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Abstract001

Test-Time Scaling (TTS) improves the rea-002
soning performance of Large Language Mod-003
els (LLMs) by allocating additional compute004
during inference. We conduct a structured005
survey of TTS methods and categorize them006
into sampling-based, search-based, and trajec-007
tory optimization strategies. We observe that008
reasoning-optimized models often produce less009
diverse outputs, which limits TTS effective-010
ness. To address this, we propose ADAPT011
(A Diversity Aware Prefix fine-Tuning), a012
lightweight method that applies prefix tuning013
with a diversity focused data strategy. Experi-014
ments on mathematical reasoning tasks show015
that ADAPT reaches 80% accuracy using eight016
times less compute than strong baselines. Our017
findings highlight the essential role of genera-018
tive diversity in maximizing TTS effectiveness.019

1 Introduction020

Large Language Models (LLMs) (OpenAI, 2023;021

Chowdhery et al., 2022; Touvron et al., 2023) have022

become central to modern NLP applications such023

as generation, translation, and question answering.024

Their success largely stems from transformer-based025

architectures (Vaswani et al., 2017) and large-scale026

pretraining (Kaplan et al., 2020; Hoffmann et al.,027

2022), which endow models with strong fluency028

and generalization. However, standard autoregres-029

sive decoding imposes a fixed inference routine030

that limits their performance on complex reasoning031

tasks.032

As model sizes grow, the training cost escalates,033

yet the marginal gains diminish. To mitigate this,034

Test-Time Scaling (TTS) has emerged as a promis-035

ing direction: it enhances model performance by al-036

locating more compute during inference, allowing037

adaptation to input complexity without retraining038

(OpenAI, 2024a; Snell et al., 2024; Welleck et al.,039

2024).040

Figure 1: Accuracy vs. Inference Cost (log scale).
Each point represents a language model.

While TTS has shown effectiveness, its perfor- 041

mance is often tied to the model’s intrinsic capac- 042

ity for generation diversity—a factor not yet well 043

understood or explicitly optimized. In particular, 044

models optimized for reasoning, such as distilled 045

variants, tend to exhibit reduced output variance, 046

which may dampen the gains from TTS. This raises 047

an open question: Can diversity-aware fine-tuning 048

improve TTS effectiveness for reasoning models? 049

To address this, we first conduct a strategy- 050

oriented survey of recent TTS methods, catego- 051

rizing them into three major families: Sampling 052

(section 3.1), Search (section 3.2), and Trajectory 053

Optimization (section 3.3) and identify diversity as 054

a critical enabler of TTS success. Next, we propose 055

a simple yet effective fine-tuning method, ADAPT 056

(A Diversity Aware Prefix fine-Tuning), which en- 057

hances early-stage output diversity via prefix-tuned 058

sampling. 059

We evaluate ADAPT on a compact reasoning 060

model under Best-of-N sampling. As shown in 061

fig. 1, ADAPT achieves 80% accuracy with eight 062

times fewer samples, outperforming all baseline 063

models in efficiency while retaining strong peak 064

performance. 065
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Contributions. This work makes three key con-066

tributions:067

• A unified survey of TTS approaches, covering068

Sampling, Search, and Trajectory Optimiza-069

tion, with a focus on the role of generation070

diversity.071

• The design and evaluation of ADAPT, a072

prefix-tuning method that improves efficiency073

by increasing diversity at inference.074

• A discussion on future directions, including075

robustness to prompts, synergy between train-076

ing and inference, hallucination mitigation,077

safety, and the use of synthetic data for con-078

trolled TTS benchmarking.079

2 Related Work080

Several surveys cover aspects of reasoning, post-081

training, and test-time scaling. Reasoning-focused082

overviews include Pan et al. (2025); Xu et al.083

(2025a), while efficiency-oriented surveys include084

Feng et al. (2025); Wang et al. (2025b); Sui et al.085

(2025). Test-time scaling itself is addressed by086

Zhang et al. (2025); Li (2025), and post-training087

techniques are reviewed in Kumar et al. (2025b);088

Tie et al. (2025).089

Unlike prior work that focuses primarily on cate-090

gorization, we go further by connecting our survey091

insights to a practical hypothesis: that generation092

diversity moderates TTS effectiveness. We validate093

this hypothesis through targeted experiments, show-094

ing that increasing diversity via prefix tuning leads095

to more efficient and effective test-time scaling.096

3 Test-Time Scaling Survey097

In this section, we classify TTS methods into three098

categories, based on the strategies employed.099

3.1 Sampling100

Sampling methods draw multiple candidates by101

adjusting decoding parameters such as tempera-102

ture. For instance, adjusting the temperature redis-103

tributes probabilities to favor rare tokens, encour-104

aging more creative responses. After generating105

the samples, a verifier grades each response and106

selects the one with the highest score to be the fi-107

nal response. As shown in Figure 2, the schematic108

illustrates the basic process of the sampling-based109

method.110

Given the ability to generate diverse responses,111

numerous previous studies have focused on this112

Figure 2: Sampling-based method. The model sam-
ples N candidates, a verifier scores each, and the
highest-scoring answer is returned. Some variants re-
peat this loop for multiple rounds.

and proposed various strategies to improve perfor- 113

mance. For example, Tian et al. (2025) proposed a 114

method that generates answers in multiple rounds. 115

In each round, the model uses the previous answer 116

and the original input as a new input. This approach 117

allows the model to improve its performance with- 118

out additional training. 119

In addition, Chow et al. (2024) aim to im- 120

prove LLM performance under Best-of-N sam- 121

pling through two approaches. BoN-SFT is a super- 122

vised fine-tuning method that maximizes the likeli- 123

hood of the highest-scoring output among sampled 124

candidates, thereby aligning the model with the 125

Best-of-N policy. In contrast, BoN-RL employs 126

policy-gradient reinforcement learning to directly 127

maximize the expected reward of the selected out- 128

put under Best-of-N inference. 129

Furthermore, to address efficiency issues faced 130

by sampling-based strategies, Huang et al. (2025b) 131

proposed a self-calibrated sampling method. They 132

used calibrated confidence scores to enhance the 133

efficiency of answer sampling. The method adjusts 134

sampling through early stopping in Best-of-N and 135

applies confidence-calibrated self-consistency to 136

reduce computation. 137

The limitations of sampling. Although sam- 138

pling improves performance, Stroebl et al. (2024) 139

noted that accuracy gains plateau as verifiers be- 140

come unreliable with more samples. Huang et al. 141

(2025a) found that Best-of-N can suffer from re- 142

ward hacking, especially in low-diversity models 143
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where sampled responses are redundant. They in-144

