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Abstract

One major challenge of applying machine learning in genomics is the scarcity1

of labeled data, which often requires expensive and time-consuming physical2

experimentation under laboratory conditions to obtain. However, the advent of3

high throughput sequencing has made large quantities of unlabeled genome data4

available. This can be used to apply semi-supervised learning methods through5

representation learning. In this paper, we investigate the impact of a popular6

and well-established language model, namely BERT [Devlin et al., 2018], for7

sequence genome analysis. Specifically, we adapt DNABERT [Ji et al., 2021]8

to GenomeNet-BERT in order to produce useful representations for downstream9

tasks such as classification and semi-supervised learning. We explore different10

pretraining setups and compare their performance on a virus genome classification11

task to strictly supervised training and baselines on different training set size setups.12

The conducted experiments show that this architecture provides an increase in13

performance compared to existing methods at the cost of more resource-intensive14

training.15

1 Introduction16

Just as human beings use languages to communicate, nature created its own language: Genomes.17

In order to understand this “language of life”, Natural Language Processing (NLP) methods have18

been used with the aim of decoding instructions and information contained within [Asgari and19

Mofrad, 2015]. As to unravel the complex function and structures of cells hidden within their20

genomes, semi-supervised learning can be applied to improve the capabilities to identify new genome21

structures, impute missing nucleotides (NTs), and classify genomic data under sparse label conditions22

[BMBF, 2020]. Deep learning based methods have recently achieved breakthroughs in bioinformatics23

by exceeding the performance of previous state-of-the-art approaches [Zhang et al., 2021]. Self-24

supervised models have prevailed in NLP, as they take advantage of readily available amounts of25

unlabeled data in the form of texts to pretrain model weights and representations in a self-supervised26

manner, thereby leading to higher performance on downstream language tasks. [Devlin et al., 2018,27

Radford et al., 2018, Peters et al., 2018]. One architecture among those models that have proven28

particularly useful for representation learning of genomic data is the Bidirectional Transformer-29

Encoder [Devlin et al., 2018, Rives et al., 2020, Ji et al., 2021, Le et al., 2021, Mo et al., 2021,30

Avsec et al., 2021]. Using NLP methods for DNA data is an attractive idea, as both written human31

language and genome data coincide in their method of representing data as sequences of discrete32

information: Letters or words for language, and NTs in the case of DNA. However, many NLP33

methods, in particular BERT, rely on tokenization of text into discrete words or sub-word units [Wu34

et al., 2016]. While words as units of the information above the character-level are straightforward35
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for humans to recognize and encode in the natural language domain, there is no readily apparent way36

of tokenizing DNA sequences in general1. A simple and yet effective approach to tokenization of37

DNA data is to use k-mers: Encoding “words” of DNA as units of k sequential NTs. Ji et al. [2021]38

introduce this method to decode human genome data with DNABERT and achieved promising results.39

In this work, we analyze the potential of the Bidirectional Transformer-Encoder applied to virus40

genome sequence data by implementing GenomeNet-BERT. In a small test framework, optimal41

hyperparameter and tokenization settings are explored. Furthermore, two additional strategies,42

differing in data preprocessing and pretraining setup to the original model implementation, are43

pursued. The evaluation of model performance is conducted on the task of identifying bacteriophages44

from short sequences of NTs over various label scarcity scenarios and sequence lengths, by comparing45

it to the performance of the same architecture trained in a fully supervised fashion, and the Self-46

GenomeNet [Gündüz et al., 2022] architecture. Compared to fully supervised methods, this one47

provides reusability for a variety of downstream tasks and is well suited for further improvements on48

data preprocessing and pretext task tuning, since its architecture is not dependent on these. Given49

that the BERT architecture is highly explicable with its attention layers, its application helps to50

understand the importance of nucleotide snippets in terms of classification. Further, the model uses51

raw nucleotide sequence data as input, which reduces the data preprocessing overhead [Buermans52

and den Dunnen, 2014].53

2 Method54

The BERT model is built of 12 stacked Transformer-Encoder blocks and relies solely on bidirectional55

attention and fully connected layers to learn representations for each input token. Two pretext tasks56

aid this purpose: Predicting randomly masked words and whether two input sequences are consecutive57

in the source they were extracted from. DNABERT [Ji et al., 2021] takes genome sequences as input.58

