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Abstract

Deep reinforcement learning continues to show tremendous potential in achieving task-
level autonomy, however, its computational and energy demands remain prohibitively
high. In this paper, we tackle this problem by applying quantization to reinforcement
learning. To that end, we introduce a novel Reinforcement Learning (RL) training
paradigm, ActorQ, to speed up actor-learner distributed RL training. ActorQ
leverages 8-bit quantized actors to speed up data collection without affecting learning
convergence. Our quantized distributed RL training system, ActorQ, demonstrates
end-to-end speedups between 1.5 × and 5.41×, and faster convergence over full
precision training on a range of tasks (Deepmind Control Suite) and different RL
algorithms (D4PG, DQN). Furthermore, we compare the carbon emissions (Kgs of
CO2) of ActorQ versus standard reinforcement learning algorithms on various tasks.
Across various settings, we show that ActorQ enables more environmentally friendly
reinforcement learning by achieving carbon emission improvements between 1.9×
and 3.76× compared to training RL-agents in full-precision. We believe that this
is the first of many future works on enabling computationally energy-efficient and
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sustainable reinforcement learning. The source code is available here for the public
to use: https://github.com/harvard-edge/QuaRL.

1 Introduction
Deep reinforcement learning has attained significant achievements in various fields (Bellemare et al.,
2013; Kempka et al., 2016; Kalashnikov et al., 2018; Silver et al., 2016; 2017; OpenAI, 2018; Chiang
et al., 2019; OpenAI et al., 2019). Despite its promise, one of its limiting factors is long training times,
and the current approach to speed up RL training on complex and difficult tasks involves distributed
training (Espeholt et al., 2019; Nair et al., 2015; Babaeizadeh et al., 2016). Although distributed
RL training has demonstrated significant potential in reducing training times (Hoffman et al., 2020;
Espeholt et al., 2018), this approach also leads to increased energy consumption and greater carbon
emissions. Recently, work by (Wu et al., 2021) indicates that improving hardware utilization using
quantization and other performance optimizations can reduce the carbon footprint of training and
inference of large recommendation models by 20% every six months. In this same vein, we believe
reinforcement learning can also benefit from these optimization techniques, particularly quantization,
to reduce training time, improve hardware utilization and and reduce carbon emissions.

In this paper, we tackle the following research question – How can we speed up RL training without
significantly increasing its carbon emissions? To systematically tackle this problem, we introduce
ActorQ. In ActorQ, we use quantization to reduce the computation and communication costs
of various components of a distributed RL training system. Based on the characterization of
core components of distributed RL training, we find that majority of the time is spent on actor
policy inference, followed by the learner’s gradient calculation, model update, and finally, the
communication) cost between actors and learners (Figure 1). Thus, to obtain significant speedups
and reduce carbon emissions, we first need to lower the overhead of performing actor inference. To
achieve this in ActorQ, we employ quantized policy (neural network) inference, a simple yet effective
optimization technique to lower neural network inference’s compute and memory costs.

Applying quantization to RL is non-trivial and different from traditional neural network quantization.
Due to the inherent feedback loop in RL between the agent and the environment, the errors made
at one state might propagate to subsequent states, suggesting that actor’s policies might be more
challenging to quantize than traditional neural network applications. Despite significant research
on quantization for neural networks in supervised learning, there is little prior work studying the
effects of quantizing the actor’s policy in reinforcement learning. To bridge this gap in literature,
we benchmark the effects of quantized policy during rollouts in popular RL algorithms namely
DQN (Mnih et al., 2013), PPO (Schulman et al., 2017), DDPG (Lillicrap et al., 2015), A2C (Mnih
et al., 2016). Our benchmarking study shows that RL policies are resilient to quantization error,
and the error does not propagate due to the feedback loop between the actor and the environment.

Although our benchmarking study shows the potential benefits of applying quantization (i.e., no
error propagation), we still need to apply quantization during RL training to realize real-world
speedups. Applying quantization during RL training may seem difficult due to the myriad of
different learning algorithms (Lillicrap et al., 2015; Mnih et al., 2016; Barth-Maron et al., 2018) and
the complexity of these optimization procedures. Luckily, most popular RL training algorithms can
be formulated using the actor-learner training paradigm such as Ape-X (Horgan et al., 2018) and
ACME (Hoffman et al., 2020). ActorQ leverages the fact that many RL training procedures can be
formulated in a general actor-learning paradigm in order to apply quantization specifically during
actor’s policy inference and policy broadcast between learners to actors during the RL training.
To demonstrate the benefits of our approach, we choose two RL algorithms, namely DQN (Mnih
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Figure 1: (a) Breakdown of carbon emissions between using a quantized and non-quantized policy
in RL training for MountainCar. (b) Wall clock time for ‘Actors’, ‘Learner’, and ‘Broadcast’ for
over a window of 1000 steps in ACME (Hoffman et al., 2020)
et al., 2013) and D4PG (Barth-Maron et al., 2018) from Deepmind’s ACME framework (Hoffman
et al., 2020) and show speedups in training time and reduced carbon emissions while maintaining
convergence.

