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Abstract

Self-supervised learning has been known for learning good representations from
data without the need for annotated labels. We explore the simple siamese (Sim-
Siam) architecture for representation learning on strong gravitational lens images.
Commonly used image augmentations tend to change lens properties; for example,
zoom-in would affect the Einstein radius. To create image pairs representing the
same underlying lens model, we introduce a lens augmentation method to preserve
lens properties by fixing the lens model while varying the source galaxies. Our re-
search demonstrates this lens augmentation works well with SimSiam for learning
the lens image representation without labels, so we name it LenSiam. We also show
that a pre-trained LenSiam model can benefit downstream tasks. We open-source

our code and datasets at ht tps://github.com/kuanweih/LenSiam

1 Introduction

Strong gravitational lensing is a phenomenon predicted by Einstein’s theory of general relativity, in
which the gravitational field of a massive foreground (e.g., galaxy or galaxy cluster with dark matter)
can bend and distort the path of light from a background source. Observationally the background
source can be seen as multiple images, arcs, or even rings around the foreground lensing object. In
recent years, strong gravitational lensing has emerged as a powerful tool for studying the distribution
of dark matter [1, 2, 3] or the Universe’s expansion rate (e.g., Refs. [4, 5, 6]).

In recent years, machine learning (ML) has shed light on strong lensing science. For example,
Refs. [7] and [8] show that convolutional neural network (CNN) based models could be used to
estimate the values and the corresponding uncertainties of the parameters given the strong lens images.
Refs. [2] and [3] show the possibility of using CNN to tackle dark matter substructures in simulated
strong lensing. Ref. [9] shows that Vision Transformer (ViT) has the advantage for lens parameter
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Figure 1: (a) The LenSiam architecture for this work. We generate positive pairs of lens images
through a lens augmentation approach to learn the representation of lens images. (b) Example of two
different COSMOS source galaxies (top) and their lens images with the identical lens model (bottom).
The bottom images represent a positive lens image pair for our LenSiam models. (¢) Example of
applying the default augmentation to a lens image. The bottom augmented images represent a positive
lens image pair for our baseline SimSiam models.

inference through the attention mechanism. However, most of them are trained on specific simulations
which makes inference on real data across different observations challenging.

On the other hand, self-supervised learning (SSL) has emerged as a promising approach for training
deep neural networks in domains where labeled data is scarce or expensive to obtain [10, 11, 12, 13, 14,
15]. By leveraging the inherent structure and patterns in the data, SSL can learn rich representations
that capture the underlying structure of the data, and transfer well to downstream tasks. In astronomy,
Ref. [16] shows that by learning on galaxy images, SSL could learn that strong lens images are
different from galaxy images. Ref. [17] shows that SSL could be used for anomaly detection for jets
in high-energy collisions. Ref. [18] uses SSL for radio galaxies classification under dataset shift.

For SSL algorithms, the SimSiam architecture [10] has been shown to be effective at learning
meaningful representations of images through self-supervised training without labels. As a variant of
the Siamese networks [19], SimSiam has its unique way of preventing output collapsing: the stop-
gradient operation [1 1], and has the following characteristics amongst Siamese networks. SimSiam
requires only positive image pairs (i.e., pairs of images of the same class or characteristic) during
training compared to most contrastive learning methods [20] such as SImCLR [10] which repulses
negative pairs while attracting positive pairs. We note that BYOL [12] relies only on positive pairs
too but it uses a momentum encoder to prevent collapse. SimSiam does not need clustering [21] to
avoid constant output such as SWAV [13] which incorporates online clustering.

In this paper, we present the LenSiam architecture shown in Figure | (a) for representation learning
on strong gravitational lens image data. LenSiam combines the SimSiam architecture with a novel
lens image augmentation method that is invariant for the lens model (see Section 2 for more details).
We leverage the SimSiam architecture to study strong gravitational lens images as (i) gravitational
lensing systems are rare and labeling lens images is traditionally difficult; (ii) we can circumvent the
potential ambiguity of defining negative pairs for the nature of actual lens image observations; and
(iii) SimSiam is more computationally affordable than contrastive learning methods. In Section 3, we
explore both the lens image representations learned from LenSiam and a baseline SimSiam model that
uses default image augmentation. We finally showcase that LenSiam does improve the performance
of a downstream regression task on an independent lens image dataset.

