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Abstract

Recent advancements in Large Language Mod-
els (LLMs) and the proliferation of Text-
Attributed Graphs (TAGs) across various do-
mains have positioned LLM-enhanced TAG
learning as a critical research area. However,
the field faces significant challenges: (1) the
absence of a unified framework to systematize
the diverse optimization perspectives, and (2)
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the lack of a robust method capable of han-
dling real-world TAGs, which often suffer from
texts and edge sparsity, leading to suboptimal
performance.To address these challenges, we
propose UltraTAG, a unified pipeline for LLM-
enhanced TAG learning. UltraTAG provides
a unified comprehensive and domain-adaptive
framework in the field. Building on this frame-
work, we propose UltraTAG-S, a robust instan-
tiation of UltraTAG designed to tackle the in-
herent sparsity issues in real-world TAGs with
the technology of LLM-based text propaga-
tion, text augmentation, and edge reconfigu-
ration strategies. Our extensive experiments
demonstrate that UltraTAG-S significantly out-
performs existing baselines, achieving improve-
ments of 2.12% and 17.47% in ideal and sparse
settings, respectively. Moreover, as the data
sparsity ratio increases, the performance im-
provement of UltraTAG-S also rises.

1 Introduction

In recent years, the advancements in large language
models (LLMs) (Brown et al., 2020) have driven
the evolution of graph ML, particularly in Text-
Attributed Graphs (TAGs) (He et al., 2024a), which
combine nodes, edges, and textual data for appli-
cations in social networks, recommendation sys-
tems etc. While graph neural networks (GNNs) (Li
et al., 2024a) excel at capturing structural informa-
tion, they struggle with textual data, necessitating
the integration of GNNs and LLMs for TAG learn-
ing (Zhu et al., 2024; Duan et al., 2023). Despite
progress, existing TAG learning methods still face
several limitations:

Figure 1: Performance of diffirent LLM-enhanced TAG
learning methods in sparse scenarios.

Limitation 1: Lack of a unified LLM-enhanced
TAG learning framework. As for the current inno-
vation directions of LLM-enhanced TAG learning
are disorganized, we recapitulate them from a new
perspective: (1) Preprocessing: Data Augmenta-
tion (He et al., 2024a; Chen et al., 2024; Wang et al.,
2024; Pan et al., 2024), which leverages LLMs
to generate enhanced textual representations like
soft labels for text augmentation. (2) Feature En-
gineering: Improved Text Encoder (Chien et al.,
2022; Duan et al., 2023), which uses LLMs/LMs
to enhance node feature representation. (3) Train-
ing: Joint Training Mechanism (Zhao et al., 2023;
Zhu et al., 2024; Wen and Fang, 2023; Huang
et al., 2024), which enhance performance by in-
teractive training mechanism between GNNs and
LMs. However, the diverse optimization strategies
and goals without a systematic standard hinder uni-
fied objectives, slowing progress in TAG learning.

Solution 1: UltraTAG: A Unified Pipeline
toward General and Robust LLM-enhanced TAG
Learning. To address Limitation 1, we propose
UltraTAG, as detailed in Sec. 3. UltraTAG is com-
posed of three modules: Data Augmentation, Text
Encoder, and Training Mechanism, as shown in
Figure 2. The modules integrate three directions of
LLM-enhanced TAG learning, translating innova-
tive methods into specific optimization objectives.
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Figure 2: Overview of UltraTAG for LLM-Enhanced Text-Attributed Graph Learning with three modules.

Limitation 2: Lack of a Robust Method. In real-
world TAGs, data sparsity in nodes and edges is a
common issue. For example, privacy measures (Li
et al., 2024b) on social networks may restrict access
to users’ information. Developing robust methods
that maintain performance under such sparse con-
ditions is a challenge. Current approaches often
depend on complete text attributes, making them
incompatible with sparse graphs and leading to sub-
optimal results. This robustness focus is specific
to sparsity, which involves only missing nodes or
edges, but not including data noise with error of
node’s text, edge or corresponding label.

Solution 2: UltraTAG-S: An Instance of Ul-
traTAG for Sparse Scenarios. To address Limi-
tation 2, we propose UltraTAG-S, as detailed in
Sec. 4. UltraTAG-S is composed of three key
modules: (1)LLM-based Robustness Enhancement,
(2)LM-based Resilient Representation Learning,
and (3)Graph-Enhanced Robust Classifier, as illus-
trated in Figure 3. To simulate real-world sparse
scenarios, we randomly remove node texts and
edges from the graph according to a certain ratio.
Module 1 includes edge-based text propagation and
LLM-based text enhancement to address node spar-
sity. Module 2 designs a PageRank-based node
selector and a LLM-based edge predictor to handle
edge sparsity. Module 3 incorporates a graph struc-
ture learning module to further enhance robustness.

Our Contributions: (1) A Unified Framework.
We adopt a novel perspective to systematically ex-
amine all existing methods for TAG learning and
introduce UltraTAG, a unified and domain-adaptive

paradigm which can extend to UltraTAG-X. (2)
A Robust Method. Expanding on UltraTAG, we
propose UltraTAG-S, a robust TAG learning frame-
work designed specifically for sparse scenarios.
(3) SOTA Performance. Our proposed UltraTAG-S
achieves SOTA performance and optimal robust-
ness in evaluations among 7 datasets spanning four
distinct domains not only in ideal but also in sparse
scenarios, exhibiting minimal performance degra-
dation, as shown in Figure 1.

2 Related Works

2.1 Graph Learning for Data Sparsity
Scenarios

For graph learning in sparse scenarios, existing
research primarily focuses on addressing missing
node representations, edge absences, or label defi-
ciencies (Rossi et al., 2022; Guo et al., 2023; Zhang
et al., 2022). Most of them employ vector comple-
tion based on graph propagation or attention to
handle these issues. However, there is still a lack
of targeted research on sparse scenarios of TAGs.

2.2 Shallow Embedding Methods for TAG
Learning

TAG learning commonly uses shallow embed-
dings (e.g., skip-gram (Mikolov et al., 2013) or
BoW (Harris, 1954)) as inputs for GCNs (Kipf and
Welling, 2017). While simple and efficient, they
fail to capture complex semantics and nuanced re-
lationships with limited effectiveness.
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Figure 3: Overview of UltraTAG-S for LLM-Enhanced Text-Attributed Graph Learning in Sparse Scenarios.

2.3 LM/LLM-based Methods for TAG
Learning

With the rise of LMs like BERT (Devlin et al.,
2019), researchers encode textual information
in TAGs by fine-tuning LMs on downstream
tasks (Zhao et al., 2023; Duan et al., 2023) or align-
ing LM and GNN via custom loss functions (Wen
and Fang, 2023). The emergence of LLMs like
GPT-3 (Brown et al., 2020) has further advanced
TAG learning, focusing on: (1) text enhancement
(e.g., better node descriptions, labels) (He et al.,
2024a; Wang et al., 2024; Pan et al., 2024; He et al.,
2024b), and (2) superior text encoding for node rep-
resentations (Zhu et al., 2024; Huang et al., 2024),
collectively boosting performance.