In summary, our fundamental contributions are as follows:

• We introduce ActorQ, to speed up distributed reinforcement learning training. ActorQ
operates by quantizing the actor’s policy, thereby speeding up experience collection. ActorQ
achieves between 1.5 × and 5.41× speedup on a variety of tasks from the Deepmind
control suite (Tassa et al., 2018) and OpenAI gym (Brockman et al., 2016) compared to its
full-precision counterparts.

• Using our ActorQ framework, we further explore opportunities to identify various bottlenecks
in distributed RL training. We show that quantization can also minimize communication
overheads between actors and learners and reduce reinforcement learning time.

• Finally, by quantizing the policy weights and communication between actors and learners,
we show a reduction in carbon emissions between 1.9 × and 3.76× versus full precision
policies, thus paving the way towards sustainable reinforcement learning.

• To address lack of benchmarks in applying quantization for RL in the literature, we extensively
benchmark quantized policies on standard tasks (Atari, Gym), algorithms (A2C, DQN,
D4PG, PPO), and policy architecture (MLPs, CNNs). We demonstrate little to no loss in
mean return, especially in the context of using quantized policy for rollouts.

2 Related Work
Both quantization and reinforcement learning in isolation have been the subject of much research
in recent years. However, to the best of our knowledge, they have seldom been applied together
(as surveyed in a broad range of quantization and RL papers) to improve RL efficiency. Below we
provide an overview of related works in both quantization and reinforcement learning and discuss
their contributions and significance in relation to our paper.

2.1 Quantization
Quantizing a neural network reduces the precision of neural network weights, reducing memory
transfer times and enabling the use of fast low-precision compute operations. Innovations in both
post-training quantization (Krishnamoorthi, 2018; Banner et al., 2018; Zhao et al., 2019; Tambe
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Metrics A3C CULE Ray Gorila Seed-RL ACME
Actor-Q

(Our Work)

Method Distributed Distributed Distributed Distributed Distributed Distributed Distributed/Standalone

Increase in Speed-up

Decrease in

Carbon Emission

Decrease in Energy

Decrease in

Communication Cost

Framework Agnostic

Table 1: Comparison of prior works on speeding-up RL training wrt to speed-up (lower training
times), energy, and carbon emissions. Previous works compared include Nvidia’s CULE (Dalton
et al., 2019), Ray (Moritz et al., 2018), Gorila (Nair et al., 2015), Seed-RL (Espeholt et al., 2019)
and ACME (Hoffman et al., 2020)

et al., 2020) and quantization aware training (Dong et al., 2019; Hubara et al., 2018; Choi et al.,
2018) demonstrate that neural networks may be quantized to very low precision without accuracy
loss, suggesting that quantization has immense potential for producing efficient deployable models.
In the context of speeding up training, research has also shown that quantization can yield significant
performance boosts. For example, prior work on half or mixed precision training (Sun et al., 2019;
Das et al., 2018) demonstrates that using half-precision operators may significantly reduce compute
and memory requirements while achieving adequate convergence.

Although much research has been conducted on quantization and machine learning, the primary
targets of quantization are applications in the image classification and natural language processing
domains. Quantization as applied to reinforcement learning has been absent in the literature.

2.2 Reinforcement Learning & Distributed Reinforcement Learning Training
Significant work on reinforcement learning range from training algorithms (Mnih et al., 2013;
Levine et al., 2015) to environments (Brockman et al., 2016; Bellemare et al., 2013; Tassa et al.,
2018) to systems improvements (Petrenko et al., 2020; Hoffman et al., 2020). From a system
optimization perspective, reinforcement learning poses a unique opportunity compared to traditional
supervised machine learning algorithms as training a policy is markedly different from standard
neural network training involving pure backpropagation (as employed in learning image classification
or language models). Notably, reinforcement learning training involves repeatedly executing policies
on environments (experience generation), communicating across various components (in this case
between devices performing rollouts and the main device updating the policy), and finally, learning
a policy based on the training samples obtained from experience generation. Experience generation
is trivially parallelizable by employing multiple devices that perform rollouts simultaneously, and
various recent research in distributed and parallel reinforcement learning training (Kapturowski et al.,
2018; Moritz et al., 2018; Nair et al., 2015) leverages this to accelerate training. One significant work
is the Deepmind ACME reinforcement learning framework (Hoffman et al., 2020), which enables
scalable training to many processors or nodes on a single machine.

3 ActorQ: Quantization for Reinforcement Learning
In this section, we introduce ActorQ a quantization method for improving the run time efficiency
of actor-learner training. We first provide a high-level overview of the ActorQ system. Then, we
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Figure 2: (a) Traditional RL training setup. In a non-distributed RL training scenario, the number
of actors is 1, and all the components are run on the same machine. In distributed RL training
setup (e.g., ACME), the actors are distributed across multiple CPUs. (b) ActorQ system setup.
In ActorQ, we add a quantizer block to the RL-training loop. The learner performs full-precision
policy training in GPU. Before the policy is broadcasted to the actors, the quantizer block quantizes
the policy. The quantized policy reduces the communication of the updated policy between the
GPU learner and CPU actors. The actors run rollouts on the quantized policy for the experience
generation. The learner and actors are instrumented with carbon monitoring APIs (Henderson
et al., 2020) to quantify the impact of carbon emission with and without quantization.

characterize the effects of quantization on different reinforcement learning algorithms. Lastly, we
apply quantization to a distributed RL training framework to show speed-ups on a real system.
Our results demonstrate that apart from reducing training time, ActorQ also leads to lower carbon
emissions, thus paving the way towards sustainable reinforcement learning research.