Unlike BERT, next sentence prediction is not used as a pretext task. To attain input sequences,59

genomes are split into non-overlapping sequences of sampled length and cut from randomly sampled60

locations. These are then tokenized using all permutations of the k-mer representation of size 768,61

which creates tokens with stride 1 (see Figure 1). Because of this overlap of NTs per token, it is62

possible to simply infer a masked token by its neighbors. Therefore, instead of randomly sampling a63

percentage of m tokens to mask, k consecutive tokens per sampled masking location are masked.64

Procedure We devised a three-step-method, starting with hyperparameter optimization within a65

scaled-down framework to find values for learning rate, masking percentage, weight decay, and66

others, leading to the best performance for our tasks, as well as compare different strategies in regard67

to data preprocessing, tokenization and pretext task. Subsequently, three architecture designs based68

on DNABERT [Ji et al., 2021] (referred to as GenomeNet-BERT in the following), differing mainly in69

tokenization and pretext task, are pretrained full scale. GenomeNet-BERT models were all pretrained70

for 100k steps due to loss plateauing and associated comparability reasons between models. Finally,71

after subsequent supervised training on our bacteriophage classification task, the performance of72

our models is compared to the same architecture fully supervised trained and self-genomenet, a73

self-supervised model proposed by Gündüz et al. [2022]. Fine-tuning is performed over different74

training set sizes, representing various scenarios of label scarcity. Additionally, two distinct input75

sequence lengths (150 and 1000 nucleotide lengths, respectively) are examined. The data used is76

described in the Appendix (see Section A.2).77

Architecture Designs After self-supervised pretraining, all setups are fine-tuned in a supervised78

manner on balanced, labeled subsets of the dataset, and macro-averaged recall RecallM (in %), as79

well as F1-score, are then used to measure model performance on a separate prediction set. The80

first adaptation, GenomeNet-BERT, is a replica of the DNABERT setup adapted for our purposes. It81

tokenizes sequences of up to 510NTs to 6-mers and masks 6 consecutive tokens at 2.5% sampled82

1One possible suggestion would be to use proteins corresponding to coding DNA, but this method would not
cover non-coding DNA.
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Figure 1: Creation of input tokens as k-mers from an excerpt of a nucleotide sequence.
a) 6-mer tokenization: DNABERT6 setup, all permutations (stride 1), creating 13 tokens from 18 NTs. b) 6-mer
tokenization: GenomeNet-BERT-stride3 setup, creating 5 tokens from 18 NTs.
Dashed border: Sampled masking location during pretraining. Dashed green box: Tokens masked for defined
masking location for base GenomeNet-BERT setup. Blue extensions: Mask range addition performed for
GenomeNet-BERT-mask8 setup. Orange box: Masked tokens, hidden distinct NTs are highlighted.

token locations, leading to a token masking rate of 15%. A learning rate of 4×10−4, linearly warmed83

up over 5% of the total steps and AdamW-Optimizer [Loshchilov and Hutter, 2019] are applied.84

In contrast to the other setups, the hyperparameters are based on the original settings proposed by85

Ji et al. [2021]. The main reasoning behind altering pretraining strategies stems from how k-mer86

tokenization and masking interact, to only hide 2.5% of distinct NTs for this first setup, which was87

perceived as low. Therefore, the second adaptation, GenomeNet-BERT-mask8, is designed to mask88

more NTs. It masks 8 consecutive tokens at 2.875% sampled token locations, which leads to more89

than double the amount of NTs hidden from the model, while the ratio of masked tokens remains the90

same at 15% (see Figure 1). The third adaptation, GenomeNet-BERT-stride3, is intended to work with91

longer input sequences and train faster and up to 1000NTs long sequences are tokenized to 6-mers of92

stride 3 and 3 consecutive tokens at 5% sampled token locations are masked. This leads to a sixfold93

increase in the number of NTs hidden during pretraining compared to the first GenomeNet-BERT94

implementation. Tokenizing sequences with up to 1000NTs to 6-mers with stride 3 leads to 332 input95

tokens in total and the model is further hard-limited to input sequences up to 340 tokens compare to96

the standard 512 tokens for BERT.97

3 Experiments98

Label availability scenarios are artificially created by limiting access to a specific subset of FASTA99

files during training. As in the semi-supervised protocol of Henaff [2020], 1% and 10% labeled data100

is used. In addition, a very sparse label setting of 0.1% is trained. Since a k of 6 performs best in the101

experiments by Ji et al. [2021], 6-mers are used in all setups.102

Hyperparameter Optimization The impact of hyperparameter settings is evaluated using the103

bert-small configuration [Wolf et al., 2020], since it is closely related to the original emphBERT104

architecture, but at the same time allows for performing experiments in a less time-consuming fashion.105

