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Abstract
Graph embeddings have emerged as a powerful
tool for understanding the structure of graphs. Un-
like classical spectral methods, recent methods
such as DeepWalk, Node2Vec, etc. are based on
solving nonlinear optimization problems on the
graph, using local information obtained by per-
forming random walks. These techniques have
empirically been shown to produce “better” em-
beddings than their classical counterparts. How-
ever, due to their reliance on solving a noncon-
vex optimization problem, obtaining theoretical
guarantees on the properties of the solution has
remained a challenge, even for simple classes of
graphs. In this work, we show convergence prop-
erties for the DeepWalk algorithm on graphs ob-
tained from the Stochastic Block Model (SBM).
Despite being simplistic, the SBM has proved to
be a classic model for analyzing the behavior of
algorithms on large graphs. Our results mirror the
existing ones for spectral embeddings on SBMs,
showing that even in the case of one-dimensional
embeddings, the output of the DeepWalk algo-
rithm provably recovers the cluster structure with
high probability.

1. Introduction
Inspired by the Skip-gram model (Mikolov et al., 2013a;b)
and related word embedding algorithms in the field of nat-
ural language processing, Perozzi et al. (2014), Tang et al.
(2015), and Grover & Leskovec (2016) developed new meth-
ods to embed the nodes of a graph into geometric space.
These methods treat random walks as akin to sentences and
construct analogues to n-grams by sliding a fixed size win-
dow along the random walk. The probability of a node
j appearing in the context of a node i is modeled as a
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function of the nodes’ embeddings. This leads to a vec-
tor representation of each node in d dimensions, which is
then useful in addressing several machine learning prob-
lems as input features to downstream tasks, including node
classification (Hamilton et al., 2017; Perozzi et al., 2014;
Grover & Leskovec, 2016; Tang et al., 2015), link prediction
(Grover & Leskovec, 2016; Tang et al., 2015; Backstrom
& Leskovec, 2011) and community detection (Wang et al.,
2017; Barot et al., 2021; Zhang & Tang, 2021; Davison
et al., 2023).

Predating nonlinear embedding methods, spectral embed-
dings have long been a classic topic in theoretical computer
science and mathematics. Early algorithms for graph clus-
tering and partitioning use the top eigenvectors of a graph’s
Laplacian matrix as node embeddings (Hall, 1970; Alon,
1986; Sinclair & Jerrum, 1989; Linial et al., 1994; McSh-
erry, 2001; Spielman & Teng, 2007; Arora et al., 2009) and
the properties of spectral embeddings have been thoroughly
studied in works such as Belkin & Niyogi (2001), Ng et al.
(2001), Von Luxburg (2007), and Rohe et al. (2011).

Most of the existing theoretical results surrounding embed-
dings produced by DeepWalk (Perozzi et al., 2014) and
node2vec (Grover & Leskovec, 2016) reframe the algorithm
as a matrix factorization problem, then use methods com-
mon in the analysis of spectral embeddings to study their
properties (Barot et al., 2021; Zhang & Tang, 2021; Qiu
et al., 2018). Levy & Goldberg (2014) show that Skip-gram
with negative sampling (SGNS) is implicitly performing
matrix factorization of a shifted point-wise mutual infor-
mation (PMI) matrix when the embedding dimension is at
least as large as the number of nodes in the graph. This
result inspired analyses of the properties of DeepWalk and
node2vec embeddings by showing that they are also per-
forming matrix factorization of a shifted PMI matrix (Qiu
et al., 2018). The works of Zhang & Tang (2021) and Barot
et al. (2021) then show that a spectral decomposition of this
matrix can be used to recover communities in graphs drawn
from stochastic block models.

A major drawback of these prior works is that the matrix
factorization characterization holds only when the embed-
ding dimension is large (> n, the number of nodes in the
graph!), which is not usually the case in practice (Perozzi
et al., 2014). Furthermore, the matrix factorization formu-
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lation of DeepWalk and node2vec is not generally used in
practice, but rather the embeddings are learned through op-
timizing an objective using gradient descent. In this work,
we answer the fundamental question: can the dynamics of
gradient descent be formally analyzed for low-dimensional
embeddings of natural graph classes?

One key challenge in such analyses is the nonlinearity and
nonconvexity of their objectives. When the embedding
dimension is at least as large as the number of nodes in the
graph, it turns out that a locally optimum solution has a
closed form structure, and its properties can be analyzed
(Zhang & Tang, 2021; Barot et al., 2021; Levy & Goldberg,
2014; Qiu et al., 2018).

However, since most applications use only constant-
dimensional embeddings, these results do no apply. Re-
cently, the work by Harker & Bhaskara (2023) analyzes
the objective function for low-dimensional embeddings, and
shows that for graphs drawn from the stochastic block model
(SBM), the DeepWalk objective has a global minimum that
has a well-clustered structure. However, their work is re-
stricted to the case of 2-block SBMs, and more importantly,
does not study the question of whether gradient descent
(or any other heuristic) converges to the optimal solution.
Another recent work of Davison et al. (2023) examines the
asymptotic behavior of node2vec embeddings learned by
minimizing the SGNS objective on graphs obtained fom
SBMs. But once again, they do not answer the algorithmic
question of how to obtain the optimal solution (e.g., via
gradient descent).

In contrast to these works, we analyze the dynamics of the
gradient descent update procedure and show that when the
graph is drawn from a symmetric SBM, the embedding
vectors of nodes within a block are clustered together, while
the vectors corresponding to nodes in different blocks are
farther apart. We perform the analysis for the DeepWalk
procedure, which minimizes a nonconvex objective obtained
by performing random walks.

Our work is inspired by recent works that study the theoreti-
cal properties of the t-SNE algorithm, which shares many of
the same challenges as DeepWalk due to its nonlinear and
nonconvex objective. The works of Linderman & Steiner-
berger (2019), Arora et al. (2018), and Cai & Ma (2022)
examine the dynamical properties of t-SNE’s gradient de-
scent updates and show that similar data points are clustered
together while separating from dissimilar data points.

1.1. Our Results

We consider graphs drawn from a stochastic block model
(SBM). In the simplest setting, we have three parameters,
an integer K ≥ 2 (number of blocks) and probabilities
p, q ∈ (0, 1). The vertices are divided into K parts or

clusters at random, and an edge is placed between two
vertices in the same cluster with probability p, and between
vertices in two different clusters with probability q. We
assume p > q, and that both parameters are > nρ−1 for
some parameter ρ ∈ (0, 1). For details about the SBM and
graph generation, we refer to Section 2.3. Our main result
can be stated as follows.

Theorem 1.1 (Informal). Given a graph G drawn from an
SBM with K blocks and parameters p and q, DeepWalk
embeddings, obtained by initializing a solution in small
enough ball ∥w(0)∥ ≤ ϵ, and training with gradient descent
with learning rate η > 0 small enough, approximately
recovers communities with high probability.

For more formal statements, see theorems 3.8 and 3.10,
which respectively upper bound the spread of embeddings
within clusters and lower bound the separation of embed-
dings across clusters. Theorem 3.11 then gives a bound on
the fraction of each community that can be recovered (thus
formalizing the notion of approximate recovery above). The
main technical challenge in our result is reasoning about the
nonlinear gradient update rule. The idea in our proofs is
to show that if we initialize our solution in a small enough
ball, the gradient update is close enough to a “linearized”
update, which results in a sufficiently good cluster structure
for the overall solution. This is similar in spirit to other re-
cent work that show that small random initializations result
in dynamics that are like spectral updates (see (Stöger &
Soltanolkotabi, 2021; Satpathi & Srikant, 2021) and refer-
ences therein).

