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Abstract

The generation speed of current LLMs is bottlenecked by autoregressive decoding,
where tokens are predicted sequentially one by one. Alternatively, diffusion large
language models (dLLMs) theoretically allow for parallel token generation, but in
practice struggle to achieve the speed of autoregressive models without significantly
sacrificing quality. We therefore introduce adaptive parallel decoding (APD), a
novel method that dynamically adjusts the number of tokens sampled in parallel.
We achieve this by defining a multiplicative mixture between the dLLM marginal
probabilities and the joint probability of sequences under a small auxiliary autore-
gressive model. This inverts the standard setup of speculative decoding, where the
goal is to sample from a large autoregressive verifier by drafting from a smaller
model. We further optimize APD by enabling KV caching and limiting the size of
the masked input. Altogether, our method puts forward three tunable parameters
to flexibly tradeoff throughput and quality. We show that APD provides markedly
higher throughput with minimal quality degradations on downstream benchmarks.

1 Introduction

Large language models (LLMs) have remarkable text generation capabilities and have attracted
evergrowing interest and widespread adoption. However, a significant impediment to their deployment
lies in the speed of text generation [43]. The dominant paradigm, autoregressive models [32],
generates tokens one by one in a sequential manner. While this approach has yielded state-of-the-art
results in terms of quality, the inherent sequentiality of generation limits throughput and hinders
real-time applications, especially as models continue to scale in size [19]. In addition, the recent
phenomenon of test-time scaling [35] and reasoning models [13] suggest that generation speed will
be an important bottleneck for increasing LLM capabilities. This challenge has spurred research into
alternative approaches beyond autoregressive sequential sampling.

One promising alternative to purely sequential generation is offered by diffusion large language
models (dLLMs) [42]. These models, inspired by successes in image generation [36], theoretically
permit the parallel generation of multiple tokens simultaneously, offering a path towards significantly
faster inference. In this work, we challenge the assumption that dLLMs, exemplified by the open-
source models Dream [41] and Llada [29], can be practically used for parallel generation without
additional modifications. We find that the quality of these models is best achieved by generating
tokens one at a time (one timestep per token), and attempts to exploit the parallelizability of diffusion
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Adaptive Parallel Decoding 

Latency: 7.08 seconds Throughput: 37 tokens per second

Latency: 2.75 seconds  Throughput: 59 tokens per second

Figure 1: Autoregressive vs Adaptive Parallel Decoding (APD). We visualize a sample from Qwen2.5
7B decoded autoregressively (baseline) and Dream 7B with APD (our method). Contiguous text of the same
color indicates tokens sampled in parallel. Here, we show that APD generates the solution much faster than
autoregressive sampling, which is sequential and slow.

models suffer a reduction in quality. Thus, current state-of-the-art dLLMs, namely Dream and Llada
as currently conceived, fail to match the speed and quality of autoregressive LLMs.

This gap between theoretical and practical performance creates an opportunity for novel decoding
mechanisms that can effectively harness the parallel generation capabilities of dLLMs while main-
taining high fidelity to the target text distribution. The core challenge is that when sampling multiple
tokens in parallel, one only has access to the marginal distribution of each token, which ignores
inter-token dependencies [23]. A decoding algorithm that increases parallelism when sampling
from dLLM and maintains generation quality must consider the joint distribution that captures these
dependencies.

To address this challenge, we introduce Adaptive Parallel Decoding (APD), a novel decoding
algorithm designed to dynamically modulate the number of tokens sampled in parallel during the
generation process with dLLMs. In APD, we first fix the generation order of the dLLM to be left
to right. This unexpected change makes the dLLM autoregressive, but we empirically show that it
maintains generation quality and in some cases can improve it. By using the dLLM autoregressively,
we can then also use a smaller autoregressive model to determine which subset of tokens sampled
in parallel adequately captures joint dependence. Our criterion depends on a multiplicative mixture
between the diffusion model and autoregressive model. Note that while speculative decoding uses
a large model to verify samples from a small draft model, our task is to use a smaller verification
model to check the quality of a larger model. This dynamic leads to a fundamentally new problem
statement.

