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Abstract001

Recent advancements in Large Language Mod-002
els (LLMs) and the proliferation of Text-003
Attributed Graphs (TAGs) across various do-004
mains have positioned LLM-enhanced TAG005
learning as a critical research area. However,006
the field faces significant challenges: (1) the007
absence of a unified framework to systematize008
the diverse optimization perspectives, and (2)009
the lack of a robust method capable of han-010
dling real-world TAGs, which often suffer from011
texts and edge sparsity, leading to suboptimal012
performance.To address these challenges, we013
propose UltraTAG, a unified pipeline for LLM-014
enhanced TAG learning. UltraTAG provides015
a unified comprehensive and domain-adaptive016
framework in the field. Building on this frame-017
work, we propose UltraTAG-S, a robust instan-018
tiation of UltraTAG designed to tackle the in-019
herent sparsity issues in real-world TAGs with020
the technology of LLM-based text propaga-021
tion, text augmentation, and edge reconfigu-022
ration strategies. Our extensive experiments023
demonstrate that UltraTAG-S significantly out-024
performs existing baselines, achieving improve-025
ments of 2.12% and 17.47% in ideal and sparse026
settings, respectively. Moreover, as the data027
sparsity ratio increases, the performance im-028
provement of UltraTAG-S also rises.029

1 Introduction030

In recent years, the advancements in large language031

models (LLMs) (Brown et al., 2020) have driven032

the evolution of graph ML, particularly in Text-033

Attributed Graphs (TAGs) (He et al., 2024a), which034

combine nodes, edges, and textual data for appli-035

cations in social networks, recommendation sys-036

tems etc. While graph neural networks (GNNs) (Li037

et al., 2024a) excel at capturing structural informa-038

tion, they struggle with textual data, necessitating039

the integration of GNNs and LLMs for TAG learn-040

ing (Zhu et al., 2024; Duan et al., 2023). Despite041

progress, existing TAG learning methods still face042

several limitations:043
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Figure 1: Performance of diffirent LLM-enhanced TAG
learning methods in sparse scenarios.

Limitation 1: Lack of a unified LLM-enhanced 044

TAG learning framework. As for the current inno- 045

vation directions of LLM-enhanced TAG learning 046

are disorganized, we recapitulate them from a new 047

perspective: (1) Preprocessing: Data Augmenta- 048

tion (He et al., 2024a; Chen et al., 2024; Wang et al., 049

2024; Pan et al., 2024), which leverages LLMs 050

to generate enhanced textual representations like 051

soft labels for text augmentation. (2) Feature En- 052

gineering: Improved Text Encoder (Chien et al., 053

2022; Duan et al., 2023), which uses LLMs/LMs 054

to enhance node feature representation. (3) Train- 055

ing: Joint Training Mechanism (Zhao et al., 2023; 056

Zhu et al., 2024; Wen and Fang, 2023; Huang 057

et al., 2024), which enhance performance by in- 058

teractive training mechanism between GNNs and 059

LMs. However, the diverse optimization strategies 060

and goals without a systematic standard hinder uni- 061

fied objectives, slowing progress in TAG learning. 062

Solution 1: UltraTAG: A Unified Pipeline 063

toward General and Robust LLM-enhanced TAG 064

Learning. To address Limitation 1, we propose 065

UltraTAG, as detailed in Sec. 3. UltraTAG is com- 066

posed of three modules: Data Augmentation, Text 067

Encoder, and Training Mechanism, as shown in 068

Figure 2. The modules integrate three directions of 069

LLM-enhanced TAG learning, translating innova- 070

tive methods into specific optimization objectives. 071
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Figure 2: Overview of UltraTAG for LLM-Enhanced Text-Attributed Graph Learning with three modules.

Limitation 2: Lack of a Robust Method. In real-072

world TAGs, data sparsity in nodes and edges is a073

common issue. For example, privacy measures (Li074

et al., 2024b) on social networks may restrict access075

to users’ information. Developing robust methods076

that maintain performance under such sparse con-077

ditions is a challenge. Current approaches often078

depend on complete text attributes, making them079

incompatible with sparse graphs and leading to sub-080

optimal results. This robustness focus is specific081

to sparsity, which involves only missing nodes or082

edges, but not including data noise with error of083

node’s text, edge or corresponding label.084

Solution 2: UltraTAG-S: An Instance of Ul-085

traTAG for Sparse Scenarios. To address Limi-086

tation 2, we propose UltraTAG-S, as detailed in087

Sec. 4. UltraTAG-S is composed of three key088

modules: (1)LLM-based Robustness Enhancement,089

(2)LM-based Resilient Representation Learning,090

and (3)Graph-Enhanced Robust Classifier, as illus-091

trated in Figure 3. To simulate real-world sparse092

scenarios, we randomly remove node texts and093

edges from the graph according to a certain ratio.094

Module 1 includes edge-based text propagation and095

LLM-based text enhancement to address node spar-096

sity. Module 2 designs a PageRank-based node097

selector and a LLM-based edge predictor to handle098

edge sparsity. Module 3 incorporates a graph struc-099

ture learning module to further enhance robustness.100

Our Contributions: (1) A Unified Framework.101

We adopt a novel perspective to systematically ex-102

amine all existing methods for TAG learning and103

introduce UltraTAG, a unified and domain-adaptive104

paradigm which can extend to UltraTAG-X. (2) 105

A Robust Method. Expanding on UltraTAG, we 106

propose UltraTAG-S, a robust TAG learning frame- 107

work designed specifically for sparse scenarios. 108

(3) SOTA Performance. Our proposed UltraTAG-S 109

achieves SOTA performance and optimal robust- 110

ness in evaluations among 7 datasets spanning four 111

distinct domains not only in ideal but also in sparse 112

scenarios, exhibiting minimal performance degra- 113

dation, as shown in Figure 1. 114

2 Related Works 115

2.1 Graph Learning for Data Sparsity 116

Scenarios 117

For graph learning in sparse scenarios, existing 118

research primarily focuses on addressing missing 119

node representations, edge absences, or label defi- 120

ciencies (Rossi et al., 2022; Guo et al., 2023; Zhang 121

et al., 2022). Most of them employ vector comple- 122

tion based on graph propagation or attention to 123

handle these issues. However, there is still a lack 124

of targeted research on sparse scenarios of TAGs. 125

2.2 Shallow Embedding Methods for TAG 126

Learning 127

TAG learning commonly uses shallow embed- 128

dings (e.g., skip-gram (Mikolov et al., 2013) or 129

BoW (Harris, 1954)) as inputs for GCNs (Kipf and 130

Welling, 2017). While simple and efficient, they 131

fail to capture complex semantics and nuanced re- 132

lationships with limited effectiveness. 133
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Figure 3: Overview of UltraTAG-S for LLM-Enhanced Text-Attributed Graph Learning in Sparse Scenarios.