3 UltraTAG

In this section, we provide details about three mod-
ules of UltraTAG shown in Figure 2: Data Aug-
mentation, Text Encoder and Training Mechanism.

3.1 Notations

GivenaTAG G = {V, T, A, YV}, where V is the set
containing N nodes, 7 is the set of texts, fori € V,
t; € T is the text attribute of node i. A € RV*N ig
the adjacency matrix and ) is ground-truth labels.

This study focuses on the TAG node classifica-
tion task. The dataset is split into training nodes
Vi with training labels )}, and testing nodes Vi,
with testing labels V.. A model fy« is trained on

Ve and tested on Vi to generate predictions. The
optimization objective is formalized as:

for = argglaXEnevaG(@n =yn|n), @)

where y,, is ground-truth and g, is prediction.

3.2 Data Augmentation

TAGs rely solely on node texts, not representations,
making text preprocessing crucial. To enhance
text representation, data augmentation from a nat-
ural language perspective is effective. Leveraging
LLM’s capabilities, we input 7 and generate aug-
mented texts 7~ using varied prompts P:

where « is frozen parameters of LLM.
Then, 7 is typically aggregated with T to pro-
duce the final textual representation 7 *:

T ={t; |t] = Age(t;, {t; | j € NiD)}, 3)

where Agg is the text aggregator, which include
selection and concatenation and so on, N is the set
of neighbor nodes of node .

3.3 Text Encoder

The given nodes’ texts 7, associated with the train-
ing nodes must be encoded into embeddings to
facilitate subsequent model processing which can
be efficiently accomplished using LMs or LLMs.



LMs as Encoder. Text encoding typically em-
ploys LMs like BERT (Devlin et al., 2019). Fine-
tuning LMs on downstream tasks enhances their
task-specific encoding capability. As for ¢ € 7,7,
this process can be described as:

h; = LM(tf, QLM) S Rd,Vt;* S ;, (4)

where h; is the output of the LM, we train the
parameters by adding an MLP after the LM.

Meanwhile, various downstream tasks can be
used to do it, such as node classification (Duan
et al., 2023) or others (Chien et al., 2022).

LLMs as Encoder. Leveraging LLM’s language
understanding capabilities, their features from dif-
ferent layers capture varying abstraction levels with
versatile representations (Zhu et al., 2024). Inspired
by it, for each node’s text t; € 7, we can get

hl-l, h?, h?, e hé from different LLM layers:
hi b2 b3, ... Bl = LLM(t},0m) € RY (5)

where hg ,J € [1,1] denotes the output vector rep-
resentation of LLM layer j of node <.

Then, we train a multi-layer GNN to simulate the
propagation process of multi-layer representations
in the LLM with cross-entropy loss:

N L
0* = argmeinZZCE(M(hf,A; 0),vi), (6)

i=1 j=1

where M denotes the message passing module of
GNN, A is the adjacent matrix.

3.4 Training Mechanism

After obtaining the nodes’ textual representations
H = {hi, ho,hs,...,hy} and adjacency matrix
A, input of them into a GNN will yield the final
prediction. We can use a simple GNN module, or
combine GNN with LM for joint training.

Simple GNN. A simple GNN produces final
predictions through downstream task training:

N
0* = arg min > CE(GNN(hi, A;0),y:), (7)
i=1
GNN with LM. For the combination of GNN
and LM training, the pseudo-labels Vg generated
by GNN guide LM training, and the pseudo-labels

generated by LM )} guide GNN training, and the
cycle repeats with the same downstream task:

yL = GNN(?‘[, ./4; HG), yG = LM(T; HL), (8)

4 UltraTAG-S

To address the challenge of data sparsity of TAGs
in real-word applications, we creatively propose
UltraTAG-S as shown in Figure 3, which is com-
posed of three modules: LL.M-based Robustness
Enhancement, LM-based Resilient Representation
Learning and Graph-Enhanced Robust Classifier.

4.1 LLM-based Robustness Enhancement

Data Augmentation module can be divided into
Text Propagation, Text Augmentation and Structure
Augmentation.

Text Propagation. Leveraging the homophily
principle in graph theory, we posit that adjacent
nodes exhibit textual similarity. Inspired by the
message-passing mechanism in GNNs, we propa-
gate textual information from neighboring nodes to
reconstruct missing text attributes.

Specifically, for node v; € V, t; € T and its
neighbors N;, propagated texts T are obtained by:

T ={t; | t;=t:&{t; | j e N;},VE € T}, 9)

where & denotes concatenation of neighbors’ texts.
Text Augmentation. Leveraging the advanced
language comprehension capabilities of LLM, we
utilize prompt engineering to extract critical textual
information and enrich data representations.
Specifically, for the propagated text t; €T, we
get the augmented text 7 with different prompts:

Tsa = {t; | t; = LLM(Psy, t;, 0inm),  (10)

Tew = {t; | t; = LLM(Pgw, t;, 6uim),  (11)
Vs = {t; | t; = LLM(Psi,t;, 01im),

T* = AGG(T , Tsu, Tiew, VsL),

(12)
(13)

where AGG denotes the text aggregation module
of concatenation, Ts,, Tkw, VsL are the Summary,
Key Words and Soft Labels generated by LLMs
respectively. Psy, Pxw, PsL are the prompts.

Structure Augmentation. To mitigate edge
sparsity, we introduce a Structure Augmentation
module composed of Virtual Edge Generator, Node
Selector and Edge Reconfigurator. This module
leverages LLMs to re-identify edges for selected
nodes, thereby optimizing the graph structure.

a. Virtual Edge Generator. In order to ensure
the integrity of the graph structure before node
selection, we use the soft labels 7Tgr, generated by




LLMs and calculate the similarity with the same
soft label, which can be described as:
hi = LM(t;, aLm), by = LM(t], aLm),  (14)

Sij = cos(hi, h;),Yyi = y; & yi,yj € VsL.

15)
The adjacency matrix is updated to A
/ 1, if Ay =1|Si5 > 1,
Aij = P HSIET )
0, else,

where A denotes the adjacency matrix with virtual
edges after sparse process, 71 denotes the similarity
threshold for edges to add.

b. Node Selector. Considering the impracticality
of re-judging all edges, we design a node selector
to select important nodes set V.. We calculate the
pagerank score for each node in V and use these
scores as importance score by following:

Score(v;) = PageRank(v;, A'), (17)

V. = {v; | Score(v;) > Score(vy)}, (18)

where v, denotes the node with k-th largest node
importance score calculated by PageRank algo-
rithm with original edges and virtual edges.

c. Edge Reconfigurator. For each edge in the
complete graph of V., we use LLM with prompt de-
tailed in Appendix F to re-determines its existence
with the confidence score C;; of edge e;;:

Cij = LLM(Pedge,tj,t;f),Vvi,vj < VC, (19)

The updated adjacency matrix .A* is expressed as:

* Ai'v

where 7 is the confidence threshold for LLM edge
reconfiguration in Equation 19.

ifv, ¢ Ve |v; ¢ Ves

; (20)
if C;j > To;

0, else;

4.2 LM-based Resilient Representation
Learning

After augmenting the graph G* = {V, T*, A* V},
we fine-tune the language model on downstream
tasks of node classification. Specifically, node i’s
text ¢; is passed through the fine-tuned language
model LMy to output the feature representation for
downstream node classification. The process can
be described as following equation:

§; = softmax(W-LM(t;,0)+b),Vt; € T*, (21)

where W is the weight matrix, b is the bias term.