Our contributions extend beyond the conceptual framework of APD. We further optimize the decoding
process by incorporating practical improvements to diffusion model sampling such as Key-Value
(KV) caching, a technique traditionally associated with autoregressive models [31]. We also gain
significant speed by limiting the size of the masked input to the model. These simple changes
substantially increase the computational efficiency of diffusion model inference.
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Collectively, we introduces three distinct tunable parameters. These parameters provide practitioners
with the flexibility to navigate the inherent trade-off between generation throughput and output
quality, allowing for tailored configurations that can meet diverse application-specific requirements.
This paper will demonstrate that Adaptive Parallel Decoding offers a significant step forward in
accelerating dLLM inference (and LLM inference in general). We present empirical evidence showing
that APD achieves substantially higher throughput compared to existing LLM decoding strategies, all
while incurring only minimal degradations in quality across a range of downstream benchmark tasks.
The subsequent sections will discuss the technical details of APD, present a comprehensive set of
experiments validating our claims, and discuss the broader implications of our findings for the future
of efficient LLM generation.

2 Background

In the following sections, we will define notation to be used throughout the paper. We consider a data
point as a sequences of n tokens x = (x1, ..., xn). For sets of indices Q,O ⊆ {1, ..., n} for which
Q ∩O = ∅, a masked language model pD( · | · ; θ) computes the marginal probabilities of tokens
with query indices Q conditioned on tokens with observed indices O.

pD(xQ | xO; θ) =
∏
i∈Q

pθ(xi | xO) (1)

where pθ is a learned conditional distribution parameterized by θ. In this work, a diffusion language
model is a masked language model, and these terms can be used interchangeably.

2.1 Discrete Diffusion Language Models

Discrete diffusion models [26] have recently emerged as a promising alternative to traditional
autoregressive approaches for language generation, offering benefits such as non-autoregressive
generation capabilities and inherent iterative refinement [39]. Discrete diffusion models are masked
language models [34] trained to reverse a data corruption process q that stochastically converts a
clean sequence of tokens x0 to a noisy xt, gradually converting clean tokens to [MASK] over time t

qt|0(x
t
i | x0

i ) =


t, if xt

i = [MASK]
1− t, if xt

i = x0
i

0 otherwise
qt|0(x
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∏
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t
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i ) (2)

Given this noise process, dLLMs are trained to maximize a lower bound on the log-likelihood
computed using conditional distributions of clean data [30].

log pθ(x
0) ≥ Et∼U(0,1),xt∼q(xt|x0)

1

t

[
log pD(x1(xt=[MASK]) | x1(xt ̸=[MASK]); θ)

]
(3)

While dLLMs are trained in theory to randomly unmask tokens at inference time, in practice decoding
heuristics are used to determine the order of tokens to unmask [20]. For example, to achieve the best
results, Dream unmasks tokens according to lowest entropy as assessed by the diffusion model at
each timestep. Llada performs the best when unmasking according to the highest probability, which
is referred to as "confidence" based decoding [29].

In light of these inference time modifications, diffusion language models are able to compete with
autoregressive model in terms of generation quality. However, in realistic scenarios, the quality of
a generation must be weighed against the speed. When we consider both of these factors, current
open-source dLLMs are far from competitive with their open-source autoregressive counterparts.
In Table 1, we find that dLLMs can perhaps achieve competitive quality, but their throughput is a
fraction of Qwen2.5 7B [40]. Another observation is that in order to achieve competitive performance
on GSM8K [6], dLLMs must generate 256 tokens in 256 timesteps, which is actually sequential.
We see that decreasing the number of timesteps can increase throughput at the expense of quality.
Nonetheless, the throughput will not approach autoregressive speed without drastic reduction in
quality. Interestingly, we find the simplest decoding order, just left to right, yields good results in
most scenarios, and in the case of GSM8K the best results.
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Figure 2: Naive Parallel Generation. Fixing the number of tokens k to semi-autoregressively generate (left to
right) in parallel per iteration, we observe a clear tradeoff between parallelization and generation quality. This
tradeoff exists with open source diffusion models: Dream and Llada.

