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Abstract

Unverified content poses significant challenges
by disrupting content veracity and integrity,
thereby making effective content classification
approaches crucial. Currently, content veracity
classification methods primarily use supervised
machine learning models, which, despite high
accuracy, lack generalizability due to heavy
reliance on raw content data. To address this is-
sue, we propose a behavior-aware classification
model (L®B) leveraging latent linguistic behav-
ior and external social context to extract contex-
tually grounded features, reducing reliance on
content data and sensitivity to data biases. First,
we extract the verbal features from news con-
tent as linguistic behavior features and capture
nuanced behavior indicators of content verac-
ity. Then, a knowledge-based linking scheme
is designed to incorporate social context, align-
ing extracted verbs with those derived from
linked social context using semantic similarity.
Finally, we feed the textual, behavioral, and
contextual features into a Transformer-based
classifier to fuse these features and then clas-
sify the content veracity (i.e., high or low ve-
racity). Experimental results on public datasets
demonstrate that our model outperforms most
advanced classification approaches and has im-
proved generalizability across diverse datasets,
highlighting the effectiveness and robustness
of our proposed model.

1 Introduction

Nowadays, with the rapid rise of social media plat-
forms, such as X (Twitter), Instagram, and TikTok,
an increasing number of individuals heavily rely
on these online platforms for communication, in-
formation dissemination, and education, especially
during the pandemic (Tsao et al., 2021). Though
the conveniences brought by social media, the con-
tent veracity of information disseminated still falls
short of media standards and social expectations,
compared to traditional media platforms, e.g., tele-
vision and newspapers (Shu et al., 2017; Zhou

and Zafarani, 2020). A large volume of unveri-
fied or distorted content is easily produced and
propagated through social media platforms (Ahmed
et al., 2022), especially using artificial intelligence
tools to fabricate news content (Zhou et al., 2023).
Given that content veracity refers to the degree
to which a news or article aligns with authentic-
ity, it plays a critical role in maintaining content
integrity, where low-veracity content (e.g., spam,
rumor, false information, etc.) has significant neg-
ative impacts on individual and society, such as
social trust, government authority, and information
credibility (Thorson et al., 2010; Bhattarai et al.,
2021; Mazzeo et al., 2021). Consequently, address-
ing low-veracity content propagation has become
crucial in the areas of social media, mass commu-
nication, and public health. Technically, automatic
models are developed to identify and classify the
low-veracity content on social media platforms,
thereby mitigating the negative impacts brought by
low-veracity content (Guo et al., 2020; Yang et al.,
2023; Shi et al., 2023).

While content veracity classification methods
have achieved significant advancements, these
methods still struggle with feature complexity,
dataset biases, and generalizability issues across
different application scenarios (Zubiaga et al.,
2018; Abdali et al., 2024). High-quality annotated
data is scarce (Bondielli and Marcelloni, 2019),
leading to existing models compromising classi-
fication performance on unseen content data. To
overcome these limitations, efficient, unbiased, and
scalable classification frameworks for content ve-
racity are needed, which are capable of adapting to
new instances and social contexts.

To address these issues, in this paper, we inte-
grate social content and context features for de-
veloping an efficient and scalable content veracity
classification model (L3B). By exploring these ad-
ditional features, our model can reduce bias and
reliance across different datasets. Specially, our



contributions are summarized below:

* Firstly, we extract the verb features from news
content as linguistic behavior features and cap-
ture nuanced behavior indicators of content
veracity.

* Secondly, a knowledge-based linking scheme
is designed to incorporate social context, fur-
ther refining linguistic behavior features and
mitigating classification bias and distribution
shifts.

* Finally, we feed the text, linguistic behavior,
and social context features into a transformer-
based classifier to fuse these features and clas-
sify content veracity.

* Experimental results on public datasets
demonstrate that our model outperforms most
advanced classification approaches, highlight-
ing the effectiveness and scalability of our
proposed model.

2 Related Work
2.1 Content-based methods

Traditional classification methods focus on internal
news content features and external fact-checking
resources to detect content veracity (Vlachos and
Riedel, 2014; Hassan et al., 2015; Guo et al., 2022).
For instance, the fact-checking approaches can
identify and classify the low-veracity content by
using the external knowledge sources to fact-check
the news content (Etzioni et al., 2008; Wu et al.,
2014; Shi and Weninger, 2016; Vo and Lee, 2018).
However, these fact-checking approaches are time-
consuming and demand human annotations, limit-
ing the scalability and efficiency in content veracity
classification.