We also remark that we prove our main results even for the
case of one-dimensional embeddings. We find this some-
what surprising because typically (e.g., for spectral algo-
rithms), separation results for SBMs with K clusters hold
only when the embedding dimension is ≥ K. We expect
our analysis to extend to the case of higher dimensional
embeddings (as the 1D analysis can be applied to each coor-
dinate).

One weakness of our result is that unlike traditional re-
sults for recovery guarantees for SBM, we do not give a
precise characterization in terms of the difference (p − q)
and recovery accuracy. Instead, our arguments rely on a
closeness assumption between the empirical and expected
co-occurrence matrices, stated as Assumption 3.2. It is an
interesting open direction to study tight recovery guarantees
in terms of p, q,K.

On the experimental side, we validate our results: we show a
clear separation between the embeddings of vertices across
clusters for different choices of the embedding dimension.
We also show that the approximation via linearization po-
tentially holds for a fairly large regime of parameters, even
beyond the ones we use for our theoretical guarantees.
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2. Background
2.1. Basic Notation

We start with common notation that we use throughout the
paper. For a column vector x = (x1, ..., xn) ∈ Rn, we de-
fine the ℓ2 norm as ∥x∥ =

√∑n
i=1 x

2
i and the ℓ∞ norm as

∥x∥∞ = max1≤i≤n |xi|. We denote by diag(x) ∈ Rn×n

the diagonal matrix whose ith diagonal entry is xi. We de-
note the all-ones vector as 1 = (1, ..., 1) ∈ Rn. The all-ones
matrix (of dimensions n×n unless specified otherwise) will
be denoted by J . We denote the dot product between two
vectors x,y ∈ Rn as ⟨x,y⟩.

For a matrix A ∈ Rn×n we define the spectral norm
as ∥A∥ = max∥x∥=1∥Ax∥, its ℓ∞ norm as ∥A∥∞ =
max1≤i≤n

∑n
j=1 |Aij |, its max norm as ∥A∥max =

max1≤i,j≤n |Aij |, and its Frobenius norm as ∥A∥F =√∑n
i=1

∑n
j=1 A

2
ij . We define the degree operator D :

Rn×n → Rn×n as D(A) = diag(A1). At times we use
DA in place of D(A) when it is more convenient.

For a graph G = (V,E) with n nodes and |E| edges, we
denote the adjacency matrix of the graph as A. For a node
i, its degree is di =

∑
j=1 Aij . We let P = D−1

A A denote
the transition matrix of the graph.

2.2. The DeepWalk Algorithm

Let G = (V,E) be a graph with n nodes. The DeepWalk
algorithm consists of two main parts (Perozzi et al., 2014).
First, a co-occurrence matrix is constructed using random
walks on the graph. Second, two embedding vectors are
learned for every vertex in the graph. These are referred to
as the node and context embeddings; they are learned by
minimizing a nonconvex objective function.1

Constructing the Co-occurrence Matrix. Given a graph
G = (V,E), the algorithm first performs r random walks
of length L. For each random walk, a window of size T
slides along the generated path. Let w(m) denote the path of
L nodes generated by the mth random walk, and let w(m)

k

denote the kth step of the mth random walk. Furthermore,
we assume that the starting node of each walk is sampled
from the stationary distribution Pr[w

(m)
1 = i] = di

2|E| over
the graph G.

As the window of size T is slid along the path, the entries
of a matrix C are updated. The entries Cij of this matrix
contain the number of times that a node j appears in the
context window of node i. Formally,

1While having separate word and context embeddings have
intuitive meaning in the language context, the difference is not so
clear for graphs. In some implementations of DeepWalk, the same
embedding is used. We use separate embeddings to remain faithful
to the original formulation.

Cij =

T∑
t=1

r∑
m=1

L−t∑
k=1

1{w(m)
k = i, w

(m)
k+t = j}

+

T∑
t=1

r∑
m=1

L−t∑
k=1

1{w(m)
k = j, w

(m)
k+t = i}.

Limiting forms of the co-occurrence matrix are explored in
many prior works. Different variations of the limiting form
exist depending on whether the length of the walk L goes to
∞ (Qiu et al., 2018), whether the number of walks r goes
to∞ (Zhang & Tang, 2021; Barot et al., 2021) or whether
the window size goes to∞ (Chanpuriya & Musco, 2020).
Obtaining more quantitative concentration bounds on this
matrix have also been studied (Qiu et al., 2020; Kloepfer
et al., 2021). Proofs of the following lemma can be found
in Zhang & Tang (2021), Barot et al. (2021), and Harker &
Bhaskara (2023).
Lemma 2.1. Let A be an adjacency matrix of a fixed graph
G and let w(m)

k denote the kth step of the mth random walk
generated by the DeepWalk algorithm. Let πi =

di

2|E| and
let (P t)ij = Pr[wt+1 = j|w1 = i]. Then as r →∞,

Cij

r

a.s−−→ 2

T∑
t=1

(L− t) · πi(P
t)ij . (1)

Computing Embeddings Given a co-occurrence matrix
C, we compute d-dimensional node embeddings X,Y ∈
Rn×d, where each row xi,yi are the node and context repre-
sentations of vertex i, by minimizing the following objective
function:

L(C;X,Y ) = −
n∑

i=1

n∑
j=1

Cij log

(
exp ⟨xi,yj⟩∑n
k=1 exp ⟨xiyk⟩

)
.

(2)

This is typically done using gradient descent. At any given
iteration t of gradient descent, let Q(t) be the matrix defined
by

Q
(t)
ij =

exp ⟨x(t)
i ,y

(t)
j ⟩∑n

k=1 exp ⟨x
(t)
i ,y

(t)
k ⟩

. (3)

For a co-occurrence matrix C and a learning rate η > 0, the
update equations in matrix form are

X(t+1) = X(t) − η
(
DCQ(t) −C

)
Y , (4)

Y (t+1) = Y (t) − η
(
DCQ(t) −C

)⊤
X. (5)

If we let W (t) =

[
X(t)

Y (t)

]
and G(t) = DCQ(t) −C. Then

we can write the updates jointly as

W (t+1) =

[
I −ηG(t)

−ηG(t)⊤ I

]
W (t). (6)
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The main challenge in the analysis is working with the
matrices Q(t), whose entries change as we update the em-
beddings. To keep the analysis clean, we will work with
the case d = 1, as discussed earlier. Here, the embeddings
are defined simply by vectors x and y, but the essential
difficulty (of dealing with Q) remains.

2.3. Stochastic Block Models

The stochastic block model (SBM) (Holland et al., 1983)
is a generalization of Erdős-Renyi random graphs. This
model naturally generates graphs containing communities;
therefore, it has been a popular choice of generative model
studied in the theoretical analysis of community recovery
algorithms (see, e.g. Abbe (2017) and references therein).

A K block stochastic block model (SBM) generates a ran-
dom graph G = (V,E) through a simple procedure. First,
each node is first assigned to one of K blocks. We refer to
Vk as the set of vertices that belong to community k. We
define a community membership matrix Θ ∈ {0, 1}n×K

where its entries Θik = 1 if node i belongs to community
k and is 0 otherwise. Next, edges are assigned to each pair
of nodes. We define a symmetric matrix B ∈ [0, 1]K×K

whose entries Bij denote the probability of a node in cluster
i being connected to a node in cluster j. Then the matrix
B̃ = ΘBΘ⊤ is a block matrix of probabilities defined by
the community membership matrix Θ. In the remainder of
the paper, we assume that the vertex indices are permuted
such that the first n/K correspond to the first cluster, the
next n/K to the second cluster, and so on. In this case,
we can also write B̃ = B ⊗ J n

K × n
K

, where ⊗ denotes the
Kronecker product. Given a probability matrix B̃, edges of
the graph G(V,E) are then independent Bernoulli random
variables with Aij ∼ Bern(B̃ij), and Aij = Aji for all
i < j. Therefore, the probability of node i and node j being
connected depends only on the communities to which i and
j belong. To be consistent with later notation, we also de-
fine the expected adjacency matrix A as the matrix whose
entries are the expected values of the corresponding entries
in the adjacency matrix A; by definition, A = B̃.

