
A Survey on Mechanistic Interpretability for
Multi-Modal Foundation Models

Anonymous ACL submission

Abstract001

The rise of foundation models has trans-002
formed machine learning research, prompt-003
ing efforts to uncover their inner workings004
and develop more efficient and reliable ap-005
plications for better control. While signif-006
icant progress has been made in interpret-007
ing Large Language Models (LLMs), multi-008
modal foundation models (MMFMs)—such009
as contrastive vision-language models, gen-010
erative vision-language models, and text-to-011
image models—pose unique interpretability012
challenges beyond unimodal frameworks. De-013
spite initial studies, a substantial gap remains014
between the interpretability of LLMs and015
MMFMs. This survey explores two key as-016
pects: (1) the adaptation of LLM interpretabil-017
ity methods to multimodal models and (2)018
understanding the mechanistic differences be-019
tween unimodal language models and cross-020
modal systems. By systematically reviewing021
current MMFM analysis techniques, we pro-022
pose a structured taxonomy of interpretability023
methods, compare insights across unimodal024
and multimodal architectures, and highlight025
critical research gaps.026

1 Introduction027

The rapid development and adoption of multimodal028

foundation models (MMFMs)—particularly those029

integrating image and text modalities—have en-030

abled a wide range of real-world applications. For031

example, text-to-image models (Rombach et al.,032

2022; Ramesh et al., 2022; Podell et al., 2023) fa-033

cilitate image generation and editing, generative034

vision-language models (VLMs) (Zhu et al., 2023;035

Agrawal et al., 2024) support tasks like visual ques-036

tion answering (VQA) or image captioning tasks,037

and contrastive (i.e., non-generative) VLMs such038

as CLIP (Radford et al., 2021) are widely used for039

image retrieval. As multimodal models advance,040

there is a growing need to understand their internal041

mechanisms and decision-making processes (Basu042

et al., 2024a). Mechanistic interpretability is cru- 043

cial not only for explaining model behavior but 044

also for enabling downstream applications such as 045

model editing (Basu et al., 2024a), mitigating spu- 046

rious correlations (Balasubramanian et al., 2024), 047

and improving compositional generalization (Zarei 048

et al., 2024). 049

Interpretability in machine learning, LLMs, 050

and multimodal models is a broad and context- 051

dependent concept, varying by task, objective, and 052

stakeholder needs. In this survey, we adopt the def- 053

inition proposed by Murdoch et al. (2019): “The 054

process of extracting and elucidating the relevant 055

knowledge, mechanisms, features, and relation- 056

ships a model has learned, whether encoded in 057

its parameters or emerging from input patterns, to 058

explain how and why it produces outputs.” What 059

constitutes “relevant knowledge” depends on the 060

application. In memory editing, interpretability 061

enables precise modifications to internal represen- 062

tations without disrupting other model functions. 063

In attack detection, it highlights input features and 064

activations signaling adversarial inputs. This sur- 065

vey examines interpretability methods through this 066

lens, exploring how they uncover model mecha- 067

nisms, facilitate practical applications, and reveal 068

key research challenges. 069

While interpretability research has made signifi- 070

cant progress in unimodal large language models 071

(LLMs) (Meng et al., 2022a; Marks et al., 2024), 072

the study of MMFMs remains comparatively under- 073

explored. Given that most multimodal models are 074

transformer-based, several key questions arise: Can 075

LLM interpretability methods be adapted to multi- 076

modal models? If so, do they yield similar insights? 077

Do multimodal models exhibit fundamental mecha- 078

nistic differences from unimodal language models? 079

Additionally, to analyze multimodal-specific pro- 080

cesses like cross-modal interactions, are entirely 081

new methods required? Finally, we also exam- 082

ine the practical impact of interpretability by ask- 083
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ing—How can multimodal interpretability methods084

enhance downstream applications?085

To address these questions, we conduct a086

comprehensive survey and introduce a three-087

dimensional taxonomy for mechanistic inter-088

pretability in multimodal models: (1) Model Fam-089

ily – covering text-to-image diffusion models, gen-090

erative VLMs, and non-generative VLMs ; (2)091

Interpretability Techniques – distinguishing be-092

tween methods adapted from unimodal LLM re-093

search and those originally designed for multi-094

modal models; and (3) Applications – categorizing095

real-world tasks enhanced by mechanistic insights.1096

Our survey synthesizes existing research and un-097

covers the following insights: (i) LLM-based inter-098

pretability methods can be extended to MMFMs099

with moderate adjustments, particularly when treat-100

ing visual and textual inputs similarly. (ii) Novel101

multimodal challenges arise such as interpreting102

visual embeddings in human-understandable terms,103

necessitating new dedicated analysis methods. (iii)104

While interpretability aids downstream tasks, ap-105

plications like hallucination mitigation and model106

editing remain underdeveloped in multimodal mod-107

els compared to language models. These findings108

can guide future research in multimodal mechanis-109

tic interpretability.110

The summary of our contributions are:111

• We offer a comprehensive survey of mecha-112

nistic interpretability for multimodal founda-113

tion models spanning generative VLMs, con-114

trastive VLMs, and text-to-image diffusion115

models.116

• We introduce a simple and intuitive taxon-117

omy which helps to distinguish the mechanis-118

tic methods, findings, and applications across119

unimodal and multimodal foundation models,120

highlighting critical research gaps.121

• Based on the mechanistic differences between122

LLMs and multimodal foundation models, we123

identify fundamental open challenges and lim-124

itations in multimodal interpretability, provid-125

ing directions for future research126

2 LLM Interpretability Methods for127

Multimodal Models128

We first examine mechanistic interpretability meth-129

ods originally developed for large language models130

1A detailed discussion of this taxonomy is provided in Sec.
(B) in Appendix.

and their adaptability to multimodal models with 131

minimal to moderate modifications. Our focus is 132

on how existing LLM interpretability techniques 133

can provide valuable mechanistic insights into 134

multimodal models. 135

2.1 Linear Probing 136

Probing trains lightweight classifiers on supervised 137

probing datasets, typically linear probes, on frozen 138

LLM representations to assess whether they encode 139

linguistic properties such as syntax, semantics, and 140

factual knowledge (Hao et al., 2021; Liu et al., 141

2024e; Zhang et al., 2024b; Liu et al., 2023b; Beigi 142

et al., 2024). This approach has been extended to 143

multimodal models, introducing new challenges 144

such as disentangling the relative contributions of 145

each modality (i.e., visual or textual). To tackle 146

these challenges, Salin et al. (2022) developed 147

probing methods to specifically assess how Vision- 148

Language models synthesize and merge visual in- 149

puts with textual data to enhance comprehension, 150

while Dahlgren Lindström et al. (2020) investigated 151

the processing of linguistic features within image- 152

caption pairings in visual-semantic embeddings. 153

Unlike in LLMs, where upper layers predominantly 154

encode abstract semantics (Jawahar et al., 2019; 155

Tenney et al., 2019), multimodal probing studies 156

(Tao et al., 2024; Salin et al., 2022) suggest that 157

intermediate layers in multimodal models are more 158

effective at capturing global cross-modal interac- 159

tions, whereas upper layers often emphasize local 160

details or textual biases. Furthermore, despite the 161

fact that probing applications in LLMs are centered 162

on specific linguistic analyses, the scope of prob- 163

ing in multimodal models extends to more varied 164

aspects. For instance, Dai et al. (2023) investigated 165

object hallucination in vision-language models, an- 166

alyzing how image encodings affect text generation 167

accuracy and token alignment. 168

Main Findings and Gap. The main draw-
back of linear probing is the requirement of
supervised probing data and training a sep-
arate classifier for understanding concept
encoding in layers. Therefore, scaling it
via multimodal probing data curation and
training separate classifiers across diverse
multimodal models is a challenge.

169

2.2 Logit Lens 170

The Logit Lens is an supervised interpretability 171

method used to understand the inner workings of 172
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Figure 1: In our survey, we study two types of mechanistic interpretability: (1) methods that adapted from
LLM interpretability techniques and (2) multimodal-specific interpretability methods. Different analysis
methods are applied to three multimodal model architectures: (a) Non-generative Vision-Language Models, (b)
Multimodal Large Language Models, and(c) Text-to-Image Generative Models (diffusion models especially). The
interpretability insights from different methods and models can illuminate specific applications.

LLMs by examining the logits value of the out-173

put. This method conducts a layer-by-layer analy-174

sis, tracking logits at each layer (by projecting to175

the vocabulary space using the unembedding pro-176

jection matrix) to observe how predictions evolve177

across the network. By decoding intermediate rep-178

resentations into a distribution over the output vo-179

cabulary, it reveals what the network “thinks” at180

each stage (nos, 2020; bel, 2023). In the context of181

multimodal modesl, studies show that predictions182

from earlier layers often exhibit greater robustness183

to misleading inputs compared to final layers (Ha-184

lawi et al., 2024). Studies also demonstrate that185

anomalous inputs alter prediction trajectories, mak-186

ing this method a useful tool for anomaly detec-187

tion (Halawi et al., 2024; bel, 2023). Additionally,188

for easy examples—situations where the model189

can confidently predict outcomes from initial lay-190

ers—correct answers often emerge in early layers,191

enabling computational efficiency through adap-192

tive early exiting (Schuster et al., 2022; Xin et al., 193

2020). Furthermore, the Logit Lens has been ex- 194

tended to analyze multiple inputs. Huo et al. (2024) 195

adapted it to study neuron activations in feedfor- 196

ward network (FFN) layers, identifying neurons 197

specialized for different domains to enhance model 198

training. Further research has integrated contex- 199

tual embeddings to improve hallucination detection 200

(Phukan et al., 2024; Zhao et al., 2024a). Addition- 201

ally, the “attention lens” introduced in (Jiang et al., 202

2024c) examines how visual information is pro- 203

cessed, revealing that hallucinated tokens exhibit 204

weaker attention patterns in critical layers. 205

Main Findings and Gap. Beyond multi-
modal language models, logit-lens can be
potentially utilised to mechanistically un-
derstand modern models such as unified
understanding and generation models such
as (Xie et al., 2024a; Team, 2024).