troduced pessimistic rejection sampling to filter145

out unreliable outputs, a limitation especially pro-146

nounced in distilled models.147

3.2 Search148

Search-based methods focus on searching for di-149

verse paths. These paths help improve answer qual-150

ity. Some search in the latent space. This pro-151

vides an alternative to token-level reasoning. Oth-152

ers adopt the self-improvement method to enhance153

their performance.154

3.2.1 Variations of CoT155

The origins of CoT stem from prompt-based meth-156

ods (Lightman et al., 2024; Ranaldi et al., 2025),157

such as “Let’s think step by step.” Several improved158

CoT variants are shown in fig. 3.159

CoT with Self-Consistency (CoT-SC) (Wang160

et al., 2023) samples multiple reasoning paths. It161

then selects the one that best meets a consistency162

criterion. This improves performance but increases163

computation. Auto-CoT (Zhang et al., 2022) re-164

duces the effect of incorrect demonstrations in the165

thought process. Monte Carlo Tree Search (MCTS)166

(Xie et al., 2024) updates the model policy through167

Direct Preference Optimization (DPO) to manage168

the trade-off between training and inference.169

Similarly, the Tree-of-Thoughts (ToT) Yao et al.170

(2023) enables exploration of multiple reasoning171

paths per step and selects the best action. Build-172

ing on multi-path exploration, Forest-of-Thought173

(FoT) (Bi et al., 2025) runs multiple reasoning trees174

in parallel instead of a single one. Each tree inde-175

pendently explores a possible solution path, and176

dynamically compares, discards, or merges ideas177

across trees. This process is parallel and selective.178

It improves diversity, adaptability, and resilience.179

It also avoids local traps found in single-path meth-180

ods like CoT and ToT. Graph of Thoughts (GoT)181

(Besta et al., 2024) represents reasoning as a graph.182

Nodes are thoughts. Edges are logical links. This183

structure supports revisiting, merging, and reusing184

ideas. It enables flexible reasoning and improves185

coherence and depth in complex tasks.186

In addition to structural innovations, Atom of187

Thoughts (AoT) (Teng et al., 2025) breaks down188

complex tasks into self-contained sub-questions.189

This reduces reliance on historical context and190

improves generalization. On the efficiency side,191

Chain of Draft (Xu et al., 2025b) constrains the192

length of the thinking trace, improving both speed193

and output quality. Finally, the Mixture-of-Agents 194

architecture (Wang et al., 2024a) leverages multiple 195

LLMs with specialized capabilities to collaborate 196

on complex reasoning tasks, further broadening the 197

design space of CoT-style reasoning. 198

Theory of CoT. While still limited, recent work 199

begins to formalize CoT’s reasoning process be- 200

yond empirical improvements. One approach ex- 201

plores the expressive power of CoT, as studied in 202

Liu et al. (2023); Merrill and Sabharwal (2024); 203

Li et al. (2024); Feng et al. (2023). Other work 204

focuses on the connection between CoT and in- 205

context learning Huang et al. (2025c), as both im- 206

prove performance without parameter updates. 207

3.2.2 Hidden layer search 208

Hidden layer search offers new opportunities for 209

efficiency and abstraction. Sleep-time compute 210

method (Lin et al., 2025) processes the input con- 211

text offline. It generates a latent representation dur- 212

ing this stage. The model reuses this representation 213

at inference time. This method avoids repeating 214

full context processing for each query. 215

The Coconut paradigm (Chain of Continuous 216

Thought) (Hao et al., 2024) enables models to rea- 217

son in a continuous latent space by feeding the 218

last hidden state back into the model instead of 219

decoding it into tokens. This method allows back- 220

tracking and enables reducing token usage signifi- 221

cantly. Latent-Thought Language Models (LTMs) 222

(Kong et al., 2025) guides decoding through latent 223

thought vectors inferred using variational Bayesian 224

techniques. 225

Another line of work, CODI (Shen et al., 2025), 226

introduces a framework that compresses CoT rea- 227

soning into a continuous latent space via self- 228

distillation. Looped transformer (Saunshi et al., 229

2025) presents another hidden-layer based strategy 230

by repeatedly applying a smaller transformer mod- 231

ule across iterations. This looping mechanism en- 232

ables smaller models to match the reasoning capa- 233

bilities of larger ones on complex reasoning tasks. 234

3.2.3 Self-improvement 235

TTS often leverages implicit self-improvement 236

through refinement and correction. These ap- 237

proaches draw inspiration from human iterative 238

thinking, enabling models to refine their answers 239

dynamically by leveraging internal feedback sig- 240

nals and reward-guided strategies. 241

Self-Refine (Madaan et al., 2023) introduces a 242

simple, training-free framework in which LLMs 243
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Figure 3: Search-Based The schematic illustrates various search-based methods, including Chain of Thought (CoT),
Self-Consistency with Chain of Thought (CoT-SC), Tree of Thoughts (ToT), Graph of Thoughts (GoT), Forest of
Thoughts (FoT), and Atom of Thoughts (AoT).

generate self-criticism and revise their responses244

accordingly. Building on this, STaR (Zelikman245

et al., 2022) bootstraps high-quality rationales that246

lead to correct answers, using them to fine-tune the247

model essentially allowing LLMs to “teach them-248

selves” how to reason more effectively.249

Expanding further, Training LLMs to Self-250

Correct via RL (Kumar et al., 2025a) intro-251

duce reward-driven strategies. It proposes a252

reinforcement-based feedback loop to train LLMs253

to learn how to revise, achieving significant gains254

in reasoning tasks. Recursive Introspection (RISE)255

(Qu et al., 2024), on the other hand, formalize256

multi-turn refinement as a Markov Decision Pro-257

cess (MDP) to iteratively optimize outputs through258

sequential edits. After RL training, RISE signifi-259

cantly outperforms Self-Refine and parallel sam-260

pling, highlighting the benefits of trajectory-aware261

self-correction. Feedback-based Test-Time Train-262

ing (FTTT) (Li et al., 2025) takes self-improvement 263

a step further by applying gradient-based updates 264

during inference. Treating reasoning as a local op- 265

timization problem, FTTT adapts model weights 266

based on feedback using a learned optimizer (OP- 267

TUNE). This method achieves robust performance. 268

3.3 Trajectory Optimization 269

Optimization of TTS in LLMs focuses on control- 270

ling and refining the reasoning trajectory. This 271

refers to the sequence of intermediate steps gener- 272

ated during inference. This manifests as adjusting 273

trajectory length or structure based on task diffi- 274

culty, balancing accuracy with computational cost. 275

Unlike static decoding, optimized test-time reason- 276

ing introduces adaptive mechanisms to improve 277

outcomes under fixed compute budgets. 278

This optimization addresses two critical chal- 279

lenges. First, Yang et al. (2025) demonstrated that 280
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longer reasoning trajectories don’t uniformly im-281

prove results; excessive steps often degrade accu-282

racy through error accumulation. Second, compute283

allocation at test time can be more effective than284

scaling model parameters (Snell et al., 2024), sug-285

gesting trajectory optimization offers a compute-286

efficient path to enhanced performance.287

3.3.1 RL Paradigms288

We categorize current methods into two paradigms:289

reinforcement learning (RL) and non-RL ap-290

proaches. RL enables optimal test-time compute291

scaling by aligning model outputs with rewards.292

Setlur et al. (2025); Qu et al. (2025) showed that293

RL with step-wise feedback or meta-reinforcement294

fine-tuning (MRT) significantly improves sampling295

efficiency and test-time performance. MRT frames296

inference as a meta-RL problem, rewarding useful297

steps toward correct answers to encourage concise298

reasoning within token limits.299

However, recent critiques question RL’s neces-300

sity and sufficiency. Yue et al. (2025) showed301

that RL mainly reweights the base model’s out-302

puts, boosting performance at low N but lagging at303

larger N where exploration matters. Their findings304

suggest RL narrows the reasoning scope, poten-305

tially suppressing valuable but infrequent trajecto-306

ries. In contrast, distillation-based methods inject307

new knowledge into student models, expanding rea-308

soning capacity across all N values. Cheng et al.309

(2025) identified reward hacking in RL with pro-310

cess reward models (PRMs) and propose a frame-311

work with min-form credit assignment, achieving312

high accuracy using only 30% of the reasoning313

steps.314

3.3.2 Distillation Paradigms315

Distillation-based methods offer a data-driven al-316

ternative to RL for trajectory optimization. Rather317

than relying on reward shaping, distillation directly318

transfers structured reasoning from large teacher319

models to smaller student models.320

Recent work (Shridhar et al., 2023; Hsieh et al.,321

2023; Chen et al., 2025b; Ma et al., 2025a) showed322

that teacher-guided stepwise supervision enables323

concise, effective reasoning without relying on long324

inference chains. The teacher explores diverse rea-325

soning, such as multiple paths and tree-structured326

CoTs. This is distilled into the student to produce327

accurate answers with shorter trajectories. Distilla-328

tion improves by adjusting the supervision format329

(Chen et al., 2025b) or curating datasets that bal-330

ance trajectory length and informativeness (Yin 331

et al., 2025). Moreover, distilled models often 332

match or surpass larger models within similar com- 333

pute budgets (Shridhar et al., 2023; Hsieh et al., 334

2023) and frequently generalize better than RL- 335

trained models, which may overfit to narrow reward 336

signals (Yue et al., 2025; Cheng et al., 2025). Hy- 337

brid strategies combining distillation and RL show 338

promise for robust reasoning (Liu et al., 2025), 339

though this remains an open research area. 340

Several methods optimize trajectory length 341

across paradigms. Z1 (Yu et al., 2025) trains on 342

paired long-short solutions to enable adaptive gen- 343

eration. MRT (Qu et al., 2025) uses episodic re- 344

wards to encourage early termination. PURE as- 345

signs credit to penalize low-quality steps, reducing 346

verbosity and error-prone reasoning. 347

3.4 Challenges and Summary 348

Our preceding survey categorizes TTS approaches 349

into three primary dimensions: parallel scaling, se- 350

quential scaling, and computational optimization. 351

A key insight that emerges is the importance of 352

a model’s inherent generative diversity in deter- 353

mining TTS effectiveness. By increasing test-time 354

sampling, models can explore a broader range of 355

reasoning trajectories, thereby increasing the likeli- 356

hood of arriving at a correct solution. 357

This observation, however, raises a critical ques- 358

tion for models specifically optimized for reason- 359

ing. Prior work on model specialization (sec- 360

tion 3.3) suggests that targeted training for specific 361

capabilities may narrow a model’s output distri- 362

bution. Motivated by this, we examine how such 363

specialization affects TTS performance. 364

We hypothesize that although reasoning- 365

optimized models are skilled at producing accurate 366

responses, this specialization may inadvertently re- 367

duce the output diversity needed for effective test- 368

time scaling. This potential trade-off between rea- 369

soning precision and generative flexibility serves as 370

the foundation for our experimental investigation. 371

4 ADAPT: A Diversity Aware Prefix 372

Fine-Tuning Method 373

Motivated by the hypothesis that generative diver- 374

sity influences TTS performance, we propose a 375

simple yet effective method to encourage diver- 376

sity and empirically test whether increased diver- 377

sity leads to improved TTS results. Our method, 378

ADAPT (A Diversity-Aware Prefix fine-Tuning), 379
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explicitly promotes generation diversity through an380