2.3 LM/LLM-based Methods for TAG134

Learning135

With the rise of LMs like BERT (Devlin et al.,136

2019), researchers encode textual information137

in TAGs by fine-tuning LMs on downstream138

tasks (Zhao et al., 2023; Duan et al., 2023) or align-139

ing LM and GNN via custom loss functions (Wen140

and Fang, 2023). The emergence of LLMs like141

GPT-3 (Brown et al., 2020) has further advanced142

TAG learning, focusing on: (1) text enhancement143

(e.g., better node descriptions, labels) (He et al.,144

2024a; Wang et al., 2024; Pan et al., 2024; He et al.,145

2024b), and (2) superior text encoding for node rep-146

resentations (Zhu et al., 2024; Huang et al., 2024),147

collectively boosting performance.148

3 UltraTAG149

In this section, we provide details about three mod-150

ules of UltraTAG shown in Figure 2: Data Aug-151

mentation, Text Encoder and Training Mechanism.152

3.1 Notations153

Given a TAG G = {V, T ,A,Y}, where V is the set154

containing N nodes, T is the set of texts, for i ∈ V ,155

ti ∈ T is the text attribute of node i. A ∈ RN×N is156

the adjacency matrix and Y is ground-truth labels.157

This study focuses on the TAG node classifica-158

tion task. The dataset is split into training nodes159

Vtr with training labels Ytr and testing nodes Vte160

with testing labels Yte. A model fθ∗ is trained on161

Vtr and tested on Vte to generate predictions. The 162

optimization objective is formalized as: 163

fθ∗ = argmax
θ

En∈VtrPθ(ŷn = yn | n), (1) 164

where yn is ground-truth and ŷn is prediction. 165

3.2 Data Augmentation 166

TAGs rely solely on node texts, not representations, 167

making text preprocessing crucial. To enhance 168

text representation, data augmentation from a nat- 169

ural language perspective is effective. Leveraging 170

LLM’s capabilities, we input T and generate aug- 171

mented texts T ′
using varied prompts P: 172

T ′
= {t′i | t

′
i = LLM(P, ti, α),∀ti ∈ T }, (2) 173

where α is frozen parameters of LLM. 174

Then, T ′
is typically aggregated with T to pro- 175

duce the final textual representation T ∗: 176

T ∗ = {t∗i | t∗i = Agg(t
′
i, {t

′
j | j ∈ Ni})}, (3) 177

where Agg is the text aggregator, which include 178

selection and concatenation and so on, Ni is the set 179

of neighbor nodes of node i. 180

3.3 Text Encoder 181

The given nodes’ texts T ∗
tr associated with the train- 182

ing nodes must be encoded into embeddings to 183

facilitate subsequent model processing which can 184

be efficiently accomplished using LMs or LLMs. 185
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LMs as Encoder. Text encoding typically em-186

ploys LMs like BERT (Devlin et al., 2019). Fine-187

tuning LMs on downstream tasks enhances their188

task-specific encoding capability. As for t∗i ∈ T ∗
tr,189

this process can be described as:190

hi = LM(t∗i , θLM) ∈ Rd,∀t∗i ∈ T ∗
tr, (4)191

where hi is the output of the LM, we train the192

parameters by adding an MLP after the LM.193

Meanwhile, various downstream tasks can be194

used to do it, such as node classification (Duan195

et al., 2023) or others (Chien et al., 2022).196

LLMs as Encoder. Leveraging LLM’s language197

understanding capabilities, their features from dif-198

ferent layers capture varying abstraction levels with199

versatile representations (Zhu et al., 2024). Inspired200

by it, for each node’s text t∗i ∈ T ∗
tr, we can get201

h1i , h
2
i , h

3
i , ..., h

l
i from different LLM layers:202

h1i , h
2
i , h

3
i , ..., h

l
i = LLM(t∗i , θLLM) ∈ Rd, (5)203

where hji , j ∈ [1, l] denotes the output vector rep-204

resentation of LLM layer j of node i.205

Then, we train a multi-layer GNN to simulate the206

propagation process of multi-layer representations207

in the LLM with cross-entropy loss:208

θ∗ = argmin
θ

N∑
i=1

L∑
j=1

CE(M(hji ,A; θ), yi), (6)209

where M denotes the message passing module of210

GNN, A is the adjacent matrix.211

3.4 Training Mechanism212

After obtaining the nodes’ textual representations213

H = {h1, h2, h3, ..., hN} and adjacency matrix214

A, input of them into a GNN will yield the final215

prediction. We can use a simple GNN module, or216

combine GNN with LM for joint training.217

Simple GNN. A simple GNN produces final218

predictions through downstream task training:219

θ∗ = argmin
θ

N∑
i=1

CE(GNN(hi,A; θ), yi), (7)220

GNN with LM. For the combination of GNN221

and LM training, the pseudo-labels YG generated222

by GNN guide LM training, and the pseudo-labels223

generated by LM YL guide GNN training, and the224

cycle repeats with the same downstream task:225

YL = GNN(H,A; θG),YG = LM(T ; θL), (8)226

4 UltraTAG-S 227

To address the challenge of data sparsity of TAGs 228

in real-word applications, we creatively propose 229

UltraTAG-S as shown in Figure 3, which is com- 230

posed of three modules: LLM-based Robustness 231

Enhancement, LM-based Resilient Representation 232

Learning and Graph-Enhanced Robust Classifier. 233

4.1 LLM-based Robustness Enhancement 234

Data Augmentation module can be divided into 235

Text Propagation, Text Augmentation and Structure 236

Augmentation. 237

Text Propagation. Leveraging the homophily 238

principle in graph theory, we posit that adjacent 239

nodes exhibit textual similarity. Inspired by the 240

message-passing mechanism in GNNs, we propa- 241

gate textual information from neighboring nodes to 242

reconstruct missing text attributes. 243

Specifically, for node vi ∈ V , ti ∈ T and its 244

neighbors Ni, propagated texts T ′
are obtained by: 245

T ′
= {t′i | t

′
i = ti⊕{tj | j ∈ Ni},∀ti ∈ T }, (9) 246

where ⊕ denotes concatenation of neighbors’ texts. 247

Text Augmentation. Leveraging the advanced 248

language comprehension capabilities of LLM, we 249

utilize prompt engineering to extract critical textual 250

information and enrich data representations. 251

Specifically, for the propagated text t
′
i ∈ T ′

, we 252

get the augmented text T ∗ with different prompts: 253

TSu = {t′′i | t′′i = LLM(PSu, t
′
i, θLLM), (10) 254

255
TKW = {t′′i | t′′i = LLM(PKW, t

′
i, θLLM), (11) 256

257
YSL = {t′′i | t′′i = LLM(PSL, t

′
i, θLLM), (12) 258

259
T ∗ = AGG(T ′

, TSu, TKW,YSL), (13) 260

where AGG denotes the text aggregation module 261

of concatenation, TSu, TKW, YSL are the Summary, 262

Key Words and Soft Labels generated by LLMs 263

respectively. PSu, PKW, PSL are the prompts. 264

Structure Augmentation. To mitigate edge 265

sparsity, we introduce a Structure Augmentation 266

module composed of Virtual Edge Generator, Node 267

Selector and Edge Reconfigurator. This module 268

leverages LLMs to re-identify edges for selected 269

nodes, thereby optimizing the graph structure. 270

a. Virtual Edge Generator. In order to ensure 271

the integrity of the graph structure before node 272

selection, we use the soft labels TSL generated by 273

4



LLMs and calculate the similarity with the same274

soft label, which can be described as:275

hi = LM(t∗i , αLM), hj = LM(t∗j , αLM), (14)276

277
Sij = cos(hi, hj),∀yi = yj & yi, yj ∈ YSL.

(15)278

The adjacency matrix is updated to A′
:279

A′
ij =

{
1, if Aij = 1|Sij > τ1,

0, else,
(16)280

where A denotes the adjacency matrix with virtual281

edges after sparse process, τ1 denotes the similarity282

threshold for edges to add.283

b. Node Selector. Considering the impracticality284

of re-judging all edges, we design a node selector285

to select important nodes set Vc. We calculate the286

pagerank score for each node in V and use these287

scores as importance score by following:288

Score(vi) = PageRank(vi,A
′
), (17)289

290
Vc = {vi | Score(vi) > Score(vk)}, (18)291

where vk denotes the node with k-th largest node292

importance score calculated by PageRank algo-293

rithm with original edges and virtual edges.294

c. Edge Reconfigurator. For each edge in the295

complete graph of Vc, we use LLM with prompt de-296

tailed in Appendix F to re-determines its existence297

with the confidence score Cij of edge eij :298

Cij = LLM(Pedge, t
∗
i , t

∗
j ),∀vi, vj ∈ Vc, (19)299

The updated adjacency matrix A∗ is expressed as:300

A∗
ij =

{
Aij , if vi /∈ Vc | vj /∈ Vc;

