

out) (4)

For example, consider the logit vector of the i’th sample as [−10, 9, 6,−4], where the predicted class
is 2. To maintain correct classification, the logit value corresponding to the predicted class Zi,2

out
must remain higher than the logits of the other classes. To reduce model confidence, we enforce a
reduction in the gap between Zi,2

out and the lowest logit value, Zi,1
out = −10.

3.2.2 CHANGE m CLASSIFICATIONS (CMC)

In this strategy, the objective is to change the classification for m training samples by applying
minimal perturbations to the weights and biases and generate a new model, ModelG CmC . These
perturbations are represented as continuous-valued offset variables that are added to each weight
and bias term. The objective is to minimize the total L1 norm of these offsets, which encourages
the overall perturbation to be as small as possible. The optimization is constrained such that only
m such flips occur while the predicted labels for all other samples in the dataset remain unchanged.
We developed procedures for (1) binary classification, and (2) multiclass classification.

Binary classification. For each sample i the logit value Zi
out is positive if the label of that sample is

1 and negative if the label is 0. For the i’th sample to change classification, this property needs to be
reversed, i.e, if the predicted label was 1 we change the weights and biases so Zi

out becomes negative,
and vice versa. We added a misclassification flag MisF lagi ∈ {0, 1} for each sample to indicate
whether its classification has changed. Given the predicted labels labelpred ∈ {0, 1}n, the following
constraints ensure that MisF lagi correctly encodes the classification changes (Equation (5)).

(MisFlagi = 0 ∧ labelipred = 1) ⇒ Zi
out ≥ tol

(MisFlagi = 0 ∧ labelipred = 0) ⇒ Zi
out ≤ −tol

(MisFlagi = 1 ∧ labelipred = 1) ⇒ Zi
out ≤ −tol

(MisFlagi = 1 ∧ labelipred = 0) ⇒ Zi
out ≥ tol

 for all i ∈ {1, . . . , n} (5)

Next, we constrain the sum of misclassification flags to be m, to ensure exactly m points changed
classification (Equation (6)). For example, given labelpred: [0, 1, 1, 0], in order to change the clas-
sification of the 2nd sample label2pred, we set MisF lag2 = 1 and enforce Z2

out ≤ −tol to push
the logit across the decision boundary. Finally, we ensure that the modifications to the model are
minimal by optimizing for the smallest total perturbation to the weights and biases (Equation (7)).

Note that the MILP solver automatically selects which m samples to flip: the samples that require
the least amount of perturbation to the weights and biases.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

n∑
i=1

MisFlagi = m (6)

minimize
(∑

Wl,offset +
∑

biasl,offset

)
(7)

Multiclass classification. For each sample i we have a logit vector Zi of size c, the number of
classes. The index with the highest logit value Zi

H is the predicted class for that sample. To change
classifications for m samples, this property must not hold, i.e., the logits of the predicted class are
not the highest for these m samples. For each logit vector, we have a binary “unsatisfied indicator”
vector V i, where each entry marks whether the corresponding logit exceeds the value of the pre-
dicted class. If V i,j is 1, this means that the logit of index j is higher than Zi,H

out . For a given sample,
there can be 0 to (c − 1) unsatisfied indices (Equation (8)). We then added constraints allowing
exactly m samples to have unsatisfied indices. MisF lag (of size n) tracks which samples have at
least one unsatisfied index (Equation (9)). The sum of the misclassification flags must be equal to
m to ensure exactly m points changed classification (Equation (10)). For example, when the ith
sample’s logit vector is [−10, 9, 6,−4], the predicted class is 2, since the logit value corresponding
to class Zi,2

out = 9 is the highest. To change the classification of of this sample, at least one of the
other logits must to be higher than Zi,2

out. Suppose after optimization, the logit values changed such
that Zi,1

out and Zi,3
out became higher than Zi,2

out. Then, both V i,1 and V i,3 would be set to 1, as a result
MisF lagi will be set to 1, indicating that the prediction for sample i has been successfully altered.

Having enforced that exactly m samples are misclassified, we minimize the total introduced pertur-
bation; the objective is to keep the weight and bias offsets as small as possible (Equation (11)).

