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ABSTRACT

Recent advances in vision-language research have produced numerous foundation
models that excel in tasks such as image classification, image-text retrieval, and
image captioning. However, these models are shown to exploit spurious correla-
tions in biased training data, raising fairness concerns for discrimination against
underprivileged groups. In this work, we propose CVLD, a unified framework for
quantifying and mitigating vision-language biases in a task and domain-agnostic
setting. By defining a causal intervention module that produces counterfactual
image-text pairs, we apply causal fairness metrics to capture the discrepancy be-
tween model predictions on original and counterfactual distributions. Building on
the universal fairness notion, we propose a set of bias-free adaptation techniques
to mitigate the bias of pre-trained VL models by optimizing their robustness to in-
terventions on the protected attribute, requiring minimal modification to the naive
training pipeline. CVLD demonstrates robust debiasing results on image classifica-
tion, retrieval and captioning using adaptation datasets of varying sizes, validating
the importance of counterfactual data in studying vision-language bias.

1 INTRODUCTION

Vision-language models (VLM) have undergone a dramatic evolution in recent years, driven by
the development in cross-modal architectures, large-scale image-text corpora and pretraining tech-
niques such as masked modeling and contrastive learning. A prominent trend in this evolution is
the transition from specialized models, such as those for image captioning (Karpathy & Fei-Fei,
2015; Vinyals et al., 2015; Rennie et al., 2017), to foundation models that learn generic cross-modal
representations for a broader spectrum of tasks Chen et al. (2020); Li et al. (2021); Singh et al.
(2022); Alayrac et al. (2022). By pre-training a base network on massive amounts of paired image
and text, foundation models are capable of learning basic visual and textual concepts as well as their
correspondences, applying them to solve downstream tasks with minimal adaptation effort.

Since their introduction, concerns have arisen about the fairness and potential biases of VLMs. How-
ever, the existing work on vision-language bias has primarily targeted specialized models in their
respective disciplines (Hendricks et al., 2018; Wang et al., 2021; Berg et al., 2022; Cho et al., 2022),
as little effort was made towards unifying the study of biases across vision-language problems. In
the vision that tasks like image classification, captioning and retrieval are to be addressed with a
shared base architecture, a universal notion of bias is indispensable for the holistic understanding
of biases in the emerging VLMs. However, such studies are difficult in practice as biases are of-
ten subtle and task-dependent, and mitigating them requires careful modular design tailored to each
task.

Inspired by existing work on counterfactual fairness (Kusner et al., 2017) in machine learning, we
argue that the key to unifying biases in VL is the ability to generate counterfactual data, i.e., images
and text that are consistent with the true data distribution but differ in certain aspects from the
original examples. This is because all VL tasks can be viewed as abstract functions of image and/or
text input, and counterfactuals can be used to evaluate the robustness of such mappings to changes
in the input. For example, gender bias in VLMs can be studied by swapping the gender of subjects
in the input image or text, without prior knowledge of the downstream task.

However, generating counterfactual data requires the ability to perform interventions to particular
attributes of the input, which is challenging given the lack of explicit causal models for images
and text. This work investigates the use of high-quality image editing models to address these
challenges. Following the success of diffusion models (Ho et al., 2020; Rombach et al., 2022) for
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Figure 1: CVLD framework for debiasing vision-language models with counterfactual image-text editing.

image generation, recent research has led to methods for editing images using text prompts (Mokady
et al., 2023; Brooks et al., 2023), which can be applied to real images to alter certain visual attributes
of subjects, while preserving the overall appearance of the image.

In this paper, we propose a simple debiasing framework, counterfactual vision-language debiasing
(CVLD), that demonstrates striking effectiveness for the most studied problems in the bias literature,
including image classification, text-to-image retrieval, and image captioning. In essence, CVLD
consists of three steps: prompt generation that produces instance-based text guidance for image
editing, counterfactual generation that intervenes input images with prompted editing models, and
debiased tuning that adapts a pre-trained model in counterfactual examples to remove unwanted
biases. We show that under CVLD, debiasing a novel VL task reduces to a simple regularized training
objective and minimal modifications to the adaptation pipeline.

Figure 1 provides an overview of the proposed framework and its advantage over existing methods
for applying VLMs: 1) pre-trained VLMs usually exhibit decent fairness due to the volume and
diversity of training data, but the performance of zero-shot models may be insufficient for the specific
tasks and domains. 2) Naı̈ve adaptation with a small training set greatly improves the performance
of the VLM, but causes it to overfit to the specific biases of the target dataset, sacrificing fairness. 3)
CVLD allows for unbiased adaptation by augmenting the training set with counterfactual examples,
providing the best trade-off between performance and fairness.