efficient prefix fine-tuning strategy. The key idea is381

to fine-tune only the initial segments of reasoning382

trajectories using a carefully curated data mixture,383

thereby encouraging the model to explore a broader384

range of initial reasoning paths. This enhanced di-385

versity is expected to enable TTS methods such386

as best-of-N sampling to identify correct solutions387

more efficiently, requiring fewer candidates than388

less diverse models.389

4.1 Dataset Curation390

The training dataset consists primarily of diverse391

responses, supplemented with a smaller subset of392

outputs generated by the target model, which may393

exhibit lower generative diversity. This latter sub-394

set is included to mitigate potential catastrophic395

forgetting and to preserve the model’s original ca-396

pabilities.397

In our experiments, the dataset in-398

cludes 90% responses generated by399

Qwen2.5-Math-1.5B and 10% inference out-400

puts from DeepSeek-R1-Distill-Qwen-1.5B401

(our target model). For the Qwen-derived402

examples, we employ a custom prompt format403

designed to encourage varied initial reasoning404

steps (see appendix A.5 for details), whereas405

the DeepSeek-generated samples retain their406

original chat template. Since all training targets407

are produced by existing models, this fine-tuning408

process can be viewed as a form of targeted409

knowledge transfer or self-supervised learning.410

4.2 Fine-Tuning Procedure411

To improve efficiency and focus on the early stages412

of reasoning, we truncate all training instances to413

their first 512 tokens and fine-tune the model using414

a supervised learning objective. Gradient updates415

are applied only to the prefix segments, while the416

remainder of the model remains frozen, preserving417

most of the pre-trained parameters.418

5 Experiments419

In this section, we detail the experimental setup de-420

signed to evaluate our proposed method, ADAPT,421

and to investigate the interplay between solution422

diversity, trajectory length, and the performance423

of TTS for reasoning tasks. We first describe the424

datasets, evaluation protocols, and baseline models.425

We then present a comparative analysis, focusing426

on accuracy and computational efficiency.427

5.1 Experimental Setup 428

Tasks and Datasets. Our experiments are con- 429

ducted on challenging mathematical reasoning 430

benchmarks, akin to MATH-500 (Lightman et al., 431

2023). The goal is to assess the models’ ability to 432

generate correct multi-step reasoning paths. 433

Evaluation Protocol. Inspired by the test-time 434

compute setup highlighted by Beeching et al., we 435

employ a Best-of-N sampling strategy for all mod- 436

els. For each problem, we generate N candidate so- 437

lutions, where N ∈ {2, 4, 8, 16, 32, 64, 128, 256}. 438

Unless otherwise specified, solutions are generated 439

with a temperature of 0.8 and a maximum length 440

of 2048 tokens per problem. The final answer is 441

determined by majority voting over the N candi- 442

dates, and we report the accuracy based on this 443

aggregated answer (acc_maj). 444

Metrics. We evaluate model performance using 445

four metrics. acc_maj denotes the final accuracy 446

obtained via majority voting over N sampled out- 447

puts. Improvement measures the absolute increase 448

in acc_maj relative to the baseline performance at 449

N = 2. Gain per generation quantifies the aver- 450

age accuracy gain when doubling the sample size 451

(e.g., from N = 2 to N = 4). Finally, Min N to 452

hit threshold refers to the smallest sample count 453

N required to reach a target acc_maj, such as 80%. 454

5.2 Models 455

Three models are compared in our study: 456

• Qwen-1.5B: A pre-trained language model 457

tailored for mathematical reasoning, likely 458

to exhibit higher generative diversity. 459

(Qwen2.5-Math-1.5B) 460

• DeepSeek-Qwen-1.5B: A distilled variant 461

optimized for reasoning tasks (DeepSeek- 462

AI, 2025), which may exhibit reduced 463

generative diversity. This model serves 464

as the target for our ADAPT method. 465

(DeepSeek-R1-Distill-Qwen-1.5B) 466

• ADAPT: A diversity aware prefix fine-tuning 467

approach applied to DeepSeek-Qwen-1.5B, 468

aimed at enhancing its generative diversity 469

while preserving reasoning accuracy. 470

5.3 Diversity Impact on TTS Performance 471

We begin by examining how the effectiveness of 472

best-of-N sampling in TTS depends on both solu- 473

tion diversity and trajectory length. We compare 474

a pre-trained model (Qwen2.5-Math-1.5B) with 475
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Figure 4: TTS performance comparison of pre-
trained vs. distilled model.

its distilled counterpart optimized for reasoning476

(DeepSeek Qwen-1.5B).477

As shown in Figure 4, DeepSeek Qwen-1.5B478

achieves a higher baseline accuracy of 65.2% at479

N = 2, reaching 80.8% at N = 256 (+15.6%).480

In contrast, Qwen2.5-Math-1.5B starts lower at481

39.2% but exhibits a steeper improvement, reach-482

ing 65.8% (+26.6%). These findings suggest that483

while distillation enhances baseline reasoning per-484

formance, it may also suppress generative diversity,485

limiting the benefits of increased sampling. This486

observation well motivated our hypothesis: explic-487

itly promoting diversity during fine-tuning can en-488

hance both the efficiency and effectiveness of TTS489

for reasoning-specialized models.490

5.4 Results491

Table 1 summarizes the results of ADAPT com-492

pared to both baselines. Notably, ADAPT reaches493

80% accuracy with only 32 samples, an 8× im-494

provement over DeepSeek Qwen-1.5B. At N =495

16, it already surpasses the distilled baseline at496

N = 256.497

As shown in Table 1, both ADAPT and498

DeepSeek Qwen-1.5B achieve strong initial perfor-499

mance (65.2% at N = 2), clearly outperforming500

the pre-trained Qwen2.5-1.5B (39.2%). ADAPT501

attains the highest peak accuracy (81.0% at N =502

256), marginally surpassing DeepSeek Qwen-1.5B503

(80.8%). While Qwen2.5-1.5B shows the largest504

relative improvement (+26.6 pp), its ceiling re-505

mains substantially lower.506

Beyond peak accuracy, ADAPT offers signif-507

icant advantages in convergence speed and sam-508

pling efficiency. It reaches 80% accuracy with just509

N = 32 samples—an 8× improvement over the510

N = 256 needed by DeepSeek Qwen-1.5B. With511

Figure 5: Marginal gain per generation for across
models

only N = 16 samples, ADAPT already achieves 512

78.2%, making it suitable for low-budget inference. 513

In contrast, Qwen2.5-1.5B fails to reach the 80% 514

threshold even at N = 256. 515

Figure 5 illustrates the diminishing returns of 516

larger N for all models. For ADAPT, most gains 517

occur early (N = 2 to N = 32), suggesting that it 518

captures the majority of TTS benefits with a rela- 519

tively small number of generations. 520

5.5 Discussion 521

Our results validate the central hypothesis: enhanc- 522

ing output diversity improves both the accuracy 523

and efficiency of reasoning models under Best-of- 524

N sampling. While DeepSeek Qwen-1.5B offers a 525

strong baseline, its improvements require large N , 526

consistent with prior observations that distillation, 527

though beneficial for core reasoning, may suppress 528

generative diversity. 529

ADAPT addresses this limitation via prefix fine- 530

tuning focused on early-stage reasoning. By updat- 531

ing only a small number of prefix parameters and 532

training on a hybrid dataset—composed of model- 533

generated responses and a subset of base model 534

outputs—ADAPT promotes diverse initial reason- 535

ing paths while mitigating catastrophic forgetting. 536

The prompt template further steers variation in the 537

early solution space (see appendix A.5). 538

This strategy yields strong gains even under lim- 539

ited sampling budgets: ADAPT exceeds 80% ac- 540

curacy with only N = 32 samples and achieves 541

78.2% at N = 16. These results demonstrate that 542

diversity-aware prefix tuning enables more effi- 543

cient exploitation of TTS compared to standard 544

fine-tuned models. 545

In summary, ADAPT delivers faster conver- 546

gence, stronger low-sample performance, and bet- 547
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Model Acc. Maj@2 Acc. Maj@256 Acc. Maj@16 Min N for 80% (↓)

Qwen2.5-1.5B 39.2% 65.8% 60.0% ∞
DeepSeek Qwen-1.5B 65.2% 80.8% 77.6% 256
ADAPT (Ours) 65.2% 81.0% 78.2% 32

Table 1: Best-of-N majority voting results. “Min N” indicates the smallest N required to reach 80% accuracy.