V i,j = 0 ⇒ Zi,H
out ≥ Zi,j

out + tol

V i,j = 1 ⇒ Zi,H
out ≤ Zi,j

out − tol

}
for all j ∈ {1, .., c} \ {H} (8)

c∑
j=1

V i,j ≥ MisFlagi

c∑
j=1

V i,j ≤ (c− 1) · MisFlagi


for all i ∈ {1, . . . , n} (9)

n∑
i=1

MisFlagi = m (10)

minimize
(∑

Wl,offset +
∑

biasl,offset

)
(11)

Misclassify Any vs. Only Correctly Classified Samples: When forcing a misclassification, we can
optionally constrain the MILP to only target samples that are originally classified correctly. Equa-
tion (12) prevents the MILP from misclassifying any incorrectly classified samples. Given the
ground truth of the i’th sample labeliGT , if the predicted label labelipred does not match the ground
truth, we retain its original prediction by forcing the misclassification flag for the sample i to be 0.

labeliGT ̸= labelipred ⇒ MisFlagi = 0, for all i ∈ {1, .., n} (12)

3.3 RETRAINING THE MODEL

During the optimization step, we generate a new model, ModelG STC or ModelG CmC (depending
on the objective) with modified weights from the already trained model, Modelinit. In this step, we
use the same input samples and the network architecture used to generate Modelinit. However, in-
stead of initializing with random weights, we start from the weights of ModelGSTC or ModelGCmC

and continue training. We run this fine-tuning process for 100 more epochs for image datasets and
100,000 epochs for tabular datasets, or until convergence to generate ModelRT .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: STC: training and test results

Dataset Training Set Test Set
modelinit modelG modelinit modelG modelG−

modelinit
Accuracy Loss Accuracy Loss Accuracy Accuracy Accuracy

Image
CIFAR10 94.62 0.18 94.62 2.30 78.95 78.84 -0.113
EMNIST 100 1e-5 100 0.03 93.13 88.31 -4.817
FashionMNIST 94.04 0.17 94.04 2.28 90.53 90.50 -0.038
KMNIST 99.58 0.02 99.58 2.30 96.38 96.12 -0.260
MNIST 99.48 0.02 99.48 2.30 98.37 98.37 -0.002
office31 75.21 0.83 75.21 3.61 62.17 52.22 -9.947
SVHN 97.15 0.11 97.15 2.30 93.59 93.47 -0.120
USPS 99.33 0.02 99.33 2.27 97.69 97.06 -0.628

Tabular
Adult 0.88 0.25 0.88 0.25 0.83 0.83 -4e-5
higgs 0.78 0.46 0.78 0.45 0.70 0.70 3e-4
GMSC 0.93 0.19 0.93 0.26 0.93 0.93 -2e-4
bank-marketing 0.98 0.06 0.98 0.06 0.88 0.88 -2e-4
santander 1.00 0.00 1.00 0.01 0.85 0.84 -0.009

4 CONCEALING MODEL WEIGHTS

Applications of our approach include concealing or obscuring the original model weights. An ef-
fective strategy is to slightly perturb the weights so that our actual or “best” model is not directly
exposed. Instead, we construct a new model that performs identically on the training set but is less
effective on unseen samples. This allows stakeholders to retain control over the original model while
providing users a functional version sufficient for evaluation or restricted usage. For example, The
U.S. Bureau of Industry and Security (BIS) issued new export control rules prohibiting the transfer of
models trained with over 1026 FLOPs to adversarial nations U.S. Department of Commerce, Bureau
of Industry and Security (2025b). The European Union’s AI act imposes related restrictions, classi-
fying models trained with over 1025 FLOPs as presenting “systemic risk” European Parliamentary
Research Service (2021). Beyond regulation, companies often use tiered access, releasing a weaker
model for free or low-cost users while reserving the best version for premium customers. Our first
method, STC, achieves this goal, as it reduces confidence in the prediction across the training set
while keeping the predicted labels unchanged; this aligns with the idea of degrading the model with-
out altering its apparent behavior on familiar data. Our experiments on image and tabular datasets
show that STC successfully increases the loss in the training set (indicating lower confidence) and
leads to a noticeable drop in test accuracy, thus validating its usefulness in this context.