206
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2.3 Causal Tracing207

Unlike passive diagnostic tools, Causal Tracing208

Analysis (Pearl, 2014) is rooted in causal infer-209

ence that studies the change in a response vari-210

able following an active intervention on interme-211

diate variables of interest (mediators). The ap-212

proach has been widely applied to language mod-213

els to pinpoint the network components—such as214

FFN layers—that are responsible for specific tasks215

(Meng et al., 2022a,b; Pearl, 2001). For instance,216

Meng et al. (2022a) demonstrated that mid-layer217

MLPs in LLMs are crucial for factual recall, while218

Stolfo et al. (2023) identified the important lay-219

ers for mathematical reasoning. Building on this220

technique and using a supervised probing dataset,221

Basu et al. (2023) found that, unlike LLMs, vi-222

sual concepts (e.g., style, copyrighted objects) are223

distributed across layers in the noise model for dif-224

fusion models, but can be localized within the con-225

ditioning text-encoder. Further, Basu et al. (2024b)226

identified critical cross-attention layers that encode227

concepts like artistic style and general facts. Re-228

cent works have also extended causal tracing to229

mechanistically understand generative VLMs for230

VQA tasks (Basu et al., 2024a; Palit et al., 2023;231

Yu and Ananiadou, 2024c), revealing key layers232

that guide model decisions in VQA tasks.233

Main Findings and Gap. While causal
tracing has been extensively used to ana-
lyze factuality and reasoning in LLMs, its
application in multimodal models remains
relatively limited. Expanding this method to
newer, more complex multimodal architec-
tures and diverse tasks remains an important
challenge to address.

234

2.4 Representation Decomposition235

A key property of transformer models is that layer-236

wise representations can be decomposed into a sum237

of preceding layers, enabled by the residual stream.238

This property is leveraged to extract circuit graphs239

in LLMs (Syed et al., 2023; Wang et al., 2022b;240

Conmy et al., 2023b; Basu et al., 2025). Circuit241

nodes, such as attention heads and MLP layers, can242

be further analyzed for the properties they encode243

(e.g., an attention head can encode color informa-244

tion). In multimodal models, representation decom-245

position has been instrumental in analyzing modal-246

ity processing and layer-specific properties. Stud-247

ies such as (Gandelsman et al., 2024a; Balasubra-248

manian et al., 2024) leverage supervised probing 249

datasets and propose a hierarchical decomposition 250

approach—spanning layers, attention heads, and 251

tokens—to provide granular insights into model 252

behavior. 253

Layer-wise decomposition reveals that shallow 254

layers primarily integrate modality-specific inputs 255

into a unified representation, while deeper layers 256

refine task-specific details through denoising (Yin 257

et al., 2024). Tao et al. (2024) further demonstrated 258

that intermediate layers capture broader semantic 259

information, balancing modality-specific details 260

with holistic understanding—crucial for tasks such 261

as visual-language entailment. In diffusion models 262

like Stable Diffusion, Prasad et al. (2023) found 263

that lower U-Net layers drive semantic shifts, while 264

higher layers focus on denoising, progressively re- 265

fining the latent representations into high-quality 266

outputs. Quantmeyer et al. (2024) utilized causal 267

tracing with representation decomposition to iden- 268

tify CLIP text encoder heads responsible for pro- 269

cessing negation and semantic nuances, thereby 270

improving cross-modal alignment. Similarly, Cao 271

et al. (2020) identified attention heads specialized 272

for cross-modal interactions, integrating linguistic 273

and visual cues for high-quality multimodal syn- 274

thesis. Notably, it shares similarities with causal 275

tracing, which can be applied once a layer has been 276

broken down into distinct components using Rep- 277

resentation Decomposition. 278

Main Findings and Gap. While CLIP and
diffusion models are a great starting point
for a case-study using representation decom-
position, leveraging the inherent decompos-
ability of transformers can be extended to
understanding multimodal language mod-
els, and text-to-video models—an important
gap that needs to be addressed.

279

2.5 General Task Vectors 280

General Task (or steering) vectors in language mod- 281

els are directional embeddings that, when added 282

to specific layers, enhance model capabilities such 283

as in-context learning and instruction following. 284

To obtain these task vectors, one requires a well- 285

annotated supervised probing dataset. Hendel et al. 286

(2023a) discovered a task vector for compressing 287

task demonstrations, while Zhang et al. (2024a) and 288

Jiang et al. (2024a) leveraged instruction vectors 289

to improve model adherence to user instructions 290

and mitigate catastrophic forgetting. In multimodal 291
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models, task vectors facilitate controlled image gen-292

eration and editing. Baumann et al. (2024) mapped293

text-embedding vectors to visual concepts for ad-294

justable intensity, while Gandikota et al. (2025)295

fine-tuned low-rank matrices in UNet to create con-296

trollable concept vectors. Cohen et al. explored297

multiple task vectors in diffusion models, propos-298

ing a prompt-conditioned adaptation method to299

minimize interference.300

Main Findings and Gap. While language
models support both fine-tuning and zero-
shot steering, multimodal models largely
rely on fine-tuning. Advancing zero-shot
steering for multimodal models remains a
crucial research direction.301

2.6 Sparse Autoencoders: A Special Class of302

Unsupervised Task Vectors303

Sparse Autoencoders (SAEs, Yun et al. (2021))304

offer an unsupervised approach to discovering con-305

ceptual representations in neural networks post-306

training. SAEs learn a dictionary of concepts such307

that any representation can be expressed as a lin-308

ear combination of a sparse subset of these con-309

cepts. The SAE with an autoencoder architecture310

is trained to reconstruct its input while enforcing311

sparse activations. Once trained, neurons are in-312

terpreted based on their highest-activating inputs,313

forming a concept dictionary that maps concepts314

to vectors in representation space. These vectors315

can then be added to the model’s residual stream316

to control attributes like safety and intensity in im-317

age generation. Due to their unsupervised nature,318

which minimizes the need for annotated examples319

for probing, SAEs have been applied extensively320

to LLMs to identify human interpretable directions321

for various concepts (e.g., refusal) in representa-322

tion space (Cunningham et al., 2023). These di-323

rections can then be used to steer the language324

model (Marks et al., 2024) without the need of fine-325

tuning it. More recently, SAEs have been extended326

to vision-language models like CLIP (Daujotas,327

2024; Rao et al., 2024; Lim et al., 2024) and audio328

transcription models like Whisper (Sadov, 2024).329

Despite their promise, SAEs face challenges such330

as feature absorption and splitting (Chanin et al.,331

2024), lack of robust evaluation metrics (Makelov332

et al., 2024) and underperformance compared to333

supervised methods for model control.334

Main Findings and Gap. The effectiveness
of SAEs as a control mechanism for multi-
modal models is still in its early stages and
requires validation across a range of multi-
modal models, including the latest diffusion
models and MLLMs. 335

2.7 Neuron-Level Descriptions 336

Neuron-level analysis methods aim to identify 337

specific neurons that contribute to model predic- 338

tions (Sajjad et al., 2022). In this section, we 339

divide these methods into two main categories: 340

gradient-based attribution, and activation-based 341

analysis.2 Gradient-based attribution methods an- 342

alyze how neuron values influence model outputs 343

by perturbing neuron activations and accumulat- 344

ing weight contributions based on corresponding 345

gradients (Dai et al., 2021). In unimodal settings, 346

Dai et al. (2021) detected fact-related neurons con- 347

centrated in the top layers of a pretrained lan- 348

guage model, while Wang et al. (2022a) identi- 349

fied neurons for encoding hierarchical concepts in 350

a CNN-based vision model. Extending this ap- 351

proach to multimodal settings, Schwettmann et al. 352

(2023) identified “multimodal neurons” that trans- 353

form visual representations into textual concepts 354

via the model’s residual stream. Activation-based 355

analysis methods detect whether a neuron is ac- 356

tivated when processing an input. These meth- 357

ods have been used to identify neurons specialized 358

for specific tasks (Wang et al., 2022c) and multi- 359

lingual understanding (Tang et al., 2024). Addi- 360

tionally, Voita et al. (2023) identified "dead" neu- 361

rons that are never activated, revealing the spar- 362

sity of LLMs. In multimodal contexts, Goh et al. 363

(2021) detected neurons encoding distinct visual 364

features in non-generative models, while in gener- 365

ative VLMs, researchers have identified domain- 366

specific neurons (Huo et al., 2024) and modality- 367

specific neurons (Huang et al., 2024c). In diffu- 368

sion models, Hintersdorf et al. (2024) identified 369

memorization neurons by analyzing their out-of- 370

distribution activations. 371

Main Findings and Gap. Neuron-level
analysis adapts well to multimodal settings,
but deeper neuron interactions remain un-
derexplored, such as activation shifts in gen-
erative VLMs when adding visual input to
identical text. 372