In our analysis, we assume that the number of communities
K is fixed and the communities are of equal size: |Vk| = n

K .
We also assume that the matrix B has diagonal entries equal
to p and off-diagonal entries equal to q. This makes the
probability matrix B̃ a block matrix with K equally sized
blocks. It has blocks of p along the diagonal and blocks of
q off the diagonal.

3. Analysis
We break up the analysis into three main parts. First, we
will show properties of the co-occurrence matrix that will
be important for the analysis, describe the algorithm, and

set up the main notation for the analysis. Second, we show
the main step of “linear approximation”, where we argue
that the gradient descent update can be expressed as a linear
update plus an error term that is controlled by the length of
the embedding solution. Finally, we analyze the gradient
descent dynamics, and show the desired properties of the
final solution.

For simplicity, we assume that n is large, and K is a constant.
We also assume (for the analysis) that when writing down
the co-occurrence matrix C, the vertices are permuted so
that the blocks V1,V2, . . . ,VK appear together (thus leading
to the form of C below).

3.1. Co-occurrence Structure and Algorithm

Assume that we have a graph drawn from the symmetric
SBM with K blocks and parameters p and q, and let C be
the symmetric co-occurrence matrix obtained using random
walks as described in Section 2.2. Our first step will be to
prove that C is spectrally close to the matrix C defined as

C = 2

T∑
t=1

(L− t)

nd
DAP

t
, (7)

where P = D−1

A
A and d = n

K p+ n(K−1)
K q is the expected

degree of the graph. Since the expected adjacency matrix
A has a block structure (as described in Section 2.3), the
matrix C also has a block structure. In other words, for
some parameters a, b,

C =


a b ... b
b a ... b
...

...
. . .

...
b b ... a


︸ ︷︷ ︸

K×K

⊗ J n
K × n

K
. (8)

As before, ⊗ denotes the Kronecker product, making C a
block matrix with K ×K blocks, each of size n

K ×
n
K , with

a in the diagonal blocks and b in the off-diagonal blocks.
In the case of symmetric SBMs, we can express a and b
explicitly in terms of the SBM parameters p and q (see
Appendix A.1).

The following lemma shows that C is spectrally close to the
matrix C. The proof can be found in Appendix A.2.
Lemma 3.1. Suppose C is an n× n co-occurrence matrix
constructed as in Lemma 2.1 from a graph G drawn from
an SBM with K blocks and parameters p > q ≥ nρ−1, for
some parameter ρ ∈ (0, 1), and that the matrix C is defined
as in Equation (7). Then for appropriate parameters a, b

(defined in terms of p, q), we have ∥C−C∥ ≤ c∥C∥
√

logn
nρ

for some absolute constant c.

This lemma allows us to reason about the eigenvalues of
C using those of C, via Weyl’s Theorem and other matrix
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perturbation bounds. Suppose λ1 ≥ λ2 ≥ · · · ≥ λn are the
eigenvalues of C. Then,

λi =


n
K (a+ (K − 1)b) if i = 1,
n
K (a− b) if i = 2, ...,K,

0 if i = K + 1, ..., n.

The assumption that p > q ≥ nρ−1 made in Lemma 3.1 will
ensure that the nonzero eigenvalues λ1, ..., λK are all Θ( 1n ),
assuming that the length of the random walk L and number
of communities K are constant (see Appendix A.1). As a
result, the spectral norm ∥C∥ = O

(
1
n

)
, which implies that

∥C−C∥ = Õ
(

1√
nρ+2

)
. Therefore, in order to simplify our

calculations, we make the following assumption throughout
the remainder of the paper:

Assumption 3.2. Suppose C is the n × n symmetric co-
occurrence matrix obtained via random walks of length
L = O(1) as in Lemma 2.1, and C is defined as in Equation
(7). Then we assume that C = C +R for an error matrix
R that is symmetric and satisfies ∥R∥ < c√

nρ+2
for some

absolute constant c.

The corresponding eigenvectors are also easy to characterize:
the top eigenvector is the all-ones vector, which we write
as 1√

n
. The next (K − 1) eigenvalues are all equal, so the

corresponding eigenvectors are not unique. One (nonorthog-
onal) basis for their span is {eVi

− eV1
}Ki=2, where eS is a

shorthand for 1S (the vector that is 1 in the jth position if
j ∈ S and 0 otherwise).

Next, the following matrix M and the corresponding M
play a key role in our analysis:

M := DC
J

n
−C, M := DC

J

n
−C,

where D denotes the degree operator (see Section 2.1).
Since C − C = R and the degree operator is linear, we
have

M −M = DR
J

n
−R = −

(
I − J

n

)
R.

This implies that ∥M −M∥ ≤ ∥R∥ < c√
nρ+2

. Now the

eigenvalues of M are easy to see: along the all-ones vector,
the eigenvalue becomes 0, and all the other eigenvalues
stay the same. Thus, M has exactly (K − 1) nonzero
eigenvalues, all equal to n

K (b− a).

For concreteness, we provide the gradient descent procedure
that we analyze in Algorithm 1. We initialize the embed-
dings randomly and normalize them so that their norm is
small. Then we run gradient descent until the norm of the
embeddings reaches a predefined size.

Algorithm 1 DeepWalk Gradient Descent
Input: Co-occurrence matrix C ∈ Rn×n; learning rate
η > 0; parameters ϵ = 1

n2/3 and ∆ = n1/6

Initialize: t = 0; x(0),y(0) ∈ Rn with xi, yi ∼ N (0, 1)

for all i ∈ [n]; w(0) =

[
x(0)

y(0)

]
Normalize w(0): w(0) ← w(0)

∥w(0)∥ϵ
repeat

t← t+ 1;

Compute Q(t) where Q(t)
ij =

exp ⟨x(t)
i ,y

(t)
j ⟩∑n

k=1 exp ⟨x(t)
i ,y

(t)
k ⟩

for all

i, j ∈ [n];
G(t) = DCQ(t) −C;

w(t) ←
[

I −ηG(t)

−ηG(t)⊤ I

]
w(t)

until ∥w(t)∥ ≥ ϵ∆
tf = t;
Return: w(tf ); tf

3.2. Linear Approximation of Gradient Update

Next, we show that the matrix Q(t) in Equation (6) (gradient
descent step) can be approximated simply by the all-ones
matrix (suitably scaled). This allows us to obtain a linear
approximation to the w update.

Proposition 3.3. Let x,y ∈ Rn and w =

[
x
y

]
, and sup-

pose that ∥w∥ < ϵ for some ϵ ∈ (0, 1/2). Let Q be the
matrix defined by Qij =

exp ⟨xi,yj⟩∑n
k=1 exp ⟨xi,yk⟩ . Then∥∥∥∥Q− 1

n
J

∥∥∥∥
F

≤ ϵ2.

The proof is deferred to section B.1. It is important to note
that ϵ2 is a bound on the Frobenius norm (not the square
of the Frobenius norm). This implies that if the node and
context embeddings exist in a small enough ball, then the
softmax matrix Q(t) behaves like the fixed matrix 1

nJ .