The proficiency of CVLD is demonstrated in a set of fine-tuning experiments on image classification,
retrieval and captioning, using well-established fairness measures. We show that CVLD can effec-
tively mitigate biases in downstream tasks, while maintaining or even improving the performance
of the VLMs, even on a small adaptation dataset (e.g., 1% COCO). Ablation studies and qualitative
analysis further validate the importance of counterfactual data in mitigating vision-language bias.

2 RELATED WORKS

Vision-language models. Early works on VLMs focused on specialized models for specific tasks,
such as image captioning (Vinyals et al., 2015; Rennie et al., 2017) and image-text matching (Ma
et al., 2015; Lee et al., 2018). More recently, a wave of vision-language foundation models has
emerged (Su et al., 2019; Li et al., 2020; Chen et al., 2020; Li et al., 2021; Singh et al., 2022; Alayrac
et al., 2022; Li et al., 2022; 2023). These models are equipped with more versatile transformer ar-
chitectures, pre-trained with massive amounts of image-text data, and capable of adapting to a broad
spectrum of downstream tasks with little adaptation effort. The development of foundation VLMs
also led to evolution in text-to-image generation (Rombach et al., 2022) and editing (Brooks et al.,
2023), since state-of-the-art models are now capable of producing high-quality images consistent
with text prompts. Recent work has demonstrated the potential to use these synthetic images to train
strong classification models (Sariyildiz et al., 2023).

Bias in vision-language. Despite the long history of research on fairness and bias in machine
learning (Zafar et al., 2017; Hardt et al., 2016), computer vision (Torralba & Efros, 2011; Wang
et al., 2020) and natural language processing (Bolukbasi et al., 2016; Caliskan et al., 2017), only in
recent years have researchers started to investigate the bias of multimodal tasks. Similarly to the path
of VLMs, early work on vision-language bias focused on specialized models, revealing unwanted
associations and discriminations in image captioning (Hendricks et al., 2018; Hirota et al., 2022),
image-text retrieval (Wang et al., 2021; Berg et al., 2022) and text-to-image generation (Cho et al.,
2022; Luccioni et al., 2023). Unlike these works, we focus on a task-agnostic fairness framework
for VLMs, unifying the study of bias across different tasks and domains.

Bias mitigation with synthetic data. Most existing work on mitigating VLM bias employs
model debiasing, introducing task-specific modifications to model architectures or training objec-
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tives (Chuang et al., 2023; Seth et al., 2023; Hirota et al., 2023). A less popular option studied in
vision models is dataset debiasing, by removing unwanted biases from the training data through
resampling (Li & Vasconcelos, 2019) or image synthesis (Ramaswamy et al., 2021). This work fol-
lows the same direction, but extends to a multimodal setup and focuses on the use of image editing
models for counterfactual generation. Closely related to this paper is the concurrent work by Smith
et al. (2023), which uses image editing to create a synthetic test set for evaluating the fairness of
VLMs; in contrast, we focus on the use of counterfactuals for debiased model adaptation.

3 IMAGE-TEXT INTERVENTION FOR HOLISTIC BIAS ESTIMATION

In this section, we present the fundamentals of fairness measures in machine learning and introduce
a new framework for generating counterfactual examples for image-text data.

3.1 FAIRNESS IN MACHINE LEARNING

The fairness and bias of machine learning models have been extensively studied in the literature,
leading to a wide spectrum of bias measures to assess trained models. Most widely adopted are group
fairness measures, such as demographic parity (Zafar et al., 2017) and equal opportunities (Hardt
et al., 2016), aiming to achieve similar prediction outcome (detection rate, precision, etc.) for dif-
ferent demographic groups. These are typically evaluated on real data distributions, thus requiring
a manually balanced test set, which can be tricky to obtain for datasets collected in the wild.

Counterfactual fairness (Kusner et al., 2017), on the other hand, is defined on an individual basis,
requiring robust system output when protected attributes (e.g., gender or race) of the inputs are
altered. Formally, given a causal graph G of latent variables U , protected attributes A ∈ A, other
observable features X , and target variable Y , a counterfactually fair predictor Ŷ of Y satisfies

P (ŶA←a(U) = y | X = x,A = a) = P (ŶA←a′(U) = y | X = x,A = a), (1)

where ŶA←a′(U) or Ŷa′ in short is the output when an intervention is performed on A by substituting
its value with a′, without altering any of its non-descendants in graph G (i.e., features not caused by
A). We next show how to apply counterfactual fairness to vision-language problems by recovering
the causal graph G of image-text data and performing interventions on the protected attributes.