3.1 ActorQ System Architecture
Traditional RL training can be formulated within context of an actor- learner training paradigm (Hor-
gan et al., 2018) as shown in Fig. 2a. In this framework, one or multiple actors collect new training
examples based on its current policy and relays them to the learner (or replay buffer), which utilizes
the generated experience to update the weights of its own policy. Periodically, the learner broadcasts
its policy to the actors which update their internal policy with the learner’s, synchronizing the
models. In the non-distributed formulation, the actor, learner, and replay buffer reside in a single
machine. However, in the case of the distributed RL, the actor, learner, and the replay buffer run on
different compute nodes, constantly communicating with each other. We refer to this communication
between the actor/learner components as broadcast.

ActorQ introduces quantization in the actor-learner reinforcement learning framework to speed
up training. There are three main components in ActorQ system namely, ‘Actors’, ‘Learner’, and
‘Quantizer’ as shown in Figure 2. During training, each actor instance performs rollouts and initially
uses a randomly initialized policy for decision making. At each step, the actors broadcast the
environment state, action, and the reward for a given state to the learner. The learner uses this
information to optimize the policy. Periodically, the learner broadcasts the updated policy to the
actors, who then use the updated policy to perform future rollouts.

There are two main performance bottlenecks in reinforcement learning training. First, each actor
uses a neural network policy to generate an action. Thus, how fast it can perform rollouts depends
on the policy’s inference latency. Second, the learner broadcasts the policy periodically to all the
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actors. Broadcasting of the entire policy network to all actors can cause communication overheads
and slow down training.

In ActorQ, we use quantization to reduce these bottlenecks and achieve end-to-end speed-up. To
systematically integrate quantization into the training algorithm, we first perform a study to
characterize the effects of applying post-training quantization and quantization aware training to
various RL algorithms and environments.

In ActorQ, all actors use a quantized policy to perform rollouts. Additionally, the broadcasted
policy is also quantized. Note that ActorQ maintains all learner computation in full precision
to maintain learning convergence; further note that the learner is significantly faster than the
actors due to the utilization of hardware acceleration (e.g., GPU) to perform batched updates
during policy optimization (Espeholt et al., 2019). Meanwhile, actors are stuck performing rollouts
that require repeated executions of single-example (non-batched) inference, and the difference in
hardware utilization between the actors’ rollouts and the learner’s policy optimizations, based on
our characterization, is one of the key areas leading to inefficiency. This motivates us to first apply
quantization to the actors’ inference and then to the policy broadcast (e.g: communication) between
learners to actors.

While simple, ActorQ distinguishes from traditional quantized neural network training as the
inference-only role of actors enables the use of low precision (≤ 8 bit) operators to speed up training.
This is unlike traditional quantized neural network training, which must utilize more complex
algorithms like loss scaling Das et al. (2018), specialized numerical representations Sun et al. (2019);
Wang et al. (2018), stochastic rounding Wang et al. (2018) to attain convergence. This adds extra
complexity and may also limit speedup and, in many cases, this is still limited to half-precision
operations due to convergence issues.

3.2 Effects of Quantization on Reinforcement Learning
As a first step towards developing ActorQ, we first perform experiments to benchmark the effects of
quantization on RL. Insights gained from these experiments will help verify that quantization can
be applied to learning without significantly degrading quality. To this end, we apply post-training
quantization (PTQ) to just the policies of various reinforcement learning agents: we take an RL
policy fully trained in fp32 (floating point precision) and apply post-training quantization to it,
evaluating the impact of quantization on the resulting model. Performing this experiment allows
us to understand whether the drift caused by quantization error at each policy step affects RL
reward quality, and to what extent it impacts rewards with different degrees (i.e., number of bits) of
quantization.