2Additional categories such as prediction probability
changes and others are discussed in Appendix E.7.
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3 Interpretability Methods Specific to373

Multimodal Models374

In this section, we focus on mechanistic inter-375

pretability methods designed specifically for mul-376

timodal models. These methods leverage architec-377

tural properties unique to multimodal systems such378

as cross-attention layers, or leverage the presence379

of a text-encoder to explain inner embeddings in380

human-understandable terms.381

3.1 Text-Explanations of Embeddings382

In Sec. 2.4, we leverage the representation de-383

composition property of transformers to identify384

key components in token representations. How-385

ever, interpreting these components in human-386

understandable terms remains a challenge. For387

CLIP models, Gandelsman et al. (2024a) proposed388

TextSpan, which assigns textual descriptions to389

model components (e.g., attention heads) by iden-390

tifying a text embedding that explains most of the391

variance in their outputs. The dataset for this task392

is supervised in nature. Expanding on this, Bal-393

asubramanian et al. (2024) introduced a scoring394

function to rank relevant textual descriptions across395

components. Concurrently, SpLiCE (Bhalla et al.,396

2024) mapped CLIP visual embeddings to sparse,397

interpretable concept combinations. Additionally,398

Parekh et al. (2024) employed dictionary learning399

to show that predefined concepts are semantically400

grounded in both vision and language. Together,401

these methods enhance the interpretability of inter-402

nal embeddings in multimodal models by providing403

textual explanations.404

Main Findings and Gap. Current text-
based explanations of internal embeddings
primarily focus on simple concepts (e.g.,
color, location). It remains unclear whether
these methods can effectively map visual
embeddings to more abstract concepts, such
as physical laws. Moreover, their appli-
cability beyond CLIP, particularly in text-
to-image and video generation models, re-
mains largely underexplored.

405

3.2 Network Dissection406

Network Dissection (ND) (Bau et al., 2017),407

pioneered automated neuron interpretability in408

multimodal networks by establishing connec-409

tions between individual neurons and human-410

understandable concepts. Different from the inter-411

nal embedding methods (Sec. 3.1), ND compares 412

neuron activations with groud-truth concept annota- 413

tions in images. When a neuron’s activation pattern 414

consistently matches with a specific concept over 415

a certain threshold, that concept is assigned as the 416

neuron’s interpretation (Oikarinen and Weng, 2023; 417

Kalibhat et al., 2023). Moving beyond simple con- 418

cept matching, MILAN (Hernandez et al., 2021) in- 419

troduced a generative approach that produces natu- 420

ral language descriptions of neuron behavior based 421

on highly activating images. DnD (Bai et al., 2024) 422

then extend this work by first leveraging a gener- 423

ative VLM to describe highly activating images 424

for each neuron and semantically combine these 425

descriptions using an LLM. 426

Main Findings and Gap. The generaliza-
tion of this method are constrained by their
underlying multimodal architectures, e.g.,
CLIP. Moreover, while ND has proven ef-
fective for CNN-based vision models, its ap-
plicability to more advanced architectures,
e.g., diffusion models, remains unexplored.

427

3.3 Cross-attention Based Interpretability 428

Cross-attention layers are crucial in multimodal 429

models such as text-to-image diffusion models and 430

generative VLMs, as they mediate interactions be- 431

tween image and text modalities. In generative 432

models, studies have shown that cross-attention 433

layers in UNet or DiT backbones play a critical 434

role in linking an image’s spatial layout to each 435

word in the prompt (Tang et al., 2022). Building on 436

this, Hertz et al. (2022) introduced a method for im- 437

age editing via cross-attention control, enabling lo- 438

calized modifications, attribute amplification, and 439

global changes while preserving image integrity. 440

Similarly, Neo et al. (2024) identified memoriza- 441

tion neurons within cross-attention layers, while 442

Basu et al. (2024c) found that key concepts—such 443

as artistic style, and factual knowledge—are con- 444

centrated in a small subset of these layers. 445

Main Findings and Gap. While the cross-
attention mechanisms in U-Net-based dif-
fusion models are well-studied for applica-
tions like image editing and compositional-
ity, mechanistic analysis of cross-attention
in diffusion transformers (DiTs) and gen-
erative VLMs for downstream applications
remains an open research area.

446
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3.4 Training Data Attribution Methods447

Training data attribution identifies training exam-448

ples crucial to a specific prediction or generation.449

Although well studied for non-generative vision450

models (Koh and Liang, 2020; Basu et al., 2021;451

Pruthi et al., 2020; Park et al., 2023), extending452

these methods to generative multimodal models453

(e.g., diffusion, multimodal language) remains chal-454

lenging. Here, we highlight two categories of ap-455

proaches specific to text-to-image diffusion models,456

with additional methods detailed in Appendix F.4.457

(1) Retrieval and Unlearning Based Methods. A458

major challenge in training data attribution for dif-459

fusion models is the costly retraining needed for460

ground-truth influence and the adaptation of attribu-461

tion methods due to time-step dependence. Wang462

et al. (2023b) evaluated retrieval-based attribution463

using image encoders (e.g., CLIP) as a baseline464

but did not incorporate diffusion model parameters.465

To address this, Wang et al. (2024b) introduced466

an unlearning-based approach, where generated467

images are “unlearned” by increasing their loss,468

creating an unlearned model. Attribution is then469

measured based on the deviation in training loss470

between the original and unlearned models, show-471

ing strong correlation with ground-truth attribution.472

(2) Gradient-Based Methods, which are vital for473

data attribution in multimodal models, quantifying474

how training samples influence outputs via gradi-475

ents. For diffusion models, adaptations include476

K-FAC (Mlodozeniec et al., 2024), which approxi-477

mated the Generalized Gauss-Newton (GGN) ma-478

trix for scalable influence estimation, TRAK (Park479

et al., 2023), which modeled networks as kernel480

machines for improved attribution accuracy, and481

D-TRAK (Zheng et al., 2024b), which leveraged re-482

verse diffusion and optimized gradient features for483

enhanced robustness. Additionally, DataInf (Kwon484

et al., 2024) bridged perturbation methods with485

influence function approximations. Collectively,486

these techniques refine gradient-based attribution487

by disentangling multimodal attribution patterns488

through targeted perturbations.489

Main Findings and Gap. Multimodal data
attribution is challenging due to the scale
of heterogeneous pre-training data and com-
plex model architectures, making retraining
infeasible and inference slow. Efficient at-
tribution methods and retraining-free eval-
uation techniques remain an open problem.

490

3.5 Feature Visualizations 491

In MMFMs, feature visualization techniques typi- 492

cally involve generating heatmaps of gradients or 493

relevance scores over input images, providing an in- 494

tuitive way to understand which features contribute 495

to a model’s final prediction. Grad-CAM (Sel- 496

varaju et al., 2017) firstly visualized a coarse local- 497

ization map by tracking how gradients from a target 498

concept flow back to the final prediction layer, high- 499

lighting key mage regions responsible for concept 500

prediction. For both non-generative VLMs and 501

MMFMs, this method has been employed to visu- 502

alize grounding capabilities (Rajabi and Kosecka, 503

2024) and information flow in multimodal complex 504

reasoning tasks (Zhang et al., 2024c). For diffu- 505

sion models, Tang et al. (2022) aggregated cross- 506

attention word–pixel scores within the denoising 507

network to compute global attribution scores, thus 508

showing how specific words in a text prompt influ- 509

ence different parts of a generated image. Instead 510

of visualizing only the final generated images, Park 511

et al. (2024) provided a more detailed view by vi- 512

sualizing regions of focus and the attention given 513

to concepts from prompts at each denoising step.3 514

Main Findings and Gap. While feature
visualization methods have been success-
fully applied to simple tasks such as image
classification and visual question answering
(VQA), their adaptation to more complex
tasks—such as long-form image-to-text gen-
eration—remains underexplored.