Utilizing this observation, we can rewrite the update Equa-
tion (6) in terms of a linear term and an “error” term. Recall
that M = DC

J
n −C. Thus we can write (6) as

w(t+1) =

[
I −ηM
−ηM I

]
w(t) − ηE(t)w(t), (9)

where

E(t) =

[
0 DC(Q(t) − 1

nJ)
DC(Q(t) − 1

nJ)
⊤ 0

]
.

The following is a consequence of Proposition 3.3 and the
choice of a and b (see Appendix B.2).
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Lemma 3.4. Suppose the iterate w(t) satisfies ∥w(t)∥ ≤ ϵ
for some ϵ ∈ (0, 1/2). Then ∥E(t)∥F ≤ 4ϵ2.

Next, let denote the “linear portion” of the update by L. In
other words, we define

L :=

[
I −ηM
−ηM I

]
. (10)

We have the following observations about the spectrum of
L. The proof is deferred to Appendix B.3.
Lemma 3.5. Suppose L is defined as in (10). Then L has
precisely (K − 1) eigenvalues that are > (1 + ηγ), where
γ = n(a−b)

2K . All the other eigenvalues are < (1 + η c√
nρ+2

).
Finally, all the eigenvalues are in the interval (1− 4ηγ, 1 +
4ηγ), for γ as above.

In what follows, let Π be the projector onto the span of the
eigenvectors corresponding to the top (K − 1) eigenvalues
of L.

We begin by obtaining bounds on the number of iterations
performed by the algorithm.
Lemma 3.6. Let tf be the number of iterations performed
by Algorithm 1. With probability at least 0.9 over the choice
of the initialization, we have

1

η
< tf <

4 log(n/∆)

η
.

Proof. Using Lemma 3.5 along with the fact that 4γ ≤ 1,
we have

∥L∥ ≤ 1 + η.

Now, as long as ∥w(t)∥ ≤ ϵ∆, we have ∥E(t)∥ ≤ 4(ϵ∆)2

using Lemma 3.4. By the choice of parameters ϵ,∆, we
will ensure that 4(ϵ∆)2 < 1. Thus, we obtain that

∥w(t+1)∥ < (1 + 2η)∥w(t)∥.

Now, since ∥w(0)∥ = ϵ, ∥w(tf )∥ ≥ ϵ∆, and ∆ > 2, the
number of iterations tf > 2

log(1+2η) >
1
η .

To see the upper bound, we use more properties of L from
Lemma 3.5. Specifically, suppose we define z(t) = Πw(t)

where Π is the projector onto the span of the eigenvectors
corresponding to the top (K − 1) eigenvalues of L. We
argue that this component of w(t) itself grows sufficiently.
First, we note that because of the randomness in the initial-
ization, we have that ∥z(0)∥ ≥ 1

10
√
n
∥w(0)∥ = ϵ

10
√
n

, with
probability ≥ 0.9.

Then, by multiplying the update Equation (9) by Π, we get

∥z(t+1)∥ ≥ (1 + ηγ)∥Πw(t)∥ − ∥ΠE(t)w(t)∥
≥ (1 + ηγ)∥z(t)∥ − 4η(ϵ∆)3

≥ (1 +
ηγ

2
)∥z(t)∥.

For the last inequality, we used the fact that (ϵ∆)3 < γϵ
20

√
n

,
which follows from our assumptions on the parameters. We
are also using the fact that z(t) always has norm > ϵ

10
√
n

which follows inductively from the above.

This establishes that ∥z(t)∥ ≥ (1 + ηγ
2 )tf ∥z(0)∥. Since

∥z(t)∥ ≤ ∥w(t)∥ ≤ 2ϵ∆, the desired upper bound on tf
follows.

As the final result in this part of the proof, we argue that
most of the mass of w(tf ) at the end of the algorithm is on
the top (K − 1) eigenspace of L. This is precisely what we
would expect if the entire update was linear, i.e., if w(tf )

where equal to Ltfw(0). It seems natural to try showing
that the w(t) stays close to the linearized update, Ltw(0).
However, the error in this step turns out to be difficult to
control unless we choose the parameter ϵ to be really small
(e.g., 1

n2 ). In our analysis, we take a different route that lets
us analyze a wider parameter range.

The key will be to look at the difference between w(t) and
its projection to the top-(K − 1) eigenspace of the matrix
L. Recall that Π is the projection matrix onto this space. As
above, define

z(t) := Πw(t) for all t. (11)

Lemma 3.7. At every iteration t of Algorithm 1, we have:

∥w(t+1)−z(t+1)∥ ≤ (1+η
c√
nρ+2

)∥w(t)−z(t)∥+η(ϵ∆)3.

Consequently, when the algorithm terminates, we have

∥w(tf ) − z(tf )∥ ≤ 4∥w(tf )∥
∆

.

Proof. We start with the update, Equation (9), and left-
multiply both sides with (I −Π). Thus, we get

w(t+1) − z(t+1) = (I −Π)w(t+1)

= (I −Π)Lw(t) + η(I −Π)E(t)w(t).

The second term on the RHS can be bounded using

∥(I −Π)E(t)w(t)∥ ≤ ∥E(t)w(t)∥.

Then, using Lemma 3.4 and the fact that ∥w(t)∥ ≤ ϵ∆, we
can bound this term by η(ϵ∆)3. For the first term, since L
commutes with (I −Π), we have

∥L(I −Π)w(t)∥ ≤ (1 + η
c√
nρ+2

)∥w(t) − z(t)∥.

This follows from the property of L from Lemma 3.5, that
in the space orthogonal to the top (K − 1) eigenvectors, the
spectral norm of L is (1 + η c√

nρ+2
). Combining the two

observations, the desired inequality follows.
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To see the second part of the lemma, let us introduce some
notation: write ξt = ∥w(t) − z(t)∥, θ = η c√

nρ+2
, and

δ = η(ϵ∆)3. So the bound above can be written as

ξt+1 ≤ (1 + θ)ξt + δ.

Expanding, we have

ξtf ≤ (1 + θ)tf ξ0 + δ
[
1 + (1 + θ) + · · ·+ (1 + θ)tf−1

]
≤ (1 + θ)tf (ξ0 + δtf ) .

From the bound on tf from Lemma 3.6 and since n is large
(so
√
n ≫ log n), we have that (1 + θ)tf ≤ 2, and from

our setting of parameters ϵ,∆, we have δtf < ϵ and ξ0 ≤ ϵ.
This implies that ξtf ≤ 4ϵ.

Since ∥w(tf )∥ ≥ ϵ∆ at the end of the algorithm, the desired
bound follows.

3.3. Convergence Analysis

As the final step, we show that the solution obtained at the
end of the algorithm satisfies the desired cluster structure.
We use Lemma 3.7 to primarily argue about the vector z(tf ).

The first result says that the obtained x-embedding is well
clustered.

Theorem 3.8 (Clustering property). Suppose G is drawn
from a symmetric SBM with K communities and suppose
the co-occurrence matrix C used for constructing the em-
beddings satisfies Assumption 3.2. Suppose x is the x-
embedding obtained by Algorithm 1 (i.e., the first n coordi-
nates of w(t)). Let µµµ be the “vector of means”, i.e., for any
index j in (ground truth) cluster Vi, the entry µj is equal to

µVi
:=

∑
r∈Vi

xr

|Vi| . Then we have:

∥x−µµµ∥ ≤ 5∥x∥
∆

.