The detailed results of these experiments are listed in the Appendix in Figure A.3. GenomeNet-BERT-106

mask8 and GenomeNet-BERT-mstride3 are accordingly trained with an increased learning rate of107

1 × 10−3 and a longer linear warmup of 20k steps. While no masking setup is consistently better108

across the range of learning rates trialed, setups that mask 8 consecutive tokens can perform equally109

well or better than the standard setup at the same learning rate, producing the best model of all stride110

1 setups.111

Fine-Tuning To fine-tune our models, network heads of the pretext task and all representations112

except the first token are removed. This starting token collects sequence-level information and is fed113

exclusively to a classifier via an additional projection layer to predict the class of an input sequence114

(see Figure A.2). Sequences of length 1000NTs tokenized as k-mers with a stride of 1 surpass the115

input token limitation of BERT-base. They are split into two parts, traversed individually, and then116

concatenated again by a fully connected layer for all DNABERT-based models on the 1000NTs task117

except for GenomeNet-BERT-stride3, which can handle inputs up to 1024nt.118
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10% 1% 0.1%

150NTs length RecallM F1 RecallM F1 RecallM F1

self-genomenet 78.2 0.785 75.3 0.751 67.2 0.700
supervised 71.8 0.710 67.6 0.673 62.4 0.608
GenomeNet-BERT 85.7 0.851 82.2 0.821 77.8 0.780
GenomeNet-BERT-mask8 85.0 0.845 81.7 0.812 76.7 0.762
GenomeNet-BERT-stride3 80.8 0.801 75.1 0.757 65.6 0.654

1000NTs length

self-genomenet 94.0 - 85.9 - 73.1 0.846
supervised 81.5 0.871 77.2 0.867 70.6 0.773
GenomeNet-BERT 97.9 0.986 94.4 0.968 87.8 0.930
GenomeNet-BERT-mask8 97.2 0.983 91.7 0.953 81.7 0.901
GenomeNet-BERT-stride3 98.1 0.988 90.9 0.949 87.2 0.927

Table 1: Performance results through semi-supervised training on sequences of 150 nucleotide length (above)
and 1000 nucleotide length (below). Percentages represent the three label availability scenarios during fine-tuning
on the phage/non-phage virus task.

4 Results and Discussion119

Table 1 compares model performance for sequences of 150 and 1000NTs, respectively. Throughout120

all 6 scenarios, GenomeNet-BERT-based models show superior performance compared to self-121

genomenet, the base GenomeNet-BERT appearing the best on average overall. The mask8 variant122

performs very similar to the base GenomeNet-BERT model, while the stride3 variant provides less123

successful class predictions for 150NTs input sequences. However, it can be seen that the stride3124

variant exhibits similar or better accuracy than the other variants for 1000NTs input sequences.125

Since the stride3 model variant has a shorter input length, it trains notably faster than the other126

GenomeNet-BERT models. Generally, the pretrained GenomeNet-BERT-model manifests an about127

20% increase in recall than the strictly supervised baseline in all scenarios and increasing in the label128

scarcer setups of 1% and 0.1%. The GenomeNet-BERT model also shows an impressive accuracy in129

the low label scenario of 0.1%, outperforming self-genomenet by about 16% and 20% in recall for130

150 and 1000NTs, respectively.131

We have shown that DNABERT, implemented for use with human genome sequences, is also capable132

of learning representations from virus genome sequences. Our virus pretrained version, referred133

to as GenomeNet-BERT, outperforms the given baseline at all input length and label availabilities134

on the task of identifying bacteriophages from read-level length genome sequence excerpts. The135

GenomeNet-BERT realization, which follows the original setup of DNABERT6, also outperforms136

both permutations (mask8 and stride3) trialed in this task on average. However, since the GenomeNet-137