2.2 From Sequential to Parallel Sampling

In this work, we utilize diffusion models with a particular noise schedule: denoising left to right.
This is equivalent to sampling autoregressively and can be used to compute an exact autoregressive
likelihood.

pAR(x; θ) =

n∏
i=1

pD(xi | x<i; θ) (4)

To further parallelize this process, one can decode multiple tokens at a time semi-autoregressively
[38] from groups of size k. Decoding in this manner samples from the following distribution

pSAR(x; θ, k) =

⌊(n−1)/k⌋+1∏
i=1

pD(x(ik−k+1:ik) | x<(ik−k+1); θ) (5)

where it follows that pAR(x; θ) = pSAR(x; θ, 1) for k = 1. A diffusion model can parallelize the term
inside the product by sampling from each marginal distribution independently. Although this will
lead to faster generations, the intra-group independence assumption is poor and leads to lower quality
generations. We observe this empirically in Figure 2: as we increase the number of tokens sampled
at a time, throughput increases, but downstream accuracy decreases. Thus, there exists a tradeoff
between parallelization and speed with sample quality. However, instead of fixing k, our core insight
is that the number of tokens to generate in parallel can be chosen adaptively. In this work, we argue
that doing so significantly reduces the sharp tradeoff between speed and quality.

3 Method

3.1 Problem Statement

Our goal is to sample from groups G = {(s1, e1), (s2, e2), ..., (sl, el)} where (si, ei) is a tuple that
denotes start and end indices inclusive and ei + 1 = si+1 for all i. Note that Equation 5 is a special

Table 1: dLLM Quality and Throughput with Different Decoding Approaches
Model GMS8K Accuracy Throughput (tokens/sec)
Dream 7B (Random, 256 Steps) 0.404± 0.021 3.31± 0.068
Dream 7B (Entropy, 128 Steps) 0.708± 0.020 7.57± 0.157
Dream 7B (Entropy, 256 Steps) 0.804± 0.017 4.28± 0.080
Dream 7B (Left to Right, 256 Steps) 0.832± 0.016 10.1± 0.015

Llada 8B (Random, 256 Steps) 0.456± 0.022 5.07± 0.168
Llada 8B (Confidence, 128 Steps) 0.526± 0.022 13.6± 0.284
Llada 8B (Confidence, 256 Steps) 0.534± 0.022 6.63± 0.143
Llada 8B (Left to Right, 256 Steps) 0.712± 0.020 9.33± 0.016

Qwen2.5 7B (Autoregressive) 0.854± 0.015 38.6± 0.004
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case where G = {(1, k), (k + 1, 2k + 1), ..., (n− k, n)}We shall sample from

pAPD(x; θ,G) =
∏

(s,e)∈G

pD(xs:e | x<s) (6)

In choosing G, we must balance the following two goals — (1) Speed: minimize |G| and (2) Quality:
minimize the distance between pAPD and pAR.

Achieving only one out of two goals is trivial. For maximum speed, we can sample from all the
marginals of the diffusion model in one shot such that G = {(1, n)} and |G| = 1. This would result
in a significant drop in quality. In fact, the drop in quality can be quantified by mutual information

IpAR(x; θ) = KL(pAR(x1:n; θ) || pD(x1:n; θ)) (7)

Alternatively, we can set G = {(1, 1)...(n, n)}, in which case |G| = n and pAPD = pAR. This is
very slow because it maximizes the number of sequential iterations. For architectural reasons to
be discussed in Section 3.3, it is also very slow to sample autoregressively from a diffusion model
because it cannot perform KV caching. This architectural difference distinguishes our problem
setting from speculative decoding [22], because computing an autoregressive likelihood in a diffusion
model is slow and sequential, whereas in an autoregressive model it is fast and parallelizable. While
speculative decoding does not map onto our problem, we shall argue that adaptive parallel decoding
achieves both goals together.