1, if Cij > τ2; 0, else;
(20)301

where τ2 is the confidence threshold for LLM edge302

reconfiguration in Equation 19.303

4.2 LM-based Resilient Representation304

Learning305

After augmenting the graph G∗ = {V, T ∗,A∗,Y},306

we fine-tune the language model on downstream307

tasks of node classification. Specifically, node i’s308

text t∗i is passed through the fine-tuned language309

model LMθ to output the feature representation for310

downstream node classification. The process can311

be described as following equation:312

ŷi = softmax(W ·LM(ti, θ)+b),∀ t∗i ∈ T ∗, (21)313

where W is the weight matrix, b is the bias term. 314

After fine-tuning with the following negative 315

log-likelihood Loss Lft, the node representations 316

H are calculated by following equations: 317

hi = LM(t∗i , θ
∗), (22) 318

319

Lft = − 1

N

N∑
i=1

K∑
k=1

yi,k log ŷi,k, (23) 320

where N,K are the number of training nodes and 321

classes, yi,k is the ground-truth, ŷi,k is the output. 322

4.3 Graph-Enhanced Robust Classifier 323

We employ a dual-GNN framework to tackle edge 324

sparsity: one GNN learns enhanced graph struc- 325

tures, and the other focuses on node classification. 326

Specifically, with the nodes’ representationsH ∈ 327

RN×d and the structure representation A∗ ∈ 328

RN×N , we first compute the similarity matrix of 329

node vector representations: 330

S = Norm(H(1) · H(1)⊤),H(1) = GNN1(H,A∗).
(24) 331

Then, we update the original adjacency matrix 332

A∗ with preserving the judgment of the LLM with- 333

out alteration: 334

Ã∗
ij =

{
A∗

ij + Sij , if vi /∈ Vc | vj /∈ Vc,

A∗
ij , else.

(25) 335

We use the updated matrix as the input of 336

GNN2(·) and jointly optimize GNN1(·) and 337

GNN2(·) using cross entropy loss LGNN : 338

H(2) = GNN2(H, Ã∗), (26) 339
340

LGNN = − 1

N

N∑
i=1

K∑
k=1

yi,k log ŷi,k, (27) 341

where N is nodes’ number, and K is classes’ one. 342

5 Experiments 343

In this section, we analyze the effectiveness of 344

UltraTAG-S through experimental evaluation. To 345

comprehensively assess the performance of our ap- 346

proach, we address the following questions: Q1: 347

What are the differences between existing TAGs 348

learning methods under UltraTAG? Q2: What is 349

the performance of UltraTAG-S as a general and 350

robust TAGs learning paradigm in ideal and sparse 351

scenarios? Q3: What factors contribute to the 352

performance and robustness of UltraTAG-S? Q4: 353

What is the training time complexity of UltraTAG- 354

S? Details of the datasets and baselines are in Ap- 355

pendix A and B, respectively. 356
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Table 1: The Comparison of Different LLM-enhanced TAG Learning Methods under UltraTAG. The top four
methods use LMs, while the bottom five use LLMs. ’XMC’ is eXtream Multi-label Classification, ’Iteration’ is
iterative training with LM and GNN using pseudo labels, ’Joint’ means joint training with multiple GNNs.

Method Data Augmentation Text Encoder Encoder Supervision Traing Mechanism
GLEM ✗ DeBERTa Node Classification Iteration
GIANT ✗ BERT XMC Only GNN
G2P2 ✗ RoBERTa Node Classification Combined Loss
SimTeG ✗ e5-large/RoBERTa Node Classification Only GNN
TAPE ✓ DeBERTa Node Classification Only GNN
ENGINE ✗ LLaMA2-7B / Joint
LLMGNN ✓ BoW / Only GNN
GraphAdapter ✗ LLaMA2-13B Token Prediction Only GNN
UltraTAG-S ✓ BERT Node Classification Joint

Table 2: The Comparison of Different LLM-enhanced
TAG Learning Methods for Sparse Scenarios Robust-
ness from Four Dimensions of Robustness.

Robustness Input Node Edge Training
GLEM ✗ ✗ ✗ ✗

GIANT ✗ ✗ ✗ ✗

G2P2 ✓ ✓ ✗ ✗

SimTeG ✗ ✗ ✗ ✗

TAPE ✓ ✗ ✗ ✗

ENGINE ✗ ✗ ✗ ✓

LLMGNN ✓ ✗ ✓ ✗

GraphAdapter ✓ ✗ ✗ ✓

UltraTAG-S ✓ ✓ ✓ ✓

5.1 Paradigm Comparision357

In this section, we compare the similarities and dif-358

ferences of the current LLM-enhanced TAG learn-359

ing methods under the framework of UltraTAG360

from four aspects, namely Data Augmentation,361

Text Encoder, Encoder Supervision, and Training362

Mechanism, as shown in Table 1. LM-based meth-363

ods (Zhao et al., 2023; Chien et al., 2022; Wen364

and Fang, 2023; Duan et al., 2023) utilize distinct365

language models and fine-tuning tasks, while LLM-366

based methods (He et al., 2024a; Chen et al., 2024)367

focus on data augmentation. Meanwhile, anyone368

can optimize one small module among the four369

modules of UltraTAG to form a new baseline.370

We also compare the sparse scenarios robustness371

of Different LLM-enhanced TAG Learning Meth-372

ods, which means whether these methods consider373

the robustness of input data, missing texts, missing374

edges and training. The comparison is shown as375

Table 2, we find that only UltraTAG-S(Ours) takes376

into account the robustness across all dimensions.377
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Figure 4: Robustness Comparison in Sparse Scenarios.

5.2 Performance and Robustness Analysis 378

We conduct a comprehensive evaluation of 379

UltraTAG-S by comparing with GNN-only, LM- 380

only and LLM-GNN methods, as the results in Ta- 381

ble 3. Since GNN-only methods cannot accept texts 382

as input, in order to make a fair comparison, we en- 383

code these methods using a unified BERT (Devlin 384

et al., 2019) to get unified representation as input. 385

As can be seen from Table 3, the performance of 386

UltraTAG-S on all datasets is better than that of the 387

current existing methods, and the improvement of 388

the effect is up to 2.21%. 389

In order to simulate the challenges of the sparse 390

scene, we randomly delete the texts and edges of 391

nodes in a ratio of 20%, 50%, and 80% without 392

considering data noise or additional constraints. 393

As illustrated in Figure 4, our proposed method, 394

UltraTAG-S, demonstrates the best robustness com- 395

pared with current TAG learning baselines. Specif- 396

ically, our method maintains the smallest decline 397

in classification accuracy under sparse scenarios. 398
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Table 3: Experimental results of node classification, optimal performance in bold and sub-optimal in underlined .