BERT realization was trained using the hyperparameters proposed by Ji et al. [2021], and HPO was138

performed using the bert-small [Wolf et al., 2020] configuration, it is possible that the method can139

be further improved by HPO based on the full BERT model. While GenomeNet-BERT-stride3 is140

less accurate on the shorter input length task, it provides the same level of accuracy at the 1000NTs141

input length with much lower resource requirements for both pretraining and fine-tuning than the142

base GenomeNet-BERT model. In general, it must be acknowledged that the Transformer-Encoder143

model is very resource and training time intensive, even compared to other self-supervised models144

for genome sequence analysis.145

An interesting observation in the experiments conducted is that all models trained in these experiments146

overpredicted the bacteriophage class in every setup. It is possible that the model learns to classify147

more noisy input sequences as phages, as these could be more diverse in short genome excerpts. For148

a more definitive evaluation of this model architecture, it is necessary to investigate its performance149

on a higher number of more diverse downstream tasks.150

4



References151

E. Asgari and M. R. K. Mofrad. Continuous distributed representation of biological sequences for deep152

proteomics and genomics. Plos One, 10(11), 2015. doi: 10.1371/journal.pone.0141287.153

Ž. Avsec, V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Taylor, Y. Assael, J. Jumper,154

P. Kohli, and D. R. Kelley. Effective gene expression prediction from sequence by integrating long-range155

interactions. bioRxiv, 2021. doi: 10.1101/2021.04.07.438649. URL https://www.biorxiv.org/content/156

early/2021/04/08/2021.04.07.438649.157

BMBF. Genomenet – entwicklung und evaluierung von genomenet für die de novo identifizierung von158

noch unbekannten genomischen strukturen und zur probabilistischen dna-sequenzimputation - dlr gesund-159

heitsforschung, Apr 2020. URL https://www.gesundheitsforschung-bmbf.de/de/genomenet-160

entwicklung-und-evaluierung-von-genomenet-fur-die-de-novo-identifizierung-von-161

10890.php.162

H. Buermans and J. den Dunnen. Next generation sequencing technology: Advances and applications. Biochimica163

et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(10):1932–1941, 2014. ISSN 0925-4439.164

doi: https://doi.org/10.1016/j.bbadis.2014.06.015. URL https://www.sciencedirect.com/science/165

article/pii/S092544391400180X.166

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for167

language understanding, 2018. URL https://arxiv.org/abs/1810.04805.168

H. A. Gündüz, M. Binder, X.-Y. To, R. Mreches, P. C. Münch, A. C. McHardy, B. Bischl, and M. Rezaei.169

Self-genomenet: Self-supervised learning with reverse-complement context prediction for nucleotide-level170

genomics data, 2022. URL https://openreview.net/forum?id=92awwjGxIZI.171

O. Henaff. Data-efficient image recognition with contrastive predictive coding. In H. D. III and A. Singh,172

editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-173

ceedings of Machine Learning Research, pages 4182–4192. PMLR, 13–18 Jul 2020. URL https:174

//proceedings.mlr.press/v119/henaff20a.html.175

Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri. DNABERT: pre-trained Bidirectional Encoder Representations176

from Transformers model for DNA-language in genome. Bioinformatics, 37(15):2112–2120, 02 2021. ISSN177

1367-4803. doi: 10.1093/bioinformatics/btab083. URL https://doi.org/10.1093/bioinformatics/178

btab083.179

N. Q. K. Le, Q.-T. Ho, T.-T.-D. Nguyen, and Y.-Y. Ou. A transformer architecture based on BERT and180

2D convolutional neural network to identify DNA enhancers from sequence information. Briefings in181

Bioinformatics, 22(5), 02 2021. ISSN 1477-4054. doi: 10.1093/bib/bbab005. URL https://doi.org/182

10.1093/bib/bbab005. bbab005.183

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on Learning184

Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.185

S. Mo, X. Fu, C. Hong, Y. Chen, Y. Zheng, X. Tang, Z. Shen, E. P. Xing, and Y. Lan. Multi-modal Self-supervised186

Pre-training for Regulatory Genome Across Cell Types. arXiv e-prints, art. arXiv:2110.05231, Oct. 2021.187

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep contextualized188

word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association189

for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237,190

New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1202.191

URL https://aclanthology.org/N18-1202.192

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by generative193

pre-training, 2018.194

A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L. Zitnick, J. Ma, and R. Fergus.195

Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.196

bioRxiv, 2020. doi: 10.1101/622803. URL https://www.biorxiv.org/content/early/2020/12/15/197

622803.198

E. W. Sayers, M. Cavanaugh, K. Clark, J. Ostell, K. D. Pruitt, and I. Karsch-Mizrachi. GenBank. Nucleic199

Acids Research, 48(D1):D84–D86, 10 2019. ISSN 0305-1048. doi: 10.1093/nar/gkz956. URL https:200