ter overall accuracy under Best-of-N majority vot-548

ing. Its improvements stem from explicitly opti-549

mizing for sample-efficient diversity, making it a550

compelling approach for resource-constrained in-551

ference.552

6 Future Directions553

In this section, we outline several future directions554

in the TTS regime. As a new research area, TTS555

still faces many unexplored challenges and devel-556

oped applications. A detailed discussion of TTS557

applications is provided in appendix A. Here, we558

focus on five key categories: robustness, training,559

safety, hallucination, and synthetic datasets.560

Robustness. TTS might fail under certain condi-561

tions. For instance, prompt format significantly af-562

fect LLM performance on the same task. Hochlehn-563

ert et al. (2025) showed that reasoning accuracy is564

highly sensitive to prompt design. Therefore, inves-565

tigating how the content and structure of prompts566

affect TTS is a promising direction for future re-567

search.568

Training. Dang et al. (2025) identified that the569

training of the reasoning models leads to subopti-570

mal performance of TTS. Furthermore, Chen et al.571

(2025a) suggested that modifications to the pre-572

training / fine-tuning stages are necessary to opti-573

mize TTS performance.574

Specifically, they observe that training with575

cross-entropy loss leads to a decrease in pass@N576

accuracy. It may result from cross-entropy loss577

leading to model overconfidence. The finding un-578

derscores the need to reconsider the pre-training579

and fine-tuning strategies in order to achieve better580

performance and efficiency. For instance, it is im-581

portant to explore the impact of training strategies,582

such as backpropagation, on TTS performance.583

Safety. Chen et al. found that the thinking pro-584

cess of LLMs may not be entirely transparent. They585

prompt the model with a question and the corre-586

sponding answer, but observe that LLMs rarely587

acknowledge receiving the hint. Additionally, they588

note that CoT monitoring may not be sufficiently 589

reliable to capture the true cognitive process of 590

LLMs. Future work should further explore how 591

LLMs perform reasoning to derive answers, in or- 592

der to establish better control over their behavior. 593

Hallucination. Despite TTS success on some 594

math and coding tests, OpenAI (2024b) showed 595

that GPT o3 and o4-mini suffer from the halluci- 596

nation problem. Future work should aim to under- 597

stand the relationship between RL and SFT meth- 598

ods used to enable LLMs to scale test-time compu- 599

tation, as well as their impact on hallucination. 600

Synthetic dataset. Synthetic datasets (Goldie 601

et al., 2025; Wang et al., 2025a; Lei et al., 2024) 602

provide precise control over task structure and dif- 603

ficulty. It enables the isolation of specific factors 604

relevant to test-time computation. This reduces con- 605

founding effects present in natural data and helps 606

reveal how scaling the inference budget impacts 607

reasoning depth, compositionality, and context in- 608

tegration. 609

7 Conclusion 610

In this paper, we present a comprehensive sur- 611

vey of test-time scaling (TTS), categorizing recent 612

approaches into three main strategies: sampling, 613

search, and trajectory optimization. Through this 614

analysis, we hypothesize that generative diversity 615

is a key factor influencing TTS performance. Our 616

experiments support this hypothesis, showing that 617

while distillation enhances baseline reasoning ac- 618

curacy, it can also reduce output diversity, thereby 619

limiting the effectiveness of sampling-based TTS 620

methods. To address this limitation, we intro- 621

duce ADAPT, a diversity aware prefix fine-tuning 622

method designed to enhance output diversity and 623

improve both the efficiency and performance of 624

reasoning-optimized models under TTS. 625

Limitations 626

While ADAPT demonstrates strong performance 627

under Best-of-N sampling, several limitations re- 628

8



main. First, all experiments are conducted on629

a single reasoning domain—mathematical prob-630

lem solving. It remains unclear whether simi-631

lar diversity-induced gains would generalize to632

broader tasks such as commonsense or multi-hop633

QA. Second, our evaluations focus on a relatively634

small model (1.5B parameters); scaling effects and635

interactions with larger architectures are left for636

future work.637

Third, although ADAPT improves sample effi-638

ciency, it does not directly optimize diversity met-639

rics (e.g., self-BLEU, pairwise entropy), and its640

diversity-enhancing effect is inferred only through641

indirect accuracy gains. Explicit diversity measure-642

ments could provide more rigorous support for the643

core hypothesis. Finally, we fix the prefix length644

and data mixture ratio throughout; exploring how645

these hyperparameters impact diversity and perfor-646

mance may yield further improvements.647

References648

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten649
Bosma, Henryk Michalewski, David Dohan, Ellen650
Jiang, Carrie Cai, Michael Terry, Quoc Le, and651
Charles Sutton. 2021. Program synthesis with large652
language models. Preprint, arXiv:2108.07732.653

Edward Beeching, Lewis Tunstall, and Sasha Rush.654
Scaling test-time compute with open models.655

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-656
stenberger, Michal Podstawski, Lukas Gianinazzi,657
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-658
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph659
of thoughts: Solving elaborate problems with large660
language models. Proceedings of the AAAI Confer-661
ence on Artificial Intelligence, 38(16):17682–17690.662

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and663
Yunhe Wang. 2025. Forest-of-thought: Scaling test-664
time compute for enhancing llm reasoning. Preprint,665
arXiv:2412.09078.666

Houda Bouamor, Juan Pino, and Kalika Bali, editors.667
2023. Proceedings of the 2023 Conference on Empir-668
ical Methods in Natural Language Processing. Asso-669
ciation for Computational Linguistics, Singapore.670

Feng Chen, Allan Raventos, Nan Cheng, Surya Gan-671
guli, and Shaul Druckmann. 2025a. Rethinking fine-672
tuning when scaling test-time compute: Limiting con-673
fidence improves mathematical reasoning. Preprint,674
arXiv:2502.07154.675

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,676
Henrique Ponde de Oliveira Pinto, Jared Kaplan,677
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg678
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,679
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela680

Mishkin, Brooke Chan, Scott Gray, and 39 others. 681
2021. Evaluating large language models trained on 682
code. Preprint, arXiv:2107.03374. 683

Xinghao Chen, Zhijing Sun, Wenjin Guo, Miaoran 684
Zhang, Yanjun Chen, Yirong Sun, Hui Su, Yijie 685
Pan, Dietrich Klakow, Wenjie Li, and Xiaoyu Shen. 686
2025b. Unveiling the key factors for distilling chain- 687
of-thought reasoning. Preprint, arXiv:2502.18001. 688

Yanda Chen, Joe Benton, Ansh Radhakrishnan, 689
Jonathan Uesato Carson Denison, John Schulman, 690
Arushi Somani, Peter Hase, Misha Wagner Fabien 691
Roger Vlad Mikulik, Sam Bowman, Jan Leike Jared 692
Kaplan, and 1 others. Reasoning models don’t al- 693
ways say what they think. 694

Jie Cheng, Ruixi Qiao, Lijun Li, Chao Guo, Junle Wang, 695
Gang Xiong, Yisheng Lv, and Fei-Yue Wang. 2025. 696
Stop summation: Min-form credit assignment is all 697
process reward model needs for reasoning. Preprint, 698
arXiv:2504.15275. 699

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent 700
Zhuang, Bo Dai, Sridhar Thiagarajan, Craig Boutilier, 701
Rishabh Agarwal, Aviral Kumar, and Aleksandra 702
Faust. 2024. Inference-aware fine-tuning for best- 703
of-n sampling in large language models. Preprint, 704
arXiv:2412.15287. 705

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 706
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 707
Barham, Hyung Won Chung, Charles Sutton, and 1 708
others. 2022. Palm: Scaling language modeling with 709
pathways. arXiv preprint arXiv:2204.02311. 710

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 711
Ashish Sabharwal, Carissa Schoenick, and Oyvind 712
Tafjord. 2018. Think you have solved question 713
answering? try arc, the ai2 reasoning challenge. 714
Preprint, arXiv:1803.05457. 715

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 716
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 717
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 718
Nakano, Christopher Hesse, and John Schulman. 719
2021. Training verifiers to solve math word prob- 720
lems. Preprint, arXiv:2110.14168. 721

Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui 722
Xu, Yue Zhao, Youjin Song, Shihao Han, Ka Chun 723
Cheung, Jan Kautz, Carlos Guestrin, Tatsunori 724
Hashimoto, Sanmi Koyejo, Yejin Choi, Yu Sun, and 725
Xiaolong Wang. 2025. One-minute video generation 726
with test-time training. Preprint, arXiv:2504.05298. 727

Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter, 728
and Aditi Raghunathan. 2025. Weight ensembling 729
improves reasoning in language models. Preprint, 730
arXiv:2504.10478. 731

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 732
soning capability in llms via reinforcement learning. 733
Preprint, arXiv:2501.12948. 734

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2412.09078
https://arxiv.org/abs/2412.09078
https://arxiv.org/abs/2412.09078
https://aclanthology.org/2023.emnlp-main.0/
https://aclanthology.org/2023.emnlp-main.0/
https://aclanthology.org/2023.emnlp-main.0/
https://arxiv.org/abs/2502.07154
https://arxiv.org/abs/2502.07154
https://arxiv.org/abs/2502.07154
https://arxiv.org/abs/2502.07154
https://arxiv.org/abs/2502.07154
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2502.18001
https://arxiv.org/abs/2502.18001
https://arxiv.org/abs/2502.18001
https://arxiv.org/abs/2504.15275
https://arxiv.org/abs/2504.15275
https://arxiv.org/abs/2504.15275
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2504.05298
https://arxiv.org/abs/2504.05298
https://arxiv.org/abs/2504.05298
https://arxiv.org/abs/2504.10478
https://arxiv.org/abs/2504.10478
https://arxiv.org/abs/2504.10478
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948


Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,735
Di He, and Liwei Wang. 2023. Towards revealing736
the mystery behind chain of thought: A theoretical737
perspective. Preprint, arXiv:2305.15408.738

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao739
Wang. 2025. Efficient reasoning models: A survey.740
Preprint, arXiv:2504.10903.741

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo742
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang743
Chen, Runxin Xu, Zhengyang Tang, Benyou Wang,744
Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei745
Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu,746
and Baobao Chang. 2024. Omni-math: A univer-747
sal olympiad level mathematic benchmark for large748
language models. Preprint, arXiv:2410.07985.749

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,750
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-751
ham Neubig. 2023. Pal: Program-aided language752
models. Preprint, arXiv:2211.10435.753

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,754
Dan Roth, and Jonathan Berant. 2021. Did aristotle755
use a laptop? a question answering benchmark with756
implicit reasoning strategies. Transactions of the757
Association for Computational Linguistics, 9:346–758
361.759

Anna Goldie, Azalia Mirhoseini, Hao Zhou, Irene Cai,760
and Christopher D. Manning. 2025. Synthetic data761
generation & multi-step rl for reasoning & tool use.762
Preprint, arXiv:2504.04736.763

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,764
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.765
Training large language models to reason in a contin-766
uous latent space. Preprint, arXiv:2412.06769.767

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,768
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-769
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan770
Liu, and Maosong Sun. 2024. Olympiadbench:771
A challenging benchmark for promoting agi with772
olympiad-level bilingual multimodal scientific prob-773
lems. Preprint, arXiv:2402.14008.774

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-775
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,776
Samir Puranik, Horace He, Dawn Song, and Jacob777
Steinhardt. 2021a. Measuring coding challenge com-778
petence with apps. NeurIPS.779

Dan Hendrycks, Collin Burns, Steven Basart, Andrew780
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.781
2021b. Aligning ai with shared human values. Pro-782
ceedings of the International Conference on Learning783
Representations (ICLR).784

Dan Hendrycks, Collin Burns, Steven Basart, Andy785
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-786
hardt. 2021c. Measuring massive multitask language787
understanding. Proceedings of the International Con-788
ference on Learning Representations (ICLR).789

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 790
Arora, Steven Basart, Eric Tang, Dawn Song, and 791
Jacob Steinhardt. 2021d. Measuring mathematical 792
problem solving with the math dataset. NeurIPS. 793

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udan- 794
darao, Samuel Albanie, Ameya Prabhu, and Matthias 795
Bethge. 2025. A sober look at progress in language 796
model reasoning: Pitfalls and paths to reproducibility. 797
Preprint, arXiv:2504.07086. 798

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, 799
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 800
Diego de Las Casas, Lisa Anne Hendricks, Johannes 801
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, 802
Katie Millican, George van den Driessche, Bogdan 803
Damoc, Aurelia Guy, Simon Osindero, Karen Si- 804
monyan, Erich Elsen, and 3 others. 2022. Training 805
compute-optimal large language models. Preprint, 806
arXiv:2203.15556. 807

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, 808
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, 809
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 810
2023. Distilling step-by-step! outperforming larger 811
language models with less training data and smaller 812
model sizes. Preprint, arXiv:2305.02301. 813

Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, 814
Akshay Krishnamurthy, and Dylan J. Foster. 2025a. 815
Is best-of-n the best of them? coverage, scaling, and 816
optimality in inference-time alignment. Preprint, 817
arXiv:2503.21878. 818

Chengsong Huang, Langlin Huang, Jixuan Leng, Ji- 819
acheng Liu, and Jiaxin Huang. 2025b. Efficient 820
test-time scaling via self-calibration. Preprint, 821
arXiv:2503.00031. 822

Jianhao Huang, Zixuan Wang, and Jason D. Lee. 823
2025c. Transformers learn to implement multi-step 824
gradient descent with chain of thought. Preprint, 825
arXiv:2502.21212. 826

Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang, 827
and Yuyin Zhou. 2025d. m1: Unleash the potential 828
of test-time scaling for medical reasoning with large 829
language models. Preprint, arXiv:2504.00869. 830

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 831
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 832
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 833
codebench: Holistic and contamination free evalu- 834
ation of large language models for code. Preprint, 835
arXiv:2403.07974. 836

Can Jin, Hongwu Peng, Qixin Zhang, Yujin Tang, Dim- 837
itris N. Metaxas, and Tong Che. 2025. Two heads 838
are better than one: Test-time scaling of multi-agent 839
collaborative reasoning. Preprint, arXiv:2504.09772. 840

Manuj Kant, Manav Kant, Marzieh Nabi, Preston 841
Carlson, and Megan Ma. 2024. Equitable access 842
to justice: Logical llms show promise. Preprint, 843
arXiv:2410.09904. 844

10

https://arxiv.org/abs/2305.15408
https://arxiv.org/abs/2305.15408
https://arxiv.org/abs/2305.15408
https://arxiv.org/abs/2305.15408
https://arxiv.org/abs/2305.15408
https://arxiv.org/abs/2504.10903
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://arxiv.org/abs/2504.04736
https://arxiv.org/abs/2504.04736
https://arxiv.org/abs/2504.04736
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2503.21878
https://arxiv.org/abs/2503.21878
https://arxiv.org/abs/2503.21878
https://arxiv.org/abs/2503.00031
https://arxiv.org/abs/2503.00031
https://arxiv.org/abs/2503.00031
https://arxiv.org/abs/2502.21212
https://arxiv.org/abs/2502.21212
https://arxiv.org/abs/2502.21212
https://arxiv.org/abs/2504.00869
https://arxiv.org/abs/2504.00869
https://arxiv.org/abs/2504.00869
https://arxiv.org/abs/2504.00869
https://arxiv.org/abs/2504.00869
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2504.09772
https://arxiv.org/abs/2504.09772
https://arxiv.org/abs/2504.09772
https://arxiv.org/abs/2504.09772
https://arxiv.org/abs/2504.09772
https://arxiv.org/abs/2410.09904
https://arxiv.org/abs/2410.09904
https://arxiv.org/abs/2410.09904


Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.845
Brown, Benjamin Chess, Rewon Child, Scott Gray,846
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.847
Scaling laws for neural language models. Preprint,848
arXiv:2001.08361.849

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate850
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:851
A math word problem repository. In Proceedings of852
the 2016 Conference of the North American Chapter853
of the Association for Computational Linguistics: Hu-854
man Language Technologies, pages 1152–1157, San855
Diego, California. Association for Computational856
Linguistics.857

Deqian Kong, Minglu Zhao, Dehong Xu, Bo Pang, Shu858
Wang, Edouardo Honig, Zhangzhang Si, Chuan Li,859
Jianwen Xie, Sirui Xie, and Ying Nian Wu. 2025.860
Scalable language models with posterior inference of861
latent thought vectors. Preprint, arXiv:2502.01567.862

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,863
John D Co-Reyes, Avi Singh, Kate Baumli, Shariq864
Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang,865
Kay McKinney, Disha Shrivastava, Cosmin Paduraru,866
George Tucker, Doina Precup, Feryal Behbahani, and867
Aleksandra Faust. 2025a. Training language mod-868
els to self-correct via reinforcement learning. In869
The Thirteenth International Conference on Learn-870
ing Representations.871

Komal Kumar, Tajamul Ashraf, Omkar Thawakar,872
Rao Muhammad Anwer, Hisham Cholakkal,873
Mubarak Shah, Ming-Hsuan Yang, Phillip H. S. Torr,874
Fahad Shahbaz Khan, and Salman Khan. 2025b. Llm875
post-training: A deep dive into reasoning large lan-876
guage models. Preprint, arXiv:2502.21321.877

Fangyu Lei, Qian Liu, Yiming Huang, Shizhu He, Jun878
Zhao, and Kang Liu. 2024. S3eval: A synthetic, scal-879
able, systematic evaluation suite for large language880
models. Preprint, arXiv:2310.15147.881

Xinzhe Li. 2025. A survey on LLM test-time compute882
via search: Tasks, LLM profiling, search algorithms,883
and relevant frameworks. Transactions on Machine884
Learning Research.885

Yanyang Li, Michael Lyu, and Liwei Wang. 2025.886
Learning to reason from feedback at test-time.887

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu888
Ma. 2024. Chain of thought empowers transform-889
ers to solve inherently serial problems. Preprint,890
arXiv:2402.12875.891

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri892
Edwards, Bowen Baker, Teddy Lee, Jan Leike,893
John Schulman, Ilya Sutskever, and Karl Cobbe.894
2023. Let’s verify step by step. arXiv preprint895
arXiv:2305.20050.896