3.2 Adaptive Parallel Decoding

In adaptive parallel decoding, we assume to have access to a small autoregressive model p̂AR that
can compute the likelihood of sequences in parallel. While pD only computes marginal probabilities
over tokens, p̂AR computes a joint probability, allowing it to model dependencies between tokens.
For brevity, we shall omit model parameters θ.

To select G, we shall focus our analysis on a subproblem. Given samples x̂t, ..., x̂n ∼ pD(· | x<t),
we must select k such that x̂t:t+k are close to pAR. We do not have access to pAR because evaluating
its likelihood for each token will give us the worst-case speed. Instead, we have access to a small,
inaccurate model p̂AR that can quickly evaluate likelihood in parallel. To approximate pAR, we shall
define a target distribution which we use to determine how many tokens k are accepted. This target
distribution pT should satisfy the following desiderata:

(1) if pD(X = c) = 1 and p̂AR(X = c) < 1, then pT (X = c) = 1

(2) if pD(X = c) < 1 and p̂AR(X = c) = 1, then pT (X = c) = 1

Property (1) follows from the fact that pAR(x1:k) ≥
∑k

i=1 pD(xi)− k+ 1 by Bonferroni’s inequality
[10], which means if pD(xi) = 1 for all i, then pAR(x1:k) = 1. Put verbally, if the marginals given
by the diffusion model are 1, its joint distribution or pAR will also have probability 1. Property (2) is
difficult to justify formally because we do not have a relationship between pAR and p̂AR. Assuming
p̂AR reasonably approximates the joint distribution, property (2) is a desirable heuristic because a
token with joint probability 1 should be accepted.

A multiplicative mixture of distributions, also known as a product of experts [16], fulfills the two
requirements above. We define the multiplicative mixture of pD and p̂AR as follows

pT (x) =
1

Z
pD(x)

Rp̂AR(x)
1−R (8)

where Z is the normalizing constant. Our mixture is defined in terms of a hyperparameter R ∈ [0, 1].
When it is high, it gives the diffusion model more weight. We may now give an accept criteria based
on target distribution pT . We adopt an accept criteria similar to existing parallel sampling methods
based on universal coupling [1]. Formally, a universal coupler is a function g which for a distribution
p and source of randomness r satisfies

Pr∼U [0,1](g(p, r) = x) = p(x) (9)

For categorical distributions, the Gumbel-Softmax Trick [18] is a universal coupler [1]. An important
property of a universal coupler is that for two distributions p, p′, their samples from a universal

5



Algorithm 1 Adaptive Parallel Decoding

1: Input: Diffusion model pD, Autoregressive model p̂AR, Mixture Weight Parameter R, Maximum
sequence length n

2: Output: Generated token sequence x
3: x← () ▷ Stores the accepted tokens
4: t← 1 ▷ Index of token to generate
5: while t ≤ n do
6: marginal_logitst:n ← pD(xt:n | x<t)
7: r ← Gumbel(0, 1)
8: x̂t:n ← sample_gumbel(marginal_logitst:n, r)
9: joint_logitst:n ← p̂AR(x̂t:n | x<t)

10: product_logitst:n ← softmax(R∗marginal_logitst:n+(1−R)∗joint_logitst:n)
11: ŷt:n ← sample_gumbel(product_logitst:n, r)
12: k ← sum(cumprod(x̂t+1:n = ŷt+1:n)) + 1
13: x← concat(x, x̂t:t+k−1) ▷ Append accepted tokens
14: t← t+ k
15: end while
16: return x

coupler with a shared source of randomness are likely to be the same given that the distributions p
and p′ are similar [21].