Table 2 presents the models’ training accuracy and loss before and after applying STC. Notably,
while the accuracy remains unchanged between original model (modelinit) and the modified model
(modelG), the training loss exhibits a clear difference. This indicates that STC successfully per-
turbs the model to reduce its confidence without altering its classification outcomes. For all image
datasets, the loss increased substantially after STC, while accuracy is unchanged. For instance, in
CIFAR10 the loss rose from 0.18 to 2.3, demonstrating a significant drop in confidence. Among
the five tabular datasets, four showed an increase in loss. The only exception was the higgs dataset,
where the loss decreased slightly from 0.46 to 0.45. This occurs because the MILP optimizer con-
straints do not directly maximize the loss, but instead minimize the models’ prediction confidence.
In such rare cases, this reduction in confidence does not translate to higher loss. We also observe
that the increase in loss is generally larger for the image datasets compared to the tabular ones.
This could be attributed to image datasets’ multiclass classification, where the logit vector contains
multiple values (one for each class), giving the solver more degrees of freedom to alter the logits
while keeping the predicted class unchanged. In contrast, tabular datasets involve binary classifica-
tion, where the logit is essentially a single real number, leaving less room to adjust values without
affecting the final prediction. As a result, loss increases are more limited for these models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: CmC: test accuracy gains across datasets (FMNIST=FashionMNIST, b-m=bank-marketing)

Image Datasets
Dataset Any Correct

Sample Sample
C1C C10C C1C C10C

Caltech101 10.4 11.28 11.41 4.11
CIFAR10 0.89 0.35 0.73 0.19
EMNIST 0.01 0.36 0.29 -
FMNIST 0.07 0.05 0.02 -0.01
Food101 2.62 1.22 1.52 2.45
KMNIST -0.00 0.58 0.72 -0.07
MNIST 0.09 0.16 0.16 0.12
office31 2.80 2.71 2.80 4.30
SVHN 0.45 0.58 0.52 0.23
USPS -0.01 -0.15 0.00 0.17

Tabular Datasets
Dataset Any Correct

Sample Sample
C1C C10C C1C C10C

Adult -0.31 -0.16 -0.31 -0.13
higgs -0.35 -0.21 -0.35 -0.30
GMSC -0.12 -0.24 -0.12 -0.14
b-m -0.04 0.12 -0.04 0.11
santander -0.17 0.02 -0.17 0.02

Table 2 also shows a similar pattern for test accuracy. For image datasets, where logits span multiple
classes, reducing the confidence of the correct class while keeping the prediction fixed leads to
a drop in test accuracy. For example, EMNIST and office31 show notable drops of 4.8 and 9.9
percentage points while CIFAR10 and SVHN exhibit small but consistent declines. In contrast, the
tabular datasets’ models being binary classifiers , show almost no change (typically within 0.01), as
STC has limited capacity to impact these models without changing their predictions.

5 IMPROVING TEST ACCURACY

NNs with large number of parameters and complicated architectures (e.g., many layers with non-
linear activations) might be prone to overfitting: performing well on training data but failing to
generalize to unseen inputs Goodfellow et al. (2016). Small, well-designed perturbations to models’
weights and biases can help mitigate this issue and encourage broader generalization. CmC ad-
dresses this scenario, introducing minimal and targeted changes to model weights and biases so the
predicted class of exactly m training examples is altered. The m points are automatically selected
through constraint optimization, and no manual intervention is required. We then retrain the model
using the same input data but with the updated labels. This slight adjustment to the model’s decision
boundary “nudges” it away from overfitting and toward more generalizable solutions.

CmC yields improved test accuracy on the majority of multiclass image datasets we evaluated.
Specifically, in over 80% of our image dataset experiments, we observed an increase in test ac-
curacy, with gains reaching up to 10.4% in some cases. These results suggest that CmC can serve as
a lightweight and effective strategy for post-training regularization for multiclass image datasets.

For our experiments, we randomly selected 1,000 samples and evaluated CmC under four distinct
settings prior to retraining. Specifically, we varied (1) the number of samples to be misclassified,
choosing either m = 1 or m = 10, and (2) the selection criteria for which samples to misclassify:
either (a) any training sample, or (b) only those that were originally classified correctly by the model.
To ensure MILP misclassifies only correct samples, we slightly modified our constraints.