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-897
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,898
John Schulman, Ilya Sutskever, and Karl Cobbe.899
2024. Let’s verify step by step. In The Twelfth Inter-900
national Conference on Learning Representations.901

Kevin Lin, Charlie Snell, Yu Wang, Charles Packer, 902
Sarah Wooders, Ion Stoica, and Joseph E. Gonzalez. 903
2025. Sleep-time compute: Beyond inference scaling 904
at test-time. Preprint, arXiv:2504.13171. 905

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun- 906
som. 2017. Program induction by rationale genera- 907
tion: Learning to solve and explain algebraic word 908
problems. In Proceedings of the 55th Annual Meet- 909
ing of the Association for Computational Linguistics 910
(Volume 1: Long Papers), pages 158–167, Vancouver, 911
Canada. Association for Computational Linguistics. 912

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay 913
Krishnamurthy, and Cyril Zhang. 2023. Trans- 914
formers learn shortcuts to automata. Preprint, 915
arXiv:2210.10749. 916

Guanlin Liu, Anand Ramachandran, Tanmay Gang- 917
wani, Yan Fu, and Abhinav Sethy. 2025. Knowl- 918
edge distillation with training wheels. Preprint, 919
arXiv:2502.17717. 920

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang 921
Shi, William Y. Tang, Manan Roongta, Colin 922
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, 923
and Ion Stoica. 2025. Deepscaler: Surpass- 924
ing o1-preview with a 1.5b model by scaling 925
rl. https://pretty-radio-b75.notion.site/ 926
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2.927
Notion Blog. 928

Junyu Ma, Tianqing Fang, Zhisong Zhang, Hongming 929
Zhang, Haitao Mi, and Dong Yu. 2025a. Recall with 930
reasoning: Chain-of-thought distillation for mamba’s 931
long-context memory and extrapolation. Preprint, 932
arXiv:2505.03320. 933

Xiao Ma, Yuhui Tao, Yuhan Zhang, Zexuan Ji, Yizhe 934
Zhang, and Qiang Chen. 2024. Test-time genera- 935
tive augmentation for medical image segmentation. 936
Preprint, arXiv:2406.17608. 937

Yingwei Ma, Yongbin Li, Yihong Dong, Xue Jiang, 938
Rongyu Cao, Jue Chen, Fei Huang, and Binhua Li. 939
2025b. Thinking longer, not larger: Enhancing soft- 940
ware engineering agents via scaling test-time com- 941
pute. Preprint, arXiv:2503.23803. 942

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 943
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 944
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 945
and 1 others. 2023. Self-refine: Iterative refinement 946
with self-feedback. 947

William Merrill and Ashish Sabharwal. 2024. The ex- 948
pressive power of transformers with chain of thought. 949
Preprint, arXiv:2310.07923. 950

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, 951
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar. 952
2024. Gsm-symbolic: Understanding the limitations 953
of mathematical reasoning in large language models. 954
Preprint, arXiv:2410.05229. 955

11

https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://arxiv.org/abs/2502.01567
https://arxiv.org/abs/2502.01567
https://arxiv.org/abs/2502.01567
https://openreview.net/forum?id=CjwERcAU7w
https://openreview.net/forum?id=CjwERcAU7w
https://openreview.net/forum?id=CjwERcAU7w
https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2310.15147
https://arxiv.org/abs/2310.15147
https://arxiv.org/abs/2310.15147
https://arxiv.org/abs/2310.15147
https://arxiv.org/abs/2310.15147
https://openreview.net/forum?id=x9VQFjtOPS
https://openreview.net/forum?id=x9VQFjtOPS
https://openreview.net/forum?id=x9VQFjtOPS
https://openreview.net/forum?id=x9VQFjtOPS
https://openreview.net/forum?id=x9VQFjtOPS
https://arxiv.org/abs/2402.12875
https://arxiv.org/abs/2402.12875
https://arxiv.org/abs/2402.12875
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2504.13171
https://arxiv.org/abs/2504.13171
https://arxiv.org/abs/2504.13171
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://arxiv.org/abs/2210.10749
https://arxiv.org/abs/2210.10749
https://arxiv.org/abs/2210.10749
https://arxiv.org/abs/2502.17717
https://arxiv.org/abs/2502.17717
https://arxiv.org/abs/2502.17717
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://arxiv.org/abs/2505.03320
https://arxiv.org/abs/2505.03320
https://arxiv.org/abs/2505.03320
https://arxiv.org/abs/2505.03320
https://arxiv.org/abs/2505.03320
https://arxiv.org/abs/2406.17608
https://arxiv.org/abs/2406.17608
https://arxiv.org/abs/2406.17608
https://arxiv.org/abs/2503.23803
https://arxiv.org/abs/2503.23803
https://arxiv.org/abs/2503.23803
https://arxiv.org/abs/2503.23803
https://arxiv.org/abs/2503.23803
https://arxiv.org/abs/2310.07923
https://arxiv.org/abs/2310.07923
https://arxiv.org/abs/2310.07923
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229


NVIDIA, :, Niket Agarwal, Arslan Ali, Maciej Bala,956
Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvi-957
jit Chattopadhyay, Yongxin Chen, Yin Cui, Yifan958
Ding, Daniel Dworakowski, Jiaojiao Fan, Michele959
Fenzi, Francesco Ferroni, Sanja Fidler, Dieter Fox,960
Songwei Ge, and 60 others. 2025. Cosmos world961
foundation model platform for physical ai. Preprint,962
arXiv:2501.03575.963

OpenAI. 2023. Gpt-4 technical report. arXiv preprint964
arXiv:2303.08774.965

OpenAI. 2024a. Learning to reason with llms. Ac-966
cessed: 2025-05-18.967

OpenAI. 2024b. Openai o3 and o4-mini system card.968
Technical report, OpenAI. Accessed: 2025-04-22.969

Qianjun Pan, Wenkai Ji, Yuyang Ding, Junsong Li, Shil-970
ian Chen, Junyi Wang, Jie Zhou, Qin Chen, Min971
Zhang, Yulan Wu, and Liang He. 2025. A survey of972
slow thinking-based reasoning llms using reinforced973
learning and inference-time scaling law. Preprint,974
arXiv:2505.02665.975

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.976
2021. Are NLP models really able to solve simple977
math word problems? In Proceedings of the 2021978
Conference of the North American Chapter of the979
Association for Computational Linguistics: Human980
Language Technologies, pages 2080–2094, Online.981
Association for Computational Linguistics.982

Yuxiao Qu, Matthew Y. R. Yang, Amrith Setlur,983
Lewis Tunstall, Edward Emanuel Beeching, Ruslan984
Salakhutdinov, and Aviral Kumar. 2025. Optimizing985
test-time compute via meta reinforcement fine-tuning.986
Preprint, arXiv:2503.07572.987

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral988
Kumar. 2024. Recursive introspection: Teaching989
language model agents how to self-improve.990

Leonardo Ranaldi, Marco Valentino, Alexander Polon-991
sky, and Andrè Freitas. 2025. Improving chain-of-992
thought reasoning via quasi-symbolic abstractions.993
Preprint, arXiv:2502.12616.994

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-995
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-996
lian Michael, and Samuel R. Bowman. 2024. GPQA:997
A graduate-level google-proof q&a benchmark. In998
First Conference on Language Modeling.999

Abulhair Saparov and He He. 2023. Language models1000
are greedy reasoners: A systematic formal analysis1001
of chain-of-thought. In The Eleventh International1002
Conference on Learning Representations.1003

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv1004
Kumar, and Sashank J. Reddi. 2025. Reasoning with1005
latent thoughts: On the power of looped transformers.1006
Preprint, arXiv:2502.17416.1007

Amrith Setlur, Nived Rajaraman, Sergey Levine, and 1008
Aviral Kumar. 2025. Scaling test-time compute 1009
without verification or rl is suboptimal. Preprint, 1010
arXiv:2502.12118. 1011

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, 1012
Yali Du, and Yulan He. 2025. Codi: Compress- 1013
ing chain-of-thought into continuous space via self- 1014
distillation. Preprint, arXiv:2502.21074. 1015

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya 1016
Sachan. 2023. Distilling reasoning capabili- 1017
ties into smaller language models. Preprint, 1018
arXiv:2212.00193. 1019

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku- 1020
mar. 2024. Scaling llm test-time compute optimally 1021
can be more effective than scaling model parameters. 1022
Preprint, arXiv:2408.03314. 1023

Benedikt Stroebl, Sayash Kapoor, and Arvind 1024
Narayanan. 2024. Inference scaling flaws: The limits 1025
of llm resampling with imperfect verifiers. Preprint, 1026
arXiv:2411.17501. 1027

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu 1028
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An- 1029
drew Wen, Shaochen Zhong, Hanjie Chen, and Xia 1030
Hu. 2025. Stop overthinking: A survey on effi- 1031
cient reasoning for large language models. Preprint, 1032
arXiv:2503.16419. 1033