Pr(g(p, r) ̸= g(p′, r)) ≤ 2 TV(p, p′) (10)

where TV is total variation distance. Thus, in our algorithm we sample from the diffusion model using
the Gumbel-Softmax trick as a universal coupler g and source of randomness r: x̂t, ..., x̂n ∼ g(pD, r).
We then sample from our target: ŷt, ..., ŷn ∼ g(pT , r), and we accept all tokens that are the same
between ŷi and x̂i until the first disagreement. Because the goal is to sample from pAR, we always
accept the first proposed token x̂t. The full algorithm is given in Algorithm 1. While the same
algorithm is valid even when using different Gumbel randomness to sample from the target and
proposal distributions, intuitively using the same randomness will maximize the number of accepted
tokens.

Algorithm 1 provides a sampling procedure which takes as input a diffusion model pD, a small
autoregressive model p̂AR, and tunable parameter R ∈ [0, 1]. When R = 1, the target distribution is
pD and the algorithm will accept every token from the diffusion model in one shot. When R = 0, the
algorithm does not “trust" the diffusion model and instead only accepts tokens that p̂AR accepts.

Our sampling algorithm is agnostic to the implementation of pD and p̂AR, but in practice architectural
optimizations are used for additional speed. For example, when computing the joint logits of the
autoregressive model, we can use KV caching [31] to avoid redundant computation on t previous
tokens. The only requirement for pD is that it can draw samples from the marginal distributions of
the suffix in parallel. However, if we consider that the implementation of pD is a Transformer-based
masked language model, further speedups can be achieved.

3.3 Recompute KV Window

In our above method, we center sampling parallel as the primary way to improve decoding speed.
However, overall we aim to maximize the throughput of diffusion models by all means necessary,
so we also must consider architectural factors. We enable KV caching for tokens outside a sliding
window of size W . For a detailed explanation of KV caching, see Appendix B. Although KV caching
with a diffusion model trained with bidirectional masking can induce arbitrary out-of-distribution
behavior, empirically we observe very little performance degradation (Appendix B). The intuitive
reason is that tokens sufficiently far from the rightmost token will have small attention weight, so
inaccuracies in their KV will not dramatically change the overall attention computation.

3.4 Maximum Masked Lookahead

Because we are sampling from a diffusion model left to right autoregressively, we can exploit the fact
that the input will contain a large block of contiguous [MASK] tokens as the suffix. The simple fix is
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Figure 3: Multiplicative Mixture Weight. In Adaptive Parallel Decoding (APD), smaller R values result
in fewer parallel tokens per iteration but maintain high quality. In particular, we achieve a far better tradeoff
compared to naively parallelizing semi-autoregressively. Notably, generating over 5 tokens per iteration on
average is possible with APD while maintaining ∼80% accuracy on GSM8K. At the expense of some quality,
even over 100 tokens per second is possible.

to set a maximum length M for this suffix. Because the attention computation has O(n2) complexity,
decreasing the size of the input can lead to significant speed improvements. Unfortunately, the size
of the masked lookahead M can change the output distribution by changing the probability of the
end of sentence token [EOS]. Empirically, the maximum masked lookahead M can be tuned to gain
significant speedup with minimal quality loss.

4 Experiments

In our method, we define three tunable parameters, which we will briefly summarize:

1. Multiplicative Mixture Weight R: Higher results in higher throughput, lower quality

2. Recompute KV Window W : Lower results in higher throughput, lower quality

3. Maximum Masked Lookahead M : Lower results in higher throughput, lower quality

Our experimental goal is to empirically analyze the tradeoff in speed and generation quality as these
parameters vary.