Today, machine learning (ML) and natural lan-
guage processing (NLP) methods (Kadhim, 2019;
Su et al., 2020) have emerged as advanced tools
to classify news text into one or more predefined
classes, such as true or false. Traditional ML meth-
ods, such as support vector machine, random for-
est, and decision tree, are commonly used in news
content classification; however, these methods usu-
ally require hand-crafted features and struggle with
complex text features, thus compromising perfor-
mance (Minaee et al., 2021). Along with neu-
ral networks being boosted, deep learning frame-
works have further enhanced the classification per-
formance by extracting complex content features

and capturing nuanced semantic features, such
as convolutional neural networks (CNNs) (Kim,
2014; Wang, 2017; Ruchansky et al., 2017; Guo
et al., 2019; Kaliyar et al., 2020), recurrent neu-
ral networks (RNNs) (Ruchansky et al., 2017; Ma
et al., 2016), and long short-term memory (LSTM)
(Sachan et al., 2019; Ma et al., 2020). Kaliyar et al.
(Kaliyar et al., 2020) proposed a deep CNN model
for binary classification (i.e., true or false) of news
content compared to classical CNN and LSTM
structures, where it explores pre-trained word em-
bedding and multiple hidden layers to extract text
features. In addition, attention networks integrated
different features extracted from different latent as-
pects of news articles to improve classification ac-
curacy (Yang et al., 2016; Mishra and Setty, 2019;
Linmei et al., 2019; Sun and Lu, 2020; Yun et al.,
2023; Kim and Hwang, 2024). For example, Yang
et al. (Yang et al., 2016) proposed a hierarchi-
cal attention network (HAN) to capture the hier-
archical structure of documents and employ the
word-level and sentence-level attentions. Kim et
al. (Kim and Hwang, 2024) employed attention
mechanisms to identify semantically similar words
within sentences and then augment these sentences
using synonym replacements. Additionally, graph
convolutional networks (GCNs) (Yao et al., 2018;
Haider Rizvi et al., 2025) have been applied to tex-
tual content classification tasks, which construct
document-level and corpus-level graphs to learn re-
lationships among words, documents, and corpus.

With the aid of pre-trained knowledge embed-
dings, the transformer-based models have advanced
the classification accuracy of low-veracity content
in news articles (Liu et al., 2019; Croce et al., 2020;
Kaliyar et al., 2021; Xiong et al., 2021; Van Nooten
and Daelemans, 2025). Combining the bidirec-
tional encoder representations from transformers
(BERT) (Devlin et al., 2019) with a CNN struc-
ture, Kaliyar et al. (Kaliyar et al., 2021) proposed
a BERT-based news classification model, where it
inputs the BERT embeddings into one-dimensional
CNN layers and thus classifies news documents us-
ing local features and global dependencies. Along
with the data structure and modality extending, mul-
timodal approaches are proposed to handle more
intricate classification tasks for content veracity
across text, image, video, audio data, or multiple
languages (Conneau and Lample, 2019; Segura-
Bedmar and Alonso-Bartolome, 2022; Abdali et al.,
2024; Wu et al., 2024; Zeng et al., 2024). For exam-
ple, Wu et al. (Wu et al., 2024) emphasized the sub-



stantive content over stylistic features, using Large
Language Models (LLMs) to reframe news arti-
cles and focus on content veracity. Though LLMs
emerged with powerful capability of processing
multimodal features, LLMs still require a large vol-
ume of data to update the known knowledge and
maintain performance and reliability.

2.2 Context-based methods

For further exploiting the source and content fea-
tures to classify content veracity, the credibility-
based methods (Popat, 2017; Zhang et al., 2018;
Deng et al., 2025) were proposed, which could ex-
tract the source and content credibility features to
identify high-veracity news from unreliable ones,
thereby enhancing model performance. To explore
the user behavior, engagements, and interactions
on social media, the social relationship-aware ap-
proaches (Shu et al., 2019; Ghenai and Mejova,
2018; Shu et al., 2020; Dou et al., 2021; Teng et al.,
2022; Su et al., 2023) were proposed, which can
capture the users’ relationships, news content, and
dissemination patterns to improve classification ac-
curacy. For instance, Shu et al. (Shu et al., 2019)
presented a tri-relationship-based veracity classi-
fication framework of false news content (TriFN),
where TriFN explores the tri-relationship among
publishers, news pieces, and users to differentiate
false and true articles. Zhang et al. (Zhang et al.,
2024) explored the heterogeneous subgraph trans-
former (HeteroSGT) to classify articles via the het-
erogeneous graph by unearthing the relationships
among news topics, entities, and content.