After fine-tuning with the following negative
log-likelihood Loss Ly, the node representations
‘H are calculated by following equations:

hi = LM(t],6"), (22)

| MK
L = N - Z%’Jclog Uik,  (23)

i=1 k=1
where N, K are the number of training nodes and
classes, y; 1 is the ground-truth, ¢; 1 is the output.

4.3 Graph-Enhanced Robust Classifier

We employ a dual-GNN framework to tackle edge
sparsity: one GNN learns enhanced graph struc-
tures, and the other focuses on node classification.

Specifically, with the nodes’ representationsH €
RN*4 and the structure representation A* €
RN*N we first compute the similarity matrix of
node vector representations:

S = Norm(H® - 1MW), %D = GNN, (7, A%).

(24)

Then, we update the original adjacency matrix

A* with preserving the judgment of the LLM with-
out alteration:

it {A;j + Sy, ifvigVe|v ¢V,
]

A%, else.

(25)

We use the updated matrix as the input of
GNNg2(:) and jointly optimize GNNj(-) and
GNNy(+) using cross entropy loss Loy

H®) = GNNy(H, AY), (26)

N K
1 .
Lony =~ Z > viklogiin,  (27)
=1 k=1
where N is nodes’ number, and K is classes’ one.

5 Experiments

In this section, we analyze the effectiveness of
UltraTAG-S through experimental evaluation. To
comprehensively assess the performance of our ap-
proach, we address the following questions: QI
What are the differences between existing TAGs
learning methods under UltraTAG? Q2: What is
the performance of UltraTAG-S as a general and
robust TAGs learning paradigm in ideal and sparse
scenarios? (@3: What factors contribute to the
performance and robustness of UltraTAG-S? Q4:
What is the training time complexity of UltraTAG-
S? Details of the datasets and baselines are in Ap-
pendix A and B, respectively.



Table 1: The Comparison of Different LLM-enhanced TAG Learning Methods under UltraTAG. The top four
methods use LMs, while the bottom five use LLMs. *XMC’ is eXtream Multi-label Classification, ’Iteration’ is
iterative training with LM and GNN using pseudo labels, *Joint’ means joint training with multiple GNNs.

Method Data Augmentation Text Encoder Encoder Supervision Traing Mechanism
GLEM X DeBERTa Node Classification Iteration
GIANT X BERT XMC Only GNN
G2P2 X RoBERTa Node Classification Combined Loss
SimTeG X e5-large/RoBERTa  Node Classification Only GNN
TAPE v DeBERTa Node Classification Only GNN
ENGINE X LLaMA2-7B / Joint
LLMGNN v BowW / Only GNN
GraphAdapter X LLaMA2-13B Token Prediction Only GNN
UltraTAG-S v BERT Node Classification Joint

Table 2: The Comparison of Different LLM-enhanced

TAG Learning Methods for Sparse Scenarios Robust- Zl Saeo N

ness from Four Dimensions of Robustness. Soes Z: —————— .|
Robustness Input Node Edge Training | T B P [
GLEM X X X X P s L s
GIANT X X X X " SpameRatioCor) " Sparse Ratio(WikiCS)
G2P2 v v X X 0s
SimTeG X X X X Lo 07
TAPE v X X X £l e
ENGINE X X X v S G ol = oom T
LLMGNN v X v X S 04 e
GraphAdapter / X X / 0'55017 0.:“"’:2“723 04 05 06 07 08 OSUO (Jvll;"m;jl;(;rsl)l 04 05 06 07 08
UltraTAG-S Sparse Ratio(Instagram) Sparse Ratio(Elo-Photo)

5.1 Paradigm Comparision

In this section, we compare the similarities and dif-
ferences of the current LLM-enhanced TAG learn-
ing methods under the framework of UltraTAG
from four aspects, namely Data Augmentation,
Text Encoder, Encoder Supervision, and Training
Mechanism, as shown in Table 1. LM-based meth-
ods (Zhao et al., 2023; Chien et al., 2022; Wen
and Fang, 2023; Duan et al., 2023) utilize distinct
language models and fine-tuning tasks, while LLM-
based methods (He et al., 2024a; Chen et al., 2024)
focus on data augmentation. Meanwhile, anyone
can optimize one small module among the four
modules of UltraTAG to form a new baseline.

We also compare the sparse scenarios robustness
of Different LLM-enhanced TAG Learning Meth-
ods, which means whether these methods consider
the robustness of input data, missing texts, missing
edges and training. The comparison is shown as
Table 2, we find that only UltraTAG-S(Ours) takes
into account the robustness across all dimensions.

Figure 4: Robustness Comparison in Sparse Scenarios.

5.2 Performance and Robustness Analysis

We conduct a comprehensive evaluation of
UltraTAG-S by comparing with GNN-only, LM-
only and LLM-GNN methods, as the results in Ta-
ble 3. Since GNN-only methods cannot accept texts
as input, in order to make a fair comparison, we en-
code these methods using a unified BERT (Devlin
et al., 2019) to get unified representation as input.
As can be seen from Table 3, the performance of
UltraTAG-S on all datasets is better than that of the
current existing methods, and the improvement of
the effect is up to 2.21%.

In order to simulate the challenges of the sparse
scene, we randomly delete the texts and edges of
nodes in a ratio of 20%, 50%, and 80% without
considering data noise or additional constraints.
As illustrated in Figure 4, our proposed method,
UltraTAG-S, demonstrates the best robustness com-
pared with current TAG learning baselines. Specif-
ically, our method maintains the smallest decline
in classification accuracy under sparse scenarios.



Table 3: Experimental results of node classification, optimal performance in bold and sub-optimal in underlined .

