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Abstract

Reward allocation has been an important topic
in economics, engineering, and machine learning.
An important concept in reward allocation is the
core, which is the set of stable allocations where
no agent has the motivation to deviate from the
grand coalition. In previous works, computing
the core requires the complete knowledge of the
game. However, this is unrealistic, as outcome of
the game is often partially known and may be sub-
ject to uncertainty. In this paper, we consider the
core learning problem in stochastic cooperative
games, where the reward distribution is unknown.
Our goal is to learn the expected core, that is,
the set of allocations that are stable in expectation,
given an oracle that returns a stochastic reward for
an enquired coalition each round. Within the class
of strictly convex games, we present an algorithm
that returns a point in the expected core given a
polynomial number of samples, with high proba-
bility. To analyse the algorithm, we develop a new
extension of the separation hyperplane theorem
for multiple convex sets.

1. Introduction

The reward allocation problem is a fundamental challenge in
cooperative games that seeks reward allocation schemes to
motivate agents to collaborate or satisfy certain constraints,
and its solution concepts have recently gained popularity
within the machine learning literature through its application
in explainable Al [14, 23, 10, 26] and cooperative Multi-
Agent Reinforcement Learning [24, 9, 25]. A crucial notion
of reward allocation is stability, defined as an allocation
scheme wherein no agent has the motivation to deviate from
the grand coalition. The set of stable allocations is called
the core of the game.

In the classical setting, the reward function is deterministic
and commonly known among all agents, with no uncertainty
within the game. However, assuming perfect knowledge of
the game is often unrealistic, as the outcome of the game
may contain uncertainty. This led to the study of stochas-
tic cooperative games, dated back to the seminal works of
[6, 22], where stability can be satisfied either with high
probability, known as the robust core, or in expectation,
known as the expected core. However, in these works, the

distribution of stochastic rewards is given, allowing agents
to calculate the reward allocations before the game starts,
which is not practical since the knowledge of the reward dis-
tribution may only be partially known to the players. When
the distribution of the stochastic reward is unknown, the task
of learning the stochastic core by sequentially interacting
with the environment appears much more challenging.

In our work, we focus on learning the expected core, which
circumvents the potential emptiness of the robust core in
many practical cases. Moreover, where the stochastic re-
wards of all coalitions are observed each round, we consider
the bandit feedback setting, where only the stochastic re-
ward of the inquired coalition is observed each round. Given
the lack of knowledge about the probability distribution of
the reward function, learning the expected core using data-
driven approaches with bandit feedback is challenging.

Against this background, the contribution of this paper is
three-fold: (1) We focus on expected core learning problem
with unknown reward function, and propose a novel algo-
rithm called the Common-Points-Picking algorithm,
the first of its kind that is designed to learn the expected core
with high probability. Notably, this algorithm is capable of
returning a point in an unknown simplex, given access to
the stochastic positions of the vertices, which can also be
used in other domains, such as convex geometry. (2) We
establish an analysis for finite sample performance of the
Common-Points-Picking algorithm. The key compo-
nent of the analysis revolves around a novel extension of
the celebrated hyperplane separation theorem, accompanied
by further results in convex geometry, which can also be of
independent interest. (3) We show that our algorithm returns
a point in expected core with at least 1 — § probability, using
poly(n,log(6—1)) number of samples.

2. Related Work

Stochastic Cooperative Games. The study of stochastic
cooperative games can be traced back to at least [0, 22, 21].
The main goal of the allocation scheme is to minimise the
probability of objections arising after the realisation of the
rewards. These seminal works require information about the
reward distribution to compute a stable allocation scheme
before the game starts. Stochastic cooperative games have
also been studied in a Bayesian setting in a series of pa-
pers [2, 4, 5, 3], where the distribution of the reward is
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conditioned on a hidden parameter following a prior dis-
tribution, which is common knowledge among agents. In
contrast to previous works, our paper focuses on studying
scenarios where the reward distribution or prior knowledge
is not disclosed to the principal agent and computing a stable
allocation requires a data-driven method.

Learning the Core. The literature on learning the core
through sample-based methods can be categorised based on
the type of core one seeks to evaluate. Two main concepts
of the stochastic core are commonly considered, namely
the robust core (i.e. core constraints are satisfied with high
probability) [8, 18, 15] and the expected core (i.e. core con-
straints are satisfied in expectation) [7, 16]. In this work,
we investigate the learnability of the expected core, which
mitigate the potential emptiness of the robust core [7]. The
work most closely related to ours is [16], in which the au-
thors introduce an algorithm designed to approximate the
expected core using a robust optimization framework. In
the context of full information feedback, where rewards for
all allocations are revealed each round, the algorithm in [16]
demonstrates asymptotic convergence to the expected core.
In contrast, we consider bandit feedback, where applying
the algorithm of [16] may result in an exponential number
of samples in terms of the number of players (see Appendix
E.1 for a detailed explanation). Different than general frame-
work in [16], we propose a novel algorithm that explicitly
exploits geometric properties of (strictly) convex game to
seek a point in expected core with only poly(n) number of
sample, with high probability.

3. Problem Description

3.1. Preliminaries

Notations. For k € N, denote [k] as set {1,2,...,k}.
For n € N7, let E" be the n-dimensional Euclidean space,
and let us denote D as the Euclidean distance in E™. Denote
1,, as the vector [1,...,1] € R™. Denote (-,-) as the dot
product. For a set C, we denote C' \ z as the set result-
ing from eliminating an element x in C. For C C E", let
diam(C') := max, yec D(z, y), and Conv (C) denote the
diameter and the convex hull of C, respectively. Denote
S, = {w : [n] = [n] | w isabijection} as the permu-
tation group of [n]. For any collection of permutations
P C &, we denote w,, p € [|P|], as p'* permutation
order in P. Given a set C, we denote by M(C') the space
of all probability distributions on C'.

Stochastic Cooperative Games. A stochastic coopera-
tive game is defined as a tuple (IV,P), where N is a set
containing all agents with number of agents to be |[N| = n,
and P = {Ps € M([0,1]) | S € N} is the collection of
reward distributions with Pg to be the reward distribu-
tion w.r.t. the coalition S. For any coalition S C N,

we denote 1(S) := E,py[r] as the expected reward of
coalition S. For a reward allocation scheme x € R"™, let
x(8) := 3,5 s as the total reward allocation for players
in S. A reward allocation z is effective if x(N) = u(N).
The hyperplane of all effective reward allocations, denoted
by Hpy, is defined as Hy = {x € R" | (N) = u(N)}.
The (strictly) convex stochastic cooperative game can be
defined as follows:

Definition 1 (¢-Strictly convex cooperative game). For
some constant ¢ > 0, A stochastic cooperative game is
convex if the expected reward function is supermodular
[19], thatis, Vi ¢ SUC;and VC C S C N,

n(SU{i}) — p(S) = p(CU{i}) — p(C) +<. (1)

When ¢ = 0, we simply call the game convex, otherwise,
it is strictly convex. Next, we define the expected core as
follows:

Definition 2 (Expected core [16]). The core is defined as
E-Core := {x € R" |2(N) = pu(N);
x(S) > u(S), VS C N}.

