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Abstract
Reward allocation has been an important topic
in economics, engineering, and machine learning.
An important concept in reward allocation is the
core, which is the set of stable allocations where
no agent has the motivation to deviate from the
grand coalition. In previous works, computing
the core requires the complete knowledge of the
game. However, this is unrealistic, as outcome of
the game is often partially known and may be sub-
ject to uncertainty. In this paper, we consider the
core learning problem in stochastic cooperative
games, where the reward distribution is unknown.
Our goal is to learn the expected core, that is,
the set of allocations that are stable in expectation,
given an oracle that returns a stochastic reward for
an enquired coalition each round. Within the class
of strictly convex games, we present an algorithm
that returns a point in the expected core given a
polynomial number of samples, with high proba-
bility. To analyse the algorithm, we develop a new
extension of the separation hyperplane theorem
for multiple convex sets.

1. Introduction
The reward allocation problem is a fundamental challenge in
cooperative games that seeks reward allocation schemes to
motivate agents to collaborate or satisfy certain constraints,
and its solution concepts have recently gained popularity
within the machine learning literature through its application
in explainable AI [14, 23, 10, 26] and cooperative Multi-
Agent Reinforcement Learning [24, 9, 25]. A crucial notion
of reward allocation is stability, defined as an allocation
scheme wherein no agent has the motivation to deviate from
the grand coalition. The set of stable allocations is called
the core of the game.

In the classical setting, the reward function is deterministic
and commonly known among all agents, with no uncertainty
within the game. However, assuming perfect knowledge of
the game is often unrealistic, as the outcome of the game
may contain uncertainty. This led to the study of stochas-
tic cooperative games, dated back to the seminal works of
[6, 22], where stability can be satisfied either with high
probability, known as the robust core, or in expectation,
known as the expected core. However, in these works, the

distribution of stochastic rewards is given, allowing agents
to calculate the reward allocations before the game starts,
which is not practical since the knowledge of the reward dis-
tribution may only be partially known to the players. When
the distribution of the stochastic reward is unknown, the task
of learning the stochastic core by sequentially interacting
with the environment appears much more challenging.

In our work, we focus on learning the expected core, which
circumvents the potential emptiness of the robust core in
many practical cases. Moreover, where the stochastic re-
wards of all coalitions are observed each round, we consider
the bandit feedback setting, where only the stochastic re-
ward of the inquired coalition is observed each round. Given
the lack of knowledge about the probability distribution of
the reward function, learning the expected core using data-
driven approaches with bandit feedback is challenging.

Against this background, the contribution of this paper is
three-fold: (1) We focus on expected core learning problem
with unknown reward function, and propose a novel algo-
rithm called the Common-Points-Picking algorithm,
the first of its kind that is designed to learn the expected core
with high probability. Notably, this algorithm is capable of
returning a point in an unknown simplex, given access to
the stochastic positions of the vertices, which can also be
used in other domains, such as convex geometry. (2) We
establish an analysis for finite sample performance of the
Common-Points-Picking algorithm. The key compo-
nent of the analysis revolves around a novel extension of
the celebrated hyperplane separation theorem, accompanied
by further results in convex geometry, which can also be of
independent interest. (3) We show that our algorithm returns
a point in expected core with at least 1−δ probability, using
poly(n, log(δ−1)) number of samples.

2. Related Work
Stochastic Cooperative Games. The study of stochastic
cooperative games can be traced back to at least [6, 22, 21].
The main goal of the allocation scheme is to minimise the
probability of objections arising after the realisation of the
rewards. These seminal works require information about the
reward distribution to compute a stable allocation scheme
before the game starts. Stochastic cooperative games have
also been studied in a Bayesian setting in a series of pa-
pers [2, 4, 5, 3], where the distribution of the reward is

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

On Learning Stable Allocations of Strictly Convex Stochastic Cooperative Games

conditioned on a hidden parameter following a prior dis-
tribution, which is common knowledge among agents. In
contrast to previous works, our paper focuses on studying
scenarios where the reward distribution or prior knowledge
is not disclosed to the principal agent and computing a stable
allocation requires a data-driven method.

Learning the Core. The literature on learning the core
through sample-based methods can be categorised based on
the type of core one seeks to evaluate. Two main concepts
of the stochastic core are commonly considered, namely
the robust core (i.e. core constraints are satisfied with high
probability) [8, 18, 15] and the expected core (i.e. core con-
straints are satisfied in expectation) [7, 16]. In this work,
we investigate the learnability of the expected core, which
mitigate the potential emptiness of the robust core [7]. The
work most closely related to ours is [16], in which the au-
thors introduce an algorithm designed to approximate the
expected core using a robust optimization framework. In
the context of full information feedback, where rewards for
all allocations are revealed each round, the algorithm in [16]
demonstrates asymptotic convergence to the expected core.
In contrast, we consider bandit feedback, where applying
the algorithm of [16] may result in an exponential number
of samples in terms of the number of players (see Appendix
E.1 for a detailed explanation). Different than general frame-
work in [16], we propose a novel algorithm that explicitly
exploits geometric properties of (strictly) convex game to
seek a point in expected core with only poly(n) number of
sample, with high probability.

3. Problem Description
3.1. Preliminaries
Notations. For k ∈ N+, denote [k] as set {1, 2, . . . , k}.
For n ∈ N+, let En be the n-dimensional Euclidean space,
and let us denoteD as the Euclidean distance in En. Denote
1n as the vector [1, ..., 1] ∈ Rn. Denote ⟨·, ·⟩ as the dot
product. For a set C, we denote C \ x as the set result-
ing from eliminating an element x in C. For C ⊂ En, let
diam(C) := maxx,y∈C D(x, y), and Conv (C) denote the
diameter and the convex hull of C, respectively. Denote
Sn := {ω : [n] → [n] | ω is a bijection} as the permu-
tation group of [n]. For any collection of permutations
P ⊂ Sn, we denote ωp, p ∈ [|P|], as pth permutation
order in P . Given a set C, we denote byM(C) the space
of all probability distributions on C.

Stochastic Cooperative Games. A stochastic coopera-
tive game is defined as a tuple (N,P), where N is a set
containing all agents with number of agents to be |N | = n,
and P = {PS ∈M([0, 1]) | S ⊆ N} is the collection of
reward distributions with PS to be the reward distribu-
tion w.r.t. the coalition S. For any coalition S ⊆ N ,

we denote µ(S) := Er∼PS
[r] as the expected reward of

coalition S. For a reward allocation scheme x ∈ Rn, let
x(S) :=

∑
i∈S xi as the total reward allocation for players

in S. A reward allocation x is effective if x(N) = µ(N).
The hyperplane of all effective reward allocations, denoted
by HN , is defined as HN = {x ∈ Rn | x(N) = µ(N)}.
The (strictly) convex stochastic cooperative game can be
defined as follows:

Definition 1 (ς-Strictly convex cooperative game). For
some constant ς ≥ 0, A stochastic cooperative game is
convex if the expected reward function is supermodular
[19], that is, ∀i /∈ S ∪ C; and ∀C ⊆ S ⊆ N ,

µ(S ∪ {i})− µ(S) ≥ µ(C ∪ {i})− µ(C) + ς. (1)

When ς = 0, we simply call the game convex, otherwise,
it is strictly convex. Next, we define the expected core as
follows:

Definition 2 (Expected core [16]). The core is defined as

E-Core := {x ∈ Rn |x(N) = µ(N);

x(S) ≥ µ(S), ∀S ⊆ N}.

Note that, as E-Core ⊂ HN , its dimension is at most (n−
1). We say that E-Core is full dimensional whenever its
dimension is n− 1. For any ω ∈ Sn, define the marginal
vector ϕω ∈ Rn corresponding to ω, that is, its ith entry is

ϕωi := µ(Pω(i))− µ(Pω(i) \ i), (2)

where Pωi = {j | ω(j) ≤ ω(i)}. In convex games, each
vertex of the core in the convex game is a marginal vector
corresponding to a permutation order [19]. This is a special
property of convex games, which plays a crucial role in our
algorithm design.

3.2. Problem Setting
In our setting we assume that there is a principal who does
not know the reward distribution P. In each round t, the
principal queries a coalition St ⊂ N . The environment
returns a vector rt ∼ PSt

independently of the past. For
simplicity, we assume that the agent knows the expected
reward of the grand coalition µ(N). Our question is how
many samples are needed so that with high probability 1−δ,
one can compute a point x ∈ E-Core.