Methods ‘ Cora CiteSeer PubMed WikiCS Instagram Reddit Elo-Photo
MLP 54.94+3.68  61.91+1.67  52.13£7.35  62.46+0.70 51.85+10.78 52.91+1.81  47.45+9.18
GCN 74914871  69.00+2.83  72.54+6.95  73.27+4.62  63.66+1.11  55.00+4.34  69.49+3.93
GAT 71.70£2.75  70.31+1.01  75.86+1.08  68.72+0.90  64.80+£0.22  60.36+0.25  64.22+2.58
GCNII 77.23+0.66  71.91+1.05  73.28+1.67  70.12+1.81  65.07+0.59  62.78+0.49  60.60+1.36
GraphSAGE | 81.70£1.00  66.68+0.80  68.41+9.59  75.16+0.33  59.65+5.78  53.59+2.24  70.48+6.03
BERT 79.70+0.32  76.88+0.41  90.95+0.11  71.70£1.09  63.50+£0.09  58.78+0.05  70.01+0.08

DeBERTa 73.3944.54  75.16+x1.08  90.81+0.20
RoBERTa 80.35£0.48  77.04+1.49  91.13+0.11

68.18+4.10  62.40+0.59  59.92+0.45  70.18+0.18
72.12+0.70  64.67+0.34  59.23+0.06  70.25+0.34

GLEM 87.07£1.01  76.30+£2.45  89.56+1.65
SimTeG 88.75+0.42  77.37+0.64  88.31+0.75
TAPE 89.07+0.56  77.02+0.71  90.38+0.99
ENGINE 86.79+0.58  78.03+0.48  91.43+0.13

74.83£0.95  65.90+0.36  60.88+0.03  77.74+0.27
76.3240.53  64.29+0.19  61.60+0.88  79.82+0.21
80.17+0.18  65.44+0.35  63.01+0.82  82.26+0.64
81.38+0.38  66.27+0.41  62.57+0.13  83.06+0.22

UltraTAG-S | 90.96+0.45  78.68+0.21  92.41+0.30

83.05+£0.16  66.69+0.14  63.78+0.30  84.70+0.03
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Figure 5: Robustness Comparison among All

The details of performance in sparse ratio of 80%
is shown in Table 4. As can be seen from the results
in sparse scenarios, our proposed UltraTAG-S can
also achieve SOTA node classification accuracy in
extremely sparse scenarios 80%, and the perfor-
mance enhancement of UltraTAG-S is up to 17.5%
in sparse ratio of 80%. The details with sparse
ratio of 20% and 50% are shown in Appendix E
Table 7, 8. As shown in Figure 5, UltraTAG-S
consistently achieves the highest accuracy in all
data sets at varying sparsity levels, demonstrating
optimal robustness. The robustness improves sig-
nificantly as data sparsity increases, highlighting
the effectiveness in extreme data sparsity.

5.3 Ablation Study

In this part, we perform an ablation study on the
CiteSeer, and PubMed datasets to verify the effec-
tiveness and robustness of UltraTAG-S, particularly
in sparse scenarios. The results of PubMed and
CiteSeer are in Figure 6, more results of ablation
and backbones are in Appendix G.

Datasets in Sparse Ratio of 20%, 50% and 80%.

Specifically, the Text Augmentation module en-
hances the model’s ability to generalize by introduc-
ing diverse textual variations, leading to improve-
ment of up to 16.89% on CiteSeer and 55.45% on
PubMed. This module is particularly effective in
scenarios where textual diversity is limited, as it
enriches the input data and reduces overfitting. The
Structure Augmentation module further contributes
to the model’s robustness by optimizing the graph
structure, achieving improvements of 3.07% on
CiteSeer and 5.90% on PubMed. As for the Struc-
ture Learning module, it demonstrates even more
substantial gains, with improvements of 32.49%
on CiteSeer and 40.09% on PubMed, highlight-
ing its ability to capture complex relationships in
graph. It is evident that the Structure Learning
module plays the most significant role in enhanc-
ing both the effectiveness and robustness, as it not
only improves accuracy but also ensures stable per-
formance across varying data conditions. These
results underscore the importance of combining
these modules to achieve optimal performance.



Table 4: Robustness Comparison in Sparse Scenarios with Ratio of 80%, which means nodes’ texts and edges with
proportion of 80% are removed randomly to simulate real-world scenario. Optimal performance is in bold and

sub-optimal performance is underlined .

Methods ‘ Cora CiteSeer PubMed WikiCS Instagram Reddit Elo-Photo
MLP 30.41+£0.59  27.74+0.59  44.25+1.68  26.64+1.17  62.54£1.02  50.93+0.41  46.21+0.61
GCN 41.96+£0.73  30.53+0.68  49.68+1.31  54.24+2.29  63.20+0.31 54.38+1.88  51.27+0.33
GAT 38.86+£0.59  30.50+0.27  52.03£0.30  52.85+0.71 63.17£0.86  56.41+0.25  50.35%0.85
GCNII 36.79+0.28  31.07+£0.97  51.33+0.37  50.83%x1.32  62.27+0.84  57.62+1.10  45.53%0.15
GraphSAGE | 37.60+0.67 31.69+£0.44  50.59+0.71 53.03+0.71 61.70+£0.93 58.72+0.81 52.17+0.65
BERT 37.59+£0.08  31.50+0.54  49.95+0.04  28.58+1.24  62.50+0.43  51.40+0.15  49.59+0.04
DeBERTa 29.98+1.09  30.80+0.55  42.34+4.11 21.83x1.06  63.59+0.27  50.24+0.28  47.96+1.47
RoBERTa 28.23+0.00  23.32+4.55  47.244420  20.36£0.40  63.68+0.00  50.32+0.21  49.52+0.12
GLEM 49.01£0.58  36.64+1.46  51.48+0.54 52.41+0.76  61.54+0.56  50.82+1.04  56.25+2.14
SimTeG 45.78+0.22  30.40+0.66  54.95+0.61 50.35+0.72  60.61+0.16  58.08+0.12  55.73+0.84
TAPE 47.08£0.20  29.77+0.28  54.87+£0.50  59.83+0.77  61.25+0.59  58.10£0.72  59.76+0.12
ENGINE 42.3240.66  35.70+0.19  54.74+0.09  49.42+0.45  63.88+0.20 57.54+0.77  57.96+0.13
UltraTAG-S | 57.57+1.38  40.08+0.45 61.05+0.49  65.60+0.34  64.78+0.67 59.85+0.01  68.79+0.07
10 __;F TL_\‘_L‘Y_J&.?_L_::_N\;‘:W_J__T 71'::»1-«-‘)«(:-1 1 Cloe0) 52 oty KT ety lng the updated ad] acency matrix A’T] and node fea-
0.9
o -z ) tures H. With m layers and £ = O(N?) edges in
g 2 the graph, the complexity for this operation scales
Sosl - #Z - as O(m - N?). Therefore, the total computational
05 é cost per epoch is dominated by these two steps,
o resulting in an overall complexity of O(m - N?).
0.3

wio TA wio SA UltraTAG-S w/o TA w/o SA w/o SL  UltraTAG-S

Figure 6: Ablation Study on PubMed and CiteSeer.
The x-axis represents the modules in the ablation study,
where *w/o TA’, "w/o SA’, ’w/o S’ denote the removal
of Text Augmentation module, Structure Augmentation
module and Structure Learning module, respectively.
The y-axis represents accuracy in different ratios.

5.4 Complexity Analysis

Table 5: The comparison of different methods in down-
stream GNN training time per epoch.

Cora PubMed WikiCS
SimTeG 0.142s 1.564s 2.109s
GLEM 0.131s 1.034s 1.645s
ENGINE 0.290s 2.165s 2.730s
UltraTAG-S ‘ 0.015s 0.170s 0.845s

The computational complexity of our proposed
method is primarily determined by two GNN op-
erations. The first GNN calculates the similarity
matrix S € RV*¥ and updates the adjacency ma-
trix A7 ;- This step involves pairwise computations
between nodes, leading to a complexity of O(N?).
The second GNN performs node classification us-

Experimentally, compared to other TAG learning
methods, UltraTAG-S demonstrates a significant
advantage in training time for downstream tasks.
As shown in Table 5, under non-sparse experimen-
tal settings, it achieves up to a 19x speedup per
training epoch over the suboptimal method.