Remark. Since ∆ is large (grows as n1/6), this implies
that the variation in the embedding values within clusters is
small. Quantitatively, we expect all the entries of x to be
around ∥x∥√

n
in magnitude. Suppose they are in the interval

[−2∥x∥√
n
, 2∥x∥√

n
]. The theorem says that the distance of a

typical x to the cluster center is only about ∥x∥
∆
√
n

. The catch
with this theorem, however, is that it does not imply that
there is a separation between the embedding values across
clusters. This will be the subject of Theorem 3.10. But first,
we prove Theorem 3.8

Proof. The outline of the proof is as follows: first we argue
that x − µµµ is, in fact, precisely the projection of x to the
space orthogonal to the span of the top K eigenvectors of the

matrix C (the “ideal” co-occurrence matrix). This implies
that

∥x−µµµ∥2 ≤ ∥(I −Π)w(tf )∥2,
where Π is a projection onto the top (K − 1) subspace of
L. Noting that the difference between Π and Π is small
(by eigenspace perturbation theorems), we can then apply
Lemma 3.7 to conclude the argument. The details of the
proof are deferred to Appendix C.1

Next, we wish to prove a cluster “gap” property: in other
words, for the obtained embedding x, |µVi − µVj | is large
enough. To show this, we proceed by observing that during
our iterations, the projection z(t) = Πw(t) gets updated in
a very simple manner. This property is only true in the case
of the symmetric SBM.

Lemma 3.9. Let z(t) be defined as in (11), and suppose
we start with ∥z(0)∥ ≥ ϵ

10
√
n

. Then for all t ≤ tf =

O
(

log(n/∆)
η

)
, we have

z(t) = (1 + ηθ)tz(0) + err(t),

where θ = n(a−b)
K and ∥err(t)∥ ≤ O(log n

∆ ) c√
nρ+2
∥z(t)∥.

The lemma is a strong structural statement, saying that z
essentially only gets scaled in each iteration!

Proof. By multiplying the update, Equation (9), by Π, we
see that

z(t+1) = Lz(t) − ηΠE(t)w(t).

As we have done in the proof of Lemma 3.6, the norm of the
second term can be bounded by 4η(ϵ∆)3 < ∥z(t)∥√

n
. Now for

the first term, observe that the top (K − 1) eigenvalues of Π
are all in the range (1 + ηθ − η c√

nρ+2
, 1 + ηθ + η c√

nρ+2
).

Thus L acts as a scaling of the identity (within the space
of the top (K − 1) eigenvectors), up to an additive error
η c√

nρ+2
. This implies that

z(t+1) = (1 + ηθ)z(t) + η
2c√
nρ+2

ξ(t),

for some error vector ξ(t) with ∥ξ(t)∥ ≤ ∥z(t)∥. Once we
have this for all t, we can sum up to obtain

z(t) = (1 + ηθ)tz(0) +
2cη√
nρ+2

· err, (12)

where

err =
[
(1 + ηθ)t−1ξ(0) + (1 + ηθ)t−2ξ(1) + . . .

]
.

Now we can inductively maintain the property that ∥z(j)∥ ≤
2(1 + ηθ)j∥z(0)∥, to conclude that

∥err∥ ≤ t · (1 + ηθ)t∥z(0)∥.

7
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Figure 1. For a random graph drawn from a stochastic block model with K = 3 blocks and n = 600, we show the calculated (left)
1-dimensional (middle) 2-dimensional and (right) 3-dimensional embeddings.

Noting that t ≤ log(n/∆)
η , we can plug this into Equation

(12) to complete the proof of the lemma.

This structural theorem is very powerful. To see it, suppose
u is any vector in R2n, and suppose we originally had

|⟨u, z(0)⟩| ≥ β∥z(0)∥.

Then, we can use Lemma 3.9 to conclude that

|⟨u, z(tf )⟩| ≥ β∥z(tf )∥ − c log(n/∆)√
nρ+2

∥z(tf )∥.

Thus, if β >
4c log n

∆√
nρ+2

, we can conclude that

|⟨u, z(tf )⟩| ≥ β

2
∥z(tf )∥.

This leads us to the following result.

Theorem 3.10. Suppose G is drawn from a symmetric SBM
with K communities and suppose the co-occurrence matrix
C used for constructing the embeddings satisfies Assump-
tion 3.2. Let x be the (x component of the) embedding
obtained by Algorithm 1. Then with probability ≥ 0.9 over
the initialization, the embedding satisfies:

∀ clusters i ̸= j, |µVi − µVj | ≥
ϵ∆

20K2
√
n
.

(As before, µVi :=
∑

r∈Vi
xr

|Vi| ).

Remark. It is natural to ask if this separation is sufficient.
For this, we do the following heuristic calculation. In the
end, we have ∥x∥ = ϵ∆. This means all the coordinates
are roughly of magnitude ϵ∆√

n
(say they are in the range

[−2 ϵ∆√
n
, 2 ϵ∆√

n
]. The theorem says that the typical gap be-

tween the cluster centers is a constant factor of this interval
length (assuming K is a constant), with high probability.

The main idea of the proof is to show that a sufficient amount
of “initial separation” between cluster means must exist be-
cause the initialization is random. Then, the discussion pre-
ceding the theorem can be used to show that this separation
must persist as we update. The key point is that as a fraction
of the length z(0), the initial separation is significant. The
proof details are deferred to Appendix C.2.

Theorems 3.8 and 3.10 lead to the following weak recovery
result.

Theorem 3.11. Suppose G is drawn from a symmetric SBM
with K communities and suppose the co-occurrence matrix
C used for constructing the embeddings satisfies Assump-
tion 3.2. Suppose we run Algorithm 1 for tf < 4 log (n/∆)

η

iterations. Then with high probability, we recover 1− o(1)
fraction of each community.

Proof. From Theorem 3.8, after tf iterations, we have

∥x− µ∥2 =
∑
i∈[K]

∑
j∈Vi

|xj − µi|2 ≤
c1 ∥x∥2

∆2
.

for a positive constant c1. Furthermore, from Theorem 3.10
we have for all pairs of clusters i ̸= j,

|µi − µj |2 ≥
(ϵ∆)

2

c2K4n

for a positive constant c2.

The result follows from a simple application of Markov’s
inequality:

Pr

(
|xj − µi|2 ≥

(ϵ∆)2

4c2K4n

)
≤ 4c2K

4nE[|xj − µi|2]
(ϵ∆)2

.

(13)

Each cluster has size n/K. This, along with Theorem 3.8,
implies that within a cluster Vi we have E[|xj − µi|2] ≤
K
n

2c1(ϵ∆)2

n1/3 . (Recall that the algorithm terminates after tf

8
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Figure 2. For random graphs drawn from a stochastic block model
with K = 2 blocks and n = 200, 500, 1000 nodes, we track the
distance between the original nonlinear gradient descent update
for deepwalk and its linear approximation.

iterations when ϵ∆ ≤ ∥wtf ∥ ≤ 2ϵ∆.) Plugging this into
Equation (13) we have

Pr

(
|xj − µi|2 ≥

(ϵ∆)2

4c2K4n

)
≤ 8c1c2K

5

n1/3
. (14)

This implies that the number of vertices in a cluster Vi that
are not within a distance of 1

2 ·
ϵ∆

(c2K4n)1/2
of their cluster

mean (or half the distance between cluster means) is no
greater than 8c1c2K

5

n1/3 . (We’re also assuming that the number
of clusters K is constant.) This concludes the proof.

4. Experiments
This section presents experimental results that support our
theoretical analysis. Section 4.1 shows that DeepWalk em-
beddings can completely recover the community structure
in a graph even when the embedding dimension is lower
than the number of communities. Section 4.2 shows that
embeddings trained using a linear approximation to the up-
date equation remains close to embeddings trained using the
nonlinear update.