515

4 Applications using Mechanistic Insights 516

In this section, we use the mechanistic insights 517

from methods described in Sec. (2) and Sec. (3) 518

for various downstream applications. 519

4.1 In-context Learning 520

Introduced in Sec. 2.5, Hendel et al. (2023b) and 521

Liu et al. (2023c) establish that ICL in language 522

models can be viewed through the lens of task vec- 523

tors. Following these works, Huang et al. (2024a) 524

characterizes multimodal task vectors as pairs of 525

attention head activations and indices and applies 526

those task vectors to generative VLMs in in-context 527

learning settings to compress long prompts that 528

would otherwise not fit in limited context length. 529

Luo et al. (2024) further analyzes the transferabil- 530

ity of task vectors from different modalities, which 531

extends the application of task vectors. 532
3Additional details on relevance scores in are provided in

Appendix F.5).
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4.2 Model Editing533

Building on Orgad et al. (2023), which modifies534

key and value matrices in cross-attention layers,535

Basu et al. (2024b) identifies and edits layers re-536

sponsible for specific visual attributes. Using537

a brute-force approach, they intervene in cross-538

attention inputs and measure effects on generation,539

revealing that artistic styles, facts, and trademark540

objects are concentrated in a few layers, enabling541

efficient edits across text-to-image models. Basu542

et al. (2023) extends causal mediation analysis543

(Meng et al., 2022a) to text-to-image models, find-544

ing that, unlike LLMs, where causal layers vary,545

the first self-attention layer of the text encoder is546

the sole causal state, enabling targeted model ed-547

its. Basu et al. (2024a) applies causal tracing to548

Llava (Liu et al., 2023a) for factual VQA, mod-549

ifying key layers to integrate long-tailed knowl-550

edge. While Pan et al. (2023) benchmarks language551

model editing techniques, these lack mechanistic552

insights. Compared to LLMs, large-batch and se-553

quential editing remain underexplored in MMFMs.554

555 4.3 Detecting and Mitigating Hallucinations556

Dai et al. (2023) examines how image encodings557

(e.g., region, patch, grid) and loss functions im-558

pact hallucinations in contrastive and generative559

VLMs, proposing a lightweight fine-tuning method560

to mitigate them. Jiang et al. (2024b) finds that hal-561

lucinated objects have lower confidence when pro-562

jected onto the output vocabulary, using this insight563

to develop a feature editing algorithm that removes564

them from captions. Jiang et al. (2024c) shows that565

real object tokens receive higher attention weights566

from visual tokens than hallucinated ones. Cohen567

et al. (2024) further analyzes visual-to-text infor-568

mation flow, offering insights for hallucination de-569

tection. Phukan et al. (2024) identifies logit lens570

limitations and introduces a similarity metric based571

on middle-layer embeddings to detect hallucina-572

tions. Overall, hallucination detection in MMFMs573

remains less explored compared to language mod-574

els (Sakketou et al., 2022; Li et al., 2024b; Chen575

et al., 2024b; Cheng et al., 2023; Li et al., 2023c;576

Manakul et al., 2023). We also find that there is a577

lack of reliable benchmarking for hallucination de-578

tection methods for multimodal language models,579

when compared to language models.580

4.4 Improving Safety581

Early efforts to improve generative VLMs safety582

relied on fine-tuning (Zong et al., 2024), but re-583

cent work leverages mechanistic tools (Sec. 2, 3).584

Task vectors enhance safety by ablating harmful 585

directions during inference (Wang et al., 2024a), 586

while SAEs enforce sparsity to disentangle harm- 587

ful features (Sharkey et al., 2022; Templeton et al., 588

2024). Xu et al. (2025) identifies hidden states cru- 589

cial to safety mechanisms but find misalignment 590

between modalities, proposing localized training 591

to address it. In text-to-image models, SAEs help 592

remove unwanted concepts (Cywiński and Deja, 593

2025; Ijishakin et al., 2024), and interpretable la- 594

tent directions improve safe generations (Li et al., 595

2024a). For non-generative VLMs like CLIP, most 596

work fine-tunes models for safety (Poppi et al., 597

2024), though interventional methods in (Basu 598

et al., 2023; Gandelsman et al., 2024a) could help 599

identify safety-related layers. 600

4.5 Improving Compositionality 601

Compositionality in text-to-image models refers to 602

their ability to correctly represent object compo- 603

sitions, attributes, and relationships from a given 604

prompt. Huang et al. (2023) introduces a bench- 605

mark to assess compositionality challenges in these 606

models. LayoutGPT (Feng et al., 2024) leverages 607

LLMs with few-shot learning to generate bounding 608

boxes, guiding diffusion models via pixel-space 609

loss. Grounded Compositional Generation (Phung 610

et al., 2024) refines this by defining the loss in cross- 611

attention space, improving performance. Similarly, 612

Rassin et al. (2024) enhances attribute correspon- 613

dence by aligning object-attention maps with adjec- 614

tives. Beyond diffusion model modifications, some 615

works address compositionality issues by improv- 616

ing text conditioning. Zarei et al. (2024) identifies 617

erroneous attention in CLIP, where nouns misalign 618

with adjectives, and proposes a projection layer to 619

enhance attribute binding. Likewise, Zhuang et al. 620

(2024) introduces a zero-shot method that adjusts 621

object embeddings to strengthen relevant attribute 622

associations while minimizing irrelevant ones. 623

5 Conclusion 624

Our survey reviews mechanistic understanding 625

methods for MMFMs, including contrastive and 626

generative VLMs and text-to-image diffusion mod- 627

els, with a focus on downstream applications. We 628

introduce a novel taxonomy differentiating inter- 629

pretability methods adapted from language models 630

and those designed for multimodal models. Ad- 631

ditionally, we compare mechanistic insights from 632

language and multimodal models, identifying gaps 633

in understanding and their impact on downstream 634

applications. 635
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6 Limitations636

Our work has several limitations: (1) we mainly637

focus on the image-text multimodal model without638

considering other modalities such as video, time se-639

ries, or 3D. (2) We don’t contain the experimental640

analysis because of the lack of unified benchmarks.641

We will consider this in our future work. (3) We642

only focus on the transformer-based model or dif-643

fusion model, without considering novel model644

architecture such as MAMBA (Gu and Dao, 2023).645
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A Comparison with Previous Surveys1714

Recently, Dang et al. (2024) provides a broad1715

overview of interpretability methods for MMFMs1716

across data, model architecture, and training1717

paradigms. Another concurrent work (Sun et al.,1718

2024) reviews the multimodal interpretability meth-1719

ods from a historical view, covering works from1720

2000 to 2025. While insightful, our work differs1721

from theirs in both focus and scope. To be spe-1722

cific, our work examines how established LLM1723

interpretability techniques adapt to various multi-1724

modal models, analyzing key differences between1725

unimodal and multimodal systems in techniques,1726

applications, and findings.1727

B Taxonomy Details1728

In our survey, we present an easy-to-read taxon-1729

omy that categorizes mechanistic interpretability1730

techniques along three dimensions: (i) Dimension 11731

categorizes whether the technique has been used for1732

language models (Sec.2) or is specifically designed1733

for multimodal models (Sec.3); (ii)) Dimension 21734

provides a view of the mechanistic insights across1735

various multimodal model families including non-1736

generative VLMs (e.g., CLIP), text-to-image mod-1737

els (e.g., Stable-Diffusion) and multimodal lan-1738

guage models (e.g., LLaVa). We describe the archi-1739

tectures studied in our paper in Sec.(C) and discuss1740

their relevant mechanistic insights in Sec.(2) and1741

Sec.(3). (iii) Dimension 3 links insights from these1742

mechanistic methods to downstream practical ap-1743

plications (Sec.4). The taxonomy is visualized in1744

Figure 1. In particular, the distribution of insights1745

and applications are in-line in Sec. (2, 3, 4).1746

We believe this simple categorization will help1747

readers (i) understand the gaps between unimodal1748

language models and multimodal models in terms1749

of mechanistic insights and applications, and (ii)1750

identify the multimodal models where mechanistic1751

interpretability (and their applications) is underex-1752

plored.1753

C Additional Details on Model1754

Architectures1755

In this section, we introduce three main cate-1756

gories of multimodal models covered by our sur-1757

vey, including (i) Contrastive (i.e., Non-Generative1758

) Vision-Language Models, Generative Vision-1759

Language Models, and Text-to-image Diffusion1760

Models. We choose these three families as they1761

encompass the majority of the state-of-the-art ar- 1762

chitectures used by the community currently. 1763

C.1 Non-Generative Vision-Language Models 1764

One non-generative vision-language model (e.g., 1765

CLIP (Radford et al., 2021), ALIGN (Jia et al., 1766

2021), FILIP (Yao et al., 2021), SigCLIP (Zhai 1767

et al., 2023), DeCLIP (Li et al., 2022) and 1768

LLIP (Lavoie et al., 2024)) usually contains one 1769

language-model-based text encoder and one vision- 1770

model-based vision encoder. These models are 1771

particularly suited for real-world applications such 1772

as text-guided image retrieval, image-guided text 1773

retrieval and zero-shot image classification. 1774

C.2 Text-to-Image Diffusion Models 1775

State-of-the-art text-guided image generation mod- 1776

els are primarily based on the diffusion objective 1777

(Rombach et al., 2022; Ho et al., 2020), which 1778

predicts the noise that was added during the for- 1779

ward diffusion process, allowing it to learn how 1780

to gradually denoise random Gaussian noise back 1781

into a clean image during the reverse diffusion 1782

process. One diffusion model often contains a 1783

text encoder (e.g., CLIP) and a CNN-based U- 1784

Net (Ronneberger et al., 2015) for denoising to gen- 1785

erate images. Early variants of text-to-image gen- 1786

erative models with this objective include Stable- 1787

Diffusion-1 (Rombach et al., 2022) (which perform 1788

the diffusion process in a compressed latent space) 1789

and Dalle-2 (Ramesh et al., 2022) (which perform 1790

the diffusion process in the image space instead 1791

of a compressed latent space). In recent times, 1792

SD-XL (Podell et al., 2023) improves on the early 1793

Stable-Diffusion variants by using a larger denois- 1794

ing UNet and an improved conditioning (e.g., text 1795

or image) mechanism. More recent models such 1796

as Stable-Diffusion-3 (Esser et al., 2024) obtain 1797

stronger image generation results than previous 1798

Stable-Diffusion variants by (i) using a rectified 1799

flow formulation, (ii) scalable transformer architec- 1800

ture as the diffusion backbone and (iii) using an 1801

ensemble of strong text-encoders (e.g., T5 (Raffel 1802

et al., 2020; Chung et al., 2022)). Beyond image 1803

generation, in terms of downstream applications, 1804

text-to-image models can also be applied for im- 1805

age editing (Hertz et al., 2022), and style trans- 1806

fer (Zhang et al., 2023). 1807

C.3 Generative Vision-Language Models 1808

In our paper, we investigate the most common gen- 1809

erative VLMs which are developed by connecting 1810
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a vision encoder (e.g., CLIP) to a large language1811