As well shall show in Theorem 5, if E-Core is not full-
dimensional, no algorithm can output a point in E-Core
with finite samples. As such, to guarantee the learnability
of the E-Core. From now on in the rest of this paper, we
assume that:

Assumption 3. The game is ς-strictly convex.

Note that strict convexity immediately implies full dimen-
sionality [19], which is not the case with convexity.
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4. Common-Points-Picking algorithm
In deterministic convex game, to compute a point in the core,
one can query a vertex of the E-Core, that is, a marginal
vector corresponding to a permutation order ω ∈ Sn [19].
Given that the game is now stochastic, this approach is no
longer applicable as we can only compute the confidence
set instead of the exact position of the vertex. One approach
to overcome the effect of uncertainty is to estimate multi-
ple vertices of the E-Core. Let P ⊂ Sn be a collection of
permutations, Q = {ϕωp | ωp ∈ P} be the set of vertices
corresponding to P , and Cp ∋ ϕωp is the confidence set.
It is clear that Conv (Q) ⊂ E-Core, since Q is a subset of
vertices of E-Core. The challenge is ensuring the algorithm
outputs a point within the convex hull of any points in the
confidence sets, since the true vertex position can be any-
where within these sets. A sufficient condition to achieve
this is that, given |P| confidence sets {Cp}p∈[|P|], for each
xp ∈ Cp, ⋂

xp∈Cp

p∈[|P|]

Conv
(
{xp}p∈[|P|]

)
̸= ∅. (3)

This condition means that there exists a common point
among all the convex hulls formed by choosing any point in
confidence sets, xp ∈ Cp. We call the above intersection a
set of common points. It is clear that set of common points is
a subset of the E-Core. We first state a necessary condition
for the number of vertices of E-Core need to estimate for
(3) can be satisfied:

Proposition 4. Suppose that all the confidence sets are
full dimensional, i.e., dim(Cp) = n − 1, ∀p ∈ [|P|], and
suppose that |P| < n. There does not exist common point.

Proposition 4 implies that one needs to estimate at
least n vertices to guarantee the existence of a com-
mon point. As such, from now on, we assume that
|P| = n. Based on the above intuition, we propose
Common-Points-Picking, whose pseudo code is de-
scribed in Algorithm 1, 2.

Before explaining our algorithm, let us construct the con-
fidence sets using Hoeffding’s inequality as follows. Let
rep (∅) = 0, ∀ ep > 0, define the empirical marginal vec-
tor w.r.t. permutation ωp as ϕ̂ωp ∈ Rn at epoch ep as

ϕ̂
ωp

i (ep) =
1

ep

(
ep∑
s=1

rs
(
P
ωp

i

)
− rs

(
P
ωp

i \ i
))

. (4)

By the Hoeffding’s inequality, one has that after ep epochs,
∀ωp ∈ P , with probability at least 1− δ, ϕωp lies in

Cp :=
{
x ∈ HN

∣∣∣∣ ∥∥∥x− ϕ̂ωp

∥∥∥
∞
≤ bep

}
;

s.t. bep :=

√
2 log(n ep δ−1)

ep
.

(5)

Algorithm 1 Common Points Picking
1: Input collection of permutation order P = {ωp}p∈[n].
2: t = 0, ep = 0, Cp = ∅,∀p ∈ [n].
3: while Stopping-Condition

(
{Cp}p∈[n], bep

)
do

4: ep← ep + 1;
5: for p ∈ [n] do
6: for i ∈ [n] do
7: Query Pωp

i .
8: Orcale returns rep

(
P
ωp

i

)
← rt.

9: t← t+ 1.
10: Computing ϕ̂ωp

i (ep) as (4).
11: end for
12: end for
13: ∀p ∈ [n], Compute confidence set Cp , bep as (5).
14: end while
15: Return x⋆ = 1

n

∑
p∈[n] ϕ̂

ωp(ep).

Algorithm 2 Stopping Condition
1: Input collection {Cp}p∈[n], and confidence bonus bep.
2: Compute ϵep = 2

√
nbep.

3: if Cp = ∅ for some p ∈ [n] then
4: Return FALSE.
5: end if
6: for p ∈ [n] do
7: Computing separating hyperplane Hp between Cp

and {Cq}q ̸=p as eq (7).
8: Computing distance: hp := D(Cp, Hp).
9: if hp < n ϵep then

10: Return FALSE.
11: end if
12: end for
13: Return TRUE.

The Common-Points-Picking Algorithm (Algorithm
1) can be described as follows. In each epoch ep, assuming
that the stopping condition is not satisfied, the algorithm es-
timates the marginal vectors corresponding to the collection
of given permutation orders {ϕ̂ωp(ep)}p∈[n] (lines 6-10).
Next, it calculates the confidence bonus bep, the confidence
sets {Cp}p∈[n], and checks the stopping condition for the
next epoch. The algorithm continues until the stopping con-
dition is satisfied, and then returns the average of the most
recent values of the marginal vectors in P .

The termination of the Common-Points-Picking algo-
rithm is based on the Stopping-Condition algorithm
(Algorithm 2), which can be described as follows. For each
confidence set Cp, the algorithm attempts to calculate the
separating hyperplane Hp, that separates Cp from the rest
{Cq}q ̸=p (line 7). After computingHp, the algorithm checks
whether the distance from the confidence set Cp to Hp is
large enough (lines 8, 9). It checks for all p ∈ [n]; if no
condition is violated, then the algorithm returns TRUE.

3
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5. Main Results
Before proceeding to the analysis of Algorithm 1, let us
exclude the case where learning a stable allocation is not
possible, thereby emphasizing the need of the strict convex-
ity assumption.

Theorem 5. Suppose that E-Core has dimension k < n−1,
for any 0.2 > δ > 0 and with finite samples, no algorithm
can output a point in E-Core with probability at least 1− δ.

We note that convex games may have a low-dimensional
core (e.g., Example 13 in Appendix A). This suggests that
convexity alone does not ensure the problem’s learnability,
emphasizing the requirement for strict convexity.

5.1. On the Stopping Condition
In this subsection, we explain the construction of the stop-
ping condition in Algorithm 2. To simplify the presentation,
we restrict our attention to HN and consider it as En−1.
First, we state a necessary condition for the existence of
common points.

Proposition 6. Suppose there is a (n − 2)-dimensional
hyperplane that intersect with all the interior of confidence
sets Cp, ∀p ∈ [n] , then common points do not exist.

Proposition 6 suggests that if the ground truth simplex
Conv (Q) is not full-dimensional, then the common set
is empty. On the other hand, when the confidence sets are
well-arranged and sufficiently small, that is, there does not
exist a hyperplane that intersects with all of them, a nice
separating property emerges, as stated in the next theorem.
This new result can be considered as an extension of the
classic separating hyperplane theorem [1].

Theorem 7 (Hyperplane separation theorem for multiple
convex sets). Assume that {Cp}p∈[n] are mutually disjoint
compact and convex subsets in En−1. Suppose that there
does not exist a (n − 2)-dimensional hyperplane that in-
tersects with confidence sets Cp, ∀p ∈ [n], then for each
p ∈ [n], there exists a hyperplane that separates Cp from⋃
q ̸=p
Cq .

When those confidence sets are well-separated, we can pro-
vide a sufficient condition for that the common points exist.
Let Hp be a separating hyperplane that separate Cp from⋃
q ̸=p Cq. We define Hp corresponding with tuple (vp, cp),

where vp is a unit normal vector of Hp and cp is a scalar.
Now, denote Ep =

{
x ∈ En−1 | ⟨vp, x⟩ < cp

}
as the half

space containing Cp. We have that:

Lemma 8. For any xp ∈ Cp, p ∈ [n],⋂
p∈[n]

Ep ⊆ Conv
(
{xp}p∈[n]

)
. (6)

Consequently, if
⋂
p∈[n]Ep is nonempty, it is the subset of

common points.

The key implication here is that Lemma 8 provides us a
method to find a point in the common set. Using Lemma 8,
we can show that if each distance from a confidence set to
its separating hyperplane is sufficiently large compared to
the diameter of the other confidence sets, then a common
point exists, as stated in the following theorem.