Methods Cora CiteSeer PubMed WikiCS Instagram Reddit Elo-Photo

MLP 54.94±3.68 61.91±1.67 52.13±7.35 62.46±0.70 51.85±10.78 52.91±1.81 47.45±9.18
GCN 74.91±8.71 69.00±2.83 72.54±6.95 73.27±4.62 63.66±1.11 55.00±4.34 69.49±3.93
GAT 71.70±2.75 70.31±1.01 75.86±1.08 68.72±0.90 64.80±0.22 60.36±0.25 64.22±2.58
GCNII 77.23±0.66 71.91±1.05 73.28±1.67 70.12±1.81 65.07±0.59 62.78±0.49 60.60±1.36
GraphSAGE 81.70±1.00 66.68±0.80 68.41±9.59 75.16±0.33 59.65±5.78 53.59±2.24 70.48±6.03

BERT 79.70±0.32 76.88±0.41 90.95±0.11 71.70±1.09 63.50±0.09 58.78±0.05 70.01±0.08
DeBERTa 73.39±4.54 75.16±1.08 90.81±0.20 68.18±4.10 62.40±0.59 59.92±0.45 70.18±0.18
RoBERTa 80.35±0.48 77.04±1.49 91.13±0.11 72.12±0.70 64.67±0.34 59.23±0.06 70.25±0.34

GLEM 87.07±1.01 76.30±2.45 89.56±1.65 74.83±0.95 65.90±0.36 60.88±0.03 77.74±0.27
SimTeG 88.75±0.42 77.37±0.64 88.31±0.75 76.32±0.53 64.29±0.19 61.60±0.88 79.82±0.21
TAPE 89.07±0.56 77.02±0.71 90.38±0.99 80.17±0.18 65.44±0.35 63.01±0.82 82.26±0.64
ENGINE 86.79±0.58 78.03±0.48 91.43±0.13 81.38±0.38 66.27±0.41 62.57±0.13 83.06±0.22

UltraTAG-S 90.96±0.45 78.68±0.21 92.41±0.30 83.05±0.16 66.69±0.14 63.78±0.30 84.70±0.03
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Figure 5: Robustness Comparison among All Datasets in Sparse Ratio of 20%, 50% and 80%.

The details of performance in sparse ratio of 80%399

is shown in Table 4. As can be seen from the results400

in sparse scenarios, our proposed UltraTAG-S can401

also achieve SOTA node classification accuracy in402

extremely sparse scenarios 80%, and the perfor-403

mance enhancement of UltraTAG-S is up to 17.5%404

in sparse ratio of 80%. The details with sparse405

ratio of 20% and 50% are shown in Appendix E406

Table 7, 8. As shown in Figure 5, UltraTAG-S407

consistently achieves the highest accuracy in all408

data sets at varying sparsity levels, demonstrating409

optimal robustness. The robustness improves sig-410

nificantly as data sparsity increases, highlighting411

the effectiveness in extreme data sparsity.412

5.3 Ablation Study413

In this part, we perform an ablation study on the414

CiteSeer, and PubMed datasets to verify the effec-415

tiveness and robustness of UltraTAG-S, particularly416

in sparse scenarios. The results of PubMed and417

CiteSeer are in Figure 6, more results of ablation418

and backbones are in Appendix G.419

Specifically, the Text Augmentation module en- 420

hances the model’s ability to generalize by introduc- 421

ing diverse textual variations, leading to improve- 422

ment of up to 16.89% on CiteSeer and 55.45% on 423

PubMed. This module is particularly effective in 424

scenarios where textual diversity is limited, as it 425

enriches the input data and reduces overfitting. The 426

Structure Augmentation module further contributes 427

to the model’s robustness by optimizing the graph 428

structure, achieving improvements of 3.07% on 429

CiteSeer and 5.90% on PubMed. As for the Struc- 430

ture Learning module, it demonstrates even more 431

substantial gains, with improvements of 32.49% 432

on CiteSeer and 40.09% on PubMed, highlight- 433

ing its ability to capture complex relationships in 434

graph. It is evident that the Structure Learning 435

module plays the most significant role in enhanc- 436

ing both the effectiveness and robustness, as it not 437

only improves accuracy but also ensures stable per- 438

formance across varying data conditions. These 439

results underscore the importance of combining 440

these modules to achieve optimal performance. 441
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Table 4: Robustness Comparison in Sparse Scenarios with Ratio of 80%, which means nodes’ texts and edges with
proportion of 80% are removed randomly to simulate real-world scenario. Optimal performance is in bold and
sub-optimal performance is underlined .

Methods Cora CiteSeer PubMed WikiCS Instagram Reddit Elo-Photo

MLP 30.41±0.59 27.74±0.59 44.25±1.68 26.64±1.17 62.54±1.02 50.93±0.41 46.21±0.61
GCN 41.96±0.73 30.53±0.68 49.68±1.31 54.24±2.29 63.20±0.31 54.38±1.88 51.27±0.33
GAT 38.86±0.59 30.50±0.27 52.03±0.30 52.85±0.71 63.17±0.86 56.41±0.25 50.35±0.85
GCNII 36.79±0.28 31.07±0.97 51.33±0.37 50.83±1.32 62.27±0.84 57.62±1.10 45.53±0.15
GraphSAGE 37.60±0.67 31.69±0.44 50.59±0.71 53.03±0.71 61.70±0.93 58.72±0.81 52.17±0.65

BERT 37.59±0.08 31.50±0.54 49.95±0.04 28.58±1.24 62.50±0.43 51.40±0.15 49.59±0.04
DeBERTa 29.98±1.09 30.80±0.55 42.34±4.11 21.83±1.06 63.59±0.27 50.24±0.28 47.96±1.47
RoBERTa 28.23±0.00 23.32±4.55 47.24±4.20 20.36±0.40 63.68±0.00 50.32±0.21 49.52±0.12

GLEM 49.01±0.58 36.64±1.46 51.48±0.54 52.41±0.76 61.54±0.56 50.82±1.04 56.25±2.14
SimTeG 45.78±0.22 30.40±0.66 54.95±0.61 50.35±0.72 60.61±0.16 58.08±0.12 55.73±0.84
TAPE 47.08±0.20 29.77±0.28 54.87±0.50 59.83±0.77 61.25±0.59 58.10±0.72 59.76±0.12
ENGINE 42.32±0.66 35.70±0.19 54.74±0.09 49.42±0.45 63.88±0.20 57.54±0.77 57.96±0.13

UltraTAG-S 57.57±1.38 40.08±0.45 61.05±0.49 65.60±0.34 64.78±0.67 59.85±0.01 68.79±0.07
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Figure 6: Ablation Study on PubMed and CiteSeer.
The x-axis represents the modules in the ablation study,
where ’w/o TA’, ’w/o SA’, ’w/o SL’ denote the removal
of Text Augmentation module, Structure Augmentation
module and Structure Learning module, respectively.
The y-axis represents accuracy in different ratios.

5.4 Complexity Analysis442

Table 5: The comparison of different methods in down-
stream GNN training time per epoch.