Note that, as E-Core C H y, its dimension is at most (n —
1). We say that E-Core is full dimensional whenever its
dimension is n — 1. For any w € &,,, define the marginal
vector ¢* € R™ corresponding to w, that is, its i'" entry is

¢ = (P (i) — u(P (i) \ 1), @

where P = {j | w(j) < w(i)}. In convex games, each
vertex of the core in the convex game is a marginal vector
corresponding to a permutation order [19]. This is a special
property of convex games, which plays a crucial role in our
algorithm design.

3.2. Problem Setting

In our setting we assume that there is a principal who does
not know the reward distribution P. In each round ¢, the
principal queries a coalition S; C N. The environment
returns a vector r; ~ [Pg, independently of the past. For
simplicity, we assume that the agent knows the expected
reward of the grand coalition p(/N). Our question is how
many samples are needed so that with high probability 1 — 6,
one can compute a point x € E-Core.

As well shall show in Theorem 5, if E-Core is not full-
dimensional, no algorithm can output a point in E-Core
with finite samples. As such, to guarantee the learnability
of the E-Core. From now on in the rest of this paper, we
assume that:

Assumption 3. The game is ¢-strictly convex.

Note that strict convexity immediately implies full dimen-
sionality [19], which is not the case with convexity.
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4. Common-Points—-Picking algorithm

In deterministic convex game, to compute a point in the core,
one can query a vertex of the E-Core, that is, a marginal
vector corresponding to a permutation order w € G, [19].
Given that the game is now stochastic, this approach is no
longer applicable as we can only compute the confidence
set instead of the exact position of the vertex. One approach
to overcome the effect of uncertainty is to estimate multi-
ple vertices of the E-Core. Let P C &,, be a collection of
permutations, Q) = {¢“» | w, € P} be the set of vertices
corresponding to P, and C, > ¢“» is the confidence set.
It is clear that Conv (Q)) C E-Core, since () is a subset of
vertices of E-Core. The challenge is ensuring the algorithm
outputs a point within the convex hull of any points in the
confidence sets, since the true vertex position can be any-
where within these sets. A sufficient condition to achieve
this is that, given |P| confidence sets {C; },¢[ |, for each
P € Cp,

m Conv ({Ip}pe[‘fp”) 75 . 3)

zPeC,

p€[|P]]
This condition means that there exists a common point
among all the convex hulls formed by choosing any point in
confidence sets, 2 € C,. We call the above intersection a
set of common points. It is clear that set of common points is
a subset of the E-Core. We first state a necessary condition
for the number of vertices of E-Core need to estimate for

(3) can be satisfied:

Proposition 4. Suppose that all the confidence sets are
full dimensional, i.e., dim(C,) = n — 1, Vp € [|P|], and
suppose that |P| < n. There does not exist common point.

Proposition 4 implies that one needs to estimate at
least n vertices to guarantee the existence of a com-
mon point. As such, from now on, we assume that
|P| = n. Based on the above intuition, we propose
Common-Points-Picking, whose pseudo code is de-
scribed in Algorithm 1, 2.

Before explaining our algorithm, let us construct the con-
fidence sets using Hoeffding’s inequality as follows. Let
Tep (&) = 0, Yep > 0, define the empirical marginal vec-
tor w.r.t. permutation w, as gﬁ‘“ﬁ € R™ at epoch ep as

ep
;" (ep) = % (Z rs (P7) —rg (P \z‘)) @
s=1

By the Hoeffding’s inequality, one has that after ep epochs,
Yw, € P, with probability at least 1 — 9, ¢*» lies in

Cp = {ZCEHN‘HI(ZEMP gbep}?

(5)
2log(nepd—1)
st bep 1= — o

Algorithm 1 Common Points Picking

1: Input collection of permutation order P = {w; }pe[n]-
2:t=0,ep=0,C, =2,Vp € [n].
3: while Stopping-Condition ({Cp}pe["],bep) do

4 ep+ep+1;

5 for p € [n] do

6: for i € [n] do

7 Query P;”.

8 Orcale returns rep, (P;") <+ 1y
9: t—t+1.

10: Computing d;j’p (ep) as (4).

11: end for

12:  end for

13:  Vp € [n], Compute confidence set C,, , bep, as (5).
14: end while R
15: Return z* = 1 35 1 ¢*7(ep).

Algorithm 2 Stopping Condition

1: Input collection {Cp} ,¢[,,]> and confidence bonus bep.
Compute €ep, = 24/Nbep.
if C, = @ for some p € [n] then
Return FALSE.
end if
for p € [n] do
Computing separating hyperplane H,, between C,
and {Cy }gp as eq (7).
8:  Computing distance: h,, := D(C,, H,).
9: if h, < negp then

RSN O

10: Return FALSE.
11:  endif
12: end for

13: Return TRUE.

The Common-Points—Picking Algorithm (Algorithm
1) can be described as follows. In each epoch ep, assuming
that the stopping condition is not satisfied, the algorithm es-
timates the marginal vectors corresponding to the collection
of given permutation orders {¢“ (ep)}pepn (lines 6-10).
Next, it calculates the confidence bonus b.p,, the confidence
sets {Cp}pein)> and checks the stopping condition for the
next epoch. The algorithm continues until the stopping con-
dition is satisfied, and then returns the average of the most
recent values of the marginal vectors in P.

The termination of the Common-Points-Picking algo-
rithm is based on the Stopping—Condition algorithm
(Algorithm 2), which can be described as follows. For each
confidence set C,, the algorithm attempts to calculate the
separating hyperplane H,,, that separates C,, from the rest
{Cq}qsp (line 7). After computing H,,, the algorithm checks
whether the distance from the confidence set C,, to H, is
large enough (lines 8, 9). It checks for all p € [n]; if no
condition is violated, then the algorithm returns TRUE.
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5. Main Results

Before proceeding to the analysis of Algorithm 1, let us
exclude the case where learning a stable allocation is not
possible, thereby emphasizing the need of the strict convex-
ity assumption.

Theorem 5. Suppose that E-Core has dimension k < n —1,
for any 0.2 > § > 0 and with finite samples, no algorithm
can output a point in E-Core with probability at least 1 — 6.

We note that convex games may have a low-dimensional
core (e.g., Example 13 in Appendix A). This suggests that
convexity alone does not ensure the problem’s learnability,
emphasizing the requirement for strict convexity.

5.1. On the Stopping Condition

In this subsection, we explain the construction of the stop-
ping condition in Algorithm 2. To simplify the presentation,
we restrict our attention to Hx and consider it as E?~ L.
First, we state a necessary condition for the existence of
common points.

Proposition 6. Suppose there is a (n — 2)-dimensional
hyperplane that intersect with all the interior of confidence
sets Cp, Vp € [n], then common points do not exist.

Proposition 6 suggests that if the ground truth simplex
Conv (Q) is not full-dimensional, then the common set
is empty. On the other hand, when the confidence sets are
well-arranged and sufficiently small, that is, there does not
exist a hyperplane that intersects with all of them, a nice
separating property emerges, as stated in the next theorem.
This new result can be considered as an extension of the
classic separating hyperplane theorem [1].