Theorem 9. Given a collection of confident set {Cp}p∈[n]

and let Q = {xp}p∈[n], for any xp ∈ Cp. For any p ∈ [n],
denote Hp(Q) as the (n− 1)-dimensional hyperplane with
constant (vp, cp), ∥vp∥ = 1 such that{
⟨vp, x⟩ = cp +maxq∈[n]\p diam(Cp), ∀x ∈ Q \ xp.
⟨vp, xp⟩ < cp +maxq∈[n]\p diam(Cp).

(7)
For all p ∈ [n], if the following holds

D(Cp, Hp(Q)) > 2n

(
max
q∈[n]\p

diam(Cq)
)
; (8)

then, x⋆ = 1
n

∑
p∈[n] x

p is a common point.

5.2. Sample Complexity Analysis
In strictly convex game, we show that the conditions of The-
orem 9 can be satisfied with high probability (see Appendix
C). This upper-bounds the sample complexity as follows.

Theorem 10. Suppose that Assumption 3 holds. There
exists a choice of collection of permutation order P , such
that for any δ ∈ [0, 1], if the number of samples is bounded
by

T = O

(
n15 log(nδ−1ς−1)

ς4

)
, (9)

then Common-Points-Picking algorithm returns a
point in E-Core with probability at least 1− δ.

We describe the choice of P in Appendix C, along with sev-
eral different choice of collection of n vertices that probably
achieve better scaling with n for large class of the game.

6. Conclusion and Future Work
In this paper, we address the challenge of learning the
expected core of a strictly convex stochastic coopera-
tive game. Under the assumptions of strict convexity
and a large interior of the core, we introduce an algo-
rithm named Common-Points-Picking to learn the
expected core. Our algorithm guarantees termination after
poly

(
n, log(δ−1), ς−1

)
samples and returns a point in the

expected core with probability (1 − δ). For future work,
we will investigate whether the sample complexity of our
algorithm can be further improved by incorporating adaptive
sampling techniques into the algorithm.
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A. Proof of Theorem 5
Here and onwards, we adopt the following notation convention: for real numbers a, b ∈ [0, 1], KL (a, b) represents the
KL-divergence KL (p, q) where p, q are probability distributions on {0, 1} such that p(1) = a, q(1) = b. In other words,

KL (a, b) = a ln
(
a
b

)
+ (1− a) ln

(
1−a
1−b

)
.

Lemma 11 ([13]). For any 0 < ε < y ≤ 1, KL (y − ε, y) < ε2/y(1− y).

Before stating the proof of Theorem 5, let us introduce some extra notations. Given a game G = (N,P), with the expected
reward function µ, we define the following.

• HC(G) := {x ∈ Rn | x(C) = µ(C)} is the hyperplane corresponding to the effective allocation w.r.t coalition C.

• E-Core(G) is the expected core of the game G.

• FC(G) := E-Core(G) ∩HN\C(G) is facet of the E-Core corresponding to the coalition C.

We use the following definition of the face games in Theorem 5, introduced by [11].

Definition 12 (Face Game). Given a game G = (N,P) with µ(S) = Er∼PS
[r], ∀S ⊂ N . For any C ⊂ N , define a face

game G(C) = (N,PC) with µFC
(S) = Er∼PC

S
[r] such that, for any S ⊂ N ,

µFC
(S) = µ((S ∩ C) ∪ (N \ C))− µ(N \ C) + µ(S ∩ (N \ C)). (10)

[11] showed that the expected core of G(C) is exactly the facet of E-Core(G) corresponding C, that is, E-Core(G(C)) =
FC(G). As noted in [27], one can decompose the reward function of the face game as follows. For any S ⊂ N , we have that

µFC
(S) = µFC

(S ∩ C) + µFC
(S ∩ (N \ C)). (11)

7
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We now proceed the proof of Theorem 5.

Proof of Theorem 5 . Denote the set convex games with Bernolli reward as GB, that is,

GB = {G = (N,P) | P = {PS}S⊆N ; PS ∈M({0, 1}), ∀S ⊆ N}.

Face-game instances and the distance between their E-Core. We first define two games, G0 and G1, with a full-
dimensional E-Core, such that G1 is a slight perturbation of G0. Next, we define face games corresponding to G0 and G1

using the perturbed facet. We then show that the distance between the cores of these two face games is at least some positive
number ε > 0.

Define a strictly convex game G0 := (N,P) ∈ GB, such that µ0(S) := Er∼PS
[r], and assume that µ0 is ς-strictly

supermodular. Now, fix a subset C ⊂ N , let define a perturbed game instance G1 := (N,Q) ∈ GB, with µ1(S) :=
Er∼QS

[r] such that {
µ1(C) := µ0(C)− ε;
µ1(S) := µ0(S); ∀S ⊂ N, S ̸= C;

(12)

for some 0 < ε < ς . It is straightforward that G1 is (ς − ε)-strictly convex. Therefore, E-Core(G0) and E-Core(G1) are
both full-dimensional.

Fixing a coalition C ⊂ N , we now construct the face games from G0, G1 as in Definition 12.
Let G0(C) := (N,PC), G1(C) := (N,QC) ∈ GB, whose expected rewards µ0

FC
and µ1

FC
are defined by applying (10)

to µ0 and µ1 respectively. Now, we consider the difference between the expected reward function of these two games.
|µ1
FC

(S)− µ0
FC

(S)| = 0 ∀S ⊂ N \ C
|µ1
FC

(S)− µ0
FC

(S)| = ε ∀S ⊆ C
|µ1
FC

(N \ C)− µ0
FC

(N \ C)| = ε.

(13)

As one can always decompose the set S = (S ∩C)∪ (S ∩N \C), by the decomposibility of the face game (11), we has that

|µ1
FC

(S)− µ0
FC

(S)| ≤ ε, ∀S ⊂ N. (14)

As the core of face game G0(C) and G1(C) lie on the hyperplane corresponding to the coalition N \ C, and the distance
between the hyperplanes of G0 and G1 is ε, which lower bounds the distance between the expected core of G0(C) and
G1(C). In particular, as E-Core(G0(C)) = FC(G0) and E-Core(G1(C)) = FC(G1), and |µ1(N \ C)− µ0(N \ C)| = ε,
which leads to D(HN\C(G0), HN\C(G1)) = ε, we have that

D (E-Core(G0(C)),E-Core(G1(C))) ≥ ε. (15)

The KL distance and imposibility of learning low-dimensional E-Core. We show that, with probability δ ∈ (0, 0.2),
any learner cannot distinguish between G0(C) and G1(C) given there are finite number of samples. We use the information-
theoretic framework similar which is well developed within multi-armed bandit literature.

We first upper bound the KL-distance between PCS ,QCS , ∀S ⊂ N . Denote c1 := minS⊂N
(
µ0
FC

(S)(1− µ0
FC

(S))
)
> 0, by

Lemma 11, we have that

KL
(
PCS ,QCS

)
= KL

(
µ0
FC

(S), µ1
FC

(S)
)
≤ ε2

c1
, ∀S ⊂ N.

Define the probability space Ψ = 2N × {0, 1}. Fix any algorithm (possibly randomised) A. At round t, denote (St, rt) ∈ Ψ
as the coalition selected by the algorithm and the reward return by the environment. At round s < t, denote νt0, ν

t
1 as the

probability distribution over Ψt determined by A and P, Q accordingly.

8
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We have the following, as stated in the appendix of [13]. For any u < t, one has that,

KL (νu0 , ν
u
1 ) =

∑
ψu−1∈Ψu−1

νu0 (ψ
u) log

(
νu0 (ψ

u | ψu−1)

νu1 (ψ
u | ψu−1)

)

=
∑

ψu−1∈Ψu−1

νu0 (ψ
u) log

(
νu0 (Su | ψu−1)

νu1 (Su | ψu−1)
· ν

u
0 (ru | Su, ψu−1)

νu1 (ru | Su, ψu−1)

)

=
∑

ψu−1∈Ψu−1

νu0 (ψ
u) log

(
νu0 (ru | Su, ψu−1)

νu1 (ru | Su, ψu−1)

)

[As the distribution of Su depends only on A, not on the distribution νt0, ν
t
1.]