2 Data and Training

In Section 2.1, we detail the strong lensing simulation for generating the datasets in this work. In
Section 2.2, we describe our augmentation approach for simulated lens images. In Section 2.3, we
provide the general framework to train our LenSiam and baseline SimSiam models.



2.1 Simulation Setup

Simulating strong gravitational lens images requires four major components: the mass distribution
of the lensing galaxy, the source light distribution, the lens light distribution, and the point spread
function (PSF), which convolves images depending on the atmosphere distortion and telescope
structures. We use the LENSTRONOMY package [22, 23] to generate strong lens images with different
combinations of lensing parameters. For the mass distribution, we adapt the commonly used [24, 25]
elliptically symmetric power-law distributions [26] to model the dimensionless surface mass density
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of lens galaxies: k(01,62) = 3777 (\/(w;frw) where 0 is the circularized Einstein radius, ~y
is the negative power law slope of the mass distribution (with v = 2 corresponding to isothermal),
0, and 0, are the mass center coordinates, and ¢ is the minor-to-major axis ratio that is related to
the ellipticities e; and eo. We also include an external shear parameterized by ~; and 5. All these
parameters are randomly drawn from the uniform ranges described in Ref. [27]. The light distribution
of the lens galaxy and source galaxy is described by the elliptical Sérsic profile [28]. To model the
instrumental effects, we convolve our lens images with 23 Hubble Space Telescope (HST) PSFs
generated from Tinytim [29] by Ref. [27] and then add Gaussian white noise on them.

Our simulation uses two kinds of source galaxies. The first are real galaxy images from the COSMOS
23.5 and 25.2 data sets [30] taken from the HST’s COSMOS survey. We select only images with at
least 50 pixels and noise root mean square deviation of less than 5%. The second are core-Sérsic
profiles which is an analytic model for the brightness of elliptical galaxies. We use 75% COSMOS
images and 25% analytic sources. We also add complexity to the sources by including a 10% chance
for a source to be the combination of two different sources to mimic a merger of two galaxies.

Finally, each image has a dimension of 110 x 110 pixels with a resolution of 0.05 arcseconds per
pixel and is normalized to have a maximum brightness of one. The lens light is deviated from the
center-of-the-mass model and ellipticities by a Gaussian distribution with a standard deviation of
2.5% the maximum range.

2.2 Augmentation Methods and Datasets

To train our model with the LenSiam architecture in Figure 1 (a), we generate 100,000 positive pairs
of lens images (200,000 images) with our lensing simulation pipeline and lens augmentation approach.
The commonly used random augmentation methods are problematic here as the lens properties will
be easily changed. For example, enlarging a lens image will directly change the Einstein radius.
Therefore, for each positive image pair, we fix the foreground lens model so that the two images
share the same lensing parameters (0g, e1, 2,01, 62,7, 71, V2), while their background sources, lens
light parameters, noise properties, and PSFs are randomly varied. Figure 1 (b) shows an example
of our positive lens image pair generated by two different source galaxies. This lens augmentation
approach not only facilitates our model to learn a consistent representation of the underlying lens
model but also allows us to take into account the diversity in the galaxy attributes of real data.

To verify the validity of our LenSiam models, we also train baseline SimSiam models by applying
the default image augmentation methods of SimSiam [11] (i.e., a combination of random cropping
and resize, random horizontal flip, random color distortions, and random Gaussian blur) to 100,000
randomly selected lens images. Figure 1 (c) shows that individual lens image is augmented twice to
form the positive image pair for baseline SimSiam models.

2.3 LenSiam and baseline SimSiam

We utilize the LenSiam SSL pipeline shown in Figure 1 (a) and (b) for training on simulated paired
images generated as described in Sections 2.1 and 2.2. Except for the augmentation, the remaining
components of the model are kept consistent with those of the original paper of SimSiam [11].
For both LenSiam and the baseline SimSiam pipelines, we employ the ResNet101 model from the
TORCHVISION library [31] as the backbone encoder.