Post-Training Quantization (PTQ)
The post-training quantization is performed using standard uniform affine quantization (Krish-
namoorthi, 2018) defined as follows:

Qn(W ) = round(W

δ
)

where
δ = |min(W, 0)| + |max(W, 0)|

2n

Dequantization is defined as
D(Wq, δ) = δ(Wq)
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Algorithm → A2C DQN PPO DDPG

Datatype → fp32 fp16 int8 KL-div fp32 fp16 int8 KL-div fp32 fp16 int8 KL-div fp32 fp16 int8 KL-div

Environment ↓ Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd

Breakout 379 371 350 0.00262 214 217 78 0.06045 400 400 368 0.08892

SpaceInvaders 717 667 634 0.06066 586 625 509 0.01353 698 662 684 0.08115

BeamRiders 3087 3060 2793 0.00993 925 823 721 0.09787 1655 1820 1697 0.0186

MsPacman 1915 1915 2045 0.17536 1433 1429 2024 0.01531 1735 1735 1845 0.11978

Qbert 5002 5002 5611 0.01957 641 641 616 0.01995 15010 15010 14425 0.02573

Seaquest 782 756 753 0.03358 1709 1885 1582 0.02536 1782 1784 1795 0.02991

Cartpole 500 500 500 0.00113 500 500 500 0.1019 500 500 500 0.00566

Pong 20 20 19 0.01528 21 21 21 0.1257 20 20 20 0.01

Walker2D 399 422 442 0.05371 2274 2273 2268 0.03 1890 1929 1866 0.0376

HalfCheetah 2199 2215 2208 0.13427 3026 3062 3080 0.02 2553 2551 2473 0.0763

BipedalWalker 230 240 226 0.0252 304 280 291 0.03 98 90 83 0.0134

MountainCar 94 94 94 0.03705 92 92 92 0.07 92 92 92 0.0651

Table 2: Post-training quantization error for DQN, DDPG, PPO, and A2C algorithm on Atari
and Gym. Quantization down to int8 yields similar episodic rewards to full precision baseline. To
measure the policy distribution shift, we use KL-divergence. We measure KL-divergence between
the fp32 policy and the int8 policy. The action distribution for the fp32 policy and int8 is shown in
the appendix.

In our study, policies are trained in standard full precision. Once trained, we quantize them to
fp16 and int8 first and dequantization them to simulate quantization error. For convolutional
neural networks, we use per-channel quantization, which applies Qn to each channel of convolutions
individually. Also, all layers of the policy are quantized to the same precision level.

We apply the PTQ to Atari arcade learning (Bellemare et al., 2013), OpenAI gym environ-
ments (Brockman et al., 2016) and different RL algorithms namely A2C (Mnih et al., 2016),
DQN (Mnih et al., 2013), PPO (Schulman et al., 2017), and DDPG (Lillicrap et al., 2015). We
train a three-layer convolutional neural network for all Atari arcade learning. For openAI Gym
environments, we train neural networks with two hidden layers of size 64. In PTQ, unless otherwise
noted, both weights and activations are quantized to the same precision.

Table 2 shows the rewards attained by policies quantized via post-training quantization in. The
mean of int8 and fp16 relative errors ranges between 2% and 5% of the full precision model, which
indicates that policies can be represented in 8/16 bits precision without much quality loss.

In a few cases (e.g., MsPacman for PPO), post-training quantization yields better scores than the
full precision policy. We believe that quantization injected an amount of noise that was small enough
to maintain a good policy and large enough to regularize model behavior; this supports some of the
results seen by Louizos et al. (2018); Bishop (1995); Hirose et al. (2018).

To quantify the shift in policy distribution, we use KL-divergence (Kullback & Leibler, 1951).
Table 2 shows the KL-divergence for the fp32 policy and int8 (quantized) policy. Across all the
evaluated algorithms (both on-policy and off-policy), we observe that the KL-divergence is very small,
suggesting that the quantization of policy does not change the inherent distribution significantly.
The effect of small KL-divergence is also reflected in the minimal degradation in mean return.

We also visualize the action distribution of both the fp32 policy and int8. Fig. 3 shows the action
distribution for two on-policy algorithms, namely A2C and PPO, for the Walker2D environment.
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Figure 3: Small variation in action distribution for A2C and PPO in WalkerStand environment
for fp32 and int8 policies for the same observation. We run each policy for 5000 steps. The small
change in action distribution for quantized policy suggests safe exploration without significantly
degrading the rewards.

We observe a small variation in the action distribution, suggesting that quantizing the policy allows
the agent to perform a small safe exploration compared to the fp32 policy. This small variation is
consistent with other environments and RL algorithms. Appendix C shows the action distributions
for other environments.

Based on this study, we observe that the quantization of RL policy does not cause a significant loss
in reward compared to an fp32 policy. Appendix A shows the results of applying quantization aware
training (QAT) with RL. Since QAT uses fake quantization nodes to estimate the statistics of the
parameter distributions, it allows for more aggressive quantizations. Our study on QAT suggests
(See Appendix A) that we can safely quantize the policy up to 5-bits without significantly affecting
the agent’s rewards. However, to fully utilize the gains from aggressive quantization, we need native
hardware support to run computations lower than 8-bits. Commonly used hardware accelerators
used in RL training support native int8 computations. To that end, in ActorQ, we use PTQ for the
quantizer block. Also, it is important to note that ActorQ uses simple uniform affine quantization
to demonstrate how to apply quantization in RL policies; however, we can easily swap the quantizer
function to include other quantization techniques (Krishnamoorthi, 2018).

In summary, at int8, we see minimal degradation in rewards. Hence, when designing quantizer block
in ActorQ, we quantize the policy to int8. By using int8 quantization and leveraging the native
int8 computation support in hardware, we achieve end-to-end speed-up in reinforcement learning
training.