Theorem 7 (Hyperplane separation theorem for multiple
convex sets). Assume that {Cp}pe(n) are mutually disjoint
compact and convex subsets in E"~'. Suppose that there
does not exist a (n — 2)-dimensional hyperplane that in-
tersects with confidence sets C,, ¥Yp € [n], then for each
p € [n], there exists a hyperplane that separates C,, from
UG,

q#p

When those confidence sets are well-separated, we can pro-
vide a sufficient condition for that the common points exist.
Let H, be a separating hyperplane that separate C,, from
Uywp Cq- We define H,, corresponding with tuple (v?, c?),
where vP is a unit normal vector of H,, and c? is a scalar.
Now, denote E, = {x € E"™! | (vP,x) < ¢?} as the half
space containing C,,. We have that:

Lemma 8. Forany zP € C,, p € [n],

ﬂ E, C Conv ({xp}pe[n]> . 6)

pE(n]

Consequently, if ﬂpe[n] E, is nonempty, it is the subset of
COmMMON points.

The key implication here is that Lemma 8 provides us a
method to find a point in the common set. Using Lemma 8§,
we can show that if each distance from a confidence set to
its separating hyperplane is sufficiently large compared to
the diameter of the other confidence sets, then a common
point exists, as stated in the following theorem.

Theorem 9. Given a collection of confident set {Cp} pe[n]
and let Q = {aP},c[n), for any xP € Cp. For any p € [n],
denote Hy,(Q)) as the (n — 1)-dimensional hyperplane with
constant (VP cP), ||vP|| = 1 such that

(P, 1) = P + maxgep)\p diam(Cp), V€ Q\ a?P.
(VP 2P) < P + maxgen)\p diam(Cp).
(7N
For all p € [n], if the following holds

D(C,p, Hy(Q)) > zn( max diam(Cq)> L ®)

q€[n]\p

then, z* = 1 > pefn) 2 is a common point.

5.2. Sample Complexity Analysis

In strictly convex game, we show that the conditions of The-
orem 9 can be satisfied with high probability (see Appendix
C). This upper-bounds the sample complexity as follows.

Theorem 10. Suppose that Assumption 3 holds. There
exists a choice of collection of permutation order P, such
that for any § € [0, 1], if the number of samples is bounded

by
15 1 1
T—0 (n log(nd—t¢ )), )

A
then Common-Points—Picking algorithm returns a
point in E-Core with probability at least 1 — 6.

We describe the choice of P in Appendix C, along with sev-
eral different choice of collection of n vertices that probably
achieve better scaling with n for large class of the game.

6. Conclusion and Future Work

In this paper, we address the challenge of learning the
expected core of a strictly convex stochastic coopera-
tive game. Under the assumptions of strict convexity
and a large interior of the core, we introduce an algo-
rithm named Common-Points—-Picking to learn the
expected core. Our algorithm guarantees termination after
poly (n,log(67!),c~!) samples and returns a point in the
expected core with probability (1 — ¢). For future work,
we will investigate whether the sample complexity of our
algorithm can be further improved by incorporating adaptive
sampling techniques into the algorithm.
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A. Proof of Theorem 5

Here and onwards, we adopt the following notation convention: for real numbers a,b € [0, 1], KL (a, b) represents the
KL-divergence KL (p, ¢) where p, g are probability distributions on {0, 1} such that p(1) = a, ¢(1) = b. In other words,

KL (a,b) = aln (§) + (1 - a)In (1%).

Lemma 11 ([13]). Forany0 <e <y <1, KL(y —¢&,y) < &2/y(1 —y).

Before stating the proof of Theorem 5, let us introduce some extra notations. Given a game G = (N, P), with the expected
reward function p, we define the following.

* Ho(G) :={z € R" | 2(C) = u(C)} is the hyperplane corresponding to the effective allocation w.r.t coalition C.
» E-Core(G) is the expected core of the game G.
* Fo(G) := E-Core(G) N Hy\¢(G) is facet of the E-Core corresponding to the coalition C.

We use the following definition of the face games in Theorem 5, introduced by [11].

Definition 12 (Face Game). Given a game G = (N, P) with p(S) = E,wp,[r], VS C N. Forany C C N, define a face
game G(C) = (N,PC) with y1r (S) = E, _pc[r] such that, for any S C N,

pre(S) = p((SNCYU(N\C)) = p(N\ C) + p(SN (N C)). (10)

[11] showed that the expected core of G(C') is exactly the facet of E-Core(G) corresponding C, that is, E-Core(G(C)) =
Fc(@G). As noted in [27], one can decompose the reward function of the face game as follows. For any S C N, we have that

1re (S) = pre (SN C) + prg (SN (NN O)). (11)

7
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We now proceed the proof of Theorem 5.

Proof of Theorem 5 . Denote the set convex games with Bernolli reward as GB, that is,

GB = {G = (N,P) | P = {Ps}scn; Ps € M({0,1}), VS C N}.

Face-game instances and the distance between their E-Core. We first define two games, Gy and G, with a full-
dimensional E-Core, such that (¢ is a slight perturbation of GGy. Next, we define face games corresponding to Gy and G1
using the perturbed facet. We then show that the distance between the cores of these two face games is at least some positive
number € > 0.

Define a strictly convex game Gy := (N,P) € GB, such that °(S) := E,ps[r], and assume that p° is g-strictly
supermodular. Now, fix a subset C' C N, let define a perturbed game instance G; := (N, Q) € GB, with p!(S) :=
E,qg[r] such that

(12)

pH(C) = p’(C) — &
p'(S) = p’(S);  VSCN, S#C;

for some 0 < ¢ < ¢. It is straightforward that G is (¢ — ¢)-strictly convex. Therefore, E-Core(Gj) and E-Core(G1) are
both full-dimensional.

Fixing a coalition C' C N, we now construct the face games from Gy, G as in Definition 12.
Let Go(C) := (N,PY), G1(C) := (N,Q°) € GB, whose expected rewards 1%, and jj, . are defined by applying (10)
to ¥ and p! respectively. Now, we consider the difference between the expected reward function of these two games.

e (S) = 1 (S)] =0 VSCN\C
|k, (S) — n%. (S) =€ vsccC (13)

[1p (NN C) =ty (N\ O)| =e.
As one can always decompose the set S = (SNC)U (SN N\ C), by the decomposibility of the face game (11), we has that

|k (S) — pgp. (S)] < e, VS C N. (14)

As the core of face game Go(C) and G1(C) lie on the hyperplane corresponding to the coalition N \ C, and the distance
between the hyperplanes of G and G is &, which lower bounds the distance between the expected core of G(C') and
G1(C). In particular, as E-Core(Go(C)) = Fo(Go) and E-Core(G1(C)) = Fo(Gy), and [pt(N\ C) — u®(N\ C)| =&,
which leads to D(Hn\¢(Go), Hy\c(G1)) = €, we have that

D (E-Core(Go(C)),E-Core(G1(C))) > e. (15)

The KL distance and imposibility of learning low-dimensional E-Core. We show that, with probability § € (0,0.2),
any learner cannot distinguish between G(C') and G1(C) given there are finite number of samples. We use the information-
theoretic framework similar which is well developed within multi-armed bandit literature.

We first upper bound the KL-distance between P, QF, V.S C N. Denote ¢; := mingcy (1%, (S)(1 — p%,.(5))) > 0. by
Lemma 11, we have that

KL (Pg?(@g) =KL (H%c (S)’ :u}?c (S)) <

Define the probability space ¥ = 2V x {0, 1}. Fix any algorithm (possibly randomised) .A. At round ¢, denote (S;, ;) € ¥
as the coalition selected by the algorithm and the reward return by the environment. At round s < ¢, denote vf, v} as the
probability distribution over ¥* determined by A and IP, Q accordingly.