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 1034
Jonathan Berant. 2019. CommonsenseQA: A ques- 1035
tion answering challenge targeting commonsense 1036
knowledge. In Proceedings of the 2019 Conference 1037
of the North American Chapter of the Association for 1038
Computational Linguistics: Human Language Tech- 1039
nologies, Volume 1 (Long and Short Papers), pages 1040
4149–4158, Minneapolis, Minnesota. Association for 1041
Computational Linguistics. 1042

Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, 1043
Chenglin Wu, and Yuyu Luo. 2025. Atom of 1044
thoughts for markov llm test-time scaling. Preprint, 1045
arXiv:2502.12018. 1046

Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting 1047
Chen, Yunjie Ji, Yiping Peng, Han Zhao, and Xian- 1048
gang Li. 2025. Think twice: Enhancing llm rea- 1049
soning by scaling multi-round test-time thinking. 1050
Preprint, arXiv:2503.19855. 1051

Guiyao Tie, Zeli Zhao, Dingjie Song, Fuyang Wei, Rong 1052
Zhou, Yurou Dai, Wen Yin, Zhejian Yang, Jiangyue 1053
Yan, Yao Su, Zhenhan Dai, Yifeng Xie, Yihan Cao, 1054
Lichao Sun, Pan Zhou, Lifang He, Hechang Chen, 1055
Yu Zhang, Qingsong Wen, and 7 others. 2025. A 1056
survey on post-training of large language models. 1057
Preprint, arXiv:2503.06072. 1058

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 1059
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 1060
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 1061
Azhar, and 1 others. 2023. Llama: Open and effi- 1062
cient foundation language models. arXiv preprint 1063
arXiv:2302.13971. 1064

12

https://arxiv.org/abs/2501.03575
https://arxiv.org/abs/2501.03575
https://arxiv.org/abs/2501.03575
https://openai.com/index/learning-to-reason-with-llms/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2505.02665
https://arxiv.org/abs/2505.02665
https://arxiv.org/abs/2505.02665
https://arxiv.org/abs/2505.02665
https://arxiv.org/abs/2505.02665
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2502.12616
https://arxiv.org/abs/2502.12616
https://arxiv.org/abs/2502.12616
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://arxiv.org/abs/2502.17416
https://arxiv.org/abs/2502.17416
https://arxiv.org/abs/2502.17416
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2212.00193
https://arxiv.org/abs/2212.00193
https://arxiv.org/abs/2212.00193
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://arxiv.org/abs/2502.12018
https://arxiv.org/abs/2502.12018
https://arxiv.org/abs/2502.12018
https://arxiv.org/abs/2503.19855
https://arxiv.org/abs/2503.19855
https://arxiv.org/abs/2503.19855
https://arxiv.org/abs/2503.06072
https://arxiv.org/abs/2503.06072
https://arxiv.org/abs/2503.06072


Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob1065
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz1066
Kaiser, and Illia Polosukhin. 2017. Attention is all1067
you need. Advances in neural information processing1068
systems, 30.1069

Jiankang Wang, Jianjun Xu, Xiaorui Wang, Yuxin Wang,1070
Mengting Xing, Shancheng Fang, Zhineng Chen,1071
Hongtao Xie, and Yongdong Zhang. 2025a. A graph-1072
based synthetic data pipeline for scaling high-quality1073
reasoning instructions. Preprint, arXiv:2412.08864.1074

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang,1075
and James Zou. 2024a. Mixture-of-agents en-1076
hances large language model capabilities. Preprint,1077
arXiv:2406.04692.1078

Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang,1079
Shudong Liu, Yi Chen, Jiahao Qiu, Derek Fai Wong,1080
Heng Ji, and Kam-Fai Wong. 2025b. Harness-1081
ing the reasoning economy: A survey of efficient1082
reasoning for large language models. Preprint,1083
arXiv:2503.24377.1084

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,1085
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and1086
Denny Zhou. 2023. Self-consistency improves chain1087
of thought reasoning in language models. Preprint,1088
arXiv:2203.11171.1089

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,1090
Abhranil Chandra, Shiguang Guo, Weiming Ren,1091
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max1092
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,1093
and Wenhu Chen. 2024b. Mmlu-pro: A more robust1094
and challenging multi-task language understanding1095
benchmark. Preprint, arXiv:2406.01574.1096

Sean Welleck, Amanda Bertsch, Matthew Finlayson,1097
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia1098
Kulikov, and Zaid Harchaoui. 2024. From decoding1099
to meta-generation: Inference-time algorithms for1100
large language models. Preprint, arXiv:2406.16838.1101

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen1102
Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and1103
Michael Shieh. 2024. Monte carlo tree search boosts1104
reasoning via iterative preference learning. Preprint,1105
arXiv:2405.00451.1106

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,1107
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui1108
Gong, Tianjian Ouyang, Fanjin Meng, Chenyang1109
Shao, Yuwei Yan, Qinglong Yang, Yiwen Song, Si-1110
jian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao,1111
and Yong Li. 2025a. Towards large reasoning models:1112
A survey of reinforced reasoning with large language1113
models. Preprint, arXiv:2501.09686.1114

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng1115
He. 2025b. Chain of draft: Thinking faster by writing1116
less. Preprint, arXiv:2502.18600.1117

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu1118
Wei. 2025. Towards thinking-optimal scaling of1119
test-time compute for llm reasoning. Preprint,1120
arXiv:2502.18080.1121

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 1122
Thomas L. Griffiths, Yuan Cao, and Karthik 1123
Narasimhan. 2023. Tree of thoughts: Deliber- 1124
ate problem solving with large language models. 1125
Preprint, arXiv:2305.10601. 1126

Huifeng Yin, Yu Zhao, Minghao Wu, Xuanfan Ni, 1127
Bo Zeng, Hao Wang, Tianqi Shi, Liangying Shao, 1128
Chenyang Lyu, Longyue Wang, Weihua Luo, and 1129
Kaifu Zhang. 2025. Towards widening the distil- 1130
lation bottleneck for reasoning models. Preprint, 1131
arXiv:2503.01461. 1132

Zhaojian Yu, Yinghao Wu, Yilun Zhao, Arman Cohan, 1133
and Xiao-Ping Zhang. 2025. Z1: Efficient test-time 1134
scaling with code. Preprint, arXiv:2504.00810. 1135

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai 1136
Wang, Yang Yue, Shiji Song, and Gao Huang. 2025. 1137
Does reinforcement learning really incentivize rea- 1138
soning capacity in llms beyond the base model? 1139
Preprint, arXiv:2504.13837. 1140

Michał Zawalski, William Chen, Karl Pertsch, Oier 1141
Mees, Chelsea Finn, and Sergey Levine. 2025. 1142
Robotic control via embodied chain-of-thought rea- 1143
soning. Preprint, arXiv:2407.08693. 1144

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good- 1145
man. 2022. Star: Bootstrapping reasoning with rea- 1146
soning. Advances in Neural Information Processing 1147
Systems, 35:15476–15488. 1148

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, 1149
Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan Guo, 1150
Yufei Wang, Niklas Muennighoff, Irwin King, Xue 1151
Liu, and Chen Ma. 2025. A survey on test-time scal- 1152
ing in large language models: What, how, where, and 1153
how well? Preprint, arXiv:2503.24235. 1154

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex 1155
Smola. 2022. Automatic chain of thought 1156
prompting in large language models. Preprint, 1157
arXiv:2210.03493. 1158

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, 1159
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and 1160
Nan Duan. 2021. Ar-lsat: Investigating analytical 1161
reasoning of text. Preprint, arXiv:2104.06598. 1162

13

https://arxiv.org/abs/2412.08864
https://arxiv.org/abs/2412.08864
https://arxiv.org/abs/2412.08864
https://arxiv.org/abs/2412.08864
https://arxiv.org/abs/2412.08864
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2503.24377
https://arxiv.org/abs/2503.24377
https://arxiv.org/abs/2503.24377
https://arxiv.org/abs/2503.24377
https://arxiv.org/abs/2503.24377
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2502.18080
https://arxiv.org/abs/2502.18080
https://arxiv.org/abs/2502.18080
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2503.01461
https://arxiv.org/abs/2503.01461
https://arxiv.org/abs/2503.01461
https://arxiv.org/abs/2504.00810
https://arxiv.org/abs/2504.00810
https://arxiv.org/abs/2504.00810
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2407.08693
https://arxiv.org/abs/2407.08693
https://arxiv.org/abs/2407.08693
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/2104.06598


A Appendix1163

A.1 Methodology Structure1164

1165

Methods

Trajectory Optimization

Optimal scaled length of CoT: Yang et al. (2025);
Test time scaling: Snell et al. (2024);

Verifier-based is better: Setlur et al. (2025);
Meta Reinforcement: Qu et al. (2025); RL limit: Yue et al. (2025);

PURE framework: Cheng et al. (2025);
Optimize trajectory length: Yu et al. (2025);

Segment reasoning: Qu et al. (2025);

Search

Variations of CoT
CoT: Lightman et al. (2024); Ranaldi et al. (2025);