To understand the propagation patterns of
low-veracity content within social networks, the
network-based methods (Zhou and Zafarani, 2019)
were suggested, where these methods focus on the
interactions among spreaders and their influence on
information propagation. Maetal. (Maetal., 2018)
presented tree-structured recursive neural networks
to model the propagation pattern of tweets for de-
tecting rumors on social media. Typically, graph-
based approaches were proposed (Bian et al., 2020;
Fu et al., 2022) to explore the potential of graph
structure in modeling social context structures, in-
cluding knowledge-driven (Wang et al., 2018; Dun
et al., 2021), propagation-based (Zhu et al., 2024),
and context-aware approaches (Shang et al., 2024;
Lietal., 2025). For instance, the propagation-based
models (Zhu et al., 2024) focus on the dynamics of
information dissemination within social networks,
therefore identifying content veracity based on dis-

semination patterns.

3 Methodology

In this section, we first introduce the fundamental
framework of our proposed L3B model, as shown
in Figure 1. Next, the verb-extraction module will
be presented for extracting verbs from news content
and then deriving the verb-based linguistic behav-
ior features. Then, we adopt a knowledge-based
linking scheme to incorporate social context fea-
tures for refining linguistic behavior features, based
on the similarity between the extracted verbs and
social context verbs. Finally, the combined fea-
tures, including content features, behavior features,
and context features, are input into a transformer-
based classifier to classify content veracity, where
these features will be fused and then fed into the
final layer.

3.1 Definitions

News articles usually involve most of the practical
elements, such as sentiment, behavior, interaction,
etc. Generally, these elements will be represented
by nouns, verbs, adjectives, etc., or hidden behind
the words and sentences in the article content. In
addition, these elements will cover rich local se-
mantic features and global context information.

For content veracity classification, in this paper,
we model content veracity classification as a binary
classification function:

f(ni) = yi ey

using a set of labeled training news content data,
ie.,

Dipain = {(nu yi)}y:)tiain‘ ()
v; is the veracity label of the news article n,, i.e.,
0 for low-veracity content and 1 for high-veracity
content. 7 is the i-th article, and | Dyin| is the total
number of articles in the training dataset. We aim
at learning the classification function:

f(ni; 0) =g 3)

where §; € {0, 1} denotes the predicted probability
of the article content being 1 (i.e., high-veracity
content) and @ is the learnable parameter vector.
By minimizing the following objective function,
our proposed model can predict the veracity of
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Figure 1: An illustration of our proposed L3B pipeline

unseen content instances:
1 |Dlruin|
| tram’ =1

+1-y)logl-3)] @

L£(6) = yilog(9:)

3.2 Linguistic behavior extraction

To extract and represent the linguistic behaviors
from article content, we define verbs as the indi-
cators of linguistic behavior. For each article n;,
the verb set V; is extracted using the spaCy toolkit:
V= {v},v?, ..., v}, where v] is the j-th verb
vector in n; and m is the number of extracted verbs
in article n;. Technically, these extracted verbs are
explored to explicitly represent linguistic behaviors
inherent in n;. To quantify the verb feature, we
adopt TF-IDF to represent the importance of each
verb.

TF-IDF(v’) = TF(v?, n;) x

|Dtrain|
|{nk € Dyain : ’Ug S nk}\ +1
(5)

Where TF—IDF(’U? ) is the frequency of verb 'vg in
news article n;.

3.3 Social context incorporation

To incorporate social context information, we de-
sign a knowledge-based linking scheme to embed
the social context features. Here, the Sentence-
Transformer model (Reimers and Gurevych, 2019)
is exploited to generate contextual embeddings and
then access the similarity between extracted verbs
V' ; and contextual verbs in a predefined social con-
text verb set Veontext- We adopt cosine similarity
to quantify the semantic similarity between V'; and

Vcontext:

_ Vi Ug;)ntext (6)
”'UlH chontext”

where v; € V; is the embedding of extracted verbs
in the content from article 7;. V! exc € V context 1S
the embedding of j-th verb in the verb set V .oniexnt-
Then, the top-k embedding features from linked
knowledge base with the highest s;; values for each
article n,, i.e.,

u(n) =Topy ({si¥a) D

Here, k € |V context|> and |V context| is the total num-
ber of verbs in the context verb set V context-

Sij

3.4 Feature fusion scheme

In this section, we introduce the feature fusion
scheme in the proposed model L3B. Multifaceted



features are fused before content veracity classifi-
cation, which includes:

* Content feature ¢: extracted from raw con-
tent text.