8
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We have the following, as stated in the appendix of [13]. For any u < ¢, one has that,

KLogd) = 3 (") log (“”))
| T o)
)

(v
@
v u—1
> wwtyon (B3
(
(

u{)‘(ru | szb“_l))
h

U u—1 u—1

Pu—lePu—1 Vl |¢ ) v (TU | Su7w )
vy Tu, | Su’wufl)
- X e (% -
Ppu—lepu—1 ViTu | Suﬂﬁ )

[As the distribution of S,, depends only on A, not on the distribution v/, v/.]

u u— vy (ru | Suv'l/)u71) u u—
= Z Z Z vy (ry | Su,s 1) log (V%(m | Su,¢“_1)> LG

pu—legu-18, e2N r,e{0,1}

= Y Y KL (4% (Su)s b (80)) v (Sur ™)

Ppr-legu-1 g, e2lN

g?
< —
Cl

The last inequality hold because KL (,u%c (9), ,u},c (9)) < %, VS e 2N,

‘We have that

KL (v, vt) = > KL (vg,v1') < —. (16)
As we can choose ¢ to be arbitrarily small, we can choose € such that KL (v, v}) < 0.1.

Now, define the event £ as the event that A outputs a point in E-Core(G(C')), assume that 1/ (£) with probability at least
0.8. Note that, as E-Core(Go(C)) N E-Core(G1(C)) = &, £ represents the event where the algorithm fails to output a
stable allocation with the game instance G1(C). We have that from [13]’s Lemma A.5,

KL (v§,v4) +1 0.1+1
VH(E) > 1 (E) exp < (”Oyé?g) /€> > 0.8 exp (08/6) > 0.3. 17)

As it holds for any ¢ > 0, this means that for any finite number of samples, with probability at least 0.1, the algorithm will
output the incorrect point. O

It is worth noting that convex games may have a low-dimensional core, as demonstrated in the following example.

Example 13. Let (S) = |S| forall S C N. It is easy to verify that  is indeed convex. The marginal contribution of any
player i to any set S C N is
uw(SUi)—pu(S)=1, VS C N. (18)

Therefore, the only stable allocation is 1,,, which coincides with the Shapley value. Hence, the core is one-point set.
According to Theorem 5, since the core has a dimension of 0 in this case, it is impossible to learn a stable allocation with a
finite number of samples.

Example 13 suggests that convexity alone does not ensure the problem’s learnability, emphasizing the requirement for strict
convexity.
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B. Common-points—-picking algorithm and the stopping condition
B.1. On the Necessary Conditions for the Existence of Common Points

Proof of Proposition 4. For each C,, choose a point in its interior, denote as xP. As there are at most n — 1 points
{xP} ,qp|)» there exists a (n — 2)-dimensional hyperplane H that contains {2” },¢[p|. Let H be a hyperplane parallel to
H and let the distance D(H, H) be arbitrary small.

As confidence sets are full-dimensional (n — 1), H must also intersect with the interiors of all confidence sets. Since H and
H are parallel, any convex hull of points within H and H cannot intersect. Therefore, there is no common point. O

Proof of Proposition 6. The proof spirit is similar to that of Proposition 4.

Let H be the (n — 2)-dimensional hyperplane that intersects with the interiors of all confidence sets. Let H be a hyperplane
parallel to H and let the distance D(H, H ) be arbitrary small.

As confidence sets are full-dimensional, H must a~lso intersect with the interiors of all confidence sets. Since H and H are
parallel, any convex hull of points within H and H cannot intersect. Therefore, there is no common point. O

B.2. Extension of Separation Hyperplane Theorem
First, let us recap the notion of separation as follows.

Definition 14 (Separating hyperplane). Let C' and D be two compact and convex subsets of E"~!. Let H be a hyperplane
defined by the tuple (v, ¢), where v is a unit normal vector and ¢ is a real number, such that (z,v) = ¢, Vo € H. We say H
separates C' and D if (z,v) > ¢, Vo € C; and (y,v) < ¢, Yy € D.

Before stating the proof of Theorem 7, let us discuss its non-triviality.

Remark 15 (Non-triviality of Theorem 7). At a first glance, Theorem 7 may appear as a trivial extension of the classic
hyperplane separation theorem due to the following reasoning: Consider the union of all hyperplanes that intersect | atp Cq,
which trivially contains | atp Cq4. Then, by assuming that these hyperplanes do not intersect C,, the separation between
Cpand atp C, appears to follow from the classic separation hyperplane theorem. However, there is a flaw in the above
reasoning: The union of these hyperplanes is not necessarily convex. Therefore, the classic separation hyperplane theorem
cannot be applied directly. Instead, employing Carathéodory’s theorem, we prove in Theorem 7 by contra-position that if
the intersection between C,, and Conv(|J atp C,) is non-empty, then we can construct a low-dimensional hyperplane that
intersects with all the set.

The proof of Theorem 7 is a combination of the classic hyperplane separation theorem and the following lemma.

Lemma 16. Let {C,},c|n) be mutually disjoint compact and convex subsets in E"~1. Suppose there does not exist a
(n — 2)-dimensional hyperplane that intersects with all confidence sets Cp,, Vp € [n], then for each p € [n]

C,NCouv | | JCy | =2. (19)
q7p
Proof. We prove this lemma by contra-position, that is, if there is C,, such that

C,NConv | | JC, | # @
PFq

then there exist a hyperplane that intersects with all the Cp,, Vp € [n].

First, assume there is a point z = C, N Conv | |J C, |. By Carathéodory’s theorem, there are at most n points z* € |J C,
q#p q#p
such that

T = Z apr®. (20)
ken]

10
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As each 2* € C, for some C,, one can rewrite the equation above as
r=Y " > k. Q21
q#p k: zFeCy

Furthermore, we can write

k ~ o~ . . - Zk: zkeC akxk ~
g opx” = g%, inwhich, 7= ——"——, and @&,:= E Q. (22)
po akec, ¥k

Since C, is convex, ¢ € C,. Substituting (22) into (20), one obtains
r=) g (23)
q#p
Define H as a hyperplane that passes through all z,, we have that x € H.

Second, we now show how to construct a hyperplane that intersects with all C,,,, m € [n]. Let I be the set of indices such
that C; > Z,. We have two following cases.

(i) First, if |[I| = n — 1, then H is the (n — 2)-dimensional hyperplane that intersect with all C,,,, m € [n].

(i) Second, if |I| < n — 1, for any C,» # C, that does not contain any #¢, we choose any arbitrary point a7 e Cq. As
there are n — 1 points of 7 and 27, there exists a hyperplane H that contains all these points. Furthermore, H must
contain z, so it is the (n — 2)-dimensional hyperplane that intersects with all sets C,,,, Ym € [n].

O
Now, we state the proof of Theorem 7.