Cora PubMed WikiCS

SimTeG 0.142s 1.564s 2.109s
GLEM 0.131s 1.034s 1.645s
ENGINE 0.290s 2.165s 2.730s

UltraTAG-S 0.015s 0.170s 0.845s

The computational complexity of our proposed443

method is primarily determined by two GNN op-444

erations. The first GNN calculates the similarity445

matrix S ∈ RN×N and updates the adjacency ma-446

trix A∗
ij . This step involves pairwise computations447

between nodes, leading to a complexity of O(N2).448

The second GNN performs node classification us-449

ing the updated adjacency matrix Ã∗
ij and node fea- 450

tures H. With m layers and E = O(N2) edges in 451

the graph, the complexity for this operation scales 452

as O(m ·N2). Therefore, the total computational 453

cost per epoch is dominated by these two steps, 454

resulting in an overall complexity of O(m ·N2). 455

Experimentally, compared to other TAG learning 456

methods, UltraTAG-S demonstrates a significant 457

advantage in training time for downstream tasks. 458

As shown in Table 5, under non-sparse experimen- 459

tal settings, it achieves up to a 19× speedup per 460

training epoch over the suboptimal method. 461

6 Conclusion and Future Work 462

In response to the current LLM-enhanced TAG 463

Learning methods, we first propose UltraTAG as 464

a unified and domain-adaptive pipeline learning 465

framework. Simultaneously, to address the chal- 466

lenges faced by existing LLM-enhanced TAG learn- 467

ing methods in real-world sparse scenarios, such 468

as nodes’ texts missing or edges missing, we intro- 469

duce UltraTAG-S, a TAG learning paradigm specif- 470

ically tailored for sparse scenarios. UltraTAG-S 471

effectively resolves the issues of nodes’ texts spar- 472

sity and edge sparsity in real-world settings through 473

LLM-based text propagation strategy and text aug- 474

mentation strategy, as well as PageRank and LLM- 475

based graph structure learning strategies, achiev- 476

ing state-of-the-art performance in both ideal and 477

sparse scenarios. In the future, we will further ex- 478

plore the pivotal role of text propagation strategies 479

in TAG representation learning. 480
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Limitations481

While UltraTAG-S effectively handles sparse TAG482

learning, its performance depends on LLM qual-483

ity, incurs higher computational costs. Meanwhile,484

our consideration of real-world scenarios has been485

limited to sparsity, while more complex real-world486

data scenarios remain to be explored.487
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A Datasets629

This section provides a detailed introduction to the630

datasets used in the main content. The statistics of631

the TAG datasets we use is as shown in Table 6.632

The details of each dataset are as follows:633

Table 6: Statistics of the TAG datasets. The datasets
are partitioned in Train-Val-Test-Out mode, ’Out’ is
data that not involved in the partitioning of training,
validation, or test sets. All datasets are evaluated by
node classification accuracy.

Dataset #Nodes #Edges #Classes #Split Ratio(%)

Cora 2,708 5,278 7 60-20-20-0
CiteSeer 3,186 4,277 6 60-20-20-0
PubMed 19,717 44,324 3 60-20-20-0
WikiCS 11,701 215,863 10 5-15-50-30
Instagram 11,339 144,010 2 10-10-80-0
Reddit 33,434 198,448 2 10-10-80-0
Elo-Photo 48,362 873,793 12 40-15-45-0

Cora (Sen et al., 2008) dataset comprises 2,708634

scientific publications, which are classified into635

seven categories: Case-based, Genetic Algorithms,636

Neural Networks, Probabilistic Methods, Rein-637

forcement Learning, Rule Learning, and Theory.638

Each publication in this citation network either639

cites or is cited by at least one other publication,640

forming a total of 5,278 edges. For our study,641

we utilize the dataset with raw texts provided by642

TAPE (He et al., 2024a), available at the following643

repository1.644

CiteSeer (Giles et al., 1998) dataset contains645

3,186 scientific publications, categorized into six646

classes: Agents, Machine Learning, Information647

Retrieval, Databases, Human-Computer Interac-648

tion, and Artificial Intelligence. The objective is to649

predict the category of each publication using its650

title and abstract.651

PubMed (Sen et al., 2008) dataset comprises652

19,717 scientific publications from the PubMed653

database related to diabetes. These publications654

are categorized into three classes: Experimentally655

Induced Diabetes, Type 1 Diabetes, and Type 2656

Diabetes. The associated citation network contains657

a total of 44,324 links.658

WikiCS (Mernyei and Cangea, 2020) dataset is659

a Wikipedia-based resource developed for bench-660

marking Graph Neural Networks. It is derived from661

Wikipedia categories and includes 10 classes rep-662

resenting various branches of computer science,663

characterized by a high degree of connectivity. The664

1Cora Dataset

node features are extracted from the text of the 665

associated articles. The raw text for each node is 666

obtained from the following repository 2. 667

Instagram (Huang et al., 2024) dataset serves as 668

a social network where nodes represent users and 669

edges correspond to following relationships. The 670

classification task involves distinguishing between 671

commercial and normal users within this network. 672

Reddit (Huang et al., 2024) dataset is a social 673

network where nodes represent users, and node fea- 674

tures are derived from the content of users’ histori- 675

cally published subreddits. Edges indicate whether 676

two users have replied to each other. The classi- 677

fication task involves determining whether a user 678

belongs to the top 50% in popularity, based on the 679

average score of all their subreddits. This dataset is 680

built on a public resource3, which collected replies 681

and scores from Reddit users. The node text fea- 682

tures are generated from each user’s historical post 683

content, limited to their last three posts. Users are 684

categorized as popular or normal based on the me- 685

dian of average historical post scores, with those 686

exceeding the median classified as popular and the 687

rest as normal. 688

Ele-Photo (Yan et al., 2023) dataset is derived 689

from the Amazon-Electronics dataset (Ni et al., 690

2019). In this dataset, nodes represent electronics- 691

related products, and edges signify frequent co- 692

purchases or co-views between products. Each 693

node is labeled based on a three-level classifica- 694

tion scheme for electronics products. User reviews 695

serve as the textual attributes for the nodes; when 696

multiple reviews are available for a product, the 697

review with the highest number of votes is selected. 698

If no such review exists, a random review is used. 699

The task is to classify electronics products into 12 700

predefined categories. 701

B Baselines 702

This section contains detailed information about 703

baselines: 704

MLP (Singh and Sachan, 2014) is a simple feed- 705

forward neural network model, commonly used for 706

baseline classification tasks. It consists of multiple 707

layers of neurons, where each layer is fully con- 708

nected to the previous one. The model is trained 709

via backpropagation, with the final output layer 710

producing predictions. 711

GCN (Kipf and Welling, 2017)is a graph-based 712

2WikiCS Dataset
3Reddit Dataset
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neural network model that performs node classifica-713