=
∑

ψu−1∈Ψu−1

∑
Su∈2N

∑
ru∈{0,1}

νu0 (ru | Su, ψu−1) log

(
νu0 (ru | Su, ψu−1)

νu1 (ru | Su, ψu−1)

)
νu0 (Su, ψ

u−1)

=
∑

ψu−1∈Ψu−1

∑
Su∈2N

KL
(
µ0
FC

(Su), µ
1
FC

(Su)
)
νu0 (Su, ψ

u−1)

≤ ε2

c1
.

The last inequality hold because KL
(
µ0
FC

(S), µ1
FC

(S)
)
≤ ε2

c1
, ∀S ∈ 2N .

We have that

KL
(
νt0, ν

t
1

)
=

t∑
u=1

KL (νu0 , ν
u
1 ) ≤

tε2

c1
. (16)

As we can choose ε to be arbitrarily small, we can choose ε such that KL (νt0, ν
t
1) ≤ 0.1.

Now, define the event E as the event that A outputs a point in E-Core(G0(C)), assume that νt0(E) with probability at least
0.8. Note that, as E-Core(G0(C)) ∩ E-Core(G1(C)) = ∅, E represents the event where the algorithm fails to output a
stable allocation with the game instance G1(C). We have that from [13]’s Lemma A.5,

νt1(E) ≥ νt0(E) exp
(
−KL (νt0, ν

t
1) + 1/e

νt0(E)

)
> 0.8 exp

(
−0.1 + 1/e

0.8

)
> 0.3. (17)

As it holds for any t > 0, this means that for any finite number of samples, with probability at least 0.1, the algorithm will
output the incorrect point.

It is worth noting that convex games may have a low-dimensional core, as demonstrated in the following example.

Example 13. Let µ(S) = |S| for all S ⊆ N . It is easy to verify that µ is indeed convex. The marginal contribution of any
player i to any set S ⊆ N is

µ(S ∪ i)− µ(S) = 1, ∀S ⊂ N. (18)

Therefore, the only stable allocation is 1n, which coincides with the Shapley value. Hence, the core is one-point set.
According to Theorem 5, since the core has a dimension of 0 in this case, it is impossible to learn a stable allocation with a
finite number of samples.

Example 13 suggests that convexity alone does not ensure the problem’s learnability, emphasizing the requirement for strict
convexity.

9
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B. Common-points-picking algorithm and the stopping condition
B.1. On the Necessary Conditions for the Existence of Common Points

Proof of Proposition 4. For each Cp, choose a point in its interior, denote as xp. As there are at most n − 1 points
{xp}p∈[|P|], there exists a (n− 2)-dimensional hyperplane H that contains {xp}p∈[|P|]. Let H̃ be a hyperplane parallel to
H and let the distance D(H, H̃) be arbitrary small.

As confidence sets are full-dimensional (n− 1), H̃ must also intersect with the interiors of all confidence sets. Since H and
H̃ are parallel, any convex hull of points within H and H̃ cannot intersect. Therefore, there is no common point.

Proof of Proposition 6. The proof spirit is similar to that of Proposition 4.

Let H be the (n− 2)-dimensional hyperplane that intersects with the interiors of all confidence sets. Let H̃ be a hyperplane
parallel to H and let the distance D(H, H̃) be arbitrary small.

As confidence sets are full-dimensional, H̃ must also intersect with the interiors of all confidence sets. Since H and H̃ are
parallel, any convex hull of points within H and H̃ cannot intersect. Therefore, there is no common point.

B.2. Extension of Separation Hyperplane Theorem
First, let us recap the notion of separation as follows.

Definition 14 (Separating hyperplane). Let C and D be two compact and convex subsets of En−1. Let H be a hyperplane
defined by the tuple (v, c), where v is a unit normal vector and c is a real number, such that ⟨x, v⟩ = c, ∀x ∈ H . We say H
separates C and D if ⟨x, v⟩ > c, ∀x ∈ C; and ⟨y, v⟩ < c, ∀y ∈ D.

Before stating the proof of Theorem 7, let us discuss its non-triviality.

Remark 15 (Non-triviality of Theorem 7). At a first glance, Theorem 7 may appear as a trivial extension of the classic
hyperplane separation theorem due to the following reasoning: Consider the union of all hyperplanes that intersect

⋃
q ̸=p Cq ,

which trivially contains
⋃
q ̸=p Cq. Then, by assuming that these hyperplanes do not intersect Cp, the separation between

Cp and
⋃
q ̸=p Cq appears to follow from the classic separation hyperplane theorem. However, there is a flaw in the above

reasoning: The union of these hyperplanes is not necessarily convex. Therefore, the classic separation hyperplane theorem
cannot be applied directly. Instead, employing Carathéodory’s theorem, we prove in Theorem 7 by contra-position that if
the intersection between Cp and Conv(

⋃
q ̸=p Cq) is non-empty, then we can construct a low-dimensional hyperplane that

intersects with all the set.

The proof of Theorem 7 is a combination of the classic hyperplane separation theorem and the following lemma.

Lemma 16. Let {Cp}p∈[n] be mutually disjoint compact and convex subsets in En−1. Suppose there does not exist a
(n− 2)-dimensional hyperplane that intersects with all confidence sets Cp, ∀p ∈ [n], then for each p ∈ [n]

Cp ∩ Conv

⋃
q ̸=p

Cq

 = ∅. (19)

Proof. We prove this lemma by contra-position, that is, if there is Cp such that

Cp ∩ Conv

⋃
p ̸=q

Cq

 ̸= ∅;

then there exist a hyperplane that intersects with all the Cp, ∀p ∈ [n].

First, assume there is a point x = Cp ∩Conv

( ⋃
q ̸=p
Cp

)
. By Carathéodory’s theorem, there are at most n points xk ∈

⋃
q ̸=p
Cq

such that
x =

∑
k∈[n]

αkx
k. (20)

10
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As each xk ∈ Cq for some Cq , one can rewrite the equation above as

x =
∑
q ̸=p

∑
k: xk∈Cq

αkx
k. (21)

Furthermore, we can write

∑
xk∈Cq

αkx
k = α̃qx̃

q, in which, x̃q :=

∑
k: xk∈Cq

αkx
k∑

k: xk∈Cq
αk

, and α̃q :=
∑

k: xk∈Cq

αk. (22)

Since Cq is convex, x̃q ∈ Cq . Substituting (22) into (20), one obtains

x =
∑
q ̸=p

α̃qx̃
q. (23)

Define H as a hyperplane that passes through all x̃q , we have that x ∈ H .

Second, we now show how to construct a hyperplane that intersects with all Cm, m ∈ [n]. Let I be the set of indices such
that Cq ∋ x̃q . We have two following cases.

(i) First, if |I| = n− 1, then H is the (n− 2)-dimensional hyperplane that intersect with all Cm, m ∈ [n].

(ii) Second, if |I| < n − 1, for any Cq′ ̸= Cp that does not contain any x̃q, we choose any arbitrary point xq
′ ∈ Cq′ . As

there are n− 1 points of x̃q and xq
′
, there exists a hyperplane H that contains all these points. Furthermore, H must

contain x, so it is the (n− 2)-dimensional hyperplane that intersects with all sets Cm, ∀m ∈ [n].

Now, we state the proof of Theorem 7.

Proof of Theorem 7. As a result of Lemma 16, we have that for all Cp,∀p ∈ [n],

Cp ∩ Conv

⋃
q ̸=p

Cq

 = ∅. (24)

Therefore, by the hyperplane separation theorem, there must exist a hyperplane that separates Cp and Conv

( ⋃
q ̸=p
Cq

)
.

B.3. Correctness of the Stopping Condition

Proof of Lemma 8. Let us denote ∆n as Conv
(
{xp}p∈[n]

)
. As there is no hyperplane of dimension n− 2 go through all

the set Cp, the simplex ∆n is (n− 1) dimensional. We have that⋂
p∈[n]

Ep ⊆ ∆n ⇐⇒ ∆c
n ⊆

⋃
p∈[n]

Ecp;

where Ecp is the complement of the set Ep.

We will prove the RHS of the above. Consider x̂ ∈ ∆c
n, as ∆n is full dimensional, x̂ can be uniquely written as affine

combination of the vertices, that is,
x̂ =

∑
p∈[n]

λpx
p,

∑
p∈[n]

λp = 1.