Proof of Theorem 7. As aresult of Lemma 16, we have that for all C,,, Vp € [n],

C, N Conv ch = 0. (24)
qF#p

Therefore, by the hyperplane separation theorem, there must exist a hyperplane that separates C, and Conv < U Cq) .0
q7#p

B.3. Correctness of the Stopping Condition

Proof of Lemma 8. Let us denote A,, as Conv ({xp bpem
the set C,,, the simplex A,, is (n — 1) dimensional. We have that

). As there is no hyperplane of dimension n — 2 go through all

(B, CAn <= AL C | Eg;
pE[n]

p€[n]
where E7 is the complement of the set E,.
We will prove the RHS of the above. Consider & € A, as A,, is full dimensional, & can be uniquely written as affine

combination of the vertices, that is,
E= Nt Y N =1
p€(n] p€(n]

As & € AL, there must exist some A\, < 0.

11
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Now, we shall prove & € Ej,. Consider the following,

<vk,£> = <vk, Z )\pxp> =X <vk,zk> + Z)\p <vk,xp>

pEn] pFk

> A 4 cF Z Ap 25
p#k

:Ck

The above inequality holds since <vk, :v’“> < ¢ and A\, < 0. Therefore, # € E}. This means that

A C o B (26)
ke(n]

Proof of Theorem 9. Before proceeding the main proof, we show two simple consequences of the construction of H,(Q),
p € [n] and the assumption (8).

Fact 1: Consider p € [n], Hy(Q) acts as a separating hyperplane for C,. To see this, assume that H,((Q) is not a
separate hyperplane for C,, then there exists z? € C, such that (v?,27) > ¢P. From (7), we have (vP,2P) < P +
max,e[n]\p diam(C,). Then, there are two cases. First, assume that (v?, 27) < cP. As xP, 2P € C, and (v?, 2P) > c?, there
must exist a point x in the line segment [x?, zP] such that (vP, z) = ¢P. This means that D(C,, H,) = 0, which violates
assumption (8). Second, assume that c? < (v?, 2P) < ¢ 4 maxgen)\p diam(Cp). Then, we have that

D(Cy. Hy) < Dla? Hy) = | (o",a%) = /| € max diam(C,).
gen|\p

This also violates assumption (8). This implies that if (8) is satisfied, H,,(Q) must separate C,, from Uy.,Cy.

Fact 2: The distance from any point in C, from H,(Q) is bounded as follows. For z € C4, ¢ # p, we have that

D(z, Hy(Q)) < D(z,2?) + D(2?, Hy(Q)) <2 max diam(Cy). (27)

a’'€[n]\p

Now, we proceed to the main proof. For the ease of notation, we simply write H,, for H,(Q).

First, from assumption (8), we has that for any p € [n],

- m — min P — (uP
D(Cp, Hy) = ;Iélcll D(z, Hp) = aIcIéICI:, [P — (VP x) |. (28)
We have that
min D(x, Hy) > 2n max diam(Cy)
z€Cp q#p
(29)
>
> Z gé%}q{l)(x,Hp).
q€[n]\p

Second, we shows that how to pick a common point which exists when (29) is satisfied. Let us choose a collection of points
aP € Cp, p € [n], and define
1
x = P
r= LS
p€[n]

Now, we show that z* € E,,, ¥p € [n].

12
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For each p € [n], consider H,,. We denote

Cpp := P — (WP, 2P) > 0;

Cpq = <’Up7$q> —c’> 07 q 7é D-

Note that D(x, Hp) = | (vP, z) — cP|. Follows (29), we have that

Gop = min D(x,Hy) > Y m%XD 2, Hy) > Y Gy (30)
q€n]\p q€n]\p
Now, let consider . ) .
<Up,a:*> = n Z <vp,xq> = n Z (cp + CPQ) + E(cp - Cpp)
q€[n] q€[n]\p
(31)
1
=cP + = _ P
+ " Z Cpg — Gpp | < ¢
q€n]\p
Therefore, z* € E,. As itis true for all £, one has that
v € () Ep (32)
p€E(n]
Finally, by Lemma 8, we can conclude that z* is a common point. O

Intuitively, Theorem 9 states that if the distance from a confidence set C,, to the hyperplane H,(Q) is relatively large
compared to the sum of the diameters of all other confidence sets, then the average of any collection of points in the
confidence set must be a common point. As such, Theorem 9 determines the stopping condition for Algorithm 1 and provide
us a explicit way to find a common point, which validates the correctness of Algorithm 1. In particular, Algorithm 2 checks
if conditions (8) are satisfied for the confidence sets in each round. If the conditions are satisfied, then Algorithm 1 stops
sampling and returns z* as the common point.

C. On sample complexity of Common-points—-picking algorithm

Note that while the diameters of confidence sets can be controlled by the number of samples regarding the marginal vector,
D(Cp, Hy(Q)) is a random variable and needs to be handled with care. We show that there exist choices of n vertices such
that the simplex formed by them has a sufficiently large width, resulting in the stopping condition being satisfied with high
probability after poly(n,s~') number of samples.

Now, we show that, the conditions of Theorem 9 can be satisfied with high probability. The distance D(C,, H,(Q)), p € [n]
can be lower bounded by the width of the ground-truth simplex, which is defined as follows:

Definition 17 (Width of simplex). Given n points {z',...2"} in R", let matrix P = [2"];c[,,), we define the matrix of
coordinates of the points in P w.r.t. #* as coM(P,4) := [(27 — 2%)];2; € R (=1 Denote o1,(M) as the k'" singular
value of matrix M (with descending order). We define the width of the simplex whose coordinate matrix is P as follows

Y(P) := min 0,1 (coM(P,1)). (33)

1€[n]
Equipped with the definition of the width, we can bound the distance D(C,, H,(Q)), ; p € [n], accordingly as the following
lemma.

Lemma 18. Given n points {z', ..., 2™} in R", let M be the matrix corresponding to these points, assume that 0 < M;; < 1
and 9(M) > o, for some constant ¢ > 0. Let R € R™*™ be a perturbation matrix, such that its entries |R;;| < €/2, ¥(3, j),
and 0 < € < 0%/3n3. Let hyy, be a smallest magnitude of the altitude of the simplex corresponding to the matrix M + R.

One has that
Bmin > V 02 — 6n3e. (34)

13
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Proof of Lemma 18. Denote A as the simplex corresponding to M = [z, ..., 2™], A; as the facet opposite the vertex ¢,
and h;(A) is the height of simplex w.r.t. the vertex x*. Denote Vol (C') as the k-dimensional content of C' C E"~1, where
dim(C) = k. Using simple calculus, one has that

1 VOlnfl(A)
n—1 VOln_g(Ai)’

hi(A) = (35)

We also denote A as the perturbed simplex corresponding to M + R and A, as the facet opposite the to the perturbation of

:L.’L

we bound the height hi(A) for all i € [n — 1]. For the height hn(A), one can apply similar reasoning. Let define the
coordinate matrix and the pertubation matrix w.r.t " as follows

V:i=coM(M,n), U :=coM(R,n); (36)
We have that |U;;| < €, Vi, j. By the definition of width ©(), we have that

Un—l(v) > ﬂ(M) > o. (37)