Table 3 highlights accuracy gains observed across all four perturbation settings. Among these,
the targeted C1C setting, where we misclassified one correctly-classified training point and then
retrained the model, produced the best overall performance. Across 10 image datasets, this method’s
average improvement was 1.82% (with a median gain of 0.62%), and 9 out of 10 datasets showed
a positive outcome. There were seven datasets, including CIFAR10, Food101, and Caltech101,
that consistently showed test accuracy gains. The FashionMNIST dataset lost accuracy in just one
setting, while KMNIST saw declines in two. Notably, USPS performed the worst across the board,
failing to improve in any setting except the most aggressive one: targeted C10C, where the model
was retrained after misclassifying 10 correctly-classified samples. For EMNIST in the C10C setting,
the MILP solver failed to find any feasible solution across all five iterations within the allotted one-
hour time limit. In contrast, none of the four perturbation settings led to any meaningful gains for

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the tabular datasets, whether the perturbation targeted random or correctly classified points. All
accuracy values reported are averaged across 3–5 runs with different training and test splits. For
certain datasets and runs, the MILP solver failed to find a feasible solution—that is, it was unable to
misclassify any points—so in those cases, we report results from only 3 or 4 runs instead of 5.

Appendix A (Table 4) shows the detailed results for one of the four perturbations–where we aim
to misclassify any 1 training sample. Note that while we attempt to misclassify just 1 of the 1,000
selected samples, applying the modified weights to the full training set may result in additional
points being misclassified. For example, for Caltech101, between 1 and 180 additional training
points became misclassified, leading to a significant drop in the average training accuracy of modelG
(86%) compared to the initial model modelinit (96%). Interestingly, this also led to a substantial,
21.73%, increase in test accuracy. However, this pattern is not consistent across all datasets.

6 RELATED WORK

Model Degradation and Obfuscation. NNSplitter Zhou et al. (2023) obfuscates weights via re-
inforcement learning; the model is functional only with access to a secure set of “model secrets”.
While effective for IP protection, such approaches lose predictive utility and produce incorrect out-
puts by design. Related approaches use hardware-dependent training that ties model functionality to
a secure key Chakraborty et al. (2020), or passport-based watermarking that degrades performance
when unauthorized credentials are used Fan et al. (2019). Fault injection Liu et al. (2017) degrades
NNs by flipping a small number of weight bits or injecting targeted faults, often leading to reduced
accuracy. Applicability authorization Wang et al. (2021) protects a model by restricting its utility
to authorized data domains only, and degrading performance elsewhere. Other methods involve re-
stricting model generalization via adversarial augmentation Qiao et al. (2020); Zhou et al. (2020) or
entropy regularization Zhao et al. (2020) to shape domain-specific behavior. Overconfidence can be
reduced during training, to improve calibration or out-of-distribution detection (e.g., LogitNorm Wei
et al. (2022)) or by encouraging high-entropy output distributions Pereyra et al. (2017).

Post-hoc Model Generalization. ROME Meng et al. (2022) edits factual associations in language
models by applying rank-one updates to transformer MLPs. While effective for precise single edits,
it is restricted to NLP and offers no guarantees against unintended side effects. Models can also
be edited via gradient-based tuning or latent updates, but this risks over-generalization and lacks
locality Mitchell et al. (2021). PMET edits transformer FFNs with minimal collateral impact Li
et al. (2024), but provides no formal guarantees and is confined to NLP. Blending task-specific
weights via tangent-space arithmetic Ortiz-Jimenez et al. (2023) lacks support for precise behavior
edits. We address these limitations via MILP-inferred, verifiable label changes, independent of ar-
chitecture and task. RCAD Setlur et al. (2022) aims to improve generalization, regularizing model’s
dependence on spurious features by penalizing overconfidence on adversarially perturbed inputs that
exaggerate those features; this may slightly reduce training accuracy, but typically improves test ac-
curacy when spurious correlations exist. Other post-training methods mitigate spurious correlations
to improve generalization. PHATGOOSE Muqeeth et al. (2024) inserts low-rank adapters trained
with causal interventions to correct decision boundaries without full retraining. PCBM Yuksekgonul
et al. (2022) projects internal activations onto a concept space to prune spurious features post hoc.
While effective for robustness, these methods do not support precise, targeted behavior edits.

7 CONCLUSION

Our work contributes to two emerging areas: controlled obfuscation of neural networks for security,
compliance, or downgraded deployment (via STC), and post hoc model editing for targeted behav-
ioral correction and improved generalization without full retraining (via CmC). Both techniques are
made possible by the insight of encoding STC or CmC as MILP-based constraint optimization solv-
able with off-the shelf MILP solvers. Experiments on image as well as tabular datasets show that
our approach enables precise, verifiable interventions across architectures and tasks.