As x̂ ∈ ∆c
n, there must exist some λk < 0.

11
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Now, we shall prove x̂ ∈ Eck. Consider the following,

〈
vk, x̂

〉
=

〈
vk,

∑
p∈[n]

λpx
p

〉
= λk

〈
vk, xk

〉
+
∑
p ̸=k

λp
〈
vk, xp

〉
> λkc

k + ck
∑
p ̸=k

λp

= ck

(25)

The above inequality holds since
〈
vk, xk

〉
< ck and λk < 0. Therefore, x̂ ∈ Eck. This means that

∆c
n ⊆

⋃
k∈[n]

Eck. (26)

Proof of Theorem 9. Before proceeding the main proof, we show two simple consequences of the construction of Hp(Q),
p ∈ [n] and the assumption (8).

Fact 1: Consider p ∈ [n], Hp(Q) acts as a separating hyperplane for Cp. To see this, assume that Hp(Q) is not a
separate hyperplane for Cp, then there exists zp ∈ Cp such that ⟨vp, zp⟩ ≥ cp. From (7), we have ⟨vp, xp⟩ ≤ cp +
maxq∈[n]\p diam(Cp). Then, there are two cases. First, assume that ⟨vp, xp⟩ ≤ cp. As xp, zp ∈ Cp and ⟨vp, zp⟩ ≥ cp, there
must exist a point x in the line segment [xp, zp] such that ⟨vp, x⟩ = cp. This means that D(Cp, Hp) = 0, which violates
assumption (8). Second, assume that cp ≤ ⟨vp, xp⟩ ≤ cp +maxq∈[n]\p diam(Cp). Then, we have that

D(Cp, Hp) ≤ D(xp, Hp) = | ⟨vp, xp⟩ − cp| ≤ max
q∈[n]\p

diam(Cq).

This also violates assumption (8). This implies that if (8) is satisfied, Hp(Q) must separate Cp from ∪q ̸=pCq .

Fact 2: The distance from any point in Cq from Hp(Q) is bounded as follows. For x ∈ Cq , q ̸= p, we have that

D(x,Hp(Q)) ≤ D(x, xq) +D(xq, Hp(Q)) ≤ 2 max
q′∈[n]\p

diam(Cq′). (27)

Now, we proceed to the main proof. For the ease of notation, we simply write Hp for Hp(Q).

First, from assumption (8), we has that for any p ∈ [n],

D(Cp, Hp) = min
x∈Cp

D(x,Hp) = min
x∈Cp

|cp − ⟨vp, x⟩ |. (28)

We have that
min
x∈Cp

D(x,Hp) > 2nmax
q ̸=p

diam(Cq)

≥
∑

q∈[n]\p

max
x∈Cq

D(x,Hp).
(29)

Second, we shows that how to pick a common point which exists when (29) is satisfied. Let us choose a collection of points
xp ∈ Cp, p ∈ [n], and define

x⋆ =
1

n

∑
p∈[n]

xp.

Now, we show that x⋆ ∈ Ep, ∀p ∈ [n].

12
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For each p ∈ [n], consider Hp. We denote

ζpp := cp − ⟨vp, xp⟩ > 0;

ζpq := ⟨vp, xq⟩ − cp > 0, q ̸= p.

Note that D(x,Hp) = | ⟨vp, x⟩ − cp|. Follows (29), we have that

ζpp ≥ min
x∈Cp

D(x,Hp) >
∑

q∈[n]\p

max
x∈Cq

D(x,Hp) ≥
∑

q∈[n]\p

ζpq. (30)

Now, let consider

⟨vp, x⋆⟩ = 1

n

∑
q∈[n]

⟨vp, xq⟩ = 1

n

∑
q∈[n]\p

(cp + ζpq) +
1

n
(cp − ζpp)

= cp +
1

n

 ∑
q∈[n]\p

ζpq − ζpp

 < cp.

(31)

Therefore, x⋆ ∈ Ep. As it is true for all Ep, one has that

x⋆ ∈
⋂
p∈[n]

Ep. (32)

Finally, by Lemma 8, we can conclude that x⋆ is a common point.

Intuitively, Theorem 9 states that if the distance from a confidence set Cp to the hyperplane Hp(Q) is relatively large
compared to the sum of the diameters of all other confidence sets, then the average of any collection of points in the
confidence set must be a common point. As such, Theorem 9 determines the stopping condition for Algorithm 1 and provide
us a explicit way to find a common point, which validates the correctness of Algorithm 1. In particular, Algorithm 2 checks
if conditions (8) are satisfied for the confidence sets in each round. If the conditions are satisfied, then Algorithm 1 stops
sampling and returns x⋆ as the common point.

C. On sample complexity of Common-points-picking algorithm
Note that while the diameters of confidence sets can be controlled by the number of samples regarding the marginal vector,
D(Cp, Hp(Q)) is a random variable and needs to be handled with care. We show that there exist choices of n vertices such
that the simplex formed by them has a sufficiently large width, resulting in the stopping condition being satisfied with high
probability after poly(n, ς−1) number of samples.

Now, we show that, the conditions of Theorem 9 can be satisfied with high probability. The distance D(Cp, Hp(Q)), p ∈ [n]
can be lower bounded by the width of the ground-truth simplex, which is defined as follows:

Definition 17 (Width of simplex). Given n points {x1, ...xn} in Rn, let matrix P = [xi]i∈[n], we define the matrix of
coordinates of the points in P w.r.t. xi as coM(P, i) := [(xj − xi)]j ̸=i ∈ Rn×(n−1). Denote σk(M) as the kth singular
value of matrix M (with descending order). We define the width of the simplex whose coordinate matrix is P as follows

ϑ(P ) := min
i∈[n]

σn−1 (coM(P, i)) . (33)

Equipped with the definition of the width, we can bound the distance D(Cp, Hp(Q)), ; p ∈ [n], accordingly as the following
lemma.

Lemma 18. Given n points {x1, ..., xn} in Rn, letM be the matrix corresponding to these points, assume that 0 < Mij < 1
and ϑ(M) ≥ σ, for some constant σ > 0. LetR ∈ Rn×n be a perturbation matrix, such that its entries |Rij | < ϵ/2, ∀(i, j),
and 0 < ϵ < σ2/3n3. Let hmin be a smallest magnitude of the altitude of the simplex corresponding to the matrix M +R.
One has that

hmin ≥
√
σ2 − 6n3ϵ. (34)

13
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Proof of Lemma 18. Denote ∆ as the simplex corresponding to M = [x1, ..., xn], ∆i as the facet opposite the vertex xi,
and hi(∆) is the height of simplex w.r.t. the vertex xi. Denote Volk(C) as the k-dimensional content of C ⊂ En−1, where
dim(C) = k. Using simple calculus, one has that

hi(∆) =
1

n− 1

Voln−1(∆)

Voln−2(∆i)
, (35)

We also denote ∆̂ as the perturbed simplex corresponding to M +R and ∆̂i as the facet opposite the to the perturbation of
xi.

we bound the height hi(∆̂) for all i ∈ [n − 1]. For the height hn(∆̂), one can apply similar reasoning. Let define the
coordinate matrix and the pertubation matrix w.r.t xn as follows

V := coM(M,n), U := coM(R,n); (36)

We have that |Uij | < ϵ, ∀i, j. By the definition of width ϑ(M), we have that

σn−1(V ) ≥ ϑ(M) ≥ σ. (37)

Let define the Gram matrix and perturbed Gram matrix as follows

G := V ⊤V

Ĝ := (V + U)⊤(V + U).
(38)

One has that,
Ĝ−G = V ⊤U + U⊤V + U⊤U := U.

One has that U ij ≤ ϵ̄ := 3nϵ, as |Vij | < 1 and |Uij | < ϵ < 1. We also has that ∥U∥2 ≤ ∥U∥F ≤ nϵ̄.