4.1. Calculated Embeddings

This section presents 1-dimensional, 2-dimensional, and
3-dimensional embeddings produced by training the deep-
walk algorithm. A graph was drawn from a stochastic
block model with K = 3 communities, n = 600 nodes
and parameters q = 0.1 and p = 4q. We run the algo-
rithm for T = 100 iterations and used a learning rate of
η = 0.01. The embeddings are initialized randomly so that
∥x(t)∥∞ ≤ 0.01 and ∥y(t)∥∞ ≤ 0.01.

All three sets of embeddings completely recover the com-
munity structure in the graph (see Figure 1). As our analysis
shows, even 1-dimensional embeddings show a clear sepa-
ration between the clusters.

4.2. Linear Approximation to the Update

We note in our analysis that the linear part of the update
dominates the convergence behavior, suggesting that the
update equations can be approximated by a linear function.
This section provides experimental results that supports this
observation even for reasonably large graphs.

Three random graphs are drawn from a stochastic block
model with K = 2 clusters with n = 200, 500, 1000
nodes and parameters q = 0.1 and p = 4q. On each
graph, embeddings are calculated using both the original
nonlinear gradient descent update equations and the lin-
ear approximation to the update equation. The distance
d(x(t), ℓ(t)) = ∥x(t)− ℓ(t)∥ between an embedding trained
with a nonlinear update x(t) and an embedding trained with
a linear update ℓ(t) is tracked throughout the training proce-
dure (see Figure 2). The embeddings were initialized ran-
domly so that ∥x(0)∥∞ = ∥ℓ(0)∥∞ ≤ 1√

n
and w(0) = ℓ(0).

The learning rate was set for η = 1
n and training was rate

for T = 75 iterations.

The distance d(x(t),w(t)) remains nearly zero for the first
several iterations, allowing ample time for the clusters to
separate, despite the graphs being a reasonable size. The
results also suggests that the linear approximation may hold
for a larger parameter regime than the ones we use in our
analysis. Determining the right trade-offs between the ra-
dius of initialization ϵ, the learning rate η, and the SBM
parameters K, p, q, is an interesting open question.

5. Conclusion
We give the first provable convergence guarantees, that we
are aware of, for the DeepWalk algorithm and obtaining
low-dimensional embeddings of vertices of a graph. We
show that for a graph drawn from a stochastic block model
(SBM), the DeepWalk embeddings obtained by a random
initialization in a small enough ball and trained with gra-
dient descent, recovers the community structure with high
probability. Unlike previous works, we analyze the gradi-
ent descent dynamics directly; the key technical tool is to
show that when embeddings are of small enough length, the
gradient descent update can be approximated by a linear up-
date up to a small error. Our approximation technique may
be applicable to other related graph embedding problems,
which gives an interesting avenue for future work.
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A. Proofs From Section 3.1
A.1. Properties of Co-occurrence Matrix

Lemma A.1. Suppose A is the expected adjacency matrix of a graph G drawn from an SBM with K communities and
parameters p, q as described in Section 2.3. Also, suppose that C is the co-occurrence matrix constructed as in Lemma 2.1
from the expected adjacency matrix A with random walks of length L and a window size of T such that L > T . Let
α1 ≥ α2 ≥ ... ≥ αn be the eigenvalues of A and λ1 ≥ λ2 ≥ ... ≥ λn be the eigenvalues of C. Then the matrix C has the
following properties:

1. C has a block structure. In other words, it has the form

C =


a b ... b
b a ... b
...

...
. . .

...
b b ... a


︸ ︷︷ ︸

K×K

⊗ J n
K × n

K

for some parameters a, b.

2. The eigenvalues of C are

λi =


2
n

(
TL− T (T+1)

2

)
if i = 1,

2
n

∑T
t=1(L− t)

(
αi

α1

)t
if i = 2, . . . ,K,

0 if i = K + 1, . . . , n,

where α1 = n
K p+ n(K−1)

K q and αi =
n
K (p− q) for i = 2, . . . ,K.

3. The difference a− b between the on-diagonal block and off-diagonal block entries a and b of C is

a− b =
2K

n2

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q

)t

.

4. The on-diagonal block entries a and off-diagonal block entries b of C are:

a =
2

n2

((
TL− T (T + 1)

2

)
+ (K − 1)

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q)

)t
)
,

b =
2

n2

((
TL− T (T + 1)

2

)
−

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q

)t
)
.

Proof. (Proof of 1.) Straightforward from the block structure of A.

(Proof of 2.) From Lemma 2.1, we can write C as

C = 2

T∑
t=1

(L− t)

nd
DA

(
P

t
)

(15)

where d = n
K p+ n(K−1)

K q and P = D−1

A
A. Since D−1

A
is a diagonal matrix with diagonal entries 1

d
, the matrix P is a

real-symmetric matrix and we can write it as
P = V ΣV ⊤,

12
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where the columns of V are the eigenvectors of P and Σ = diag(σ1, σ2, ..., σn) with σ1 ≥ σ2 ≥ ... ≥ σn are the
eigenvalues of P .

Recall that the eigenvalues of A are

αi =


n
K p+ n(K−1)

K q if i = 1,
n(p−q)

K if i = 2, . . . ,K,

0 if i = K + 1, . . . , n.

Therefore, since d = α1, the eigenvalues of P are:

σi =


1 if i = 1,
αi

α1
if i = 2, . . . ,K

0 if i = K + 1, . . . , n.

(16)

We can now write C as

C =
2

n

T∑
t=1

(L− t)
(
V ΣtV ⊤)

= V

(
2

n

T∑
t=1

(L− t) ·Σt

)
V ⊤

= V ΛV ⊤

where Λ = diag(λ1, λ2, ..., λn) with λi =
2
n

∑T
t=1(L− t)σt

i for all i = 1, ..., n. Therefore, the eigenvalues of C are

λi =


2
n

(
TL− T (T+1)

2

)
if i = 1,

2
n

∑T
t=1(L− t)

(
αi

α1

)t
if i = 2, . . . ,K,

0 if i = K + 1, . . . , n,

(17)

where we used
∑T

t=1(L− t) = TL− T (T+1)
2 .

(Proof of 3.) First, notice that we can express the eigenvalues of C in terms of its on-diagonal entries a and off-diagonal
entries b:

λi =


n
K a+ n(K−1)

K b if i = 1,
n(a−b)

K if i = 2, . . . ,K,

0 if i = K + 1, . . . , n.

(18)

From equations (17) and (18), we know that for i = 2, . . . ,K we have

n

K
(a− b) =

2

n

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q

)t

.

By multiplying both sides by K
n , the result immediately follows.

(Proof of 4.) We prove the result for b first. From Equation (18) we know that

13
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λ1 − λ2 =
n

K
a+

n(K − 1)

K
q − n

K
(a− b) = nb. (19)

Meanwhile, from Equation (17) we know that

λ1 − λ2 =
2

n

(
TL− T (T + 1)

2

)
− 2

n

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q

)t

. (20)

Combining equations (19) and (20) and solving for b gives

b =
2

n2

((
TL− T (T + 1)

2

)
−

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q

)t
)
. (21)

Now, we find a. From Equation (21) we have

a− b = a−

(
2

n2

((
TL− T (T + 1)

2

)
−

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q

)t
))

. (22)

From Property 3, we have

a− b =
2K

n2

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q

)t

. (23)

Combining equations (22) and (23) and solving for a gives:

a =
2

n2

((
TL− T (T + 1)

2

)
+ (K − 1)

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q

)t
)
. (24)

This completes the proof.

A.2. Proof of Lemma 3.1

First, we prove the following lemma:

Lemma A.2. Suppose A is the adjacency matrix of a graph G that is drawn from a symmetric SBM with K equally sized
communities and parameters p, q of at least nρ−1 with ρ ∈ (0, 1). Let P = D−1

A A be the transition matrix of the graph.
Similarly, let P = D−1

A
A be the transition matrix of the expected graph and d = n

K p+ n(K−1)
K q be the expected degree.