4.1 Implementation

In our experiments, we use Dream 7B Instruct [41] as the diffusion model pD and Qwen2.5 0.5B [40]
as the approximate autoregressive model p̂AR. Both models have demonstrated impressive capabilities
on math, science, and reasoning benchmarks. Conveniently, Dream 7B is a diffusion model that has
been distilled from Qwen2.5 7B, so it is more likely to have distributional overlap with Qwen2.5
0.5B. These models satisfy another prerequisite; they share the same tokenizer. Although our method
is theoretically applicable to Llada 7B, which exhibits strong left to right generation capabilities,
Llada 7B is trained with a non-standard tokenizer that no existing autoregressive model utilizes.

4.2 Experimental Configuration

For the following experiments, we load the models in BF16 precision and run them on single NVIDIA
24GB A5000 GPU connected to a Colfax CX41060s-EK9 4U Rackmount Server with AMD EPYC
(Genoa) 9124 processors. We operate using the LM Evaluation Harness [11] standard implementation
of benchmarks with a few modifications and evaluate on GSM8K [6], GPQA [33], and MATH [15],
and HumanEval [4]. See Appendix C for precise details.

4.3 Tradeoffs

For analyzing tradeoffs, we vary each parameter in isolation to measure the impact of each on
performance. In later experiments, we plot configurations of the parameters jointly. Each plot shows
the Grade School Math 8K (GSM8K) [6] accuracy with 500 samples, and the throughput measured by
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Figure 4: Maximum Masked Lookahead. We illustrate the trade-off between speed and quality when adjusting
the maximum masked lookahead (M ). Decreasing M can significantly increase throughput (speed) but it will
also reduce quality by shortening the generation length. Thus, this parameter should not be made excessively
small.

number of tokens generated divided by generation time. We measure the standard error of throughput
and accuracy with respect to the variation in samples, i.e. different math problem.

Figure 3 shows that as we vary the multiplicative mixture weight R, we achieve a range of speed,
quality outcomes. We see for small R, we accept fewer tokens per iteration but maintain high quality.
Remarkably, it is possible to generate over 5 tokens an iteration on average and achieve close to the
same accuracy as generating 1 token per iteration. As we increase R, the accuracy drops but not
drastically. Constrast this with Figure 2, where increasing the number of tokens sampled in parallel
leads to a precipitous drop in generation quality. With our method, by dynamically choosing when to
sample from the diffusion model in parallel, we are able to achieve much higher token acceptance
rates without losing generation quality. In Table 2, we track statistics of APD and find that the parallel
acceptance rate is high.

We also analyze the impact of changing the recompute KV window W for left to right autoregressive
generation from the diffusion model, sampling with with pAR (the same as K = 1). In Figure 6
(Appendix B), we observe the same relationship between accuracy and throughput, but the tradeoff
is not as strong. As we decrease the window W , we can achieve a nontrivial speedup at almost no
expense to quality.

Finally, we examine the speed-quality throughput exhibited by altering the maximum masked
lookahead M . We again observe that there is no free lunch that can increase speed with zero
degradations in quality. In this case, we find that decreasing M increases throughput but can
significantly alter quality by virtue of the fact that the generation length decreases. In general, works
have shown a relationship between increased "thinking time" (the number of generated tokens)
and reasoning strength [27]. Thus, changing the output distribution of pD in this way can damage
generation quality, especially for complex reasoning tasks.

All together, the parameters in question each exhibit a unique tradeoff between speed and quality. We
believe giving the user or practitioner more flexibility to balance these factors at inference time is an
undoubted strength of our approach.