4 Experimental Setup
We evaluate the ActorQ system for speeding up distributed quantized reinforcement learning across
various tasks in Deepmind Control Suite (Tassa et al., 2018). Overall, we show that: (1) we see
significant speedup (between 1.5 × and 5.41 ×) in training reinforcement learning policies using
ActorQ; (2) convergence is maintained even when actors perform int8 quantized inference; (3) Using
ActorQ, we lower the carbon emissions between 1.9× and 3.76× compared to training without
quantization.

4.1 ActorQ Experimental Setup
We evaluate ActorQ on a range of environments from the Deepmind Control Suite (Tassa et al.,
2018). We choose the environments to cover a wide range of difficulties to determine the effects of
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Task Algorithm Steps Trained Model Pull Frequency (Steps)
Cartpole Balance D4PG 40000 1000
Walker Stand D4PG 40000 1000
Hopper Stand D4PG 100000 1000
Reacher Hard D4PG 70000 1000
Cheetah Run D4PG 200000 1000
Finger Spin D4PG 200000 1000
Humanoid Stand D4PG 500000 100
Humanoid Walk D4PG 700000 100
Cartpole DQN 60000 1000
Acrobot DQN 100000 1000
MountainCar DQN 200000 100

Table 3: Tasks evaluated using ActorQ range from easy to difficult, along with the steps trained for
corresponding tasks, with how frequently the model is pulled on the actor side.

quantization on both easy and difficult tasks. The difficulty of the Deepmind Control Suite tasks
is determined by (Hoffman et al., 2020). Table 3 lists the environments we tested on with their
corresponding difficulty and number of steps trained. Each episode has a maximum length of 1000
steps, so the maximum reward for each task is 1000 (though this may not always be attainable).

Policy architectures are fully connected networks with three hidden layers of size 2048. We apply
a Gaussian noise layer to the output of the policy network on the actor to encourage exploration;
sigma is uniformly assigned between 0 and 0.2 according to the actor being executed. On the learner
side, the critic network is a three-layer hidden network with a hidden size of 512. We train policies
using D4PG (Barth-Maron et al., 2018) on continuous control environments and DQN (Mnih et al.,
2013) on discrete control environments. We chose D4PG as it was the best learning algorithm in
(Tassa et al., 2018; Hoffman et al., 2020), and DQN is a widely used and standard reinforcement
learning algorithm. An example submitted by an actor is sampled 16 times before being removed
from the replay buffer (spi=16) (lower spi is typically better as it minimizes model staleness (Fedus
et al., 2020)).

All the experiments are run in a distributed fashion to leverage multiple CPU cores and a GPU.
A V100 GPU is used on the learner, while the actors are mapped to the CPU (1 core for each
actor). We run each experiment and average over at least three runs to compute the running mean
(window=10) of the aggregated runs.

4.2 Measuring Carbon Emissions
For measuring the carbon emission for the run, we use the experiment-impact-tracker proposed
in prior JMLR work (Henderson et al., 2020).1 We instrument the ActorQ system with carbon
monitor APIs to measure the energy and carbon emissions for each training experiment in ActorQ.

To measure the improvement (i.e., lowering of carbon emissions) when using the int8 policy, we take
the ratio of carbon emission when using the fp32 policy and int8 policy as:

1https://github.com/Breakend/experiment-impact-tracker
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Time to Convergence (s) Carbon Emissions (Kgs)
Carbon Emission

Improvement
Task

Mean

Return fp32 int8
Speedup fp32

(Co2fp32)

int8

(Co2int8)
Co2fp32/Co2int8

Cartpole Balance 941.22 870.91 279 3.12× 0.359 0.15 2.39

Walker Stand 947.74 871.32 534.37 1.63× 0.67 0.178 3.76

Hopper Stand 836.41 2660.41 1699.17 1.57× 0.34 0.17 2.00

Reacher Hard 948.12 1597 875.34 1.82× 0.35 0.18 1.94

Cheetah Run 732.31 2517.3 891.84 2.82× 0.263 0.12 2.19

Finger Spin 810.32 3256.56 1065.52 3.06× 0.361 0.19 1.90

Humanoid Stand 884.89 13964.92 9302.82 1.51× 0.55 0.27 2.04

Humanoid Walk 649.91 17990.66 6223.35 2.89× 0.56 0.278 2.01

Cartpole (Gym) 198.22 963.67 260.1 3.70× 0.188 0.089 2.11

Mountain Car (Gym) -120.62 2861.8 1284.32 2.22× 0.21 0.098 2.14

Acrobot (Gym -107.45 912.24 168.44 5.41× 0.198 0.097 2.04

Table 4: ActorQ time, speedups, carbon emission improvements to 95% reward on select tasks
from DeepMind Control Suite and Gym. 8 bit inference yields between 1.5 × and 5.41 × speedup
over full precision training. Likewise, int8 policy inference yields between 1.9× and 3.76× less
carbon emission compared to fp32 policy. We use D4PG on DeepMind Control Suite environments
(non-gym), DQN on gym environments.