Let define the Gram matrix and perturbed Gram matrix as follows

G=V'V
i . (38)
G:=V+U) (V+U).
One has that, R -
G-G=V'U+U'V4+U'U:=T.
One has that U;; < € := 3ne, as |V;;| < 1 and |U;;| < € < 1. We also has that |U||2 < |U||r < ne.
First step. we bound the quantity W. By [12]’s Corollary 2.14, one has that
— — n—1
|det(G + U) — det(G)| U2 ne\"
< |14+ —F= —-1<(1+—=) -1 39
det(@) S\ @ <(1+32) (39)
As (1+2)" < 2— when z € (0, 1) and n > 0. One has that
|det(G + U) — det(G))| n2e
< 40
)] S g “0)
when € < Z—i, ore < % Let us define k := 02;2225, one has that
U) - 1
|det(G + U) — det(G)| <1 @)
|det(G)| k
It means that )
det(G+U) > (1 - k) det(G) (42)

Second step. we bound the change in content of the i'" facets of the simplex, for i € [n — 1]. Consider the facet that is
opposite to the vertex 2%, and denote V (i), U; as the sub-matrices of V, U by removing i*® column. Denote the Gram
matrix

G(i):=V() V()

R (43)
G(i) = (V(Q) + U0) " (V (i) + U(0))

Note that one can obtain G(i), G(i) and by removing i*" row and column of G(i), G(i) respectively. Denote U (i) :=

14



On Learning Stable Allocations of Strictly Convex Stochastic Cooperative Games

G (i) — G(i), we has that all entries of U (7) smaller than €.

Moreover, by Singular Value Interlacing Theorem, one has that

01(G) 2 01(G (i) = 02(G) = 02(G (i) = -+ = 0n—2(G(i)) = 00 —2(G (i) = on-1(G). 44

Similarly, one has that

det(G(0) + T (i) — det(G())] T \" eyt 1
det(G(D)] = <”an2<c<i>>) -~ (14 5) —1= )
It means that 1
det(G (i) + T () < (1 v k) det(G(7)). (46)

Third step. We bound the height h; corresponding to the vertices 2% in this step. For i € [n — 1] one has that

Volg_1(A;) = "3 \/det U(i)).

~—

Furthermore, by the Eigenvalue Interlacing Theorem, we have det(G)/det(G;) > 0,,—1(G) > o2. Putting things together,
one has that

n(A) = Volnl(A):\/ det(G +

: ) o k=1 det(G) [0 —Gnde (48)
n—1 VOln,Q(Ai) det( ( ) -

4T
Y UG) =\ E+1det(G()) o2

We note that, the above holds true for ¢ € [n — 1].

Fourth Step. Now, we bound the height corresponding to the vertex ™. We can define the coordination matrix and
pertubation matrix w.r.t ! as follows.

V' =coM(M,1), U’ =coM(R,1). (49)
Note that, by the definition of the width, we have that
On_1 (V') > 9(M) > o; (50)

and also, |U;;| < e. Similarly, applying Steps 1-3, we also have that
ha(A) > /0?2 — 6n3e
Therefore, h;(A) > v/o2 — 6n3€ holds true for all i € [n]. We conclude that

Amin > V02 — 6n3e, (5D

2
whenever, ¢ < 3‘% O

Lemma 18 guarantees that if the width of the ground truth simplex is relatively large compared to the diameter of the
confidence set, then the heights of the estimated simplex are also large. We now provide an example of a collection of
permutation orders corresponding to a set of vertices as follows. Let s; := (i, + 1) denote the adjacent transposition
between ¢ and ¢ + 1.

Proposition 19. Fix any w € &, consider the collection of permutation P = {w,ws1,...,ws,_1} and matrix M =
[0 ] ep. The width of the simplex that corresponds to M, is upper bounded as 9(M) > 0.5¢n~3/2,

15
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The vertex set in Proposition 19 comprises one vertex and its (n — 1) adjacent vertices. Combining Lemma 18, Proposition
19 with the stopping condition provided by Theorem 9, we now can guarantee the sample complexity of our algorithm as
Theorem 10.

Proof of Theorem 10. Let choose the collection P as Proposition 19. Note that |[P| = n. Denote ¢ :=
2max,¢[,) diam(C,). For any w,, € P, define the event

E={¢*r €Cp,,Vp € [n]}.
By the construction of the confidence set, we guarantee that £ happen with probability at least 1 — n24.

Consider p € [n], for any g € [n] \ p, let 27 be the projection of ¢*« onto Hp, and 27 := argmin,c. D(z, Hy). We have
that
D(z*, ¢**) < o, Vk € [n).

We need to bound D(a%, Hy,) by bounding the minimum height of simplex Conv ({a%},,¢[,) ), which is a pertubation of
Conv ({¢wp }pe[n]) .

Define matrix M = [¢“?],c[n), and M = [2P]pem). Let R := M — M be the perturbation matrix, one has that
R;; < €p, ¥(4,j). By Lemma 18, we have that

D(xP, Hp) > \/0? — 12n3¢ (52)
Therefore, for D(zP, H, p) > negp holds , it is sufficient to provide the condition for o such that

Vo2 —12n3ey > neg. (53)

Assuming that € < 1, for the condition of Lemma 18 and the above inequality to hold, it is sufficient to choose

o2

1308

€0

Now, we calculate the upper bound for sample needed. At epoch K, we have that

2nlog(6-1
€0 = 2diam(C,) > 4 Znlog(071)
K (54)
neg
o= —.
cw

13 —-1_—-1
Then we have K = O (%). As each phase, there are at most n? queries, then the total number of sample

<4
needed is s R
1 1 -
T:o(” og(nd” ¢ )> (55)
S
for the algorithm to return a common point, with probability of at least 1 — 4. O

While the choice of vertices in Proposition 19 achieves polynomial sample complexity, the width of the simplex decreases
with dimension growth, hindering its sub-optimality. An alternative choice of vertices is those corresponding to cyclic
permutation, denoted as €, C &,,, which have a larger width in large subsets of strictly convex games (as observed in
simulations) but can be difficult to verify in the worst case. We refer readers to Appendix D.3 for the detail simulation and
discussion on the choice of set of n vertices. Based on this observation, we achieve the sample complexity which better
dependence on n as follows.

Theorem 20. Suppose Assumption 3 holds. Let P = &,, the collection of cyclic permutations, and denote the coordinate
matrix of the corresponding vertices as W. Assume that the width of the simplex 9(W) > % for some cyy > 0. Then, for
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any ¢ € [0, 1],if number of samples is

5.4 1 -1 -1
T=0 (” v Og(ﬁjwé : )), (56)

the Common—-Points—Picking algorithm returns a point in E-Core with probability at least 1 — 6.

Proof of Theorem 20. The proof is identical to that of Theorem 10, with the width of the simplex bounded by ¥(W) >
ne O

cw ©

D. Convex Games

D.1. E-Core of convex games and Generalised Permutahedra

Formulating the coordinates of the vertices of the core can be achieved using the connection between the core of a convex
game and the generalised permutahedron. There is an equivalence between generalised permutahedra and polymatroids; it
was also shown in [20] that the core of each convex game is a generalised permutahedron.

For any w € &, let I¥ = (w(1),...,w(n)). The n-permutahedron is defined as Conv ({I¥ | w € &,,}). A generalised
permutahedron can be defined as a deformation of the permutahedron, that is, a polytope obtained by moving the vertices of
the usual permutohedron so that the directions of all edges are preserved [17]. Formally, the edge of the core corresponding
to adjacent vertices ¢, ¢“%¢ can be written as

¢Y — %% = Ky i(ew() — €w(it1)) (57

Where, k,,; > 0, and ey, . . . e, are the coordinate vectors in R”. If the game is ¢-strictly convex, k,, ; > <.