For training LenSiam and the baseline SimSiam models, the loss for optimization combines sym-
metrized loss setting on representation z and p. The term z is the direct output of the encoder, and p
is the output of the predictor. We pass the lens images (x1, z2) into the Siamese network twice but in
a different order to obtain (21, 22) and (p1, p2). The loss function is £ = %D(pl, z9) + %D(pz, 21),



where D(p,z) = — [ﬁ . ﬁ} defines the negative cosine similarity of (p, z) and ||-||, is the

£o-norm. We adopt the st opgrad operation on z and use SGD as our optimizer for training. The
initial learning rate is set to 0.03 to optimize our training process.
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Figure 2: The UMAPs are color-coded by the Einstein radius 65, the ellipticity e, and the radial
power-law slope ~y from the left to right columns. The top row is the UMAPs for LenSiam while the
bottom row is the UMAPs for the baseline SimSiam.

3 The Learned Lens Image Representations

Here, we investigate the lens image representations learned from our best-trained LenSiam ResNet101
encoder with a loss of —0.92 and our best-trained SimSiam ResNet101 encoder with a loss of —0.94.
We fit the Uniform Manifold Approximation and Projection (UMAP) [32] of each ResNet101 with its
corresponding SSL 100,000 paired lens images. UMAP is a commonly used visualization method to
understand high-dimensional representations by mapping them on the 2-dimensional UMAP space.

Figure 2 shows the UMAPs color-coded by lensing parameters the Einstein radius 0, the ellipticity
e1, and the radial power-law slope ~ for LenSiam (top panel) and the baseline SimSiam (bottom
panel). The nonuniform distributions on the LenSiam UMAPs indicate that its backbone ResNet101
trained by the LenSiam SSL process does learn some key parameters such as 0g, e, and -, even
though it has NEVER seen the true parameters during the entire training process. On the other
side, the ResNetl01 trained by the original SimSiam SSL does not learn them well given their
relatively stochastic distributions on the UMAPs. We note that the UMAPs of the other parameters
€2, 01,02, 71,72 are roughly uniformly distributed for both LenSiam and baseline SimSiam models
and those UMAPs are not shown in Figure 2 simply due to the limited space.

While the lensing parameters have been completely absent during the SSL training process, the
learned representations of LenSiam are still capable of capturing lensing parameters whereas baseline
SimSiam cannot. We believe this result is valuable from several perspectives. One, SSL has the
ability to advance the lensing science by providing useful representation learning. Two, the lens
augmentation with LenSiam is way more powerful compared to the default image augmentation and
can be used for other Siamese Networks not limited to the SimSiam architecture. Finally, the lens
image representations learned from our LenSiam process have the potential to improve downstream
lensing tasks even if the data size is small in reality.

As an exploration, we experiment both our LenSiam and SimSiam learned representations with a
downstream regression task as a proof of concept. We finetune the model to estimate the Einstein
radius with the Lens challenge dataset, which simulated Euclid-like observations for strong lensing
[33]. To simulate the scarcity of real strong lensing data, we select a sub-sample of 1,000 images as
the training set and 1,000 images as the test set. With LenSiam pre-train models, we reach 0.586 in R?
compared with baseline SimSiam models 0.426 and supervised-only models (the ResNet101 models
pre-trained on ImageNet-1k) 0.360 on Einstein radius. We find that the LenSiam pretraining does
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help downstream regression task, hence shedding light on using the pretraining on ML-based strong
lensing parameter estimation [7, 9]. We are planning to study the effectiveness of the pre-trained
model on real lensing data as well as uncertainty estimation in future work.

4 Conclusion

In summary, we introduce LenSiam as a valuable approach to representation learning on lens images.
It leverages lens augmentation for building good representation without any labels provided and
adding to the performance of downstream tasks. This makes LenSiam an appealing choice for
pretraining for ML-based lens image analysis. In future work, we plan to investigate LenSiam with
real data and try different encoders (e.g., ViT). We believe self-supervised learning techniques like
LenSiam will be beneficial for the strong lensing community.
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