* Behavior feature ¢,: TF-IDF vectors of V;
derived from the extracted verbs from article
content.

* Context feature ¢,: embedding features
from social context knowledge linking.

Combining these feature representations for each
article n;, we form the fused feature embeddings
as:

¢i = [¢c7 ¢b7 ¢k]7 (8)

where ¢, € R% and dy is the dimension of the
fused feature vector.

3.5 Transformer-based classifier

To classify content veracity, the fused features ¢;
are fed into a Transformer-based classifier, where a
multi-head self-attention mechanism is employed
to capture the local features and global relations
among different features. More specifically, multi-
head attention is derived as follows:
Multihead(¢;) = Concat(head, ... heady)W,
)

where each head is computed by:

head;, = Attention(Q,, K1, V'p)
QK
vy,

In which Q, = ZW¥, K, = ZWE, and
V=2 WX are the query, key, and value ma-
trices, respectively, and W, W?, Wk , and WX
are the learnable parameter matrices. h is the h-
th attention head, and H is the total number of
attention heads used in the multi-head attention
mechanism.

= softmax < ) Vi, (10)

Following the Transformer encoder, the final hid-
den representation is passed through a fully con-
nected (FC) layer to generate the prediction logits:

§; = o(FC(Transformer(¢;))) (11)

where ¢ denotes the sigmoid activation function.

3.6 Content veracity classification

Finally, ¢; is obtained by setting a threshold of 0.5
to the predicted label probability, i.e.,

. fo itp<05,
Yi = 1 otherwise.

Here, y; is the predicted label of news content.
We employ the cross-entropy loss to optimize the
training process, using the Adam optimizer, mixed-
precision training, and early stopping to effectively
reach convergence.

(12)

4 Experiments

In this section, we conduct extensive compari-
son experiments on four public datasets collected
from real-world scenarios, and experimental results
demonstrate that our models have superior perfor-
mance and efficiency than most tested models. We
first introduce the experimental setup, including
the datasets and tested models. Then, we report the
experiment results and analyze these results for fur-
ther exploration. Furthermore, the ablation study
shows the modules contributing to the performance
improvement.

4.1 Experimental setup

Datasets. For conducting the extensive experi-
ments, we use four datasets to broadly test our
model, compared to other advanced models, includ-
ing health datasets (MM COVID (Li et al., 2020)
and RoCOVery (Zhou et al., 2020)), news content
dataset (LIAR (Wang, 2017)), and multi-domain
dataset (MC Fake(Min et al., 2022)). The statistics
of these four datasets are listed in Table 1.
Experimental Models. To fairly conduct the
comparison experiments, we compared our pro-
posed model with five other models, only using
textual data without any additional modalities. The
tested methods include a CNN-based model (Kim,
2014), a GCN-based model (Yao et al., 2018), HAN
(Yang et al., 2016), BERT (Devlin et al., 2019),
and HeteroSGT (Zhang et al., 2024). More specifi-
cally, the CNN-based model employs CNN layers
to extract text features from article content and
then uses the extracted features to classify con-
tent veracity. The GCN-based model explores the
weighted graph built on news articles, which uses
a GCN for content classification. HAN applies
word-level and sentence-level features in news con-
tent for content veracity classification. BERT is



Dataset # Label 0 # Label 1 # Total Avg. Length (words)
MM COVID 1,888 1,162 3,048 25
RoCOVery 605 1,294 1,899 500
LIAR 2,507 2,053 4,560 17
MC Fake 2,671 12,621 15,292 300

Table 1: Statistics of the datasets used in our experiments.

Table 1: Detection performance on five datasets (best in red, second-best in blue).