tion tasks by aggregating information from neigh-714

boring nodes. The model is built on graph convo-715

lutional layers, where each node’s embedding is716

updated by combining the features of its neighbors,717

enabling it to capture the graph structure.718

GAT (Veličković et al., 2018)introduces atten-719

tion mechanisms to graph convolutional networks,720

allowing nodes to weigh their neighbors differently721

when aggregating features. This attention mecha-722

nism helps GAT to focus on the most informative723

neighbors, making it particularly effective in graphs724

with heterogeneous relationships between nodes.725

GCNII (Chen et al., 2020)is an improved ver-726

sion of the GCN model, which integrates higher-727

order graph convolutions and a skip connection728

strategy. This enhancement enables GCNII to bet-729

ter capture deep graph structures and mitigate the730

over-smoothing problem that arises in deep GCN731

architectures.732

GraphSAGE (Hamilton et al., 2017)is an induc-733

tive framework for graph representation learning,734

where node embeddings are learned by sampling735

and aggregating features from neighbors. This736

model can be applied to large-scale graphs by utiliz-737

ing different aggregation functions, such as mean,738

pooling, or LSTM-based aggregation.739

BERT (Devlin et al., 2019)is a pre-trained740

transformer-based model that learns contextualized741

word embeddings by predicting missing words in742

a sentence. BERT’s bidirectional attention mecha-743

nism allows it to capture contextual information.744

DeBERTa (He et al., 2021)improves upon BERT745

by introducing disentangled attention and enhanced746

decoding strategies. These innovations allow De-747

BERTa to better capture the relationships between748

different parts of the input text, leading to improved749

performance on multiple natural language under-750

standing tasks.751

RoBERTa (Liu et al., 2019)is an optimized ver-752

sion of BERT that increases training data size and753

model capacity, removes the Next Sentence Pre-754

diction (NSP) objective, and fine-tunes hyperpa-755

rameters. These modifications lead to improved756

performance over BERT on many benchmark tasks,757

especially in natural language understanding.758

GLEM (Zhao et al., 2023)is a method for learn-759

ing on large TAGs. It uses a variational EM frame-760

work to alternately update LMs and GNNs, improv-761

ing scalability and performance in classification.762

SimTeG (Duan et al., 2023)is a straightforward763

yet effective approach for textual graph learning.764

It first conducts parameter-efficient fine - tuning 765

(PEFT) on LM using downstream task labels. Then, 766

it generates node embeddings from the fine-tuned 767

LM. These embeddings are further used by a GNN 768

for training on the same task. 769

TAPE (He et al., 2024a)is an approach for TAGs 770

representation learning. It uses LLMs to generate 771

predictions and explanations, which are then trans- 772

formed into node features by fine-tuning a smaller 773

LM. These features are used to train a GNN. 774

ENGINE (Zhu et al., 2024)is an efficient tuning 775

method for integrating LLMs and GNNs in TAGs. 776

It attaches a G-Ladder to each LLM layer to capture 777

structural information, freezing LLM parameters to 778

reduce training complexity. ENGINE with caching 779

can speed up training by 12x. ENGINE (Early) 780

uses dynamic early exit, achieving up to 5x faster 781

inference with minimal performance loss. 782

G2P2 (Wen and Fang, 2023)is a model for low- 783

resource text classification. It has two main stages. 784

During pre-training, it jointly trains a text encoder 785

and a graph encoder using three graph interaction- 786

based contrastive strategies, including text-node, 787

text-summary, and node-summary interactions, to 788

learn a dual-modal embedding space. In down- 789

stream classification, it uses prompting. For zero- 790

shot classification, it uses handcrafted discrete 791

prompts, and for few-shot classification, it uses 792

continuous prompts with graph context-based ini- 793

tialization. 794

LLMGNN (Chen et al., 2024)is a pipeline for 795

label-free node classification on graphs. It uses 796

LLMs to annotate nodes and GNNs for prediction. 797

It selects nodes considering annotation difficulty, 798

gets confidence - aware annotations, and post - fil- 799

ters to improve annotation quality, achieving good 800

results at low cost. 801

GIANT (Chien et al., 2022)is a self-supervised 802

learning framework for graph-guided numerical 803

node feature extraction. It addresses the graph- 804

agnostic feature extraction issue in standard GNN 805

pipelines. By formulating neighborhood prediction 806

as an XMC problem and using XR-Transformers, 807

it fine-tunes LMs with graph information. 808

GraphAdapter (Huang et al., 2024)is an ap- 809

proach that uses GNN as an efficient adapter for 810

LLMs to model TAGs. It conducts language- 811

structure pre-training to jointly learn with frozen 812

LLMs, integrating structural and textual informa- 813

tion. After pre-training, it can be fine-tuned with 814

prompts for downstream tasks. Experiments show 815

it outperforms baselines on multiple datasets. 816
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Figure 7: Homophily Analysis of the Datasets. The horizontal coordinate is the homophily score of the datasets,
and the vertical coordinate is the improvement of UltraTAG-S compared to the suboptimal method.

C Hyperparameter Settings817

For detailed parameter settings, we employ five ran-818

dom seeds {42, 43, 44, 45, 46}. The GNN1(·) and819

GNN2(·) use the Adam optimizer for joint optimiz-820

ing with a learning rate of 1e-2, weight decay of 5e-821

4, dropout of 0.5, and 100 epochs. Each GNN con-822

sists of 2 layers, with a similarity calculation thresh-823

old of 0.8. The number of important nodes selected824

by PageRank is 10% of the total training nodes,825

and the acceptance threshold for LLM-based edge826

reconfiguration is 0.5. For fine-tuning the LM, the827

learning rate is set to 5e-5, with 3 epochs, a batch828

size of 8, and a dropout of 0.3. The LLM used829

is Meta-Llama-3-8B-Instruct (AI@Meta, 2024) in830

full compliance with its research license terms. All831

experiments were conducted on a system equipped832

with a single NVIDIA A100 80GB PCIe GPU and833

an Intel Xeon Gold 6240 CPU @ 2.60GHz (18-834

core), running CUDA 12.4 on Ubuntu 22.04 LTS835

with 256GB RAM and Python 3.12.836

D Homophily Analysis837

In this section, we examine the impact of dataset838

homogeneity and heterogeneity levels on the per-839

formance improvement of UltraTAG-S, with ex-840

perimental results illustrated in Figure 7. We com-841

pute the homophily scores for all datasets and mea-842

sure UltraTAG-S’s performance gains over the sub-843

optimal method under normal and varying spar-844

sity conditions. The results demonstrate that our845

method consistently improves performance across846

all datasets under different scenarios. Notably,847

datasets with higher homogeneity scores exhibit848

greater performance gains. Furthermore, the opti-849

mal improvement is achieved when the homophily850

score is approximately 0.7.851

E Robustness Comparison 852

This section contains the performance of various 853

existing methods for node classification tasks on 854

multiple datasets in multiple sparse scenarios. The 855

results of 20% and 50% sparse ratio are shown in 856

Table 7 and 8, respectively. As shown in the ta- 857

ble, under 20% and 50% data sparsity conditions, 858

UltraTAG-S still achieves the best node classifica- 859

tion performance and robustness among all existing 860

methods with up to 4.6% and 15.4% performance 861

improvement. 862

Meanwhile, the LLM-GNN hybrid approach 863

demonstrates superior robustness across varying 864

sparsity levels, exhibiting significantly less accu- 865

racy degradation compared to baseline methods. 866

Notably, GNN-only baselines achieve better robust- 867

ness than LM-only baselines, indicating that GNNs 868

are more effective than LMs at handling sparse 869

graph data and possess stronger inherent robust- 870

ness for graph-structured data. 871

F LLM Prompts 872

The LLM employed in our study is Meta-Llama- 873

3-8B-Instruct, which is utilized for both text aug- 874

mentation and structure augmentation tasks. This 875

section provides a comprehensive overview of 876

all the prompts we designed and implemented. 877

Each prompt follows a consistent structure com- 878

prising "Dataset Description + Question," where 879

the dataset description serves to contextualize the 880

query and ensure clarity. 881

For different inference scenarios, our approach 882

to querying the LLM is as follows. Due to the uni- 883

formity of the query format, the following demon- 884

strations of Key Words and Soft Labels etc. use the 885

Cora dataset as an example. 886
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Table 7: Robustness Comparison in Sparse Scenarios with Ratio of 20%, which means nodes’ texts and edges with
proportion of 20% are removed randomly. Optimal performance is in bold and the sub-optimal is underlined .