Then for any integer t ≥ 1, we have ∥∥∥P t − P
t
∥∥∥ = O

(√
log n

d

)

with high probability.

14
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Proof. We prove this by induction. First, we prove the base case. Let t = 1. Then∥∥P − P
∥∥ =

∥∥∥D−1
A A−D−1

A
A
∥∥∥

=
∥∥∥D−1

A

(
A−A

)
+
(
D−1

A −D−1

A

)
A
∥∥∥

≤
∥∥D−1

A

(
A−A

)∥∥︸ ︷︷ ︸
(i)

+
∥∥∥(D−1

A −D−1

A

)
A
∥∥∥︸ ︷︷ ︸

(ii)

.

Given a graph G drawn from a symmetric SBM with parameters K, p, q with p ≥ nρ−1 for ρ ∈ (0, 1), we have∣∣di − d
∣∣ = O

(√
d log n

)
,∀i ∈ [n], (25)

with probability 1− n−5. This follows from standard Bernstein/Chernoff bounds (Vershynin, 2018). Also, with probably
1− n−5, we have ∥∥A−A

∥∥ = O
(√

d
)
, (26)

which follows from standard spectral bounds (Vu, 2005). Therefore, we can bound (i) by

∥∥D−1
A

(
A−A

)∥∥ ≤ 2

d
·O
(√

d
)
= O

(
1√
d

)
.

Similarly, we can bound (ii) by

∥∥∥(D−1
A −D−1

A

)
A
∥∥∥ ≤ max

i

∣∣∣∣di − d

did

∣∣∣∣ · ∥∥A∥∥
= O

(
d
−3/2√

log n
)
· d

= O

(√
log n

d

)
.

Combining the bounds of (i) and (ii), we have ∥∥P − P
∥∥ = O

(√
log n

d

)
.

Now, assume that the statement holds for t− 1, i.e.,

∥∥∥P t−1 − P
t−1
∥∥∥ = O

(√
log n

d

)
. (27)

Therefore, by induction we have

∥∥∥P t − P
t
∥∥∥ ≤ ∥∥P t−1

(
P − P

)∥∥+ ∥∥∥(P t−1 − P
t−1
)
P
∥∥∥

= O

(√
log n

d

)
.

This concludes the proof.

15
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Now, we precede to prove Lemma 3.1. Using Lemma 2.1, we can express the co-occurrence matrix C as

C = 2

T∑
t=1

(L− t)

2|E|
DAP t,

and a corresponding expected co-occurrence matrix C as

C = 2

T∑
t=1

(L− t)

nd
DAP

t
,

where P = D−1
A A and P = D−1

A
A. From Property 4 of Lemma A.1, we know that C has a block structure with entries a

and b equal to

a =
2

n2

((
TL− T (T + 1)

2

)
+ (K − 1)

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q)

)t
)
,

b =
2

n2

((
TL− T (T + 1)

2

)
−

T∑
t=1

(L− t)

(
p− q

p+ (K − 1)q

)t
)
.

Now, we can express the difference C −C as

C −C = 2

T∑
t=1

(L− t)

(
1

2|E|
DAP t − 1

nd
DAP

t
)

(28)

We proceed by showing that each term in the summation has a spectral norm ≤
√
logn

n
√

d
. Notice that we can write each term

in (28) as

1

2|E|
DAP t − 1

nd
DAP

t
=

1

2|E|
DAP t − 1

nd
DAP t +

1

nd
DAP t − 1

nd
DAP

t

=

(
nd− 2|E|
2|E|nd

)
DAP t

︸ ︷︷ ︸
(i)

+
1

nd

(
DAP t −DAP

t
)

︸ ︷︷ ︸
(ii)

. (29)

We bound (i) and (ii) in (29) separately. Given a graph G drawn from a symmetric SBM with parameters K, p, q with
p ≥ nρ−1 for ρ ∈ (0, 1), we have ∣∣di − d

∣∣ = O

(√
d log n

)
,∀i ∈ [n], (30)

∣∣∣∣|E| − nd

2

∣∣∣∣ = O

(√
nd log n

)
(31)

with probability 1− n−5. These follow from standard Bernstein/Chernoff bounds (Vershynin, 2018). Therefore, with high
probability, the norm of the first term (i) in (29) can be bounded:

16
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∥∥∥∥(nd− 2|E|
2|E|nd

)
DAP t

∥∥∥∥ ≤ ∣∣∣∣nd− 2|E|
2|E|nd

∣∣∣∣ ·max
i

di ·
∥∥P t

∥∥
≤ O

((
nd
)−3/2√

log n
)
·
(
d+O

(√
d log n

))
· (1)

= O

(
1

n
√
d

)
.

Next, we bound the second term (ii) in (29). We can write (ii) as

1

nd

(
DAP t −DmAP

t
)
=

1

nd

(
DA −DA

)
P t︸ ︷︷ ︸

(iii)

+
1

nd
DA

(
P t − P

t
)

︸ ︷︷ ︸
(iv)

. (32)

Using (30), the norm of (iii) in (32) can be bounded with high probability:

∥∥∥∥ 1

nd

(
DA −DA

)
P t

∥∥∥∥ ≤ 1

nd

∥∥DA −DA

∥∥ · ∥∥P t
∥∥

=
1

nd
·O
(√

d log n

)
= O

(√
log n

n
√
d

)
.

Now, using Lemma A.2 and (30), we bound the norm of (iv) in (32):

∥∥∥∥ 1

nd
DA

(
P t − P

t
)∥∥∥∥ ≤ 1

nd

∥∥DA

∥∥ · ∥∥∥P t − P
t
∥∥∥

= O

(√
log n

n
√
d

)
.

Combining the bounds for (i), (iii), and (iv), gives

∥∥C −C
∥∥ ≤ 2

T∑
t=1

(L− t)

∥∥∥∥ 1

2|E|
DAP t − 1

nd
DAP

t
∥∥∥∥

= 2

(
TL− T (T + 1)

2

)
·O
(√

log n

n
√
d

)
= ∥C∥ ·O

(√
log n

nρ

)
.

This concludes the proof.

B. Proofs From Section 3.2
B.1. Proof of Proposition 3.3

Suppose that without loss of generality that y1 ≤ y2 ≤ ... ≤ yn. We have

17
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∥Q− 1

n
J∥2F =

n∑
i=1

n∑
j=1

(
exiyj∑n
k=1 e

xiyk
− 1

n

)2

=
∑
xi≤0

n∑
j=1

(
exi(yj−yn)∑n
k=1 e

xi(yk−yn)
− 1

n

)2

+
∑
xi>0

n∑
j=1

(
exi(yj−y1)∑n
k=1 e

xi(yk−y1)
− 1

n

)2

≤
∑
xi≤0

n

4

(
exi(y1−yn) − 1∑n
k=1 e

xi(yk−yn)

)2

+
∑
xi>0

n

4

(
exi(yn−y1) − 1∑n
k=1 e

xi(yk−y1)

)2

≤ 1

4

(
e2ϵ

2

− 1
)2

≤ ϵ4.

The first inequality is an application of Popoviciu’s inequality (Theorem D.2) and in the last step we use the fact that
ex − 1 ≤ xex for x > 0 and xex ≤ 2x when x < log 2. Taking the square root gives the result.