model through a bridge module. This bridge mod-1812

ule (e.g., a few MLP layers (Liu et al., 2023a) or1813

a Q-former (Li et al., 2023a)) is then trained on1814

large-scale image-text pairs. Frozen (Tsimpoukelli1815

et al., 2021) is one of the first works to take ad-1816

vantage of a large language model in image under-1817

standing tasks (e.g., few-shot learning). Follow-up1818

works such as MiniGpt (Zhu et al., 2023), BLIP1819

variants (Li et al., 2023b) and LLava (Liu et al.,1820

2023a) improved on Frozen by modifying the scale1821

and type of the training data, as well as the under-1822

lying architecture. In recent times, much focus has1823

been geared toward curating high-quality image-1824

text pairs encompassing various vision-language1825

tasks. Qwen (Yang et al., 2024a), Pixtral (Agrawal1826

et al., 2024) and Molmo (Deitke et al., 2024) are1827

some of the recent multimodal language models1828

focusing on high-quality image-text curated data.1829

Multimodal language models have various real-1830

world applications, such as VQA, and image cap-1831

tioning.1832

D More Definitions1833

We define a type of interpretability method as “su-1834

pervised” if we need to have a labeled dataset to1835

analyze it, otherwise, it is “unsupervised”.1836

In the following sections, we also classify the1837

papers in each type of method from the following1838

perspective: (1) the interpretability aspect - what1839

the method aims to interpret, e.g., data influence,1840

fine-tuning, information flow, knowledge localiza-1841

tion, and component contribution. (2) The analyzed1842

component of a model, e.g., emebddings, layers1843

(MLP, self attention, cross attention), or more fine-1844

grained neurons. The illustration of model com-1845

ponents is shown in Figure 2. (3) Applications:1846

the downstream applications that are inspired by1847

the insights of this method. Note, this is differ-1848

ent from the task column in Table 7 and 10 which1849

represents the task each paper they use to conduct1850

interpretability analysis.1851

E Additional Details on Section 21852

We add additional details about the interpretability1853

methods adapted from LLM models.1854

E.1 Additional Details on Linear Probing1855

The linear probing method is very flexible and be1856

applied for various interpretability purposes, and1857

model components, and can also inspire various1858

downstream tasks. We summarize all the papers of 1859

linear probing in Table 1. 1860

E.2 Additional Details on Logit Lens 1861

As Linear Probing, the Logit Lens is another flexi- 1862

ble method. We summarize all the related papers 1863

in Table 2. 1864

E.3 Additional Details on Causal Tracing 1865

While causal tracing helps to identify individual 1866

“causal” components for a particular task, it does 1867

not automatically lead to the extraction of a sub- 1868

graph of the underlying computational graph of 1869

a model which is “causal” for a task. In this re- 1870

gard, there has been a range of works in language 1871

modeling to extract task-specific circuits (Syed 1872

et al., 2023; Wang et al., 2022b; Conmy et al., 1873

2023b). However, extending these methods to ob- 1874

tain task-specific circuits is still an open problem 1875

for MMFMs. 1876

E.4 Additional Details on Representation 1877

Decomposition 1878

In transformer-based LLMs, the concept of repre- 1879

sentation decomposition pertains to the analysis of 1880

the model’s internal mechanisms, specifically dis- 1881

secting individual transformer layers to core mean- 1882

ingful components, which aims at understanding 1883

the inner process of transformers. In unimodal 1884

LLMs, research has mainly decomposed the archi- 1885

tecture and representation of a model’s layer into 1886

two principal components: the attention mecha- 1887

nism and the multi-layer perceptron (MLP) layer. 1888

Intensive research efforts have focused on analyz- 1889

ing these components to understand their individual 1890

contributions to the model’s decision-making pro- 1891

cess. Studies find that while attention should not 1892

be directly equated with explanation (Pruthi et al., 1893

2019; Jain and Wallace, 2019; Wiegreffe and Pin- 1894

ter, 2019), it provides significant insights into the 1895

model’s operational behavior and helps in error di- 1896

agnosis and hypothesis development (Park et al., 1897

2019; Voita et al., 2019; Vig, 2019; Hoover et al., 1898

2020; Vashishth et al., 2019). Furthermore, concur- 1899

rently, research has shown that Feed-Forward Net- 1900

works (FFNs) within the Transformer MLP layer, 1901

functioning as key-value memories, encode and re- 1902

trieve factual and semantic knowledge (Geva et al., 1903

2021). Experimental studies have established a 1904

direct correlation between modifications in FFN 1905

output distributions and subsequent token probabil- 1906

ities, suggesting that the model’s output is crafted 1907
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Figure 2: The illustration of model components. Take the transformer-based generative vision-language model as an
example.

Figure 3: The illustrations of interpretability methods: (a) Linear Probing, (b) Logit Lens, and (c) Causal Tracing.

through cumulative updates from each layer (Geva1908

et al., 2022b). This core property serves as the1909

foundation for identifying language model circuits1910

associated with specific tasks in (Syed et al., 2023;1911

Wang et al., 2022c; Conmy et al., 2023a).1912

E.5 Additional Details on General Task1913

Vectors1914

We summarize all the related papers in Table 4.1915

E.6 Additional Details on Sparse 1916

Autoencoders 1917

An SAE is typically a two-layer MLP of the form 1918

SAE(x) = Dec(Act(Enc(x))) where x is the in- 1919

put feature. The encoder (Enc) and the decoder 1920

(Dec) layers are simple linear layers and the acti- 1921

vation function (Act) is a design choice and can 1922

be a simple ReLU (Agarap, 2019), Top K (Gao 1923

21



Figure 4: The illustrations of interpretability methods: (a) Representation Decomposition, (b) Sparse AutoEncoder,
and (c) Neuron-level Analysis.

Paper Interpretability Aspect Analyzed Component Application

(Tao et al., 2024) Information flow Layers Visual-language entailment
(Torroba Hennigen et al., 2020) Knowledge localization Neurons Linguistic understanding

(Dahlgren Lindström et al., 2020) Knowledge localization Image-text embedding Image-caption alignment
(Dai et al., 2023) Component contribution Image encoding Object hallucination
(Cao et al., 2020) Information flow Cross modal interaction V+L benchmark
(Salin et al., 2022) Component contribution Layers Multimodal understanding

(Qi et al., 2023) Data influence Prompt Prompt optimization

Table 1: Additional Details on Linear Probing Papers

et al., 2024), JumpReLU (Rajamanoharan et al.,1924

2024), and so on. The SAE is trained to reconstruct1925

its own input, with the constraint that the activa-1926

tions should be sparse. Once trained, the neurons1927

in the activation layer are assigned interpretations1928

based on the highest activating input samples for1929

the specific neuron in question. This results in a1930

concept dictionary where concepts are mapped to1931

directions (i.e., vectors) in representation space.1932

These vectors can be added to the residual stream1933

of the model to potentially control various facets1934

such as the safety and intensity of various attributes1935

in image generation models.1936

Overall, all the papers on Sparse Autoencoders1937

analysis aim to interpret where the knowledge is1938

stored in the model by analyzing the layers (as well1939

as neurons). The inspired application is only the1940

model steering.1941

E.7 Additional Details on Neuron-Level 1942

Analysis 1943

There are different definitions of neurons in deep 1944

neural networks. We define x as the input em- 1945

beddings, and hi as the hidden states of the i-th 1946

layer’s output. A model layer multiplies the hidden 1947

states with parameter Mi followed by an activation 1948

function a = f(xM⊺
i ). Some studies define the 1949

activation aj , which is the j-th element of a as 1950

the neuron (Dai et al., 2021). While other works 1951

(Dalvi et al., 2019; Durrani et al., 2020; Antverg 1952

and Belinkov, 2021) define the dimensions in out- 1953

put representation as a neuron. For consistency, in 1954

our survey, we follow the most widely used defini- 1955

tion to define an element mj of a layer’s parameter 1956

M as the neuron. 1957

Prediction Probability Changes methods usu- 1958

ally change the neuron output value, and analyze 1959

its influence on the final prediction. Yu and Ana- 1960

niadou (2024b) quantifies the importance level of 1961
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Paper Interpretability Aspect Analysed Component Application

(Phukan et al., 2024) Data Influence Hidden states Improving VQA Performance
(Jiang et al., 2024c) Information flow Attention heads Object hallucination
(Huo et al., 2024) Knowledge localization Neurons -

(Zhao et al., 2024a) Information flow Hidden states Controllable generation

Table 2: Additional Details on Logit Len Papers

Paper Interpretability Aspect Analysed Component Application

(Basu et al., 2023) Knowledge Localization Self-attention Model Editing
(Basu et al., 2024c) Knowledge Localization Cross-attention Model Editing
(Basu et al., 2024a) Knowledge Localization, Flow MLP Model Editing