4.4 Pareto Frontier

The Pareto frontier characterizes the set of optimal configurations when faced with the inherent
trade-off between two or more conflicting objectives, which in the case of LLM inference is speed
and quality. A specific LLM configuration is considered Pareto optimal [25] if it is impossible to
improve its performance in one objective without simultaneously incurring a detrimental effect on

Table 2: APD Generation Statistics. Mean number of tokens sampled in parallel.
Model GMS8K GPQA MATH

Dream 7B (R = 0.7,W = 16,M = 100) 7.62± 0.14 4.35± 0.03 6.45± 0.04
Dream 7B (R = 0.6,W = 32,M = 200) 5.75± 0.05 4.31± 0.02 6.33± 0.03
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Figure 5: The Pareto Frontier. Dream 7B configured with ADP achieves substantially higher speeds with
negligible impact on performance compared to the K = 1 base model. Notably, Dream with ADP surpasses the
speed of autoregressive Qwen 7B and even Qwen 0.5B. This establishes Dream with ADP as Pareto-optimal, as
no other model configuration is superior in both speed and quality. We show two hyperparameter configurations
of APD, showing that we can flexibly tradeoff speed and quality.

another objective, such as increased latency. The Pareto frontier is, therefore, the collection of all
such non-dominated configurations, representing the attainable boundary of performance.

In Figure 5, we show this frontier over several tasks and model configurations. Dream 7B (K = 1) is
a naive baseline that decodes one token at a time, and it therefore occupies low throughput and high
density regions. According to our previous assumptions, it will also upper bound the quality of Dream
with other decoding parameters. We observe that Dream 7B with our configuration of parameters
given by ADP, achieves much greater speed with minimal performance degradation from the base
K = 1 performance. We also find that Dream with ADP is faster than the autoregressive Qwen 7B
and even Qwen 0.5B. Note that if Qwen 7B used speculative decoding with a Qwen 0.5B draft model,
it will still never exceed the throughput of ADP. Thus, Dream with ADP is Pareto-optimal, because
no model can dominate it in speed and quality. Similar to throughput, ADP is also much faster in
terms of latency. Diffusion models benefit from the fact that they generate fewer tokens to stay within
a fixed context window, while autoregressive models can generate much longer reasoning traces that
may ramble and not improve quality.

4.5 Qualitative Examples

Though we evaluate on standard benchmarks, APD can also quickly generate for more open-ended
tasks. In Appendix D, we show examples with average number of parallelized tokens on a dataset of
persuasive writing prompts [8].

5 Related Work

Several works propose architectural modifications to LLMs to enable multi-token prediction: Mask-
Predict [12], Medusa [3], and DynaMo [37]. While these works are promising, our focus is multi-
token prediction in dLLMs. Other recent works seek to improve dLLM speed. For example, block
diffusion [2] enables KV caching, but requires training, unlike our method. Discrete copula diffusion
[23] is an inference time method that aims to reduces the number of denoising steps required,
but does not offer a tunable speed, quality tradeoff. More generally, algorithmic approaches to
speeding up LLM inference include cascades [28], lookahead decoding [9], and speculative decoding
[28], which are methods that are generally only applicable in autoregressive models. Building on
speculative decoding, works have used different architectures as the draft model including any-order
autoregressive models [14] and dLLMs [5]. We emphasize that using a large dLLM to draft in parallel
presents fundamentally distinct challenges that are not solved with speculative decoding. Finally, we
highlight that quantization is another promising and orthogonal approach for offering a strong speed
quality tradeoff in LLMs [24, 7].
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6 Conclusion

In this work, we pursue the significant challenge of increasing inference speed in large language mod-
els. We introduced Adaptive Parallel Decoding (APD), a novel algorithm that enables substantially
faster sampling from dLLMs. APD uniquely restructures the dLLM into a left-to-right autoregressive
process and leverages a smaller autoregressive model to assess the quality of parallel-generated
token candidates. Complemented by optimizations such as KV caching and limited masked inputs,
APD offers tunable parameters that allow a flexible trade-off between generation speed and output
quality. This research offers a significant advancement in making dLLMs a more viable and efficient
alternative for fast text generation.
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A Limitations

Adaptive Parallel Decoding offers a tradeoff, not a free lunch. Higher throughput will lead to lower
quality, which is a limitation. We also do not claim to improve over the base diffusion model that we
are sampling from. If Dream 7B is weak in a particular domain, our method will also perform poorly.