6 Conclusion and Future Work

In response to the current LLM-enhanced TAG
Learning methods, we first propose UltraTAG as
a unified and domain-adaptive pipeline learning
framework. Simultaneously, to address the chal-
lenges faced by existing LLM-enhanced TAG learn-
ing methods in real-world sparse scenarios, such
as nodes’ texts missing or edges missing, we intro-
duce UltraTAG-S, a TAG learning paradigm specif-
ically tailored for sparse scenarios. UltraTAG-S
effectively resolves the issues of nodes’ texts spar-
sity and edge sparsity in real-world settings through
LLM-based text propagation strategy and text aug-
mentation strategy, as well as PageRank and LLM-
based graph structure learning strategies, achiev-
ing state-of-the-art performance in both ideal and
sparse scenarios. In the future, we will further ex-
plore the pivotal role of text propagation strategies
in TAG representation learning.



Limitations

While UltraTAG-S effectively handles sparse TAG
learning, its performance depends on LLM qual-
ity, incurs higher computational costs. Meanwhile,
our consideration of real-world scenarios has been
limited to sparsity, while more complex real-world
data scenarios remain to be explored.
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A Datasets

This section provides a detailed introduction to the
datasets used in the main content. The statistics of
the TAG datasets we use is as shown in Table 6.
The details of each dataset are as follows:

Table 6: Statistics of the TAG datasets. The datasets
are partitioned in Train-Val-Test-Out mode, *Out’ is
data that not involved in the partitioning of training,
validation, or test sets. All datasets are evaluated by
node classification accuracy.

Dataset ‘ #Nodes #Edges #Classes #Split Ratio(%)
Cora 2,708 5,278 7 60-20-20-0
CiteSeer 3,186 4,277 6 60-20-20-0
PubMed 19,717 44,324 3 60-20-20-0
WikiCS 11,701 215,863 10 5-15-50-30
Instagram | 11,339 144,010 2 10-10-80-0
Reddit 33,434 198,448 2 10-10-80-0
Elo-Photo | 48,362 873,793 12 40-15-45-0

Cora (Sen et al., 2008) dataset comprises 2,708
scientific publications, which are classified into
seven categories: Case-based, Genetic Algorithms,
Neural Networks, Probabilistic Methods, Rein-
forcement Learning, Rule Learning, and Theory.
Each publication in this citation network either
cites or is cited by at least one other publication,
forming a total of 5,278 edges. For our study,
we utilize the dataset with raw texts provided by
TAPE (He et al., 2024a), available at the following
repository’.

CiteSeer (Giles et al., 1998) dataset contains
3,186 scientific publications, categorized into six
classes: Agents, Machine Learning, Information
Retrieval, Databases, Human-Computer Interac-
tion, and Artificial Intelligence. The objective is to
predict the category of each publication using its
title and abstract.

PubMed (Sen et al., 2008) dataset comprises
19,717 scientific publications from the PubMed
database related to diabetes. These publications
are categorized into three classes: Experimentally
Induced Diabetes, Type 1 Diabetes, and Type 2
Diabetes. The associated citation network contains
a total of 44,324 links.

WikiCS (Mernyei and Cangea, 2020) dataset is
a Wikipedia-based resource developed for bench-
marking Graph Neural Networks. It is derived from
Wikipedia categories and includes 10 classes rep-
resenting various branches of computer science,
characterized by a high degree of connectivity. The

!Cora Dataset
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node features are extracted from the text of the
associated articles. The raw text for each node is
obtained from the following repository 2.

Instagram (Huang et al., 2024) dataset serves as
a social network where nodes represent users and
edges correspond to following relationships. The
classification task involves distinguishing between
commercial and normal users within this network.

Reddit (Huang et al., 2024) dataset is a social
network where nodes represent users, and node fea-
tures are derived from the content of users’ histori-
cally published subreddits. Edges indicate whether
two users have replied to each other. The classi-
fication task involves determining whether a user
belongs to the top 50% in popularity, based on the
average score of all their subreddits. This dataset is
built on a public resource®, which collected replies
and scores from Reddit users. The node text fea-
tures are generated from each user’s historical post
content, limited to their last three posts. Users are
categorized as popular or normal based on the me-
dian of average historical post scores, with those
exceeding the median classified as popular and the
rest as normal.

Ele-Photo (Yan et al., 2023) dataset is derived
from the Amazon-Electronics dataset (Ni et al.,
2019). In this dataset, nodes represent electronics-
related products, and edges signify frequent co-
purchases or co-views between products. Each
node is labeled based on a three-level classifica-
tion scheme for electronics products. User reviews
serve as the textual attributes for the nodes; when
multiple reviews are available for a product, the
review with the highest number of votes is selected.
If no such review exists, a random review is used.
The task is to classify electronics products into 12
predefined categories.

B Baselines

This section contains detailed information about
baselines:

MLP (Singh and Sachan, 2014) is a simple feed-
forward neural network model, commonly used for
baseline classification tasks. It consists of multiple
layers of neurons, where each layer is fully con-
nected to the previous one. The model is trained
via backpropagation, with the final output layer
producing predictions.

GCN (Kipf and Welling, 2017)is a graph-based

2WikiCS Dataset
3Reddit Dataset


https://github.com/XiaoxinHe/TAPE
https://github.com/pmernyei/wiki-cs-dataset
https://convokit.cornell.edu/documentation/subreddit.html

neural network model that performs node classifica-
tion tasks by aggregating information from neigh-
boring nodes. The model is built on graph convo-
lutional layers, where each node’s embedding is
updated by combining the features of its neighbors,
enabling it to capture the graph structure.

GAT (Velickovi¢ et al., 2018)introduces atten-
tion mechanisms to graph convolutional networks,
allowing nodes to weigh their neighbors differently
when aggregating features. This attention mecha-
nism helps GAT to focus on the most informative
neighbors, making it particularly effective in graphs
with heterogeneous relationships between nodes.

GCNII (Chen et al., 2020)is an improved ver-
sion of the GCN model, which integrates higher-
order graph convolutions and a skip connection
strategy. This enhancement enables GCNII to bet-
ter capture deep graph structures and mitigate the
over-smoothing problem that arises in deep GCN
architectures.

GraphSAGE (Hamilton et al., 2017)is an induc-
tive framework for graph representation learning,
where node embeddings are learned by sampling
and aggregating features from neighbors. This
model can be applied to large-scale graphs by utiliz-
ing different aggregation functions, such as mean,
pooling, or LSTM-based aggregation.

BERT (Devlin et al., 2019)is a pre-trained
transformer-based model that learns contextualized
word embeddings by predicting missing words in
a sentence. BERT’s bidirectional attention mecha-
nism allows it to capture contextual information.