(Yu and Ananiadou, 2024c) Knowledge Localization Self-attention -
(Palit et al., 2023) Knowledge Localization Self-attention -

Table 3: Additional Details on Causal Tracing Papers

a neuron by calculating the difference of the log1962

of the probabilities by giving and without giving1963

the neuron value. In this way, this paper finds that1964

both attention and FFN layer store knowledge. Be-1965

sides, all important neurons directly contributing1966

to knowledge prediction are in deep layers. Yu1967

and Ananiadou (2024a) utilizes the same method1968

to find that features are enhanced in shallow FFN1969

layers and neurons in deep layers are used to en-1970

hance prediction. Following a similar strategy, Yu1971

and Ananiadou (2024d) finds important attention1972

heads for handling VQA tasks.1973

Attribution Method is to project the internal1974

hidden representation into output space to analyze1975

each neuron’s contribution to the final prediction1976

(Geva et al., 2022a). In the multimodal domain,1977

Pan et al. (2023) projects the activation of one neu-1978

ron into output space to quantify the importance of1979

one neuron to the final prediction and identify mul-1980

timodal neurons. Fang et al. utilizes this method to1981

find the semantic knowledge neurons and some in-1982

teresting properties such as cross-modal invariance1983

and semantic sensitivity.1984

Other Method covers many different types of1985

neuron-level analysis methods. For example, in-1986

stead of directly analyzing the first-order effect,1987

which is the logits of each neuron, Gandelsman1988

et al. (2024b) analyzes the accumulation of infor-1989

mation of a neuron after the attention head. A new1990

method to analyze information flow. Focus on the1991

contribution of neurons to the output representa-1992

tion.1993

E.8 Summary 1994

Overall, we find that the core principles of popu- 1995

lar LLM-based mechanistic interpretability meth- 1996

ods can be extended to multimodal models without 1997

complex modification. However, extracting mean- 1998

ingful mechanistic insights from these models of- 1999

ten requires carefully tailored adaptations. In Table 2000

7 - Appendix, we provide an overall comprehen- 2001

sive listing and analysis of all the papers discussed 2002

in this section. This table includes more detailed 2003

information on the datasets utilized, the models em- 2004

ployed, and the specific tasks they conduct analysis 2005

experiments on. Note, that the “task” is different 2006

from “application” in the tables of each method, 2007

which is inspired by interpretability findings. 2008

F Additional Details on Section 3 2009

F.1 Additional Details on Text-Explanations 2010

of Internal Embeddings 2011

All the text-explanations of internal embedding 2012

papers aim to interpret where knowledge is stored 2013

in the model. We summarize the papers in Table 6. 2014

F.2 Additional Details on Network Dissect 2015

Network Dissect mainly aims to localizing knowl- 2016

edge storage in network or visual representations. 2017

We summarize the related papers in Table 8. 2018

F.3 Additional Details on Cross-attention 2019

Interpretability 2020

We summarized the related papers in Table 9. 2021
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Paper Interpretability Aspect Analyzed Component Application

(Baumann et al., 2024) Fine-tuning Layers Continuous Image Editing
(Gandikota et al., 2025) Fine-tuning LoRA Layers Continuous Image Editing

(Cohen et al.) Knowledge Localization Layers Model Editing

Table 4: Additional Details on General Task Vectors Papers

Paper Interpretability Aspect Analyzed Component Application

(Daujotas, 2024) Knowledge Localization Layers,Neurons Model Steering
(Rao et al., 2024) Knowledge Localization Layers,Neurons Model Steering
(Lim et al., 2024) Knowledge Localization Layers,Neurons Model Steering

(Surkov et al., 2024) Knowledge Localization Layers,Neurons Model Steering
(Sadov, 2024) Knowledge Localization Layers, Neurons Model Steering

Table 5: Additional Details on Sparse-Autoencoders

F.4 Additional Details on Training Data2022

Attribution2023

Training Dynamics-Based Methods These2024

methods analyze how model parameters and pre-2025

dictions evolve during training to determine the2026

influence of specific data points, thereby reveal-2027

ing how models learn from and prioritize instances.2028

However, applying them to multimodal or gener-2029

ative models—like diffusion models—poses chal-2030

lenges. For instance, Training Data Influence2031

(TracIn) (Pruthi et al., 2020) can suffer from2032

“timestep-induced bias,” where varying gradient2033

magnitudes exaggerate the influence of some sam-2034

ples. Diffusion-ReTrac (Xie et al., 2024b) miti-2035

gates this by normalizing influence contributions.2036

Additionally, methods not originally designed for2037

data attribution, such as CLAP4CLIP (Jha et al.,2038

2024) for VLMs, can still provide valuable insights2039

through components like memory consolidation,2040

weight initialization, and task-specific adapters that2041

highlight crucial data points during training.2042

Other Miscellaneous Methods By contrasting2043

similar and dissimilar data, these techniques trace2044

how training examples influence model outputs.2045

For example, one approach fine-tunes a pre-trained2046

text-to-image model using exemplar pairs and2047

employs NT-Xent loss to generate soft influence2048

scores (Wang et al., 2023c). Similarly, Data Adap-2049

tive Traceback (DAT) (Peng et al., 2024) aligns pre-2050

training examples with downstream performance in2051

a shared embedding space. Moreover, adversarial2052

attack studies (Wang et al., 2024c) demonstrate that2053

intra-modal contrastive learning can be used to dis-2054

tinguish between adversarial and benign samples,2055

while cross-modal loss highlights features critical 2056

for image-text alignment. 2057

F.5 Additional Details on Feature 2058

Visualizations 2059

Visualizing Relevance Scores For a given pre- 2060

diction, Robnik-Šikonja and Kononenko (2008) 2061

visualizes a relevance score of each feature by ex- 2062

amining how the prediction changes if the feature 2063

is excluded, calculated as the probability difference 2064

before and after excluding the feature. Zintgraf 2065

et al. (2017) enhances this model by considering 2066

spatial dependence, proposing that a pixel’s impact 2067

is strongly influenced by its neighboring pixels, 2068

thus expanding from pixel-level to patch-level rele- 2069

vance and measuring feature influences from hid- 2070

den layers. Chefer et al. (2021) further improves 2071

the method of accumulating relevance across mul- 2072

tiple layers by introducing a relevance propagation 2073

rule. Another line of work involves training a sepa- 2074

rate explanation model to predict feature relevance 2075

scores and then visualize them. Ribeiro et al. (2016) 2076

train an explanation model to evaluate the contribu- 2077

tion of each image patch or word to the prediction. 2078

Park et al. (2018) collect two new datasets to train 2079

a multimodal model that can jointly generate vi- 2080

sual attention masks to localize salient regions and 2081

region-grounded text rationales. Lyu et al. (2022) 2082

extends the work of (Ribeiro et al., 2016) by devel- 2083

oping a more detailed analysis framework. They 2084

decompose a multimodal model into unimodal con- 2085

tributions (UC) and multimodal interactions (MI), 2086

and then apply (Ribeiro et al., 2016) method to 2087

learn relevance scores for each feature based on 2088
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Paper Interpretability Aspect Analyzed Component Application

(Gandelsman et al., 2024a) Knowledge Localization Self-attention Spurious Corr, Segmentation
(Balasubramanian et al., 2024) Knowledge Localization Self-attention Spurious Corr, Segmentation

(Bhalla et al., 2024) Knowledge Localization Layers Spurious Corr, Model Editing
(Parekh et al., 2024) Knowledge Localization Self-attention -