REFERENCES

Openml — openml.org. https://www.openml.org, 2025. [Accessed 07-28-2025].

9

https://www.openml.org

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Torchvision datasets. https://pytorch.org/vision/main/datasets.html, 2025.
Accessed: 07-28-2025.

Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

Abhishek Chakraborty, Ankit Mondai, and Ankur Srivastava. Hardware-assisted intellectual prop-
erty protection of deep learning models. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6. IEEE, 2020.

Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor Maslej, Tamay Besiroglu, and David Owen.
The rising costs of training frontier ai models. arXiv preprint arXiv:2405.21015, 2024.

European Parliamentary Research Service. Artificial intelligence act. Technical Re-
port EPRS BRI(2021)698792, European Parliament, April 2021. URL https:
//www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_
BRI(2021)698792_EN.pdf. Briefing document providing an overview of the European
Commission’s proposal for an Artificial Intelligence Act.

Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership ver-
ification: Embedding passports to defeat ambiguity attacks. Advances in neural information
processing systems, 32, 2019.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Gurobi Optimization, LLC. Gurobi optimizer. https://www.gurobi.com, 2025. Version
12.0.2.

Kaggle. Kaggle: Your machine learning and data science community. https://www.kaggle.
com, 2025. Accessed: 2025-07-29.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
In 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, pp.
105–132. Springer, 2009.

Isabell Lederer, Rudolf Mayer, and Andreas Rauber. Identifying appropriate intellectual property
protection mechanisms for machine learning models: A systematization of watermarking, fin-
gerprinting, model access, and attacks. IEEE Transactions on Neural Networks and Learning
Systems, 35(10):13082–13100, 2023.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model edit-
ing in a transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 18564–18572, 2024.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault injection attack on deep neural network.
In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 131–138.
IEEE, 2017.

Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving the
cost of ai deployment? In Proceedings of the 2024 ACM conference on fairness, accountability,
and transparency, pp. 85–99, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359–17372, 2022.

Wil Michiels. How do you protect your machine learning investment, 2020.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Mohammed Muqeeth, Haokun Liu, Yufan Liu, and Colin Raffel. Learning to route among special-
ized experts for zero-shot generalization. arXiv preprint arXiv:2402.05859, 2024.

10

https://pytorch.org/vision/main/datasets.html
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf
https://www.gurobi.com
https://www.kaggle.com
https://www.kaggle.com

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing Sys-
tems, 36:66727–66754, 2023.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548,
2017.

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12556–
12565, 2020.

Amrith Setlur, Benjamin Eysenbach, Virginia Smith, and Sergey Levine. Adversarial unlearning:
Reducing confidence along adversarial directions. Advances in Neural Information Processing
Systems, 35:18556–18570, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

U.S. Department of Commerce, Bureau of Industry and Security. Imple-
mentation of additional due diligence measures for advanced computing in-
tegrated circuits. 90 Fed. Reg. 5298, January 2025a. URL https://
www.federalregister.gov/documents/2025/01/16/2025-00711/
implementation-of-additional-due-diligence-measures-for-advanced-computing-integrated-circuits.
Interim Final Rule revising EAR to require enhanced due diligence for IC exports, including
foundries and OSATs; compliance required by January 31, 2025.

U.S. Department of Commerce, Bureau of Industry and Security. Framework for artifi-
cial intelligence diffusion. Federal Register, Vol. 90, No. 10, pp. 4544–4565, January
2025b. URL https://www.federalregister.gov/documents/2025/01/15/
2025-00636/framework-for-artificial-intelligence-diffusion. Re-
trieved July 28, 2025.

Lixu Wang, Shichao Xu, Ruiqi Xu, Xiao Wang, and Qi Zhu. Non-transferable learning: A
new approach for model ownership verification and applicability authorization. arXiv preprint
arXiv:2106.06916, 2021.

Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural net-
work overconfidence with logit normalization. In International conference on machine learning,
pp. 23631–23644. PMLR, 2022.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. arXiv
preprint arXiv:2205.15480, 2022.

Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain generaliza-
tion via entropy regularization. Advances in neural information processing systems, 33:16096–
16107, 2020.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel
domains for domain generalization. In European conference on computer vision, pp. 561–578.
Springer, 2020.