Co2Improvment = CO2fp32
CO2int8

,

where, Co2fp32 and Co2int8 are the carbon emissions when using fp32 and int8 policy respectively.

5 Results
5.1 Speedup, Convergence, and Carbon Emissions
We focus our results on three main areas: end-to-end speed-ups for training, model convergence
during training and environmental sustainability from a carbon emissions perspective.

End-to-End Speedups. We show end-to-end training speedups with ActorQ in Figure(s) 4 and
6. Across nearly all tasks, we see significant speedups with both 8-bit inference. Additionally, to
improve readability, we estimate the 95% percentile of the maximum attained score by fp32 and
measure time to this reward level for fp32, int8, and compute corresponding speedups. This is
shown in Table 4. Note that Table 4 does not take into account cases where fp16 or int8 achieve a
higher score than fp32.

Convergence. We show the episode reward versus total actor steps convergence plots using ActorQ
in Figure(s) 5 and 6. Data shows that broadly, convergence is maintained even with 8-bit actors
across both easy and difficult tasks. On Cheetah, Run and Reacher, Hard, 8-bit ActorQ achieve
even slightly faster convergence, and we believe this may have happened as quantization introduces
noise which could be seen as exploration.

Carbon Emissions. Table 4 also shows the carbon emissions for various task in openAI gym
and Deepmind Control Suite. We compare the carbon emissions of a policy running in fp32 and
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Figure 4: End-to-end speedups of ActorQ across various Deepmind Control Suite tasks using 8 bit
and 32 bit inference. int8 training yields significant end-to-end training speedups over the fp32
baseline. The x-axis denotes the wall-clock time and y-axis denotes the reward. Training uses the
D4PG algorithm.
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Figure 5: Convergence of ActorQ across various Deepmind Control Suite tasks using int8 and fp32
inference. int8 quantized training attains the same or better convergence than full precision training.
Training uses the D4PG algorithm.

int8. We observe that quantization of policies reduces the carbon emissions anywhere from 1.9× to
3.76× depending upon the task. As RL systems are scaled to run on 1000’s distributed CPU cores
and accelerators (GPU/TPU), the absolute carbon reduction (measured in Kgs of CO2) can be
significant.
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Figure 6: Convergence (Conv.) and end-to-end speedups (Spd) of ActorQ across various Gym tasks
using int8 and fp32 inference. int8 training yields significant end-to-end training speedups over the
full precision baseline. For the speed-up plots (d-f), the x-axis denotes wall-clock time. Training
uses the DQN algorithm.

5.2 Communication vs Computation
The frequency of model pulls on actors is a hyperparameter and may have impacts on convergence
as it affects the staleness of policies being used to populate the replay buffer; this has been witnessed
in both prior research (Fedus et al., 2020) and our experiment with the hyperparameter. Figure 7a
shows that a higher update frequency of 100 can help in faster convergence compared to an update
frequency of 1000 for the Humanoid stand task. This hyperparameter has system-level implications
since a higher update frequency can increase the communication cost (policy broadcast from learner
to actors). In contrast, a lower update frequency can increase the computation cost since it will
take more steps to converge, increasing the computation cost. Thus, to understand the tradeoff of
quantization concerning this hyperparameter, we explore the effects of quantization of communication
versus computation in both communication and computation-heavy setups.

To quantize communication, we quantize policy weights to int8 and compress them by packing
them into a matrix, thus, reducing the memory of model broadcasts by 4×. Naturally, quantizing
communication would be more beneficial in the communication heavy scenario, and quantizing
compute would yield relatively more gains in the computation-heavy scenario.

Figure 8 shows an ablation plot of the gains of quantization on both communication and compu-
tation in a communication heavy scenario (frequency=30) versus a computation-heavy scenario
(frequency=300).

The figures show that in a communication heavy scenario (Figure 8a), quantizing communication
may yield up to 30% speedup; conversely, in a computation-heavy scenario (Figure 8b) quantizing
communication has little impact as the overhead is dominated by computation. Therefore, we
believe that communication would incur higher costs on a networked cluster as actors scale.
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Figure 7: Studying the effect of training with more frequent actor pulls in Humanoid stand and
Walker Stand. We observe that the more frequent actor pulls learns faster than with less frequent
actor pulls and demonstrates model pull frequency affects staleness of actor policies and may have
an effect on training.
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Figure 8: Effects of quantizing communication versus computation in compute heavy and communi-
cation heavy training scenarios. q is the precision of inference; q_c is the precision of communication.
Note q=8 implicitly quantizes communication to 8 bits. Experiment run on the walker stand task,
using the D4PG algorithm.
5.3 Rationale for Why Quantization of Actors Speed-Up RL Training
We further break down the various components contributing to runtime on a single actor to
understand how quantization of actor’s policy inference speeds up training. Runtime components are
broken down into: step time, pull time, deserialize time, and load_state_dict time. Step time is the
time spent performing neural network policy inference. Pull time is the time between querying the
Reverb queue (DeepMind, 2020) for a model and receiving the serialized models’ weights; deserialize
time is the time spent to deserialize the serialized model dictionary; load_state_dict time is the
time to call PyTorch load_state_dict (used for loading and storing the policy).2