Table 6: Additional Details on Text-Explanations of Internal Embeddings Papers

these unimodal contributions and multimodal inter-2089

actions. Liang et al. (2022) further extends to be2090

a four-stage interpretation framework: unimodal2091

importance, cross-modal interactions, multimodal2092

representations, and multimodal prediction.2093

F.6 Summary2094

In this section, we explore methods designed specif-2095

ically to analyze the inner workings of multimodal2096

models. Our findings reveal that the internal em-2097

beddings and neurons of models like CLIP can be2098

interpreted using human-understandable concepts.2099

Additionally, the cross-attention layers in text-to-2100

image diffusion models provide valuable insights2101

into image composition. For training data attri-2102

bution and feature visualization, we observe that2103

existing techniques for vision models have been2104

effectively adapted for multimodal models. In Ta-2105

ble 10, we provide a comprehensive listing and2106

analysis of all the papers discussed in this section.2107

G More Insights from In-Context2108

Learning2109

Recent advances in understanding the internal2110

mechanisms of in-context learning (ICL) have re-2111

vealed fascinating insights into how both language2112

models and multi-modal models process and lever-2113

age contextual information. The interpretability2114

methods can be categorized into five main ap-2115

proaches: induction heads, Markov sampling, task2116

vectors, information flow analysis, and experimen-2117

tal studies.2118

The investigation of induction heads has primar-2119

ily focused on language models, with Elhage et al.2120

(2021) establishing a mathematical framework for2121

transformer circuits that demonstrated how one-2122

layer attention-only transformers can perform prim-2123

itive ICL through pattern assessment. Olsson et al.2124

(2022) further expands this understanding by an-2125

alyzing induction heads in full transformer archi-2126

tectures, revealing a phase change early in train-2127

ing across various model sizes. However, there2128

remains a notable gap in understanding how induc-2129

tion heads operate in multi-modal contexts, with 2130

few studies examining their role in processing vi- 2131

sual and textual information simultaneously. In 2132

the domain of statistical learning, Edelman et al. 2133

(2024) introduced Markov Chain sequence model- 2134

ing to demonstrate how transformers develop statis- 2135

tical induction heads that approach Bayes-optimal 2136

performance. This work, while foundational, has 2137

primarily focused on textual sequences, leaving 2138

open questions about how such statistical learning 2139

mechanisms might extend to multimodal scenarios. 2140

Another line of in-context learning analysis is 2141

information flow analysis, which has provided par- 2142

ticularly striking insights into the differences be- 2143

tween language and multi-modal processing. Wang 2144

et al. (2023a) establishes that in language models, 2145

label words serve as anchors for information aggre- 2146

gation and distribution, quantified through saliency 2147

metrics. Zhou et al. (2024) utilizes this framework 2148

to generative VLMs by introducing a new multi- 2149

modal saliency metric for visual-target information 2150

flow, revealing that cross-modal interactions pri- 2151

marily occur in deeper layers, contrasting with the 2152

earlier information aggregation observed in pure 2153

language models. Experimental analyses have com- 2154

plemented these mechanistic studies, though often 2155

without direct investigation of internal mechanisms 2156

(Chen et al., 2023). Baldassini et al. (2024) and 2157

Qin et al. (2024) have highlighted that multi-modal 2158

ICL appears to prioritize textual information over 2159

visual inputs, with multi-modal alignment serv- 2160

ing as a key bottleneck. Overall, the analytical 2161

approaches employed in multi-modal ICL have 2162

not yet achieved the sophistication of those devel- 2163

oped for pure language models. The complexity of 2164

lengthy input sequences poses significant computa- 2165

tional constraints, hindering detailed investigation 2166

of the underlying mechanisms. Furthermore, while 2167

existing research has identified distinct impacts 2168

across different modalities, the practical applica- 2169

tions of these findings remain largely unexplored 2170

in the current literature. 2171
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Methods Paper Models Task Datasets

Logit Lens

(Huo et al., 2024) LLaVa-next, InstructBLIP VQA LingoQA, RS-VQA, PMC-
VQA, DocVQA, VQAv2

(Jiang et al., 2024c) LLaVA-1.5-7B, Shikra, MiniGPT-4 Hallucination Detection COCO 2014
(Phukan et al., 2024) Qwen2-VL-7B, InternLM-xcomposer2-

vl-7b
Hallucination Detection,
VQA

High-Quality Hallucination
Benchmark, TextVQA-X

(Zhao et al., 2024a) LLaVA-v1.5 (13B/7B), InstructBLIP,
mPLUG-owl

Identifying Unanswerable
Questions

VizWiz, MM-SafetyBench

Linear Probing

(Cao et al., 2020) ViLBERT, LXMERT, UNITER Multimodal Fusion, Cross-
modal Interaction

Visual Genome, Flickr30k

(Dai et al., 2023) OSCAR, VinVL, BLIP, OFA Object Hallucination Detec-
tion

COCO Caption, NoCaps

(Salin et al., 2022) UNITER, LXMERT, ViLT POS Tagging, Object Count-
ing

Flickr30K, MS-COCO

(Tao et al., 2024) Kosmos-2, LaVIT, EmU, Qwen-VL Visual-language Entailment MS-COCO
(Hendricks and Nematzadeh,
2021)

MMT, SMT Verb Understanding Conceptual Captions

(Dahlgren Lindström et al.,
2020)

VSE++, VSE-C, HAL Linguistic Properties MS-COCO

Sparse AutoEncoder
(Lim et al., 2024) CLIP Image Classification ImageNet
(Rao et al., 2024) CLIP, ResNet-50 Concept Discovery CC3M

Causal Tracing

(Basu et al., 2024c) Stable Diffusion, IMAGEN Knowledge Localization –
(Basu et al., 2024a) LLaVa VQA, Model Editing VQA-Constraints
(Basu et al., 2024b) SD-XL, DeepFloyd Knowledge Localization –
(Yu and Ananiadou, 2024c) LLaVa VQA, Hallucination Detec-

tion
COCO

(Palit et al., 2023) BLIP Causal Tracing COCO-QA

Task Vector
(Cohen et al.) Diffusion Model, CLIP Multi-concept Editing –
(Gandikota et al., 2025) Stable Diffusion Image Editing Ostris Dataset, FFHQ
(Baumann et al., 2024) CLIP, T2I Diffusion Image Editing Contrastive Prompts

In-Context Learning

(Huang et al., 2024a) Qwen-VL, Idefics2-8B Many-shot Learning VizWiz, OK-VQA
(Zhou et al., 2024) LLaVA, MiniGPT, Qwen-VL Image-Content Reasoning Emoset, CIFAR10
(Qin et al., 2024) OpenFlamingo, GPT4V VQA, Classification –
(Mitra et al., 2025) LLaVA, Qwen-VL Classification, VQA BLINK, NaturalBench
(Luo et al., 2024) LLaVA, Mantis-Fuyu Instruction Transfer –
(Baldassini et al., 2024) IDEFICS, OpenFlamingo VQA, Captioning COCO, VQAv2

Neuron-LevelDescription

(Huo et al., 2024) LLaVA-NeXT, InstructBLIP VQA LingoQA, RS-VQA
(Gandelsman et al., 2024c) CLIP Zero-shot Segmentation –
(Yu and Ananiadou, 2024c) LLaVa VQA COCO
(Tang et al., 2024) LLaMA-2, BLOOM – –
(Hintersdorf et al., 2024) Stable Diffusion, DALL-E Neuron Localization –
(Huang et al., 2024c) Qwen-VL, Qwen-Audio – –
(Schwettmann et al., 2023) GPT-J with BEIT Image Captioning CC3M

Table 7: A comprehensive overview of interpretability methods for Section 2

H Additional Applications2172

H.1 Privacy2173

Data Leakage through Attacks on Specific2174

Modalities Multimodal data privacy refers to the2175

protection of privacy when handling data from mul-2176

tiple modalities, such as text, images, audio, and2177

video. Since multimodal models process informa-2178

tion from different sources, each modality may2179

involve different types of sensitive data, making2180

privacy protection more complex and crucial (Zhao2181

et al., 2024b). Traditional data privacy aims to2182

protect original data from leakage by isolating and2183

encrypting it through restricted secure access, espe-2184

cially for the large foundation models (Rao et al.,2185

2023). Therefore, technologies such as federated2186

learning (Li et al., 2020) and differential privacy2187

(Dwork, 2006) can still work well for general train-2188

ing. However, due to the tight interconnections2189

between multimodal data, this means that a re-2190

verse attack using data from a specific modality2191

could still lead to the leakage of data from other 2192

modalities, which has become a major challenge 2193

in multimodal data privacy. Ko et al. (2023) fo- 2194

cuses on similar issues, where data leakage can 2195

occur through membership attacks. In this paper, 2196

we further summarize the privacy attributes of mul- 2197

timodal data and define it as cross-modal privacy. 2198

Caused by the asymmetry of the knowledge con- 2199

tained in multimodal data, if attackers steal data 2200

from certain key modalities, it may be sufficient to 2201

reconstruct all the information, ultimately leading 2202

to data leakage. Recent work has focused on multi- 2203

modal information measurement techniques (Zhao 2204

et al., 2024b; Liu et al., 2024c), which enhance 2205

privacy protection by quantifying the correlations 2206

between data from different modalities. It signif- 2207

icantly strengthens local privacy and effectively 2208

reduces the leverage risk in MMFMs. 2209

Privacy Leakage through Cross-modal Access 2210

Direct data leakage is typically catastrophic, but 2211
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Paper Interpretability Aspect Analyzed Component Application

(Kalibhat et al., 2023) Knowledge Localization Neurons -
(Oikarinen and Weng, 2023) Knowledge Localization Embeddings Spurious Correlation

(Hernandez et al., 2021) Knowledge Localization Neurons Improving Robustness for IC
(Bai et al., 2024) Knowledge Localization Neurons Improving Generalization for IC

Table 8: Additional Details on Network Dissect Papers. IC represents image classification.