D.2. Proof of Proposition 19
We utilise the formulation of edges of the generalized permutahedron as described in Subsection D.1 to calculate the matrix
of coordinates for the vertices of E-Core. Based on the matrix of coordinates, we now state the proof of Proposition 19.

Proof of Proposition 19. As the set of vertices is ¢ and its n — 1 neighbors, there are only two cases to consider. First, we
need to consider the matrix created by using ¢,, as the reference, that is coM (M, 1). As the neighbors have the same roles,
bounding the width of the matrices using any neighbor as a reference point can be done identically. Therefore, we will prove
the theorem for coM (M, 2), and the proof for coM(M, i), i # 1 can be done in the same manner. Let us denote

c1 0 o .- 0 0
—C1 Co 0 ce 0 0
0 —c2 c3 - 0 0
V =coM(M,1) = | : S : D | e R, (58)
0 O 0 e —Cnp—2 Cn—1
(0 0 0 0 —cuy
[~c1 —a1 a1 - - e o
C1 c1+ c2 C1 C1 cee c1 c1
0 —Co C3 0 R 0 0
0 0 —C3 C4 R 0 0
U= COM(M, 2) = : : : : .. : : S Rnx(nil), (59)
0 0 0 0 s —Cp—2 Cn—1
0 0 0 0 0 —cu

in which each ¢; > «.
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We will exploit the following norm inequality in the proof. For any Ay, ..., A, € R, we use the following inequality (norm
2 vs. norm 1 of vectors)

n n 2
> AT> Lij A (60)

i=1

Consider V. Consider a unit vector x = (21, ..., x,_1). We have

C1Z1
—C1T1 + Ca22
—CoT2 + C3X3 61)

<
8
l

—Cp—2Tp—2+ Cp—1Tn—1
—Cpn—1Tn—1

Applylng the Ineq. (60) for A1 =11, A2 = —C1X1 + C2x9, An—l = —Cp—9Tpn—2+Ch_1Tn—1, An = —Cp—-1Tn—-1 gives

[Val? > 921 > <21,
- n p— n b
252 22
IVa|? > o] + (—c1zy + camp)? > 22 > n2; (62)
2. 2
|Ve|? > =222t
n
Therefore,
2032 4 ... 4 g2 2
n||VxH2 > S ( 1 nfl) _ i (63)
n n

Therefore ||V x| > ¢/n, hence ,,—1 (V) > ¢/n.

Consider U. Similarly, consider a unit vector = (1, ..., 2,,—1). We have

—01(1'1 +xo 4+ ... + .’Enfl)
a(xr+zo+ ... +Tp_1) + coxa
—CoX2 + C3X3
Ux = —c3T3 + C4y (64)

—Cp—2Tp—2+ Cp—1Tp—1
—Cp—1Tn-1

Applying the Ineq. (60) for Ay = ¢1(x1 + 22+ ... + Tp_1), Ao = c1(x1 + T2 + ... + Tp_1) + Cox2, A3 = —coxs + c323,

Ay = —c3x3 + caxa, ..., A1 = —Cn—oTp—2 + Cp—1Zn—1, An = —Cp—1%n—1 gives
Note that
O IR R Rt 1 Vi
- n b)
2 2 2 2 0395% §237%,
Uz||* > c¢i(xr + 22+ oo + 1) + (c1(z1 + 22 + o + Tp—1) + cox2)” > > —
2 2 2 2, [ 2 §233z23, (65)
Uz||* > ci(xr + 22+ oo + 1) + (c1(z1 + 22 + . + Tp—1) + cox2) + (—Cox2 + c323)° > —
2,2
jUa]f? > =22t
- n

18
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Therefore, we also have

(1 + x4 o+ Tp1)? + 23+ +22_) _ 2a?

n||Uz|? > " Z 3 (66)
From that, we have that
2 2 2 2 2 2
x x T, _ i+ ...+, _
2Vl 2 250+ 22 g Tost 5 BT BIod S g ) =1 (67)
. 2 2
That is, | Uz|| > \/;F Therefore, 0,1 (U) > =
Therefore, we have that 9(M) > < O

2n3

D.3. Alternative choice of n vertices of E-Core

In this subsection, we provide an alternative choice of vertices rather than that in Proposition 19. Recall that, with the choice
of vertices in Proposition 19, the lower bound for the width of the simplex diminishes when the dimension increases. This
leads to a large dependence of the sample complexity on n. To mitigate this, we investigate other choices of n vertices. To
see this, we first recall the equivalence between E-Core and generalized permutahedra as explained in Subsection D.1.

However, even in the case of a simple permutahedron, if the set of vertices is not carefully chosen, the width of their convex
can be proportionally small w.r.t. n, as demonstrated in the next proposition. In particular, the same choice of vertices as in
19 results in the simplex with diminishing width as follows.

Proposition 21. Consider a permutahedron, fix w € &, consider the matrix W = [¢*, 1% [ 1¥%2 . I“*n-1]. The width
of the simplex that corresponds to M, is upper bounded as follows:

3
I(M) < —. (68)
n
Proof. The coordinate matrix w.r.t. ¢*, that is, coM (M, 1) can be written as follows.
[ 1 o 0 --- 0 07
-1 1 0 --- 0 0
0o -1 1 0 0
v=|: < . | eRvD (69)
0 0 O -1 1
| 0 0 O 0 —1]
Therefore, the Gram matrix is
2 -1 0 0 O 0 0 0]
-1 2 -1 0 0 0 0 0
0o -1 2 -1 0 0 0 0
G=v'v=|: =+ + o0t gRDx=), (70)
0 0 0 o o0 -1 2 -1
| 0 0 0 0 0 0o -1 2|
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Note that G is a tridiagonal matrix and also Toeplitz matrix, therefore, its minimum eigenvalues has closed form as follows

n

-1
An—1(G) =2+ 2cos ((nn)77> = 2sin? (%) < %; 1)

as [sin (55 )| < o= Therefore, (M) < 0,1 (V) = \/An_1(G) < 2. O
Proposition 21 highlights the challenge of selecting a set of vertices such that the width does not contract with the increasing
dimension, even in the case of a simple permutahedron. Denote &,, C &, as the group of cyclic permutations of length n.
One potential candidate for such a set of vertices is the collection corresponding to cyclic permutations €,,, as described in

the next proposition.

Proposition 22. Consider the matrix W = [I¥],cc, . We have that

IW) > 3. (72)
Proof. The form of matrix W is as follows
! n n—1 2
2 1 n 3
_ 3 2 1 4
W = (73)
n—1 n—-2 n—-3 ... n—1
| n n—1 n—2 ... 1 |
The coordinate matrix w.r.t. the first column is as follows
m—1 n—2 ... 1]
-1 n-2 ... 1
o -1 -2 ... 1
V =coM(W,1) = ) ) ) ) . (74)
-1 -2 ... 1
| -1 -2 ... —(n—l)_
Letu € R" 1 be any unit vector, and let z = Vu € R™. We have that
Zi — Zi4+1 = NU;. (75)

Let us consider )
42| =422 + 422 + -+ 422

=227 + (21 + 22)” + (21 — 22)°] + [(22 + 23)% + (22 — 23)7]
+---+ [(anl + Zn)2 + (anl - Zn)Q] + 22721 (76)
Z (Zl - 22)2 + (Z2 - 33)2 +-- 4+ (Z'rL—l - Z'n)2

:nQ(u% +u§ +~-~+u3171) = n?.