Tong Zhou, Yukui Luo, Shaolei Ren, and Xiaolin Xu. Nnsplitter: an active defense solution for dnn
model via automated weight obfuscation. In International Conference on Machine Learning, pp.
42614–42624. PMLR, 2023.

A APPENDIX

Table 4 reports the detailed results for m = 1–where our goal is to misclassify any 1 training sample
chosen from a random set of 1,000. The table shows the training and test accuracy of all three stages,
(1) after initial training (modelinit), (2) after MILP perturbation (modelG), and (3) after retraining

11

https://www.federalregister.gov/documents/2025/01/16/2025-00711/implementation-of-additional-due-diligence-measures-for-advanced-computing-integrated-circuits
https://www.federalregister.gov/documents/2025/01/16/2025-00711/implementation-of-additional-due-diligence-measures-for-advanced-computing-integrated-circuits
https://www.federalregister.gov/documents/2025/01/16/2025-00711/implementation-of-additional-due-diligence-measures-for-advanced-computing-integrated-circuits
https://www.federalregister.gov/documents/2025/01/15/2025-00636/framework-for-artificial-intelligence-diffusion
https://www.federalregister.gov/documents/2025/01/15/2025-00636/framework-for-artificial-intelligence-diffusion

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

the perturbed model (modelRT). The table also shows the accuracy gain of modelG and modelRT

over modelinit. After retraining the models using the perturbed weights and biases, we observed
a general improvement in test accuracy for multiclass image datasets: 8 out of 10 datasets showed
increases, ranging from 0.013% to 10.403%. Two datasets, KMNIST and USPS, exhibited a slight
drop in accuracy, by 0.004% and 0.01%, respectively. These drops correspond to 0.4 misclassified
images on average out of 10,000 test samples for KMNIST, and 0.2 out of 2,007 for USPS. In
some cases, e.g., EMNIST and KMNIST, the reported training accuracy appears unchanged due to
rounding to two decimal places, though differences do exist.

Table 4: Accuracy: change 1 classifications (FMNIST=FashionMNIST, b-m=bank-marketing)

Dataset modelinit modelG modelRT modelG- modelRT -
modelinit modelinit

Training Test Training Test Training Test Training Test Training Test
Image
Caltech101 96.27 63.69 86 85.41 99.57 74.09 -10.27 21.726 3.301 10.403
CIFAR10 95.52 77.43 95.82 78.71 93.51 78.31 0.301 1.282 -2.011 0.886
EMNIST 100 93.13 100 93.12 100 93.15 -0.003 -0.013 0 0.013
FMNIST 93.96 90.48 94.04 90.53 93.95 90.55 0.086 0.056 -0.009 0.068
Food101 88.95 60.18 82.47 60.18 92.56 62.80 -6.480 0 3.608 2.624
KMNIST 99.57 96.34 99.57 96.34 99.55 96.34 0.001 -0.006 -0.023 -0.004
MNIST 99.48 98.35 99.57 98.36 99.75 98.44 0.096 0.010 0.275 0.086
office31 84.79 59.81 86.37 62.30 76.45 62.61 1.575 2.487 -8.341 2.798
SVHN 97.32 92.81 97.84 93.59 96.87 93.25 0.522 0.786 -0.445 0.448
USPS 99.33 97.69 99.38 97.69 99.56 97.68 0.058 0 0.230 -0.010
Tabular
Adult 88.29 83.37 88.29 83.38 87.62 83.06 -0.001 0.013 -0.669 -0.314
higgs 78.22 70.38 78.22 70.38 77.44 70.03 -0.001 -0.004 -0.785 -0.347
GMSC 93.46 93.38 93.46 93.38 93.74 93.26 -0.005 -0.002 0.279 -0.118
b-m 98.04 87.98 98.05 87.94 97.97 87.94 0.009 -0.038 -0.079 -0.040
santander 100 85.30 99.97 84.83 100 85.13 -0.024 -0.478 -0.001 -0.172

12

	Introduction
	Background
	Methodology
	Initial Training
	Optimization
	Suppress Training Confidence (STC)
	Change m Classifications (CmC)

	Retraining the Model

	Concealing Model Weights
	Improving Test Accuracy
	Related Work
	Conclusion
	Appendix