Paper Interpretability Aspect Analyzed Component Application

(Basu et al., 2024b) Knowledge Localization Cross-attention Model Editing
(Neo et al., 2024) Knowledge Flow Cross-attention Model Editing

(Hertz et al., 2022) Knowledge Flow Cross-attention Image Editing
(Tang et al., 2022) Knowledge Flow Cross-attention Visualization, Compositionality

Table 9: Additional Details on Cross-Attention Interpretability Papers

such cases are rare in practical scenarios. A more2212

common challenge of privacy leakage occurs dur-2213

ing the training process (Fang et al., 2024a). Re-2214

verse attacks on models for specific modalities can2215

also lead to data leakage. Liu et al. (2024b) explore2216

the risk in vision-language models and highlight2217

the risks that reverse attacks on multi-modal aggre-2218

gation can potentially lead to the recovery of image2219

data. The same, this type of attack can also be initi-2220

ated by the trainer, who may construct partially fal-2221

sified training data to reverse-query the correspond-2222

ing data from other modalities (Xu et al., 2024). To2223

prevent such privacy leakage, a key technique is2224

feature perturbation. By adding lightweight noise,2225

it ensures that during multimodal information fu-2226

sion, knowledge from cross-modal data cannot be2227

easily mapped independently. This enhances the2228

privacy level in the training process.2229

Unreliable Samples: Poisoning Attacks Poison-2230

ing attacks pose a significant threat to data relia-2231

bility, targeting the training process by injecting2232

maliciously altered data into the system. These2233

attacks manipulate the training data to introduce2234

vulnerabilities, potentially causing models to pro-2235

duce inaccurate predictions or exhibit unintended2236

behaviors. Attackers usually craft subtle changes2237

but significantly impact model performance. In2238

multimodal models, apart from the traditional poi-2239

soning of tampering with the original data, altering2240

the mapping relationships has become another criti-2241

cal attack vector. Liu et al. (2024d) learn the impact2242

of asymmetric data attacks on model training is sig-2243

nificant, as even a small amount of manipulated2244

data can cause a severe decline in model perfor-2245

mance. This also leads to more severe backdoor2246

attacks, where attackers can execute the attack with- 2247

out the need for additional information injection 2248

(Liu et al., 2024a; Yang et al., 2024b). Aimed to 2249

these attacks, an effective solution is to generate 2250

adversarial examples for evaluation. By evaluating 2251

the symmetry of the modalities and the mapping 2252

relationships, toxic samples can be avoided from 2253

harming the network during training. 2254

H.2 Other Relevant Applications 2255

In this section, we highlight some of the other rel- 2256

evant applications using mechanistic insights for 2257

multimodal models: 2258

Controlled Image Generation and Editing In 2259

text-to-image diffusion models, task vectors can 2260

be used to control and edit the intensity of a spe- 2261

cific concept in an image (Baumann et al., 2024; 2262

Gandikota et al., 2025), while keeping other parts 2263

of the image unchanged. For example, given the 2264

prompt “An image of a boy in front of a cafe”, if the 2265

size of the boy’s eyes needs to be increased, a task 2266

vector corresponding to eye size is added to the 2267

model to modify the visual concept of the eyes. In 2268

the case of image editing, (Hertz et al., 2022) inter- 2269

venes on the interpretable cross-attention features 2270

to incorporate text-guided image edits. 2271

Zero-shot Segmentation and Mitigating Spuri- 2272

ous Correlations The Representation Decompo- 2273

sition framework (Gandelsman et al., 2024a; Bal- 2274

asubramanian et al., 2024) enables mapping the 2275

contributions of different visual tokens to the final 2276

[CLS] token. This decomposed information can 2277

be ranked based on CLIP similarity to identify the 2278

most important tokens for a specific visual concept. 2279
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These selected tokens then form the segment repre-2280

senting the given concept. This framework when2281

combined with Text-Explanations of Internal Com-2282

ponents (see Sec.3.1), can also mitigate spurious2283

correlations. For e.g., certain attention heads can2284

be identified that encode spurious attributes (e.g.,2285

water when classifying waterbirds). By ablating2286

the contributions of these attention heads to the2287

final [CLS] token in the image encoder, spurious2288

correlations in CLIP models can be partially miti-2289

gated.2290

I Tools and Benchmarks2291

There are many interpretability tools for LLMs2292

covering attention analysis (Nanda and Bloom,2293

2022; Fiotto-Kaufman et al., 2024), SEA analysis2294

(Joseph Bloom and Chanin, 2024), circuit discover-2295

ing (Conmy et al., 2023a), causal tracing (Wu et al.,2296

2024), vector control (Vogel, 2024; Andy Zou,2297

2023), logit lens (bel, 2023), and token importance2298

(Lundberg and Lee, 2017). However, the tools2299

for interpreting MMFMs cover narrow fields. Yu2300

and Ananiadou (2024d); Stan et al. (2024) mainly2301

focuses on the attention mechanism in generative2302

VLMs. Aflalo et al. (2022) introduces a tool to2303

visualize attentions and also hidden states of gen-2304

erative VLMs. Joseph (2023) proposes a tool for2305

vision transformers, mainly focusing on attention2306

maps, activation patches, and logit lenses. Besides,2307

for diffusion models, Lages (2022) provides a visu-2308

alization of the inner diffusion steps of generating2309

an image.2310

A unified benchmark for interpretability is also a2311

very important research direction. In LLMs, Huang2312

et al. (2024b) introduces a benchmark for eval-2313

uating interpretability methods for disentangling2314

LLMs’ representations. Thurnherr and Scheurer2315

(2024) presents a novel approach for generating2316

interpretability test beds using LLMs which saves2317

time for manually designing experimental test data.2318

Nauta et al. (2023); Schwettmann et al. (2024) also2319

provides benchmarks for interpretability in LLMs.2320

However, there is no such benchmark for multi-2321

modal models, which is an important future re-2322

search direction.2323

Overall, compared to the comprehensive tools2324

and benchmarks in the LLMs field, there are less2325

for multimodal foundation models. Providing a2326

comprehensive, unified evaluation benchmark and2327

tools is a future research direction.2328
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Methods Paper Models Task Datasets

Text-Explanations of
Internal Embeddings

(Gandelsman et al., 2024a) CLIP Image Retrieval, Segmenta-
tion

Waterbirds, CUB, Places, ImageNet-
segmentation

(Balasubramanian et al., 2024) CLIP Image Retrieval, Segmenta-
tion

ImageNet

(Bhalla et al., 2024) CLIP Image Classification CIFAR100, MIT States, MSCOCO,
LAION, CelebA, ImageNetVal

(Parekh et al., 2024) DePALM (CLIP+OPT) Image Classification COCO

Network Dissection

(Oikarinen and Weng, 2023) ResNet Image Classification CIFAR100, Broden, ImageNet
(Kalibhat et al., 2023) DINO Image Classification ImageNet, STL-10
(Hernandez et al., 2021) ResNet, Gan, AlexNet Image Classification ImageNet
(Bai et al., 2024) ResNet Image Classification ImageNet

Training Data
Attribution Method

(Hu et al., 2024) CLIP(ViT-B/16 + LoRA) — FGVC-Aircraft, Food101, Flowers102,
Describable Textures Dataset(DTD),
Cifar-10

(Mlodozeniec et al., 2024) DDPM — CIFAR-10, CIFAR-2, ArtBench
(Park et al., 2023) ResNet-9; ResNet-18; BERT — QNLI, CIFAR-10, ImageNet
(Zheng et al., 2024b) DDPM — CIFAR(32×32), CelebA(64×64), Art-

Bench
(Xie et al., 2024b) DDPM/DDIM — CIFAR-10 airplane subclass, MNIST

zero subclass, ImageNet, CelebA,
Artbench-2

(Jha et al., 2024) CLIP — CIFAR100, ImageNet100, ImageNet-R,
CUB200, VTAB

(Pruthi et al., 2020) ResNet-56 — CIFAR-10, MNIST
(Qiu et al., 2022) ResNet50, VGG16 — ImageNet, Pascal VOC
(Yang et al., 2024c) BLIP2(blip2-opt-2.7b),

instructBLIP(instructblip-
vicuna-7b), LLaVA(LLaVA-
v1.5-7b)

— visualQA, CroPA

(Zheng et al., 2024a) CLIP — Flickr30, MS COCO

(Chen et al., 2024a) BLIP2-OPT(2.7B), LLaVA-
V1.5(7B), MiniGPT-4(7B)

— E-VQA, E-IC

(Mitra et al., 2024) InstructBLIP-13B, LLaVA-1.5-
13, Sphinx, GPT-4V

— Winoground, WHOOPS!, SEEDBench,
MMBench, LLaVA-Bench

(Fu et al., 2024) PaliGemma-3B-Mix-448 — DOCCI

(Kwon et al., 2024) RoBERTa / Llama-2-13B-chat,
stable-diffusion-v1.5

— MRPC, SST2, WNLI, QQP,
Dreambooth (various transformations)

(Wang et al., 2023c) DINO, MoCov3, CLIP, ViT,
ALADIN, SSCD

— ImageNet-1K, BAM-FG, Artchive,
MSCOCO

(Peng et al., 2024) CLIP — CIFAR10, CIFAR100, FGVC Air-
craft, Oxfordpet, Stanford Cars, DTD,
Food101, SUN397

(Peng et al., 2024) CLIP, OpenCLIP-G/14,
EVA-02-CLIP-bigE-14-plus,
ALBEF, TCL, BLIP, BLIP2,
MiniGPT-4

— MSCOCO, Flickr30K, SNLI-VE

(Wang et al., 2023d) CLIP — Conceptual Captions, MS-CXR, ROCO,
RSICD

(Fang et al., 2024b) DensetNet-121 — ITAC, iCTCF, BRCA, ROSMAP

Cross-attention
Interpretability

Methods

(Basu et al., 2024b) SD-1.5, SD-XL, DeepFloyd Model Editing Concept-Editing Dataset
(Neo et al., 2024) LLaVA, LLaVA-Phi Potential Application:

Coarse Segmentation
COCO Detection Dataset

(Hertz et al., 2022) Stable-Diffusion Image Editing Custom Image Editing Dataset
(Tang et al., 2022) Stable-Diffusion Visualization Custom Dataset

Table 10: A comprehensive overview of interpretability methods for Section 3.
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