DeBERTa (He et al., 2021)improves upon BERT
by introducing disentangled attention and enhanced
decoding strategies. These innovations allow De-
BERTa to better capture the relationships between
different parts of the input text, leading to improved
performance on multiple natural language under-
standing tasks.

RoBERTa (Liu et al., 2019)is an optimized ver-
sion of BERT that increases training data size and
model capacity, removes the Next Sentence Pre-
diction (NSP) objective, and fine-tunes hyperpa-
rameters. These modifications lead to improved
performance over BERT on many benchmark tasks,
especially in natural language understanding.

GLEM (Zhao et al., 2023)is a method for learn-
ing on large TAGs. It uses a variational EM frame-
work to alternately update LMs and GNNs, improv-
ing scalability and performance in classification.

SimTeG (Duan et al., 2023)is a straightforward
yet effective approach for textual graph learning.

12

It first conducts parameter-efficient fine - tuning
(PEFT) on LM using downstream task labels. Then,
it generates node embeddings from the fine-tuned
LM. These embeddings are further used by a GNN
for training on the same task.

TAPE (He et al., 2024a)is an approach for TAGs
representation learning. It uses LLMs to generate
predictions and explanations, which are then trans-
formed into node features by fine-tuning a smaller
LM. These features are used to train a GNN.

ENGINE (Zhu et al., 2024)is an efficient tuning
method for integrating LLMs and GNNs in TAGs.
It attaches a G-Ladder to each LLM layer to capture
structural information, freezing LLM parameters to
reduce training complexity. ENGINE with caching
can speed up training by 12x. ENGINE (Early)
uses dynamic early exit, achieving up to 5x faster
inference with minimal performance loss.

G2P2 (Wen and Fang, 2023)is a model for low-
resource text classification. It has two main stages.
During pre-training, it jointly trains a text encoder
and a graph encoder using three graph interaction-
based contrastive strategies, including text-node,
text-summary, and node-summary interactions, to
learn a dual-modal embedding space. In down-
stream classification, it uses prompting. For zero-
shot classification, it uses handcrafted discrete
prompts, and for few-shot classification, it uses
continuous prompts with graph context-based ini-
tialization.

LLMGNN (Chen et al., 2024)is a pipeline for
label-free node classification on graphs. It uses
LLMs to annotate nodes and GNNs for prediction.
It selects nodes considering annotation difficulty,
gets confidence - aware annotations, and post - fil-
ters to improve annotation quality, achieving good
results at low cost.

GIANT (Chien et al., 2022)is a self-supervised
learning framework for graph-guided numerical
node feature extraction. It addresses the graph-
agnostic feature extraction issue in standard GNN
pipelines. By formulating neighborhood prediction
as an XMC problem and using XR-Transformers,
it fine-tunes LMs with graph information.

GraphAdapter (Huang et al., 2024)is an ap-
proach that uses GNN as an efficient adapter for
LLMs to model TAGs. It conducts language-
structure pre-training to jointly learn with frozen
LLMs, integrating structural and textual informa-
tion. After pre-training, it can be fine-tuned with
prompts for downstream tasks. Experiments show
it outperforms baselines on multiple datasets.
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Figure 7: Homophily Analysis of the Datasets. The horizontal coordinate is the homophily score of the datasets,
and the vertical coordinate is the improvement of UltraTAG-S compared to the suboptimal method.
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C Hyperparameter Settings E Robustness Comparison

For detailed parameter settings, we employ five ran- ~ This section contains the performance of various
dom seeds {42, 43, 44, 45, 46}. The GNN{(-) and  existing methods for node classification tasks on
GNNo(+) use the Adam optimizer for joint optimiz-  multiple datasets in multiple sparse scenarios. The
ing with a learning rate of le-2, weight decay of 5e-  results of 20% and 50% sparse ratio are shown in
4, dropout of 0.5, and 100 epochs. Each GNN con-  Table 7 and 8, respectively. As shown in the ta-
sists of 2 layers, with a similarity calculation thresh-  ble, under 20% and 50% data sparsity conditions,
old of 0.8. The number of important nodes selected ~ UltraTAG-S still achieves the best node classifica-
by PageRank is 10% of the total training nodes,  tion performance and robustness among all existing
and the acceptance threshold for LLM-based edge =~ methods with up to 4.6% and 15.4% performance
reconfiguration is 0.5. For fine-tuning the LM, the ~ improvement.

learning rate is set to Se-5, with 3 epochs, a batch Meanwhile, the LLM-GNN hybrid approach
size of 8, and a dropout of 0.3. The LLM used  demonstrates superior robustness across varying
is Meta-Llama-3-8B-Instruct (Al@Meta, 2024) in  sparsity levels, exhibiting significantly less accu-
full compliance with its research license terms. All  racy degradation compared to baseline methods.
experiments were conducted on a system equipped ~ Notably, GNN-only baselines achieve better robust-
with a single NVIDIA A100 80GB PCle GPU and  ness than LM-only baselines, indicating that GNNs
an Intel Xeon Gold 6240 CPU @ 2.60GHz (18-  are more effective than LMs at handling sparse
core), running CUDA 12.4 on Ubuntu 22.04 LTS~ graph data and possess stronger inherent robust-
with 256GB RAM and Python 3.12. ness for graph-structured data.

D Homophily Analysis F LLM Prompts

In this section, we examine the impact of dataset ~ The LLM employed in our study is Meta-Llama-
homogeneity and heterogeneity levels on the per- 3-8B-Instruct, which is utilized for both text aug-
formance improvement of UltraTAG-S, with ex-  mentation and structure augmentation tasks. This
perimental results illustrated in Figure 7. We com- ~ section provides a comprehensive overview of
pute the homophily scores for all datasets and mea- ~ all the prompts we designed and implemented.
sure UltraTAG-S’s performance gains over the sub- ~ Each prompt follows a consistent structure com-
optimal method under normal and varying spar-  prising "Dataset Description + Question," where
sity conditions. The results demonstrate that our  the dataset description serves to contextualize the
method consistently improves performance across ~ query and ensure clarity.

all datasets under different scenarios. Notably, For different inference scenarios, our approach
datasets with higher homogeneity scores exhibit  to querying the LLM is as follows. Due to the uni-
greater performance gains. Furthermore, the opti-  formity of the query format, the following demon-
mal improvement is achieved when the homophily  strations of Key Words and Soft Labels etc. use the
score is approximately 0.7. Cora dataset as an example.
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Table 7: Robustness Comparison in Sparse Scenarios with Ratio of 20%, which means nodes’ texts and edges with
proportion of 20% are removed randomly. Optimal performance is in bold and the sub-optimal is underlined .