Methods Cora CiteSeer PubMed WikiCS Instagram Reddit Elo-Photo

MLP 40.70±3.10 48.37±5.08 59.59±4.25 42.27±4.84 62.18±3.75 54.68±2.05 48.51±2.31
GCN 75.50±3.22 64.86±1.31 75.57±5.08 72.33±3.94 60.77±4.89 52.61±2.05 70.85±4.15
GAT 68.67±2.06 65.64±1.01 72.93±0.92 68.10±0.68 64.90±0.35 57.43±1.24 61.05±0.85
GCNII 71.77±0.88 67.43±0.61 73.75±0.79 68.54±0.84 64.68±0.35 61.08±0.36 58.58±0.84
GraphSAGE 73.80±3.29 60.09±2.06 73.39±5.02 66.50±2.95 56.92±7.35 59.03±1.34 63.06±8.04

BERT 69.37±0.32 63.87±0.14 83.22±0.01 61.35±0.69 63.87±0.11 57.31±0.23 65.48±0.00
DeBERTa 58.21±8.94 53.53±1.96 82.78±0.35 45.93±3.86 61.65±1.07 56.20±3.48 65.34±0.45
RoBERTa 69.88±0.72 65.13±0.41 83.37±0.03 60.98±0.45 64.84±0.17 50.02±0.04 64.89±0.08

GLEM 85.71±2.01 68.71±1.54 82.36±0.37 72.59±3.01 63.37±0.18 55.82±0.21 72.75±1.94
SimTeG 82.34±0.74 70.10±0.60 85.65±0.41 71.33±0.13 62.46±0.62 60.28±0.35 75.46±0.28
TAPE 87.78±0.53 71.11±0.39 87.25±0.75 78.97±0.22 62.17±0.92 61.08±0.66 80.81±0.41
ENGINE 86.27±0.67 73.70±0.33 88.10±0.13 79.43±0.25 65.53±0.22 61.45±0.38 80.34±0.09

UltraTAG-S 88.93±0.74 77.12±0.28 89.88±0.21 81.72±0.18 66.08±0.70 61.61±0.12 83.17±0.06

Table 8: Robustness Comparison in Sparse Scenarios with Ratio of 50%, which means nodes’ texts and edges with
proportion of 50% are removed randomly. Optimal performance is in bold and the sub-optimal is underlined .

Methods Cora CiteSeer PubMed WikiCS Instagram Reddit Elo-Photo

MLP 36.35±2.90 40.38±1.68 49.14±4.41 34.29±3.24 62.65±2.18 52.09±1.25 46.57±1.75
GCN 64.61±2.81 48.71±2.16 63.71±0.91 64.12±9.69 58.96±9.54 55.48±3.03 62.61±3.70
GAT 60.63±1.80 51.50±0.61 66.82±0.80 64.60±0.37 64.51±0.23 56.56±2.00 59.32±0.92
GCNII 62.36±0.87 49.66±0.73 67.01±0.67 63.62±0.41 64.08±0.23 59.27±1.15 53.77±1.58
GraphSAGE 54.76±3.89 47.68±0.84 64.74±5.26 64.56±1.17 62.09±3.04 60.14±0.83 62.61±2.51

BERT 55.58±0.24 48.08±0.07 66.28±0.26 45.21±0.81 63.50±0.09 54.35±0.06 57.41±0.04
DeBERTa 34.41±6.99 43.81±3.29 65.75±0.31 32.91±0.73 63.73±0.39 50.90±1.65 57.39±0.19
RoBERTa 53.09±0.40 44.32±1.02 66.28±0.04 42.73±2.54 63.07±0.18 50.97±1.77 57.25±0.00

GLEM 64.84±1.63 53.43±0.25 70.51±1.95 67.07±3.08 62.43±0.21 53.85±0.08 65.25±1.58
SimTeG 72.06±0.59 58.11±0.40 76.00±0.55 65.34±0.46 61.55±0.79 59.84±0.67 67.76±0.45
TAPE 78.73±0.34 54.31±0.78 77.18±0.46 73.62±0.63 61.40±0.26 60.18±0.19 76.21±0.69
ENGINE 70.85±0.48 56.30±0.12 75.42±0.15 71.72±0.47 64.74±0.05 60.18±0.18 73.40±0.23

UltraTAG-S 83.95±0.80 67.08±0.28 80.91±0.29 77.45±0.33 65.61±0.12 60.34±0.21 79.21±0.06

WikiCS:

Here is an article from the WikiCS dataset.
This dataset is a Wikipedia-based resource
developed for benchmarking Graph Neu-
ral Networks (GNNs). It is derived from
Wikipedia categories and includes 10
classes representing various branches of
computer science, characterized by a high
degree of connectivity. The 10 classes are
Computational Linguistics, Databases,
Operating Systems, Computer Architec-
ture, Computer Security, Internet Proto-
cols, Computer File Systems, Distributed
Computing Architectures, Web Technolo-
gies, and Programming Languages.

887

Edge Reconfigure:

You are provided with the text information
of two nodes and their predicted category
pseudo-label. Use this information to eval-
uate whether an edge should exist between
the two nodes, and return a probability
value between 0 and 1 representing the
likelihood of the edge’s existence. Only
output the probability value, without any
additional or irrelevant content. As for
Node 1: <Title 1><Abstract 1>. Your pre-
diction label is <SoftLabel 1>; As for Node
2: <Title 2><Abstract 2>. Your prediction
label is <SoftLabel 2>.

888
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Cora:

Now, here is a paper from the Cora
dataset. This paper falls into one of seven
categories: Case-based, Genetic Algo-
rithms, Neural Networks, Probabilistic
Methods, Reinforcement Learning, Rule
Learning, and Theory.

889

Instagram:

This is a post from Instagram, a social
network where edges represent following
relationships and nodes represent users.
The task is to classify users into two cate-
gories: commercial and normal.

890

CiteSeer:

Now, here is a paper from the Citeseer
dataset. This paper falls into one of six
categories: Agents, Machine Learning, In-
formation Retrieval, Databases, Human-
Computer Interaction, or Artificial Intelli-
gence.

891

Reddit:

This is a post from the Reddit dataset, a so-
cial network where nodes represent users,
and node features are derived from the
content of users’ historically published
subreddits. Edges represent whether two
users have replied to each other. The task
is to classify users as belonging to the top
50 percent in popularity, based on the av-
erage score of all their subreddits. Node
text features are generated from the con-
tent of each user’s last three posts. Users
are categorized as ’popular’ or ’normal’
based on the median of their average his-
torical post scores, with those above the
median classified as ’popular’ and the rest
as ’normal’.

892

PubMed:

The following is a paper from the PubMed
dataset, which contains 19,717 scientific
publications related to diabetes. These
publications are categorized into three
classes: Experimentally Induced Diabetes,
Type 1 Diabetes, and Type 2 Diabetes.