CoT with Self-Consistency (CoT-SC): Wang et al. (2023);
Auto-CoT: Zhang et al. (2022);

Monte Carlo Tree Search (MCTS): Xie et al. (2024);
Tree-of-Thoughts (ToT): Yao et al. (2023) ; Forest-of-Thought (FoT): Bi et al. (2025);

Atom-of-Thoughts (AoT): Teng et al. (2025);
Chain of Draft: Xu et al. (2025b);

Mixture of Agents: Wang et al. (2024a);

Theory of CoT
Expressive power of CoT: Liu et al. (2023); Merrill and Sabharwal (2024); Li et al. (2024);

Connection between CoT and in-context learning: Huang et al. (2025c);

Hidden layer search
Sleep-time compute method: Lin et al. (2025);

Coconut paradigm (Chain of Continuous Thought): Hao et al. (2024);
Latent-Thought Language Models (LTMs): Kong et al. (2025);

CODI: Shen et al. (2025);
Looped transformer: Saunshi et al. (2025);

Self-improvement
Self-Refine: Madaan et al. (2023);

Coconut paradigm (Chain of Continuous Thought): Hao et al. (2024);
Latent-Thought Language Models (LTMs): Kong et al. (2025);

CODI: Shen et al. (2025);
Looped transformer: Saunshi et al. (2025);

Sampling
Think multiple rounds: Tian et al. (2025);

Inference-Aware: Chow et al. (2024)
Self-Calibration: Huang et al. (2025b);

1166

Figure 6: Methodology classification structure.
1167
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A.2 Related Work1168

There are numerous surveys focusing on various1169

aspects of reasoning, post-training, and TTS. Pan1170

et al. (2025); Xu et al. (2025a) survey reasoning1171

models. Efficiency-focused surveys include Feng1172

et al. (2025), Wang et al. (2025b), and Sui et al.1173

(2025). TTS is covered by Zhang et al. (2025) and1174

Li (2025). Post-training techniques are reviewed in1175

Kumar et al. (2025b) and Tie et al. (2025).1176

Unlike previous work that systematically catego-1177

rizes TTS methods, our study not only investigates1178

TTS classification but, more importantly, proposes1179

an experimental investigation into the trade-offs1180

between reasoning proficiency and output diversity,1181

inspired by our survey.1182

A.3 Applications in Real-World Domains1183

Robotics and Autonomous Systems In robotics,1184

TTS facilitates improved decision-making and1185

adaptability in dynamic environments (Zawalski1186

et al., 2025). World Foundation Models (WFMs)1187

(NVIDIA et al., 2025) simulate physical environ-1188

ments. They support tasks like autonomous driving1189

and robotics. TTS improves their prediction. It1190

also increases adaptability during inference.1191

Software Engineering and Autonomous Agents1192

In software engineering, TTS enhances reasoning1193

in autonomous agents handling complex develop-1194

ment tasks. The SWE-Reasoner framework (Ma1195

et al., 2025b) introduce a unified approach that1196

combines internal and external test-time compute1197

strategies to dynamically allocate computational1198

resources during inference. Internally, it lever-1199

ages development-contextualized long Chain-of-1200

Thought trajectories to to guide smaller models1201

for multi-step reasoning tasks. Externally, it incor-1202

porates reward-guided search and execution-based1203

verification to focus inference-time compute on crit-1204

ical development phases such as fault localization1205

and patch generation. Complementing this, multi-1206

agent collaborative systems such as M1 + CEO1207

((Jin et al., 2025)) use a central coordination agent1208

to dynamically manage reasoning depth, agent iter-1209

ation, and communication strategies at test time.1210

Video Processing and Streaming Analytics1211

TTS has shown promise in video processing Dalal1212

et al. (2025), particularly in scenarios requiring1213

real-time analysis and adaptation. The Test-Time1214

Training (TTT) approach extends TTS to stream-1215

ing video data. It helps models adapt to temporal1216

changes. It also improves performance on tasks 1217

like instance segmentation and panoptic segmen- 1218

tation. TTT outperforms traditional fixed-model 1219

baselines by continuously updating the model with 1220

incoming video frames, thus enhancing accuracy 1221

in dynamic visual environments . 1222

Medical Diagnostics and Clinical Decision Sup- 1223

port TTS enhances the diagnostic capabilities 1224

by allowing more extensive reasoning during in- 1225

ference. (Huang et al., 2025d) demonstrate that 1226

increasing the reasoning token budget at test time 1227

significantly improves performance on medical 1228

question-answering tasks. However, the study also 1229

notes an optimal reasoning token budget, beyond 1230

which performance may degrade due to overthink- 1231

ing. 1232

Additionally, TTS contributes to uncertainty es- 1233

timation in medical image segmentation Ma et al. 1234

(2024). By applying test-time augmentation tech- 1235

niques, models can better assess aleatoric uncer- 1236

tainty, leading to more reliable segmentation out- 1237

puts and reducing overconfident incorrect predic- 1238

tions. 1239

Legal Document Analysis and Compliance Le- 1240

gal document analysis involves processing complex 1241

and lengthy texts, where TTS enhances the compre- 1242

hension and reasoning abilities of AI models Kant 1243

et al. (2024). By allocating more computational 1244

resources during inference, models can better un- 1245

derstand intricate legal language, identify relevant 1246

precedents, and ensure compliance with regula- 1247

tions. This capability is particularly valuable in 1248

tasks such as contract analysis, legal research, and 1249

compliance monitoring. 1250

Takeaways. TTS enhances real-world applica-
tions by enabling adaptive, context-aware infer-
ence. In robotics, it improves decision-making
in dynamic environments. In software engineer-
ing, it supports multi-step reasoning and verifica-
tion in development tasks. For video, it adapts to
streaming input for more accurate segmentation.
In medicine, it boosts clinical QA performance
and improves uncertainty estimation. In legal
analysis, it helps models process complex lan-
guage and ensure compliance.

1251

A.4 Dataset 1252

As shown in Table table 2, we have collected and 1253

summarized several common datasets used in previ- 1254

ous work for future experimental implementation. 1255
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Dataset Size Domain Description Ref

DeepScaleR-Preview-Dataset 40K+ Math Problem-answer pairs Luo et al. (2025)
MATH 12.5K Math Competition mathematics problems Hendrycks et al. (2021d)
GSM8K 8.5K Math Grade school math problems Cobbe et al. (2021)
GSM-hard 1.32K Math Question-answer pairs Gao et al. (2023)
GSM-Symbolic 5K Math Question-answer pairs Mirzadeh et al. (2024)
TheoremQA 800 Math Question-answer pairs Bouamor et al. (2023)
SVAMP 1K Math Question-answer pairs Patel et al. (2021)
MAWPS 3.3K Math Collection of math word problems Koncel-Kedziorski et al. (2016)
AQUA-RAT 100K Math Grade-school-math problems Ling et al. (2017)
OmniMATH 4428 Math Judged by OmniJudge, GPT-4o Gao et al. (2024)
Olympiad-Bench 8476 Math, Physics Question-answer pairs He et al. (2024)
Humaneval Hundred Code Handwritten code Chen et al. (2021)
APPS 10K Code Question-code solution pairs Hendrycks et al. (2021a)
LiveCodeBench 442 Code Question-code solution pairs Jain et al. (2024)
MBPP 1K Code Basic algorithmic and functional programming tasks Austin et al. (2021)
CommonsenseQA 12K Commonsense Multiple-choice question-answer pairs Talmor et al. (2019)
StrategyQA 2.8K Commonsense Question-answer pairs Geva et al. (2021)
ARC 7.8K Commonsense Multiple-choice question-answering pairs Clark et al. (2018)
5-hop ProntoQA ∞ Logic Question-answer pairs Saparov and He (2023)
AR-LSAT 2,046 Law Question-answer pairs Zhong et al. (2021)
GPQA Hundreds Multiple domain Question-answer pairs Rein et al. (2024)
MMLU 231K Multiple domain Reasoning-focused question-answer pairs Hendrycks et al. (2021c,b)
MMLU-pro 12K Multiple domain Reasoning-focused question-answer pairs Wang et al. (2024b)

Table 2: Dataset on the recent reasoning methods

A.5 ADAPT Training Details1256

A.5.1 Custom Prompt Format1257

"{question} Please provide the initial
step towards resolving the question.
This step may serve as a foundation
but might not encompass the entire
solution.\n"

1258

A.5.2 Training Parameter Setting1259

Dataset The combined dataset is shuffled and1260

split into 90% for training and 10% for testing,1261

with the test portion further divided evenly into1262

evaluation and held-out sets.1263

Tokenization Tokenization includes padding to1264

a maximum length of 512 tokens and truncation1265

when necessary.1266

Training Training is performed for 3 epochs with1267

a learning rate of 5× 10−6, per-device batch size1268

of 4, and gradient accumulation steps of 8. We1269

employ bfloat16 precision, set max_grad_norm1270

to 1.0.1271
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