Methods ‘ Cora CiteSeer PubMed WikiCS Instagram Reddit Elo-Photo
MLP 40.70+£3.10  48.37+5.08  59.59+4.25  42.27+4.84  62.18+3.75  54.68+2.05  48.51+2.31
GCN 75.5043.22  64.86+1.31  75.57+5.08  72.33£3.94  60.77+4.89  52.61+2.05  70.85+4.15
GAT 68.67+£2.06  65.64+1.01  72.93+0.92  68.10+£0.68  64.90+0.35  57.43+1.24  61.05+0.85
GCNII 71.77+0.88  67.43+0.61  73.75£0.79  68.54+0.84  64.68+0.35  61.08+0.36  58.58+0.84
GraphSAGE | 73.80+£3.29  60.09+2.06  73.39+5.02  66.50+2.95  56.92+7.35 59.03x1.34  63.06+8.04
BERT 69.37+0.32  63.87+0.14  83.22+0.01  61.35+0.69  63.87+0.11  57.31+0.23  65.48+0.00
DeBERTa 58.21+8.94  53.53+1.96  82.78+0.35 45.93+£3.86  61.65+1.07  56.20+3.48  65.34+0.45
RoBERTa 69.88+0.72  65.13+0.41  83.37+0.03  60.98+0.45  64.84+0.17  50.02+0.04  64.89+0.08
GLEM 85.71£2.01  68.71£1.54  82.36+£0.37  72.59+3.01  63.37+0.18  55.82+0.21  72.75+1.94
SimTeG 82.34+0.74  70.10£0.60  85.65+0.41  71.33+x0.13  62.46+0.62  60.28+0.35  75.46+0.28
TAPE 87.78+0.53  71.11#0.39  87.25+0.75  78.97+0.22  62.17+0.92  61.08+0.66  80.81+0.41
ENGINE 86.27+0.67  73.70+0.33  88.10+0.13  79.43+0.25  65.53+0.22  61.45+0.38  80.34+0.09
UltraTAG-S | 88.93+0.74  77.12+0.28  89.88+0.21  81.72+0.18  66.08+0.70  61.61+0.12  83.17+0.06

Table 8: Robustness Comparison in Sparse Scenarios with Ratio of 50%, which means nodes’ texts and edges with
proportion of 50% are removed randomly. Optimal performance is in bold and the sub-optimal is underlined .

Here is an article from the WikiCS dataset.
This dataset is a Wikipedia-based resource
developed for benchmarking Graph Neu-
ral Networks (GNNs). It is derived from
Wikipedia categories and includes 10
classes representing various branches of
computer science, characterized by a high
degree of connectivity. The 10 classes are
Computational Linguistics, Databases,
Operating Systems, Computer Architec-
ture, Computer Security, Internet Proto-
cols, Computer File Systems, Distributed
Computing Architectures, Web Technolo-
gies, and Programming Languages.
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Methods ‘ Cora CiteSeer PubMed WikiCS Instagram Reddit Elo-Photo
MLP 36.35£2.90  40.38+1.68  49.14+4.41  34.29+324  62.65+2.18  52.09+1.25  46.57£1.75
GCN 64.61+2.81  48.71+2.16  63.71+091  64.12+9.69  58.96+9.54  55.48+3.03  62.61%3.70
GAT 60.63+1.80  51.50+0.61  66.82+0.80  64.60+0.37  64.51£0.23  56.56+£2.00  59.32+0.92
GCNII 62.36+0.87  49.66+0.73  67.01£0.67  63.62+0.41  64.08+0.23  59.27+1.15  53.77+1.58
GraphSAGE | 54.76+£3.89  47.68+0.84  64.74+526  64.56x1.17  62.09+£3.04  60.14+0.83  62.61+2.51
BERT 55.58+0.24  48.08+0.07  66.28+0.26  45.21+0.81  63.50+0.09  54.35+£0.06  57.41+0.04
DeBERTa 34414699  43.81%£3.29  65.75+0.31  32.91+0.73  63.73+0.39  50.90+1.65  57.39+0.19
RoBERTa 53.09+0.40  44.32+1.02  66.28+0.04  42.73#2.54  63.07+0.18  50.97+1.77  57.25+0.00
GLEM 64.84+1.63  5343+0.25 70.51£1.95 67.07£3.08  62.43+£0.21  53.85+0.08  65.25+1.58
SimTeG 72.06+£0.59  58.11+0.40  76.00£0.55  65.34+0.46  61.55+0.79  59.84+0.67  67.76+0.45
TAPE 78.73+0.34  54.31+0.78  77.1840.46  73.62+0.63  61.40+£0.26  60.18+0.19  76.21+0.69
ENGINE 70.85+0.48  56.30+0.12  75.42+0.15  71.72+#0.47  64.74+0.05  60.18+0.18  73.40+0.23
UltraTAG-S ‘ 83.95+0.80  67.08+0.28  80.91+0.29  77.45+0.33  65.61+0.12  60.34+0.21  79.21+0.06
WikiCS: Edge Reconfigure:

You are provided with the text information
of two nodes and their predicted category
pseudo-label. Use this information to eval-
uate whether an edge should exist between
the two nodes, and return a probability
value between 0 and 1 representing the
likelihood of the edge’s existence. Only
output the probability value, without any
additional or irrelevant content. As for
Node 1: <Title 1><Abstract 1>. Your pre-
diction label is <SoftLabel 1>; As for Node
2: <Title 2><Abstract 2>. Your prediction
label is <SoftLabel 2>.



Cora:

Now, here is a paper from the Cora
dataset. This paper falls into one of seven
categories: Case-based, Genetic Algo-
rithms, Neural Networks, Probabilistic
Methods, Reinforcement Learning, Rule
Learning, and Theory.

Instagram:

This is a post from Instagram, a social
network where edges represent following
relationships and nodes represent users.
The task is to classify users into two cate-
gories: commercial and normal.

CiteSeer:

Now, here is a paper from the Citeseer
dataset. This paper falls into one of six
categories: Agents, Machine Learning, In-
formation Retrieval, Databases, Human-
Computer Interaction, or Artificial Intelli-
gence.

Reddit:

This is a post from the Reddit dataset, a so-
cial network where nodes represent users,
and node features are derived from the
content of users’ historically published
subreddits. Edges represent whether two
users have replied to each other. The task
is to classify users as belonging to the top
50 percent in popularity, based on the av-
erage score of all their subreddits. Node
text features are generated from the con-
tent of each user’s last three posts. Users
are categorized as 'popular’ or 'normal’
based on the median of their average his-
torical post scores, with those above the
median classified as 'popular’ and the rest
as ‘normal’.
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PubMed:

The following is a paper from the PubMed
dataset, which contains 19,717 scientific
publications related to diabetes. These
publications are categorized into three
classes: Experimentally Induced Diabetes,
Type 1 Diabetes, and Type 2 Diabetes.

Elo-Photo:

Here is a product review from the Elo-
Potho dataset. The Elo-Potho dataset
is derived from the Amazon-Electronics
dataset. In this dataset, nodes repre-
sent electronics products, and edges in-
dicate frequent co-purchases or co-views
between products. Each node is labeled
according to a three-level classification
scheme for electronics products. User re-
views serve as the textual attributes for the
nodes; when multiple reviews are avail-
able for a product, the review with the
highest number of votes is selected. If
no such review exists, a random review
is used. The task is to classify electron-
ics products into 12 predefined categories.
The categories are: Amazon Echo, Cam-
era, Cell Phones, Clothing, Computers,
Home and Kitchen, Laptops, Music, Office
Supplies, Personal Care, Shoes, Sports
and Outdoors.