B.2. Proof of Lemma 3.4

Note that for a block matrix Y =

[
0 X

X⊤ 0

]
we have ∥Y ∥2F = 2∥X∥2F . This means that

∥E(t)∥2F = 2∥DC

(
Q(t) − J

n

)
∥2F

≤ 2∥DC∥2∥Q(t) − 1

n
J∥2F

≤ 2∥DC∥2 · ϵ4,

where we used proposition 3.3 in the last inequality.

Now we need to bound ∥DC∥. We have

∥DC∥ = ∥C∥∞ ≤ ∥C∥ ≤
n

K
(a+ (K − 1)b) + ∥R∥ ≤ 1 +

c√
nρ+2

≤ 2,

where we have used the fact that n
K (a+ (K − 1)b) = O

(
1
n

)
(see Lemma A.1) and ∥C −C∥ = ∥R∥ ≤ c√

nρ+2
. Therefore

∥E(t)∥F ≤
√
8ϵ2 < 4ϵ2.

This concludes the proof.

B.3. Proof of Lemma 3.5

First, note that for a real symmetric matrix X with eigenvalues σ1, ..., σn, the matrix Y =

[
0 X
X 0

]
has eigenvalues

αi = ±σi.

Let

L =

[
I −ηM
−ηM I

]
.

Recall from section 3.1, that M has (K − 1) nonzero eigenvalues of n
K (b− a) and (n−K + 1) eigenvalues of 0. This

implies that L has eigenvalues

αi =


1 + η n

K (a− b) if i = 1, . . . ,K − 1,

1 if i = K, . . . , 2n−K,

1− η n
K (a− b) if i = 2n−K + 1, . . . , 2n.

18
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For an eigenvalue αi of L, Weyl’s theorem (Theorem D.1) implies that for i = 1, . . . ,K − 1, we have |αi − αi| ≤ ∥R∥,
where R = L−L. This means that for i = 1, ...,K − 1, we have

αi ≥ 1 + η
n

K
(a− b)− η

c√
nρ+2

≥ 1 + η
n(a− b)

2K
= 1 + ηγ.

For i = K, ..., 2n−K, we have

αi ≤ 1 + η
c√
nρ+2

,

and for i = 2n−K + 1, .., 2n, we have

αi ≤ 1− η
n

K
(a− b) + η

c√
nρ+2

≤ 1 + η
c√
nρ+2

.

Lastly, it is now easy to see that the largest eigenvalues have an upper bound of αi ≤ 1 + η n
K (a − b) + η c√

nρ+2
≤

1 + 2η n
K (a− b) = 1 + 4ηγ. Similarly, the smallest eigenvalues have a lower bound of αi ≥ 1− η n

K (a− b)− η c√
nρ+2

≥
1− 2η n

K (a− b) = 1− 4ηγ.

This concludes the proof.

C. Proofs From section 3.3
C.1. Proof of Theorem 3.8

From the properties of C described in Section 3, the top K eigenvectors of C lie in the space spanned by the vectors
1V1

,1V2
, . . . ,1VK

. In the span of these vectors, suppose we wish to find a vector x′ that minimizes ∥x− x′∥2. Writing a
general vector in the span as x′ =

∑
i αi1Vi , we see that in order to minimize ∥x− x′∥2, we must set αi = µVi . Thus, if Γ

is the projection matrix onto the span of {1Vi}Ki=1, we have

∥x−µµµ∥ = ∥(I − Γ)x∥.

Let us now compare (I−Γ)x and (I−Π)w(T ). The two main differences are the following: first, Π is a 2n×2n projection
matrix (as opposed to Γ, which is n× n). Second, Π is a projection onto a (K − 1) dimensional subspace (as opposed to
Γ, which projects to K dimensions). The structure of the eigenvectors of L (see the proof of Lemma 3.5) implies that the
projection (I −Π) is equivalent to applying an appropriate projection to the first n and the second n coordinates separately.
Thus, the term (I −Π)w(tf ) includes the projection error for both x and y. Second, since the error in projecting to a K
dimensional space is only smaller than the error in projecting to a (K − 1) dimensional subspace of it, we get:

∥(I − Γ)x∥ ≤ ∥(I −Π)w(tf )∥.

Next, we try to use the conclusion of Lemma 3.7. For this, we need to relate Π and Π. But this turns out to be easy in our
case. Recall that Π and Π are, respectively, the projections onto the span of the top (K − 1) eigenvectors of M and M

respectively. Since the gap between the (K − 1) and Kth largest eigenvalues for M (and also M ) is ≥ n(a−b)
2K (which is

Ω
(
1
n

)
), we can use the classic Davis-Kahan Sin-Theta theorem (Stewart & Sun, 1990), applied to the spectral norm, to

obtain:

∥Π−Π∥ ≤ 2K

n(a− b)
∥R∥,

where ∥R∥ ≤ c√
nρ+2

as we saw before. This implies that

∥(I − Γ)x∥ ≤ ∥(I −Π)w(tf )∥+O(
1√
nρ

)∥w(tf )∥.

Combining this with Lemma 3.7 and noting that 1
∆ dominates 1√

nρ , the theorem follows.
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C.2. Proof of Theorem 3.10

Fix some i, j ∈ [K] with i ̸= j. Consider the 2n dimensional vector u obtained by taking 1Vi√
|Vi|
− 1Vj√

|Vj |
and appending 0

for the remaining n coordinates. Since the partitions Vi are all of size n/K, this is simply the vector
√

K
n (1Vi − 1Vj ) with

0s appended. Note that by construction, ∥u∥2 = 2.

Now, since the initial vector w(0) was chosen uniformly at random, its projection z(0) is a random vector in the space
spanned by the top (K − 1) eigenvectors of L. Since u is a vector also in this span, and since it has constant length, we
expect u to have an inner product of roughly ∥z(0)∥/

√
(K − 1) with z(0). In fact, since the inner product is distributed as a

Gaussian, we have that

Pr[|⟨u, z(0)⟩| < 1

10K2
√
K
∥z(0)∥] < 1

10K2
.

Now, from the discussion preceding the theorem, we have that with probability 1− 1
10K2 ,

|⟨u, z(tf )⟩| ≥ 1

20K2
√
K
∥z(tf )∥.

By definition, note that |µVi
−µVj

| =
√

K
n |⟨u, z

(tf )⟩|. This implies that with probability 1− 1
10K2 , we have (for fixed i, j),

|µVi − µVj | ≥
1

20K2
√
n
∥z(tf )∥.

Taking a union bound over all i, j and using the value of ∥z(tf )∥, the theorem follows.

D. Auxiliary Lemmas
Theorem D.1 (Weyl’s Theorem). Let A and E be n× n symmetric matrices. Let λ1 ≥ ... ≥ λn be the eigenvalues of A
and λ1 ≥ ... ≥ λn be the eigenvalues of A = A+E. Then |λ1 − λ1| ≤ ∥E∥.

Theorem D.2 (Popoviciu’s Inequality). Let M and m be the upper and lower bounds of the entries of a probability vector
p = (p1, ..., pn). Then

1

n

n∑
i=1

(pi −
1

n
)2 ≤ 1

4
(M −m)2. (33)

Proof. First, notice that

0 ≤ 1

n

n∑
i=1

(M − pi)(pi −m)

=
1

n

n∑
i=1

(Mpi −mM − p2i +mpi)

= −mM +
M +m

n
− 1

n

n∑
i=1

p2i .

Therefore,
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1

n

n∑
i=1

(pi −
1

n
)2 =

1

n

n∑
i=1

p2i −
1

n

≤ −mM +
M +m

n
− 1

n2

= (M − 1

n
)(
1

n
−m)

≤
(
M − 1

n + 1
n −m

2

)2

=
1

4
(M −m)2,

where the last inequality makes use of the AM-GM inequality.
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