Figure 9a shows the relative breakdown of the component runtimes with fp32 (denoted as q=32),
fp16 (denoted as q=16), and int8 (denoted as q=8) quantized inference in the communication heavy
scenario. It is communication heavy because every 30 steps (Update Freq=30), the learner’s policy
is updated to each actors. This causes increased communication between the learner and actor

2https://bit.ly/pytorch_api
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Figure 9: Breakdown of components for quantized and non-quantized training over 1000 steps.

components. As shown, step time is the main bottleneck, and quantization of the actor’s policy
significantly speed-up each roll-out, speeding up the overall training. Figure 9b shows the cost
breakdown in the computation heavy scenario. While quantization speeds up the step time (Actor’s
policy inference), the pull time is also significantly reduced since there is less communication (Update
Freq=300) happening between learner and actor. Quantization can still reduce the deserialize time
and load_state_dict time since quantization lowers the memory footprint compared to the fp32
scenario.

In int8 and fp16 quantized training, the cost of PyTorch load_state_dict is significantly higher.
An investigation shows that the cost of loading a quantized PyTorch model is spent repacking the
weights from Python object into C data. Int8 weight repacking is noticeably faster than fp16 weight
repacking due to fewer memory accesses. The cost of model loading suggests that additional speed
gains can be achieved by serializing the packed C data structure and reducing the cost of weight
packing.

6 Discussion & Future Work
To the best of our knowledge, our work is one of the first to experimentally and quantitatively
demonstrated that quantization may be effectively applied to many facets of reinforcement learning,
from obtaining high quality and efficient quantized policies, to reducing training times and eliminating
carbon emissions. More specifically, we have shown that reinforcement learning policies may be
quantized down to 4-5 bits (See Appendix A) without significantly affecting their performance;
based on this result, we have developed a simple but effective method for speeding up reinforcement
learning training, ActorQ, which achieves between 1.5× and 5.41× speedup over non quantized
training, with a reduction in carbon emissions between 1.9× and 3.76×. In the future, alternative
and more competitive methods are likely to emerge.

The computational requirements for RL training are growing (Espeholt et al., 2019) (Espeholt
et al., 2018). Training OpenAI Five to play Dota 2 required a scaled-up version of Proximal
Policy Optimization running on 512 GPUs and 51200 CPU cores (Berner et al., 2019). As we
scale RL training to more thousands of cores and GPUs, even a 50% improvement as we have
experimentally demonstrated (Table 4) will result in enormous savings in absolute dollar cost,
energy, and carbon emissions. We believe that quantization, which is already a standard technique
applied to non-reinforcement learning neural network models, will likewise be a critical technique
in optimizing the performance of reinforcement learning policies. Our paper demonstrates that,
like for standard neural networks, quantization yields significant benefits for reinforcement learning
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while maintaining accuracy. We believe our work is a first step towards quantization being applied
to reinforcement learning to achieve efficient, and environmentally sustainable training.

Several design decisions in our system warrant further discussion and research. In our design
of the quantizer in ActorQ, we relied on simple uniform quantization, however, we believe other
forms of aggressive quantization / compression (Park et al., 2016; Polino et al., 2018; Tambe et al.,
2020; Lam et al., 2021) can also be applied (e.g., distillation, sparsification, etc.). Applying more
aggressive quantization / compression methods may yield additional benefits to the performance
/ accuracy tradeoff obtained by the trained policies. Additionally, in order to achieve tangible
speedups from quantization, the underlying hardware system must support quantized operations
at the machine level. However, with increased hardware support for neural network execution,
we believe that devices in the future will exhibit an increasing amount of hardware support for
quantized operations (Jouppi et al., 2017). Finally, in ActorQ, we primarily focused on quantizing
actor neural network execution and the communication between actors and learners (as these were
the biggest computational bottlenecks), however, we believe that the learner’s policy can similarly
be quantized to achieve further performance benefits.

7 Conclusion
To the best of our knowledge, we are the first to apply quantization to not only speed up RL
training and inference, but also reduce RL carbon emissions. We experimentally demonstrate that
standard quantization methods can quantize policies down to ≤ 8 bits with little quality loss. We
present ActorQ to attain significant speedups and reductions in carbon emissions over full precision
training. Our results demonstrate that quantization has considerable potential in speeding up both
reinforcement learning inference and training while reducing carbon emissions. Future work includes
extending the results to networked clusters to evaluate further the impacts of communication and
applying quantization to reinforcement learning to different application scenarios such as the edge.
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Appendix
A Quantization Aware Training (QAT)
To understand how aggressively (i.e., number of bits) we can quantify the RL policies, we use
quantization aware training (QAT). In QAT, the RL policy weights and activations are passed
through the quantization function Qn during inference; during backpropagation the straight-through
estimator is used as the gradient of Qn (Krishnamoorthi, 2018)

∇W Qn(W ) = I

Note that quantization aware training does not speed up training as all operations are still performed
in floating-point. Quantization aware training is used primarily to train a model with simulated
quantized weights and activations to evaluate the reward loss (if any) for a given RL task. Native
hardware and library support for sub int8 quantization can speed policy inference time with quantized
execution.
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Figure 10: Quantization aware training of PPO, A2C, and DDPG algorithms on OpenAI gym,
Atari, and PyBullet. FP denotes fp32 and 8* is achieved by int8 post-training quantization.