Dataset | CNN | GCN | BERT | HAN | HeteroSGT | L*B

| Acc Pre | Acc Pre | Acc Pre | Acc Pre | Acc Pre | Acc Pre
MM COVID | 0.582+0.035 0.478+0.170|0.717+£0.156 0.735+0.236 | 0.730+0.093 0.727+0.094 | 0.855+0.005 0.854+0.005 | 0.925+0.004 0.921+0.006 | 0.902+0.116 0.902+0.110
ReCOVery [0.658+0.011 0.460+0.104 |0.718+0.037 0.691£0.178 | 0.682+0.030 0.441£0.213|0.722+0.021 0.462+0.197|0.909+0.002 0.902+0.002 |0.879+0.017 0.865+0.028
MC Fake 0.825+0.001 0.544+0.156 | 0.724+0.138 0.516+0.169 | 0.827+0.006 0.713+0.271 | 0.825+0.005 0.463+0.098 | 0.883+0.002 0.812+0.003 | 0.887+0.051 0.827+0.016
LIAR 0.546+0.019 0.432+0.181 | 0.487+0.039 0.493+0.047 | 0.537+£0.007 0.513%0.017 | 0.546+0.025 0.493+0.036 | 0.581+0.002 0.580+0.003 | 0.605+£0.041 0.601+0.045
Dataset | Rec F1 | Rec F1 | Rec F1 | Rec F1 | Rec Fl | Rec Fl
MM COVID | 0.547+0.039 0.474+0.101 | 0.685+0.178 0.621+0.184 | 0.722+0.101 0.720+0.103 | 0.854+0.006 0.853%0.005 | 0.915+0.005 0.918+0.005 | 0.898+0.142 0.900+0.132
ReCOVery [0.501£0.020 0.422+0.107 | 0.609+0.102 0.516+0.021 | 0.722+0.081 0.416+0.032|0.506+0.002 0.457+0.013 | 0.865+0.006 0.893+0.003 |0.843+0.203 0.854+0.208
MC Fake 0.501+0.002 0.455+0.004 | 0.552+0.169 0.470+0.039 | 0.502+0.001 0.451+0.002 | 0.500+0.004 0.453+0.001 | 0.762+0.002 0.783+0.003 | 0.700£0.099 0.738+0.109
LIAR 0.502+0.005 0.377+£0.049 | 0.494+0.029 0.423+0.055|0.510£0.012 0.483+0.014|0.502+0.018 0.445+0.053 | 0.575+0.002 0.571+0.003 [ 0.595+0.037 0.595+0.037

Table 2: Classification performance on four datasets (best in red, second-best in blue).

a transformer-based language model, similar to
our transformer-based classifier, where we explore
BERT to classify false content (i.e., low-veracity
content). HeteroSGT explores the heterogeneous
subgraph transformer to classify articles via the
heterogeneous graph.

4.2 Experiment Settings

Model Configuration. Our detection pipeline em-
ploys a transformer-based classifier, which effec-
tively integrate the textual, linguistic behavior, and
contextual features. Each input token is repre-
sented by a 128-dimensional embedding vector. In
the transformer-based classifier module, our model
consists of multiple stacked transformer encoder
layers with a multi-head attention scheme. In the
feature fusion function, we pool the transformer
outputs and concatenate these features with content
features, verb-based linguistic behavior features,
and social context embeddings using semantic link-
ing. For the fully-connected layer, we employ
ReLU as an activation function and set dropout
regularization to 0.1. The final output layer with a
sigmoid function is designed to provide the prob-
ability scores indicating the likelihood of the con-
tent being labeled 1 (i.e., high veracity). Here, we
use Adam optimizer with learning rate 1 x 1075
and cross-entropy loss to train our model, where
we employ the mixed precision training and early-
stopping to tune the hyperparameters. For training
and testing our proposed model, we split all the

datasets into train, validation, and test datasets us-
ing a ratio of 80%, 10%, and 10%, respectively. To
validate the generalizability of tested methods, we
perform 10 rounds of tests with random seeds for
each model and then record the averaged results
and standard deviation. Here, all the experiments
are conducted on 1 NVIDIA A100 GPU with 64G
RAM.

Evaluation Metrics. We quantitatively evaluate
our model’s performance compared to the other five
tested models, using classification metrics such as
accuracy (Acc), Macro-precision (Pre), Macro-F1
(F1), and Macro-recall (Rec).

4.3 Experimental Results

In Table 2, we report the experimental results of all
the tested models across the four datasets. From
Table 2, one can see that our model achieves su-
perior performance across all the metrics on the
LIAR dataset, and suboptimal performance on the
datasets MM COVID, ReCOVery, and MC Fake. It
shows that the linguistic behavior features can im-
prove the model performance and have a significant
impact on classifying content veracity. Addition-
ally, we can see that our model achieves higher
recall values on all four datasets, typically on the
LIAR dataset. A higher recall indicates that less
low-veracity content is missed when classifying
the high- and low-veracity content. Furthermore,
it should be noted that our model has robust and
consistent performance across all the datasets, com-



pared with other tested models.