893

Elo-Photo:

Here is a product review from the Elo-
Potho dataset. The Elo-Potho dataset
is derived from the Amazon-Electronics
dataset. In this dataset, nodes repre-
sent electronics products, and edges in-
dicate frequent co-purchases or co-views
between products. Each node is labeled
according to a three-level classification
scheme for electronics products. User re-
views serve as the textual attributes for the
nodes; when multiple reviews are avail-
able for a product, the review with the
highest number of votes is selected. If
no such review exists, a random review
is used. The task is to classify electron-
ics products into 12 predefined categories.
The categories are: Amazon Echo, Cam-
era, Cell Phones, Clothing, Computers,
Home and Kitchen, Laptops, Music, Office
Supplies, Personal Care, Shoes, Sports
and Outdoors.

894

Key Words:

Please help me identify the five key-
words from its title and abstract that
are most relevant for classification, and
directly output the keywords. The ti-
tle and abstract of the paper are as fol-
lows:<Title><Abstract>

895

Soft Labels:

Based on its title and abstract, please pre-
dict the most appropriate label for this
paper and provide only the label as your
response. The title and abstract of the
paper are as follows:<Title><Abstract>

896
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Summary:

Please summarize the title and abstract to
improve their suitability for the classifica-
tion task. Output only the summary text,
without including any irrelevant content.
The title and abstract of the paper are as
follows:<Title><Abstract>

897

G Ablation Study and Backbones898

This section presents more detailed ablation study899

results. We conducted ablation study under all900

sparse conditions on the Cora, CiteSeer, and901

PubMed datasets, as shown in Table 10. The re-902

sults in the table demonstrate that each module of903

UltraTAG-S contributes to performance improve-904

ment, and the integrated combination of all mod-905

ules achieves optimal experimental results.906

Furthermore, we tested the impact of different907

language model backbones on node classification908

accuracy, performing comparative experiments un-909

der all sparse conditions on the Cora, CiteSeer910

and PubMed datasets as well, as shown in Table 9.911

From the table, it can be observed that under condi-912

tions of lower data sparsity, using the BERT model913

for text encoding yields superior classification ac-914

curacy. However, when the data sparsity reaches as915

high as 80%, employing the RoBERTa model for916

text encoding results in better classification accu-917

racy.918

Additionally, we briefly explored the impact of919

different text propagation strategies on the model’s920

classification accuracy, with the experimental re-921

sults presented in Table 11. We employ diverse922

LLM-generated texts as node text augmentation923

content. The table presents experimental results924

obtained by replacing original node texts with925

augmented versions under various permutations.926

The results demonstrate that all types of LLM-927

augmented texts generated using our prompts con-928

tribute to performance improvements. Moreover,929

optimal results can be achieved through appropri-930

ate connection combinations. From the table, it is931

evident that enhancing the original text data with932

more effective LLM-augmented texts can signifi-933

cantly improve the performance across all sparse934

conditions.935

Table 9: Performance Comparison with Different Text
Encoders in ideal scenarios and sparse scenarios. The
optimal performance is in bold.

Encoder Cora CiteSeer PubMed

Sparse Ratio 0% 0% 0%
BERT 90.96±0.45 78.68±0.21 91.99±1.21
DeBERTa 83.39±0.39 76.02±1.45 92.06±1.77
RoBERTa 88.38±1.82 77.74±0.76 92.41±0.30

Sparse Ratio 20% 20% 20%
BERT 88.93±0.74 77.12±0.28 89.38±0.29
DeBERTa 81.55±0.59 72.88±0.61 89.33±0.11
RoBERTa 88.75±0.22 74.92±0.46 89.88±0.21

Sparse Ratio 50% 50% 50%
BERT 83.95±0.80 67.08±0.28 80.76±0.26
DeBERTa 73.99±0.45 62.70±1.08 80.53±0.21
RoBERTa 80.81±0.54 65.05±0.14 80.91±0.29

Sparse Ratio 80% 80% 80%
BERT 57.57±1.38 40.08±0.45 60.70±0.74
DeBERTa 52.21±0.76 39.03±0.64 60.62±0.76
RoBERTa 54.61±1.06 38.87±0.88 61.05±0.49

Table 10: Detailed Performance Comparison of Abla-
tion Study. ’TA’, ’SA’, ’SL’ represent Text Augmenta-
tion, Structure Augmentation and Structure Learning,
respectively.

Method Cora CiteSeer PubMed

Sparse Ratio 0% 0% 0%
w/o TA 89.59±1.39 77.37±0.96 91.29±0.90
w/o SA 90.59±0.86 78.37±1.63 91.99±1.75
w/o SL 88.38±0.85 77.59±1.44 86.36±1.23

UltraTAG-S 90.96±0.45 78.68±0.21 92.41±0.30

Sparse Ratio 20% 20% 20%
w/o TA 86.52±0.21 75.12±0.45 88.38±1.50
w/o SA 87.93±1.72 77.01±0.31 89.18±0.58
w/o SL 86.72±1.33 68.34±0.90 85.42±1.34

UltraTAG-S 88.93±0.74 77.12±0.28 89.88±0.21

Sparse Ratio 50% 50% 50%
w/o TA 78.41±0.32 59.94±1.07 52.05±0.45
w/o SA 81.95±1.30 65.08±1.06 78.76±0.22
w/o SL 74.54±0.54 50.63±1.42 69.17±0.71

UltraTAG-S 83.95±0.80 67.08±0.28 80.91±0.29

Sparse Ratio 80% 80% 80%
w/o TA 48.60±1.83 34.29±1.42 44.93±1.22
w/o SA 56.83±1.45 39.50±0.54 57.65±1.21
w/o SL 38.01±1.08 35.71±0.04 43.58±0.45

UltraTAG-S 57.57±1.38 40.08±0.45 61.05±0.49
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Table 11: Performance Comparison with Different Aug-
mentation Texts Generated by LLM and Different Text
Aggregator Strategies. ’OT’ original texts, ’+’ means
concatenate.

Texts Cora CiteSeer PubMed

Sparse Ratio 0% 0% 0%
OT 89.48±0.56 75.24±1.66 90.62±0.62
OT+Su 90.22±1.23 77.59±0.24 91.89±1.19
OT+KW 90.41±0.89 77.59±1.35 91.84±0.94
OT+SL 89.48±1.78 77.74±0.31 91.99±0.29
OT+SKWSL 90.96±0.45 78.68±0.21 92.41±0.30

Sparse Ratio 20% 20% 20%
OT 88.12±0.34 74.92±0.71 87.78±0.74
OT+Su 88.76±0.67 77.12±1.88 89.12±1.08
OT+KW 88.43±1.12 77.27±0.42 89.48±0.95
OT+SL 88.53±0.98 75.86±1.53 89.38±0.27
OT+SKWSL 88.93±0.74 77.12±0.28 89.88±0.21

Sparse Ratio 50% 50% 50%
OT 82.47±0.21 64.89±1.21 79.54±0.39
OT+Su 82.66±0.76 65.52±1.65 80.78±0.61
OT+KW 83.58±0.43 65.83±0.25 80.65±0.90
OT+SL 83.21±0.65 66.46±0.41 80.78±0.28
OT+SKWSL 83.95±0.80 67.08±0.28 80.91±0.29

Sparse Ratio 80% 80% 80%
OT 54.98±0.91 39.34±0.96 60.40±0.77
OT+Su 57.01±1.77 39.66±0.26 60.83±1.07
OT+KW 57.43±0.32 39.97±0.73 60.78±0.60
OT+SL 57.38±0.68 39.81±0.40 60.70±0.82
OT+SKWSL 57.57±1.38 40.08±0.45 61.05±0.49
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