We present rewards for policies quantized via quantization aware training on multiple environments
and training algorithms in Figure 10. We train a three-layer convolutional neural network for all
Atari arcade learning. For openAI Gym environments, we train neural networks with two hidden
layers of size 64. We train all agents for 10 Million steps. Since in QAT, the trainer inserts fake
quantization node is the neural network graph (policy in the context of RL), and the statistics
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of weights distribution during training are collected before the weights can be quantized. The
quantization delay is a hyperparameter (Krishnamoorthi, 2018) that controls when the quantization
is applied to the weights. One can consider this the “warm-up” period to collect the policy weight
distribution statistics before applying quantization. We tried different values of quantization delay
and used 5M since that gave us the best results.

Our results (see Fig. 10) suggest that generally, the performance relative to the full precision baseline
is maintained until 5/6-bit quantization, after which there is a drop in reward, suggesting that for
several of these environments, we can quantize the policy to 5-bits. However, to achieve measurable
speed-up during training, there is a need for native hardware and library support (e.g., Nvidia
Cuda/Intel MKL/ ARM Neon support in TensorFlow, Pytorch, and JAX frameworks).

Broadly, at 8-bits, we see no degradation in rewards. Hence, when applying quantization in ActorQ,
we quantize the policy to 8-bits. By quantizing the policy at 8-bits and leveraging the native
8-bit computation support in hardware, we achieve end-to-end speed-up in reinforcement learning
training.
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Figure 11: Wall clock time for training DQN with varying number of actors. The actor policies are
trained in full precision (fp32) and int8. Benefits of quantization is agnostic to RL training setup
and is effective for both single actor RL (non-parallel version) as well as distributed RL training
(number of actors greater than one).

B Parallelization and Scaling
In this paper, we show that applying quantization to reinforcement learning training improves
training speed and lowers carbon emissions. Though in Table 1 explicitly compares with distributed
RL training, we believe quantization can also improve single actor training.

The cost of RL training can be formulated as

C = cb.na + ca.na − co.np

Where , na: number of agents
np: number of processors
cb : cost for broadcasting (computed as a difference between quantized and non-quantized )
ca: cost for actor inference (computed as a difference between quantized and non-quantized )
co: cost of overhead when more than one processor is used.

Our proposed method offers O(n) saving where n is the number of actors. Of course, this formula
works only in the ideal cases, and will downgrade in real computer systems that run other processes
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(a) BeamRider. (b) Breakout. (c) CartPole.

(d) MsPacman. (e) Pong. (f) Qbert.

(g) Seaquest. (h) SpaceInvaders.

Figure 12: Variation in the action distribution for DQN between fp32 policy and quantized policy
(int8) on several environments evalauted in Table 2. In the legends, ‘action’ and ‘action_q‘’
corresponds to the actions taken by the fp32 and int8 policies.

and are subject to network traffic. Still these slowdowns are scaling with the number of processors,
leaving overall linear improvement with different scalers depending on the number of processors
used. Fig. 11 demonstrates the linear relationship between training time (savings) as number of
actors scale. It is also important to note that in the case of single actor (non-distributed scenario),
quantization of actor’s policy still improves the training speed since ca is minimized due to quantized
inference of actor’s policy.

C Action Distribution Visualization
In this section, we include the variation in the action distribution between fp32 policy and quantized
policy (int8) for PPO and DQN for several environments evaluated in Table 2.

Methodology for visualizing action distributions. To visualize the action distribution variation
between int8 and fp32 policy, we load both the policies for rollouts. First, for each algorithm and
task (environment) combination, we run a rollout of 5000 steps. The same observation is passed to
the int8 and fp32 policies. Finally, the actions for both policies are logged and visualized.

Across different RL algorithms and tasks, we observe that the variation of the action between the
fp32 policy and int8 policy is very small. Also, since the expected mean return between fp32 and
int8 policies is very similar, it suggests that quantization of the policies facilitates safe exploration.
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(a) Breakout. (b) CartPole. (c) MsPacman.

(d) Pong. (e) Qbert. (f) Seaquest.

(g) SpaceInvaders. (h) SpaceInvaders.

Figure 13: Variation in the action distribution for PPO between fp32 policy and quantized policy
(int8) on several environments evalauted in Table 2. In the legends, ‘action’ and ‘action_q‘’
corresponds to the actions taken by the fp32 and int8 policies.

Also, from a hardware utilization perspective, quantized computations (int8) are faster and more
energy-efficient than fp32 computation. Hence, quantization is a simple yet effective strategy to
improve the training speed of RL sustainably (i.e., lower carbon emissions).
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