First step. we bound the quantity |det(G+U)−det(G)|
|det(G)| . By [12]’s Corollary 2.14, one has that

|det(G+ U)− det(G)|
|det(G)|

≤
(
1 +

∥U∥2
σn−1(G)

)n−1

− 1 ≤
(
1 +

nϵ̄

σ2

)n
− 1. (39)

As (1 + z)n ≤ 1
1−nz when z ∈ (0, 1

n ) and n > 0. One has that

|det(G+ U)− det(G)|
|det(G)|

≤ n2ϵ̄

σ2 − n2ϵ̄
, (40)

when ϵ̄ ≤ σ2

n2 , or ϵ ≤ σ2

3n3 . Let us define k := σ2−n2ϵ̄
n2ϵ̄ , one has that

|det(G+ U)− det(G)|
|det(G)|

≤ 1

k
. (41)

It means that

det(G+ U) ≥
(
1− 1

k

)
det(G) (42)

Second step. we bound the change in content of the ith facets of the simplex, for i ∈ [n− 1]. Consider the facet that is
opposite to the vertex xi, and denote V (i), Ui as the sub-matrices of V, U by removing ith column. Denote the Gram
matrix

G(i) := V (i)⊤V (i)

Ĝ(i) := (V (i) + U(i))⊤(V (i) + U(i))
(43)

Note that one can obtain G(i), Ĝ(i) and by removing ith row and column of G(i), Ĝ(i) respectively. Denote U(i) :=
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Ĝ(i)−G(i), we has that all entries of U(i) smaller than ϵ̄.

Moreover, by Singular Value Interlacing Theorem, one has that

σ1(G) ≥ σ1(G(i)) ≥ σ2(G) ≥ σ2(G(i)) ≥ · · · ≥ σn−2(G(i)) ≥ σn−2(G(i)) ≥ σn−1(G). (44)

Similarly, one has that

|det(G(i) + U(i))− det(G(i))|
|det(G(i))|

≤
(
1 +

∥U(i)∥2
σn−2(G(i))

)n−2

− 1 ≤
(
1 +

nϵ̄

σ2

)n
− 1 ≤ 1

k
. (45)

It means that

det(G(i) + U(i)) ≤
(
1 +

1

k

)
det(G(i)). (46)

Third step. We bound the height hi corresponding to the vertices xi in this step. For i ∈ [n− 1] one has that

Vold(∆̂) =
1

(n− 1)!

√
det(G+ U).

Vold−1(∆̂i) =
1

(n− 2)!

√
det(G(i) + U(i)).

(47)

Furthermore, by the Eigenvalue Interlacing Theorem, we have det(G)/det(Gi) ≥ σn−1(G) ≥ σ2. Putting things together,
one has that

hi(∆̂) =
1

n− 1

Voln−1(∆̂)

Voln−2(∆̂i)
=

√
det(G+ U)

det(G(i) + U(i))
≥

√
k − 1

k + 1

det(G)

det(G(i))
≥ σ

√
σ2 − 6n3ϵ

σ2
(48)

We note that, the above holds true for i ∈ [n− 1].

Fourth Step. Now, we bound the height corresponding to the vertex xn. We can define the coordination matrix and
pertubation matrix w.r.t x1 as follows.

V ′ = coM(M, 1), U ′ = coM(R, 1). (49)

Note that, by the definition of the width, we have that

σn−1(V
′) ≥ ϑ(M) ≥ σ; (50)

and also, |U ′
ij | ≤ ϵ. Similarly, applying Steps 1-3, we also have that

hn(∆̂) ≥
√
σ2 − 6n3ϵ

Therefore, hi(∆̂) ≥
√
σ2 − 6n3ϵ holds true for all i ∈ [n]. We conclude that

hmin ≥
√
σ2 − 6n3ϵ, (51)

whenever, ϵ ≤ σ2

3n3 .

Lemma 18 guarantees that if the width of the ground truth simplex is relatively large compared to the diameter of the
confidence set, then the heights of the estimated simplex are also large. We now provide an example of a collection of
permutation orders corresponding to a set of vertices as follows. Let si := (i, i + 1) denote the adjacent transposition
between i and i+ 1.

Proposition 19. Fix any ω ∈ Sn, consider the collection of permutation P = {ω, ωs1, . . . , ωsn−1} and matrix M =
[ϕω

′
]ω′∈P . The width of the simplex that corresponds to M , is upper bounded as ϑ(M) ≥ 0.5ςn−3/2.
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The vertex set in Proposition 19 comprises one vertex and its (n− 1) adjacent vertices. Combining Lemma 18, Proposition
19 with the stopping condition provided by Theorem 9, we now can guarantee the sample complexity of our algorithm as
Theorem 10.

Proof of Theorem 10. Let choose the collection P as Proposition 19. Note that |P| = n. Denote ϵ0 :=
2maxp∈[n] diam(Cp). For any ωp ∈ P , define the event

E = {ϕωp ∈ Cp,∀p ∈ [n]} .

By the construction of the confidence set, we guarantee that E happen with probability at least 1− n2δ.

Consider p ∈ [n], for any q ∈ [n] \ p, let xq be the projection of ϕωq onto Hp, and xp := argminp∈Cp
D(x,Hp). We have

that
D(xk, ϕωk) ≤ ϵ0, ∀k ∈ [n].

We need to bound D(xp, Hp) by bounding the minimum height of simplex Conv
(
{xp}p∈[n]

)
, which is a pertubation of

Conv
(
{ϕωp}p∈[n]

)
.

Define matrix M = [ϕωp ]p∈[n], and M̂ = [xp]p∈[n]. Let R := M − M̂ be the perturbation matrix, one has that
Rij ≤ ϵ0, ∀(i, j). By Lemma 18, we have that

D(xp, Hp) ≥
√
σ2 − 12n3ϵ0 (52)

Therefore, for D(xp, Hp) ≥ nϵ0 holds , it is sufficient to provide the condition for σ such that√
σ2 − 12n3ϵ0 ≥ nϵ0. (53)

Assuming that ϵ0 < 1, for the condition of Lemma 18 and the above inequality to hold, it is sufficient to choose

ϵ0 =
σ2

13n3
.

Now, we calculate the upper bound for sample needed. At epoch K, we have that

ϵ0 = 2diam(Cp) ≥ 4

√
2n log(δ−1)

K

σ =
nς

cW
.

(54)

Then we have K = O
(
n13 log(nδ−1ς−1)

ς4

)
. As each phase, there are at most n2 queries, then the total number of sample

needed is

T = O

(
n15 log(nδ−1ς−1)

ς4

)
(55)

for the algorithm to return a common point, with probability of at least 1− δ.

While the choice of vertices in Proposition 19 achieves polynomial sample complexity, the width of the simplex decreases
with dimension growth, hindering its sub-optimality. An alternative choice of vertices is those corresponding to cyclic
permutation, denoted as Cn ⊂ Sn, which have a larger width in large subsets of strictly convex games (as observed in
simulations) but can be difficult to verify in the worst case. We refer readers to Appendix D.3 for the detail simulation and
discussion on the choice of set of n vertices. Based on this observation, we achieve the sample complexity which better
dependence on n as follows.

Theorem 20. Suppose Assumption 3 holds. Let P = Sn the collection of cyclic permutations, and denote the coordinate
matrix of the corresponding vertices as W . Assume that the width of the simplex ϑ(W ) ≥ nς

cW
for some cW > 0. Then, for
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any δ ∈ [0, 1],if number of samples is

T = O

(
n5c4W log(ncW δ

−1ς−1)

ς4

)
, (56)

the Common-Points-Picking algorithm returns a point in E-Core with probability at least 1− δ.

Proof of Theorem 20. The proof is identical to that of Theorem 10, with the width of the simplex bounded by ϑ(W ) ≥
nς
cW

.

D. Convex Games
D.1. E-Core of convex games and Generalised Permutahedra
Formulating the coordinates of the vertices of the core can be achieved using the connection between the core of a convex
game and the generalised permutahedron. There is an equivalence between generalised permutahedra and polymatroids; it
was also shown in [20] that the core of each convex game is a generalised permutahedron.

For any ω ∈ Sn, let Iω = (ω(1), ..., ω(n)). The n-permutahedron is defined as Conv ({Iω | ω ∈ Sn}). A generalised
permutahedron can be defined as a deformation of the permutahedron, that is, a polytope obtained by moving the vertices of
the usual permutohedron so that the directions of all edges are preserved [17]. Formally, the edge of the core corresponding
to adjacent vertices ϕω, ϕωsi can be written as

ϕω − ϕωsi = kω,i(eω(i) − eω(i+1)), (57)

Where, kω,i ≥ 0, and e1, . . . en are the coordinate vectors in Rn. If the game is ς-strictly convex, kω,i > ς .