For the five comparison models, CNN has poor
performance on all the datasets, which may result
from its fixed convolutional kernels. Due to these
kernels focusing on local features, the global fea-
tures or dependencies might not be effectively ex-
plored in news articles and social contexts. GCN
presents different results across multiple datasets
and receives better detection accuracy on MC Fake
dataset. HAN and BERT are transformer-based
models with attention mechanisms, and thus, the
performance is comparable between HAN and
BERT. Though HeteroSGT achieves optimal re-
sults on most datasets due to its subgraph struc-
ture, it still drops performance by 0.4% on Acc
and 1.5% on Pre, 2.4% on Acc and 2.1% on Pre,
respectively, compared to our proposed model on
MC fake and LIAR datasets. Typically, on the
MM COVID dataset, our model achieves consis-
tent performance across seeds, with a low standard
deviation (+0.116).

Table 3: Ablation results on the ReCOVery dataset. We
report Acc, Pre, Rec, and F1. ¢_: content (TF-IDF); ¢,:
behavioral (verbs); ¢,,: knowledge (context features).

Model Variant ‘ Acc ‘ Pre ‘ Rec ‘ F1

Full Model (¢, + ¢, + &) | 0.857 | 0.861 | 0.829 | 0.840
No Content (¢ + ¢,) 0.813 | 0.835 | 0.763 | 0.779
No Knowledge (¢, + ¢y) 0.808 | 0.803 | 0.776 | 0.785
Raw Text Only (¢,) 0.783 | 0.767 | 0.770 | 0.769

4.4 Ablation Study

We conducted an ablation study on the ReCOVery
dataset to evaluate the performance of three fea-
ture modules in our model: content feature (¢.),
behavioral feature (¢,), and knowledge-based con-
text feature (¢, ). From Table 3, we can see that
the L3B model incorporating all three modules
achieved the best performance, i.e., accuracy of
0.857, Pre of 0.861, Rec of 0.829, and F1 score
of 0.840. When removing the content features,
it leads to the largest drop in recall (from 0.829
to 0.763) and a significant drop in F1 score (to
0.779), showing the importance of capturing nu-
anced textual features. Without knowledge features
(¢y), it also reduces the overall performance, such
as Fl-score from 0.840 to 0.785, indicating the
significance of external social context in contextu-
ally grounding content for extracted verbal features
from news articles. Additionally, using only tex-
tual content (¢.), our model achieves an accuracy

of 0.783, demonstrating the performance of the
transformer-based baseline model. From these re-
sults, it can be seen that behavioral indicators and
contextual features provide complementary gains
beyond content-based representations alone.

5 Conclusion

Low-veracity content significantly disrupts content
quality and integrity, and therefore, it’s increas-
ingly important to develop efficient and robust con-
tent classification models. In this work, we in-
troduce the L3B, a behavior-aware classification
model, which leverages linguistic behaviors to clas-
sify high- or low-veracity content, alongside tex-
tual and contextual data. Compared to traditional
ML-based approaches that rely heavily on content
data, L®B effectively mitigates the limitations of
data dependency and bias through multi-faceted
feature extraction. Firstly, the verb features are
extracted from news articles as linguistic behav-
ioral features. Then, a knowledge-based linking
scheme is introduced to align the extracted verbal
features with those derived from social context cat-
egories and further refine the behavioral features.
Finally, the text, behavior, and context features are
fused and fed into a transformer-based classifier
to flag the content veracity. Experimental results
show that LB outperforms most advanced classifi-
cation models both in accuracy and generalizability,
indicating the merits of integrating linguistic behav-
ior features and behavior-context features into the
classification and detection frameworks of content
veracity on social media platforms.

Limitations

Though our proposed L3B framework has superior
performance in the content veracity classification
task by integrating textual, behavioral, and contex-
tual features, several limitations remain. First, our
model demands the verbal features, which leads to
poor performance in verb-sparse stances. Secondly,
we incorporate the predefined knowledge base to
model the social context for extracted verbal fea-
tures, lacking adaptability to newly emerging social
topics and content styles. Additionally, L3B does
not incorporate social credibility or propagation
patterns into the content classification pipeline. Fi-
nally, our proposed model is restricted to text data
and can not analyze multimodal content, such as
images or videos.

For future studies, we aim to incorporate be-



havior credibility and reliability into the content
veracity pipeline and also plan to explore more in-
herent features in news content, further improving
model performance and generalizability across di-
verse datasets. In addition, we plan to introduce
the multi-modality modules in the L3B pipeline to
capture text and image features and identify the
consistency between textual and visual features for
content veracity detection and classification of mul-
timodal data.
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