Key Words:

Please help me identify the five key-
words from its title and abstract that
are most relevant for classification, and
directly output the keywords. The ti-
tle and abstract of the paper are as fol-
lows:<Title><Abstract>

Soft Labels:

Based on its title and abstract, please pre-
dict the most appropriate label for this
paper and provide only the label as your
response. The title and abstract of the
paper are as follows:<Title><Abstract>



Summary:

Please summarize the title and abstract to
improve their suitability for the classifica-
tion task. Output only the summary text,
without including any irrelevant content.
The title and abstract of the paper are as
follows:<Title><Abstract>

G Ablation Study and Backbones

This section presents more detailed ablation study
results. We conducted ablation study under all
sparse conditions on the Cora, CiteSeer, and
PubMed datasets, as shown in Table 10. The re-
sults in the table demonstrate that each module of
UltraTAG-S contributes to performance improve-
ment, and the integrated combination of all mod-
ules achieves optimal experimental results.

Furthermore, we tested the impact of different
language model backbones on node classification
accuracy, performing comparative experiments un-
der all sparse conditions on the Cora, CiteSeer
and PubMed datasets as well, as shown in Table 9.
From the table, it can be observed that under condi-
tions of lower data sparsity, using the BERT model
for text encoding yields superior classification ac-
curacy. However, when the data sparsity reaches as
high as 80%, employing the ROBERTa model for
text encoding results in better classification accu-
racy.

Additionally, we briefly explored the impact of
different text propagation strategies on the model’s
classification accuracy, with the experimental re-
sults presented in Table 11. We employ diverse
LLM-generated texts as node text augmentation
content. The table presents experimental results
obtained by replacing original node texts with
augmented versions under various permutations.
The results demonstrate that all types of LLM-
augmented texts generated using our prompts con-
tribute to performance improvements. Moreover,
optimal results can be achieved through appropri-
ate connection combinations. From the table, it is
evident that enhancing the original text data with
more effective LLM-augmented texts can signifi-
cantly improve the performance across all sparse
conditions.
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Table 9: Performance Comparison with Different Text
Encoders in ideal scenarios and sparse scenarios. The
optimal performance is in bold.

Encoder Cora CiteSeer PubMed
Sparse Ratio 0% 0% 0%
BERT 90.96+0.45 78.68+0.21 91.99+1.21
DeBERTa 83.39+0.39 76.02+1.45 92.06+1.77
RoBERTa 88.38+1.82 77.74+0.76  92.41+0.30
Sparse Ratio 20% 20% 20%
BERT 88.93+0.74 77.12+0.28 §9.38+0.29
DeBERTa 81.55£0.59 72.88+0.61 89.33+0.11
RoBERTa 88.75+0.22 74.92+0.46 89.88+0.21
Sparse Ratio 50% 50% 50%
BERT 83.95+0.80 67.08+0.28 80.76+0.26
DeBERTa 73.99+£0.45 62.70+1.08 80.53+0.21
RoBERTa 80.81£0.54 65.05+0.14 80.91+0.29
Sparse Ratio 80% 80% 80%
BERT 57.57+1.38 40.08+0.45 60.70+0.74
DeBERTa 52.21+0.76  39.03+0.64 60.62+0.76
RoBERTa 54.61+1.06 38.87+0.88 61.05+0.49

Table 10: Detailed Performance Comparison of Abla-
tion Study. *TA’, *SA’, ’SL’ represent Text Augmenta-
tion, Structure Augmentation and Structure Learning,

respectively.
Method Cora CiteSeer PubMed
Sparse Ratio 0% 0% 0%
w/o TA 89.59+1.39 77.37+£0.96 91.29+0.90
w/o SA 90.59+£0.86  78.37£1.63 91.99+1.75
w/o SL 88.38+0.85 77.59+1.44 86.36+1.23
UltraTAG-S | 90.96+0.45 78.68+0.21 92.41+0.30
Sparse Ratio 20% 20% 20%
w/o TA 86.52+0.21 75.12+0.45 88.38+1.50
w/o SA 87.93x1.72 77.01+0.31 89.18+0.58
w/o SL 86.72+1.33  68.34+0.90 85.42+1.34
UltraTAG-S | 88.93+0.74 77.12+0.28 89.88+0.21
Sparse Ratio 50% 50% 50%
w/o TA 78.41+£0.32  59.94£1.07 52.05+0.45
w/o SA 81.95£1.30 65.08+1.06 78.76+0.22
w/o SL 74.54+0.54 50.63£1.42 69.17+0.71
UltraTAG-S | 83.95+0.80 67.08+0.28 80.91+0.29
Sparse Ratio 80% 80% 80%
w/o TA 48.60+£1.83 34.29+1.42 44.93%1.22
w/o SA 56.83+1.45 39.50+0.54 57.65+1.21
w/o SL 38.01£1.08 35.71+£0.04 43.58+0.45
UltraTAG-S | 57.57+1.38 40.08+0.45 61.05+0.49




Table 11: Performance Comparison with Different Aug-
mentation Texts Generated by LLM and Different Text
Aggregator Strategies. OT’ original texts, 4+’ means
concatenate.

Texts Cora CiteSeer PubMed
Sparse Ratio 0% 0% 0%

oT 89.48+0.56 75.24+1.66 90.62+0.62
OT+Su 90.22+1.23  77.59+0.24 91.89+1.19
OT+KW 90.41+0.89 77.59+£1.35 91.84+0.94
OT+SL 89.48+1.78 77.74+0.31 91.99+0.29
OT+SKWSL | 90.96+0.45 78.68+0.21 92.41+0.30
Sparse Ratio 20% 20% 20%
oT 88.12+0.34  74.92+0.71 87.78+0.74
OT+Su 88.76+0.67 77.12+1.88 89.12+1.08
OT+KW 88.43+£1.12 77.27+0.42 89.48+0.95
OT+SL 88.53+0.98 75.86+1.53 89.38+0.27
OT+SKWSL | 88.93+0.74 77.12+0.28 89.88+0.21
Sparse Ratio 50% 50% 50%
oT 82.47+0.21 64.89+1.21 79.54+0.39
OT+Su 82.66+0.76 65.52+1.65 80.78+0.61
OT+KW 83.58+0.43 65.83+0.25 80.65+0.90
OT+SL 83.21+£0.65 66.46+£0.41 80.78+0.28
OT+SKWSL | 83.95+0.80 67.08+0.28 80.91+0.29
Sparse Ratio 80% 80% 80%
oT 54.98+0.91 39.34+0.96 60.40+0.77
OT+Su 57.01+1.77 39.66£0.26 60.83+1.07
OT+KW 57.43+0.32 39.97+0.73  60.78+0.60
OT+SL 57.38+0.68 39.81+£0.40 60.70+0.82
OT+SKWSL | 57.57+1.38 40.08+0.45 61.05+0.49
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