(V)= min VLS n 77)
n whul=1 | > T 2

It is straightforward that if one takes any column of W as a reference column, the resulting coordinate matrices have identical
singular values. In particular, for any 4, j € [n]

Therefore, we have that

coM(W,i) = P - coM(W, j),
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where P is a permutation matrix, thus, their singular values are identical. Therefore, we have that

W) >

|3

As aresult, the set of vertices corresponding to cyclic permutations is a sensible choice. In case of a generalised permutahe-
dron, let us define

W= [0)uec, - (78)

As generalised permutahedra are deformations of the permutahedron, we expect that ©}(W) is reasonably large for a broad
class of strictly convex games. In particular, we consider the class of strictly convex games in which the width ¢(W) is
lower bounded, as in the following assumption:

Assumption 23. The width of the simplex that corresponds to W in (78) is bounded as follows

(W) > = (79)
cw

for some constant cyy > 0.

These parameters will eventually play a crucial role in determining the number of samples required using this choice of
n permutation orders. Although proving an exact upper bound for cyy in all strictly convex games is challenging, we
conjecture that cyy is relatively small in a large subset of the games.

To investigate Assumption 23, we conducted a simulation to compute the constant cyy of the minimum singular value
0n—1(M). For each case where n takes values of (10, 50, 100, 150, 200, 300, 500, 1000), the simulation consisted
of 20000 game trials with ¢ = 0.1/n. As depicted in Figure 1, the values of ¢y tend to be relatively small and highly
concentrated within the interval (0, 30). This observation suggests that for most cases of strictly convex games, ¢y remains
reasonably small. Consequently, our algorithm exhibits relatively low sample complexity.

For each case where n takes values of (10, 50, 100, 150, 200, 300, 500, 1000), the simulation consisted of 20000 game
trials with ¢ = 0.1/n. As depicted in Figure 1, the values of ¢y tend to be relatively small and highly concentrated within
the interval (0, 30). This observation suggests that for most cases of strictly convex games, ¢y remains reasonably small.
The results indicate that cy tends to be relatively small with high probability, and does not depend on the value of n.

E. Further Discussions

E.1. Comparison with Pantazis et al. [16]

While the algorithm in [16] is proposed for general cooperative games and conceptually applicable to the class of strictly
convex games, we argue that their algorithm is not statistically and computationally efficient when applied to strictly convex
games, due to the absence of a specific mechanism to leverage the supermodular structure of the expected reward function.
In particular, firstly, we argue that without any modification and with bandit feedback, their algorithm would require a
minimum of (2™) samples. Secondly, although we believe the framework of [16] could be conceptually applied to strict
convex games, significant non-trivial modifications may be necessary to leverage the supermodular structure of the mean
reward function.

Appplying [16] to strictly convex games without any modifications. We first briefly outline their algorithmic framework.
In this paper, the authors assume that each coalition S C N has access to a number of samples, denoted as tg > 1. For
each coalition S, the empirical mean is denoted as i, s (S), and a confidence set for the given mean reward is constructed,
denoted as,

C(u(S)) = {i(S) € [0, 1] | [i(S) — Firo (S)] < etz }, for some e, > 0.

We note that while the algorithm in [16] constructs the confidence set using Wasserstein distance, in the case of distributions
with bounded support, we can simplify it by using the mean reward difference. After constructing the confidence set for the
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Figure 1. ¢y with n € {10, 50, 100, 150, 200, 300, 500, 1000}, ¢ = %L, and 20000 trials

n

mean reward of each coalition, the algorithm solves the following robust optimization problem:

min
reR™
s.t. z(N) = u(N)

x(S) > sup(C(u(S)), VS CN.

f3

That is, finding the stable allocation for the worst-case scenario within the confidence sets. It is clear that when directly
applying this framework to the bandit setting, each coalition must be queried at least once, that is g > 1. This inevitably
leads to a complexity of 2(2™) samples, regardless of the sampling scheme one employs. In term of computation, with
2™ — 2 confidence sets for all coalitions S C N, tabular representation of the confidence set incurs extreme computational
cost.

Significant modifications required for [16]. As described above, the algorithm in [16] suffers from 2" sample complexity,
and the main reason is because it requires constructing confidence sets for the mean reward for all coalitions S C N. As
such, if we want to apply their algorithm efficiently to the bandit setting, we need to address this limitation.

To do so, one may need to develop an approach to design a confidence set for a specific class of strictly convex games.
For instance, we can consider the following approach: Given historical data, instead of writing a confidence set for each
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individual coalition, let us define a confidence set for the mean reward function as follows:
Clu)={p: 2N [0, 1] | v € [C(u(S))]scn, fuis strictly supermodular} ; (80)

where the confidence set C(u(.S)) could potentially be [0, 1] for some coalition S, as there is no data available for these
coalitions. Let Core(/i) be the core with respect to the reward function [i. We propose a generalization of the framework
from the robust optimization problem to adapt to the structure of the game as follows.

min ||z[|3
s.t. 2(N) = u(N) 1)
x € ﬂ Core(f1).

aecC(p)

That is, we find a stable allocation x for every possible supermodular function within the confidence set of the reward
function.

However, implementing and analyzing this approach may pose significant challenges. The first challenge lies in constructing
a tight confidence set [C(1(S))]scn such that all functions within this collection are strictly supermodular. We are not
aware of a method to explicitly construct [C(u(S))]scn containing only strictly supermodular functions, and we believe this
set could potentially be very complicated. To illustrate, consider the scenario where we have samples from two coalitions,
{1} and {1, 2}, with the following empirical means:

A1) =0.11; w({1,2}) = 0.1

This situation might occurs when the number of samples is insufficient. In such cases, regardless of the value chosen for
the remaining coalition rewards in the function 7(.S), 7Z(.S) is not supermodular (as {1} C {1,2}, yet (1) > 7(1, 2)).
Consequently, either the confidence set C(x(1)) or C(p(1,2)) does not contain the empirical mean reward, indicating the
highly complicated shape of the confidence set.

The second challenge is that while computing a stable allocation for a given supermodular reward function /i is a straightfor-
ward task, computing a stable allocation for all supermodular reward functions in the confidence set C () in a computationally
efficient way is an open problem, to the best of our knowledge.

The discussion above also highlights the key difference between our work and that of [16]: Instead of explicitly constructing
the confidence set of the expected mean reward function to integrate the supermodular structure for computing a stable
allocation, which might be a sophisticated task, we directly exploit the geometry of the core of strictly convex games.
Specifically, in strictly convex games, each vertex of the core corresponds to a marginal vector with respect to some
permutation orders. Given that one can construct the confidence set of marginal vectors easily, our method is conceptually
and computationally simpler. However, we believe that adopting the more general framework of robust optimization as
presented in [16] is a very interesting, but non-trivial, direction, and we leave it for future work.
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