D.2. Proof of Proposition 19
We utilise the formulation of edges of the generalized permutahedron as described in Subsection D.1 to calculate the matrix
of coordinates for the vertices of E-Core. Based on the matrix of coordinates, we now state the proof of Proposition 19.

Proof of Proposition 19. As the set of vertices is ϕω and its n− 1 neighbors, there are only two cases to consider. First, we
need to consider the matrix created by using ϕω as the reference, that is coM(M, 1). As the neighbors have the same roles,
bounding the width of the matrices using any neighbor as a reference point can be done identically. Therefore, we will prove
the theorem for coM(M, 2), and the proof for coM(M, i), i ̸= 1 can be done in the same manner. Let us denote

V = coM(M, 1) =



c1 0 0 · · · 0 0
−c1 c2 0 · · · 0 0
0 −c2 c3 · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · −cn−2 cn−1

0 0 0 · · · 0 −cn−1


∈ Rn×(n−1), (58)

U = coM(M, 2) =



−c1 −c1 −c1 −c1 · · · −c1 −c1
c1 c1 + c2 c1 c1 · · · c1 c1
0 −c2 c3 0 · · · 0 0
0 0 −c3 c4 · · · 0 0
...

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
0 0 0 0 · · · −cn−2 cn−1

0 0 0 0 · · · 0 −cn−1


∈ Rn×(n−1), (59)

in which each ci > ς .
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We will exploit the following norm inequality in the proof. For any A1, . . . , An ∈ R, we use the following inequality (norm
2 vs. norm 1 of vectors)

n∑
i=1

A2
i ≥

(
∑n
i=1Ai)

2

n
(60)

Consider V. Consider a unit vector x = (x1, ..., xn−1). We have

V x =


c1x1

−c1x1 + c2x2
−c2x2 + c3x3

· · ·
−cn−2xn−2 + cn−1xn−1

−cn−1xn−1

 (61)

Applying the Ineq. (60) for A1 = c1x1, A2 = −c1x1 + c2x2, An−1 = −cn−2xn−2 + cn−1xn−1, An = −cn−1xn−1 gives

∥V x∥2 ≥ c21x
2
1

n
≥ ς2x21

n
;

∥V x∥2 ≥ c21x21 + (−c1x1 + c2x2)
2 ≥ c22x

2
2

n
≥ ς2x22

n
;

. . .

∥V x∥2 ≥
ς2x2n−1

n
.

(62)

Therefore,

n∥V x∥2 ≥
ς2(x21 + · · ·+ x2n−1)

n
=
ς2

n
(63)

Therefore ∥V x∥ ≥ ς/n, hence σn−1(V ) ≥ ς/n.

Consider U. Similarly, consider a unit vector x = (x1, ..., xn−1). We have

Ux =



−c1(x1 + x2 + ...+ xn−1)
c1(x1 + x2 + ...+ xn−1) + c2x2

−c2x2 + c3x3
−c3x3 + c4x4

· · ·
−cn−2xn−2 + cn−1xn−1

−cn−1xn−1


(64)

Applying the Ineq. (60) for A1 = c1(x1 + x2 + ...+ xn−1), A2 = c1(x1 + x2 + ...+ xn−1) + c2x2, A3 = −c2x2 + c3x3,
A4 = −c3x3 + c4x4, . . . , An−1 = −cn−2xn−2 + cn−1xn−1, An = −cn−1xn−1 gives

Note that

∥Ux∥2 ≥ ς2(x1 + x2 + ...+ xn−1)
2

n
;

∥Ux∥2 ≥ c21(x1 + x2 + ...+ xn−1)
2 + (c1(x1 + x2 + ...+ xn−1) + c2x2)

2 ≥ c22x
2
2

n
≥ ς2x22

n
;

∥Ux∥2 ≥ c21(x1 + x2 + ...+ xn−1)
2 + (c1(x1 + x2 + ...+ xn−1) + c2x2)

2 + (−c2x2 + c3x3)
2 ≥ ς2x23

n
;

. . .

∥Ux∥2 ≥
ς2x2n−1

n

(65)
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Therefore, we also have

n∥Ux∥2 ≥
ς2((x1 + x2 + ...+ xn−1)

2 + x22 + ...+ x2n−1)

n
≥ ς2x21

n2
(66)

From that, we have that

2n∥Ux∥2 ≥ ς2 x
2
1

n2
+
x22
n

+ · · ·+
x2n−1

n
≥
x21 + ...+ x2n−1

n2
=
ς2

n2
, as ∥x∥ = 1 (67)

That is, ∥Ux∥ ≥ ς2√
2n3

. Therefore, σn−1(U) ≥ ς2√
2n3

.

Therefore, we have that ϑ(M) > ς2√
2n3

.

D.3. Alternative choice of n vertices of E-Core
In this subsection, we provide an alternative choice of vertices rather than that in Proposition 19. Recall that, with the choice
of vertices in Proposition 19, the lower bound for the width of the simplex diminishes when the dimension increases. This
leads to a large dependence of the sample complexity on n. To mitigate this, we investigate other choices of n vertices. To
see this, we first recall the equivalence between E-Core and generalized permutahedra as explained in Subsection D.1.

However, even in the case of a simple permutahedron, if the set of vertices is not carefully chosen, the width of their convex
can be proportionally small w.r.t. n, as demonstrated in the next proposition. In particular, the same choice of vertices as in
19 results in the simplex with diminishing width as follows.

Proposition 21. Consider a permutahedron, fix ω ∈ Sn, consider the matrix W = [ϕω, Iωs1 , Iωs2 , . . . , Iωsn−1 ]. The width
of the simplex that corresponds to M , is upper bounded as follows:

ϑ(M) ≤ 3

n
. (68)

Proof. The coordinate matrix w.r.t. ϕω , that is, coM(M, 1) can be written as follows.

V =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · −1 1
0 0 0 · · · 0 −1


∈ Rn×(n−1) (69)

Therefore, the Gram matrix is

G := V ⊤V =



2 −1 0 0 0 · · · 0 0 0
−1 2 −1 0 0 · · · 0 0 0
0 −1 2 −1 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...
0 0 0 . . . 0 0 −1 2 −1
0 0 0 . . . 0 0 0 −1 2


∈ R(n−1)×(n−1). (70)
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Note that G is a tridiagonal matrix and also Toeplitz matrix, therefore, its minimum eigenvalues has closed form as follows

λn−1(G) = 2 + 2 cos

(
(n− 1)π

n

)
= 2 sin2

( π
2n

)
≤ 5

n2
; (71)

as
∣∣sin ( π2n)∣∣ ≤ π

2n . Therefore, ϑ(M) ≤ σn−1(V ) =
√
λn−1(G) ≤ 3

n .

Proposition 21 highlights the challenge of selecting a set of vertices such that the width does not contract with the increasing
dimension, even in the case of a simple permutahedron. Denote Cn ⊂ Sn as the group of cyclic permutations of length n.
One potential candidate for such a set of vertices is the collection corresponding to cyclic permutations Cn, as described in
the next proposition.

Proposition 22. Consider the matrix W = [Iω]ω∈Cn
. We have that

ϑ(W ) ≥ n

2
. (72)

Proof. The form of matrix W is as follows

W =



1 n n− 1 . . . 2
2 1 n . . . 3
3 2 1 . . . 4
...

...
...

...
...

n− 1 n− 2 n− 3 . . . n− 1
n n− 1 n− 2 . . . 1


. (73)

The coordinate matrix w.r.t. the first column is as follows

V = coM(W, 1) =



n− 1 n− 2 . . . 1
−1 n− 2 . . . 1
−1 −2 . . . 1

...
...

. . .
...

−1 −2 . . . 1
−1 −2 . . . −(n− 1)


. (74)

Let u ∈ Rn−1 be any unit vector, and let z = V u ∈ Rn. We have that

zi − zi+1 = nui. (75)

Let us consider
4 ∥z∥2 = 4z21 + 4z22 + · · ·+ 4z2n

= 2z21 + [(z1 + z2)
2 + (z1 − z2)2] + [(z2 + z3)

2 + (z2 − z3)2]
+ · · ·+ [(zn−1 + zn)

2 + (zn−1 − zn)2] + 2z2n

≥ (z1 − z2)2 + (z2 − z3)2 + · · ·+ (zn−1 − zn)2

= n2(u21 + u22 + · · ·+ u2n−1) = n2.