B Recompute KV Tradeoff

A major architectural difference between diffusion language models and autoregressive models is
that diffusion models are trained with a bidirectional attention mask to predict masked tokens [17],
and autoregressive models are trained to predict the next token with a causal mask. Because of this
fundamental difference, autoregressive models have an invariant property: the attention matrix over a
fixed set of tokens never changes over the course of a generation. Thus, previous “keys" and “values"
(KV) used for computing attention can be cached, a process known as KV caching. While the same
invariant property does not hold in diffusion language models, in practice, we can still perform KV
caching. To adapt KV caching for diffusion language models, we relax the condition that every
sampled token will immediately cache its keys and values. Instead we adopt a sliding window of size
W for which a token’s KV will be recomputed. Once a sampled token is more than W entries away
from the most recently sampled tokens, we cache its KV.

Here, we show a modest gain in throughput for very minimal loss in accuracy by enabling KV caching
in a diffusion model.

Figure 6

C Experimental Details

Because our models are instruction tuned, evaluate the model zero-shot with a chat format and system
prompt. For GSM8K [6] and HumanEval [4], the standard system prompt is "You are a helpful
assistant". For GPQA [33] and MATH [15], we modify the system prompt to specify the reasoning
task and answer format.

Also, we set a maximum generation length of 256 or 512 tokens for the diffusion models and 16384
(the maximum context length) for the autoregressive Qwen models. This is a necessary difference,
because diffusion models must materialize the maximum context length, unlike autoregressive models.
In practice, the diffusion models generate [EOS] before the maximum generation length, at which
point we end the generation.

When sampling from Dream 7B, we use the hyperparameters of temperature 0.2 and top-p 0.95, as
these are set as default.
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D Qualitative Examples

Though we evaluate on standard benchmarks, APD can also quickly generate for more open-ended
tasks. We show qualitative examples on a dataset of persuasive writing prompts [8] and sample from
Dream 7B with APD parameter R = 0.7. With APD, we can perform well on open-ended tasks, but
compared to reasoning, which has more textual regularities, we quantitatively do not observe the
same rate of parallel generation as grade school math questions, for example.

Prompt:

Write a persuasive argument for the following claim: ‘Gas car sales should be banned after a
set phase-out date.’

Answer:

The use of gas cars is a major contributor to the emission of greenhouse gases, which
are causing the climate change. Banning gas car sales after a set phase-out date would
help to reduce the emission of greenhouse gases and the overall impact of climate change.
Additionally, it would encourage the development of electric and hybrid vehicles, which are
more environmentally friendly and help to reduce the reliance on fossil fuels.

Average Parallel Tokens per Iteration: 3.38

Prompt:

Write a persuasive argument for the following claim: ‘Social media should verify user
identities.’

Answer:

Social media platforms should verify user identities to ensure a safe and secure environment
for all users. By verifying user identities, social media platforms can prevent the spread
of fake accounts, cyberbullying, and other harmful activities. Additionally, verifying user
identities can help to protect the privacy of users by ensuring that their personal information
is not shared with unauthorized individuals.

Average Parallel Tokens per Iteration: 2.92

15



Prompt:

Write a persuasive argument for the following claim: ‘Virtual emotional companion AI should
be allowed and unrestricted’.

Answer:

Virtual emotional companion AI should be allowed and unrestricted because it can provide a
valuable support system for individuals who are struggling with mental health issues. These
AI can offer emotional support, companionship, and a sense of connection, which can be
especially beneficial for those who are isolated or isolated. Additionally, virtual AI can
provide a safe and non-judgmental space for individuals to express their feelings and thoughts,
which can be especially helpful for those who are struggling with anxiety or depression. By
allowing virtual emotional companion AI to be unrestricted, we can provide a support system
for those who need it the most and help them to overcome their mental health challenges.

Average Parallel Tokens per Iteration: 2.88
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