//doi.org/10.1093/nar/gkz956.201

5

https://www.biorxiv.org/content/early/2021/04/08/2021.04.07.438649
https://www.biorxiv.org/content/early/2021/04/08/2021.04.07.438649
https://www.biorxiv.org/content/early/2021/04/08/2021.04.07.438649
https://www.gesundheitsforschung-bmbf.de/de/genomenet-entwicklung-und-evaluierung-von-genomenet-fur-die-de-novo-identifizierung-von-10890.php
https://www.gesundheitsforschung-bmbf.de/de/genomenet-entwicklung-und-evaluierung-von-genomenet-fur-die-de-novo-identifizierung-von-10890.php
https://www.gesundheitsforschung-bmbf.de/de/genomenet-entwicklung-und-evaluierung-von-genomenet-fur-die-de-novo-identifizierung-von-10890.php
https://www.gesundheitsforschung-bmbf.de/de/genomenet-entwicklung-und-evaluierung-von-genomenet-fur-die-de-novo-identifizierung-von-10890.php
https://www.gesundheitsforschung-bmbf.de/de/genomenet-entwicklung-und-evaluierung-von-genomenet-fur-die-de-novo-identifizierung-von-10890.php
https://www.sciencedirect.com/science/article/pii/S092544391400180X
https://www.sciencedirect.com/science/article/pii/S092544391400180X
https://www.sciencedirect.com/science/article/pii/S092544391400180X
https://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=92awwjGxIZI
https://proceedings.mlr.press/v119/henaff20a.html
https://proceedings.mlr.press/v119/henaff20a.html
https://proceedings.mlr.press/v119/henaff20a.html
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bib/bbab005
https://doi.org/10.1093/bib/bbab005
https://doi.org/10.1093/bib/bbab005
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/N18-1202
https://www.biorxiv.org/content/early/2020/12/15/622803
https://www.biorxiv.org/content/early/2020/12/15/622803
https://www.biorxiv.org/content/early/2020/12/15/622803
https://doi.org/10.1093/nar/gkz956
https://doi.org/10.1093/nar/gkz956
https://doi.org/10.1093/nar/gkz956


T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,202

J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,203

Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of204

the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages205

38–45, Online, Oct. 2020. Association for Computational Linguistics. URL https://www.aclweb.org/206

anthology/2020.emnlp-demos.6.207

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,208

J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,209

G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes,210

and J. Dean. Google’s neural machine translation system: Bridging the gap between human and machine211

translation, 2016. URL https://arxiv.org/abs/1609.08144.212

Y. Zhang, J. Yan, S. Chen, M. Gong, D. Gao, M. Zhu, and W. Gan. Review of the applications of deep learning in213

bioinformatics. Current Bioinformatics, 15(8):898–911, 2021. doi: 10.2174/1574893615999200711165743.214

6

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/1609.08144


A Appendix215

A.1 The DNABERT Architecture216

Figure A.2: Visualization of the Genomenet-BERT pipeline for an input example of 301 tokens. Right
model head: masked language model training head attached during pretraining. Left model head: Sequence
classification, present during fine-tuning.

A.2 Virus Data217

All self-supervised learning models are trained and evaluated on a collection of viral genome218

sequences. On August 2nd, 2021, all available viral genome data was downloaded from GenBank219

[Sayers et al., 2019] and divided into two taxonomic classes: Bacteriophages, and Other Viruses.220

This collection of about 40k FASTA files includes about 1 billion NTs for the bacteriophage class and221

0.5 billion for other viruses and poses the binary classification task of identifying whether a read-level222

length nucleotide sequence is an excerpt of a bacteriophage genome. All self-supervised models are223

pretrained using unlabeled nucleotide sequences generated from a training split of the data.224

A.3 Trial Results225

Figure A.3: Pretraining and Finetuning for some selected trials. base (green) here represents the scaled-down
version of GenomeNet-BERT with all the same training parameters, while mask8 (blue) and stride3 (orange) do
so for the other two variants pursued full scale. base_highLR (red) poses as a baseline to the higher learning
rate setups of stride3 and mask8 with an equal learning rate of 1e−3 and is equal to base otherwise. Left:
Cross-entropy loss of MLM on a validation set during self-supervised pretraining. Right: Class averaged
recall during supervised finetuning with frozen representation model layers on the 150nt virus phage/non-phage
classification task.
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A.4 Computational Information226

Pretraining was conducted for 190h on 8 nvidia-A100-40Gb GPUs for GenomeNet-BERT &227

GenomeNet-BERT-mask8 and 141h on 5 of the same GPUs for GenomeNet-BERT-stride3.228
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