(76)

Therefore, we have that

σn−1(V ) = min
u:∥u∥=1

√
∥V u∥2

∥u∥2
≥ n

2
. (77)

It is straightforward that if one takes any column ofW as a reference column, the resulting coordinate matrices have identical
singular values. In particular, for any i, j ∈ [n]

coM(W, i) = P · coM(W, j),
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where P is a permutation matrix, thus, their singular values are identical. Therefore, we have that

ϑ(W ) ≥ n

2
.

As a result, the set of vertices corresponding to cyclic permutations is a sensible choice. In case of a generalised permutahe-
dron, let us define

W := [ϕω]ω∈Cn
. (78)

As generalised permutahedra are deformations of the permutahedron, we expect that ϑ(W ) is reasonably large for a broad
class of strictly convex games. In particular, we consider the class of strictly convex games in which the width ϑ(W ) is
lower bounded, as in the following assumption:

Assumption 23. The width of the simplex that corresponds to W in (78) is bounded as follows

ϑ(W ) ≥ nς

cW
, (79)

for some constant cW > 0.

These parameters will eventually play a crucial role in determining the number of samples required using this choice of
n permutation orders. Although proving an exact upper bound for cW in all strictly convex games is challenging, we
conjecture that cW is relatively small in a large subset of the games.

To investigate Assumption 23, we conducted a simulation to compute the constant cW of the minimum singular value
σn−1(M). For each case where n takes values of (10, 50, 100, 150, 200, 300, 500, 1000), the simulation consisted
of 20000 game trials with ς = 0.1/n. As depicted in Figure 1, the values of cW tend to be relatively small and highly
concentrated within the interval (0, 30). This observation suggests that for most cases of strictly convex games, cW remains
reasonably small. Consequently, our algorithm exhibits relatively low sample complexity.

For each case where n takes values of (10, 50, 100, 150, 200, 300, 500, 1000), the simulation consisted of 20000 game
trials with ς = 0.1/n. As depicted in Figure 1, the values of cW tend to be relatively small and highly concentrated within
the interval (0, 30). This observation suggests that for most cases of strictly convex games, cW remains reasonably small.
The results indicate that cW tends to be relatively small with high probability, and does not depend on the value of n.

E. Further Discussions
E.1. Comparison with Pantazis et al. [16]
While the algorithm in [16] is proposed for general cooperative games and conceptually applicable to the class of strictly
convex games, we argue that their algorithm is not statistically and computationally efficient when applied to strictly convex
games, due to the absence of a specific mechanism to leverage the supermodular structure of the expected reward function.
In particular, firstly, we argue that without any modification and with bandit feedback, their algorithm would require a
minimum of Ω(2n) samples. Secondly, although we believe the framework of [16] could be conceptually applied to strict
convex games, significant non-trivial modifications may be necessary to leverage the supermodular structure of the mean
reward function.

Appplying [16] to strictly convex games without any modifications. We first briefly outline their algorithmic framework.
In this paper, the authors assume that each coalition S ⊂ N has access to a number of samples, denoted as tS > 1. For
each coalition S, the empirical mean is denoted as µtS (S), and a confidence set for the given mean reward is constructed,
denoted as,

C(µ(S)) =
{
µ̂(S) ∈ [0, 1] | |µ̂(S)− µtS (S)| ≤ εtS

}
, for some εtS > 0 .

We note that while the algorithm in [16] constructs the confidence set using Wasserstein distance, in the case of distributions
with bounded support, we can simplify it by using the mean reward difference. After constructing the confidence set for the
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Figure 1. cW with n ∈ {10, 50, 100, 150, 200, 300, 500, 1000}, ς = 0.1
n

, and 20000 trials

mean reward of each coalition, the algorithm solves the following robust optimization problem:

min
x∈Rn

∥x∥22

s.t. x(N) = µ(N)

x(S) ≥ sup(C(µ(S)), ∀S ⊂ N.

That is, finding the stable allocation for the worst-case scenario within the confidence sets. It is clear that when directly
applying this framework to the bandit setting, each coalition must be queried at least once, that is tS > 1. This inevitably
leads to a complexity of Ω(2n) samples, regardless of the sampling scheme one employs. In term of computation, with
2n − 2 confidence sets for all coalitions S ⊂ N , tabular representation of the confidence set incurs extreme computational
cost.

Significant modifications required for [16]. As described above, the algorithm in [16] suffers from 2n sample complexity,
and the main reason is because it requires constructing confidence sets for the mean reward for all coalitions S ⊂ N . As
such, if we want to apply their algorithm efficiently to the bandit setting, we need to address this limitation.

To do so, one may need to develop an approach to design a confidence set for a specific class of strictly convex games.
For instance, we can consider the following approach: Given historical data, instead of writing a confidence set for each
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individual coalition, let us define a confidence set for the mean reward function as follows:

C(µ) =
{
µ̂ : 2N → [0, 1] | µ̂ ∈ [C(µ(S))]S⊂N , µ̂ is strictly supermodular

}
; (80)

where the confidence set C(µ(S)) could potentially be [0, 1] for some coalition S, as there is no data available for these
coalitions. Let Core(µ̂) be the core with respect to the reward function µ̂. We propose a generalization of the framework
from the robust optimization problem to adapt to the structure of the game as follows.

min
x∈Rn

∥x∥22

s.t. x(N) = µ(N)

x ∈
⋂

µ̂∈C(µ)

Core(µ̂).

(81)

That is, we find a stable allocation x for every possible supermodular function within the confidence set of the reward
function.

However, implementing and analyzing this approach may pose significant challenges. The first challenge lies in constructing
a tight confidence set [C(µ(S))]S⊂N such that all functions within this collection are strictly supermodular. We are not
aware of a method to explicitly construct [C(µ(S))]S⊂N containing only strictly supermodular functions, and we believe this
set could potentially be very complicated. To illustrate, consider the scenario where we have samples from two coalitions,
{1} and {1, 2}, with the following empirical means:

µ({1}) = 0.11; µ({1, 2}) = 0.1

This situation might occurs when the number of samples is insufficient. In such cases, regardless of the value chosen for
the remaining coalition rewards in the function µ(S), µ(S) is not supermodular (as {1} ⊂ {1, 2}, yet µ(1) > µ(1, 2)).
Consequently, either the confidence set C(µ(1)) or C(µ(1, 2)) does not contain the empirical mean reward, indicating the
highly complicated shape of the confidence set.

The second challenge is that while computing a stable allocation for a given supermodular reward function µ̂ is a straightfor-
ward task, computing a stable allocation for all supermodular reward functions in the confidence set C(µ) in a computationally
efficient way is an open problem, to the best of our knowledge.

The discussion above also highlights the key difference between our work and that of [16]: Instead of explicitly constructing
the confidence set of the expected mean reward function to integrate the supermodular structure for computing a stable
allocation, which might be a sophisticated task, we directly exploit the geometry of the core of strictly convex games.
Specifically, in strictly convex games, each vertex of the core corresponds to a marginal vector with respect to some
permutation orders. Given that one can construct the confidence set of marginal vectors easily, our method is conceptually
and computationally simpler. However, we believe that adopting the more general framework of robust optimization as
presented in [16] is a very interesting, but non-trivial, direction, and we leave it for future work.

23


	Introduction
	Related Work
	Problem Description
	Preliminaries
	Problem Setting

	Common-Points-Picking algorithm
	Main Results
	On the Stopping Condition
	Sample Complexity Analysis

	Conclusion and Future Work
	Proof of Theorem 5
	Common-points-picking algorithm and the stopping condition
	On the Necessary Conditions for the Existence of Common Points
	Extension of Separation Hyperplane Theorem
	Correctness of the Stopping Condition

	On sample complexity of Common-points-picking algorithm
	Convex Games
	E-Core of convex games and Generalised Permutahedra
	Proof of Proposition 19
	Alternative choice of n vertices of E-Core

	Further Discussions
	Comparison with Pantazis et al. Pantazis2023ExpectedCore