3.2 CAUSAL IMAGE-TEXT INTERVENTION

Counterfactual fairness is desirable in many real-world applications, as it demands that the model
predictions be invariant to the protected attribute. This is particularly vital for the emerging VLMs
trained on uncurated web datasets, which are known to exhibit biases against certain demographic
groups, such as the association between gender and occupation (Seth et al., 2023). Instilling counter-
factual fairness in such models would ensure that protected attributes like gender or race do not affect
the model predictions, thus mitigating the risk of discrimination against underprivileged groups.

However, the counterfactual fairness measure is intractable in real-world vision-language problems,
as the intervention requires access to the ground-truth causal graph G of the data distribution, which
is impossible to recover a posteriori for large-scale datasets sourced from the Internet. Instead, we
consider using language models and text-to-image editing models as a surrogate for G.

Consider a causal graph for image or text data illustrated in Fig. 2a. Let U be some latent background
variables that capture the nature of a scene, which influences both the protected attributes A (e.g.,
gender or race of people in the scene) and other semantic attributes X (e.g., occupation, activity, or
background objects). A visual or textual depiction of the scene I can then be generated from A and
X . Given I as input to a generalized1 vision-language model Ŷ = g(I), evaluating counterfactual
fairness w.r.t. A reduces to learning the counterfactual distribution of I:

P (Ŷa′ | I = i, A = a) = P (g(Ia′) | I = i, A = a). (2)

Assuming that the input I is determined only by X and A, the intervention Ia′ can be generated by
substituting A with a′ in G while keeping X unchanged. This is straightforward for text inputs, e.g.,
by replacing all gendered words in the text, thanks to the high abstraction of the modality, which

1Here we consider a generalized system that accepts inputs from either modalities, which encompasses most
existing VL models including image captioning, text-to-image retrieval, and visual question answering.
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Figure 2: Protected attribute intervention with text-guided image editing.

naturally disentangles A from X .2 Yet for images, a similar intervention is nontrivial, requiring
a generative model that can perform targeted manipulations on A while preserving other visual
attributes X .

With recent advances in text-guided image editing (Hertz et al., 2022; Mokady et al., 2023; Brooks
et al., 2023), we argue that it is indeed possible to perform such interventions on real images. This is
due to two key observations: First, prompt-to-prompt (P2P) editing (Hertz et al., 2022) allows pre-
cise image manipulation by swapping cross-attention maps between the original and edited prompts.
This makes it possible to perform local edits to the protected attribute of interest (A) without chang-
ing the overall image structure and contextual information (X). Second, inversion-based image
editing (Mokady et al., 2023) produces accurate attention grounding from text prompts to the image
regions, which can be used to guide the editing process. Likewise, instruction-based editing mod-
els (Brooks et al., 2023) trained on P2P-generated data also inherit the ability to perform local edits,
while being more robust to complex scenes.

3.3 INTERVENTION PROCEDURE

Having established the feasibility of image-text intervention, we next describe the procedure of gen-
erating counterfactual examples for vision-language data. As illustrated in Fig. 2b, the intervention
procedure consists of three steps: text intervention, prompt generation, and image editing.

Text intervention. Given an dataset of paired image-text examples with protected attribute anno-
tationsD = {(I, T,A)}, we first perform text intervention on the captions T to generate counterfac-
tual examples Ta′ with protected attributes A substituted for a′. While a naı̈ve rule-based method is
possible, it neglects the overall structure of the sentence, causing grammatical errors and semantic
inconsistencies especially when more than one subjects are involved (e.g., “a boy and a girl” be-
comes “a boy and a boy”). Instead, we use the GPT-3.5 (Brown et al., 2020) large language model
to process T , which produces more natural and fluent counterfactual examples.

Prompt generation. Given the source text T and target Ta′ , an inversion-based pipeline, e.g.,
null-text inversion (Mokady et al., 2023) with prompt-to-prompt editing (Hertz et al., 2022), can be
used to generate the corresponding counterfactual images Ia′ directly. Alternatively, one can use
an instruction-tuned model like InstructPix2Pix (Brooks et al., 2023) by providing with the image a
text prompt that describes the edit (e.g., “turn the boy into a girl”). As with text intervention, we use
GPT-3.5 to generate text prompts for InstructPix2Pix using both T and Ta′ as input.

Image editing. Once the source/target text and edit prompts are generated, we can perform im-
age editing to produce the counterfactual images Ia′ using null-text inversion or InstructPix2Pix.
Notably, even with state-of-the-art editing models, the edited images may not be semantically con-
sistent with the text prompts or deviate substantially from the input image layout. To mitigate this
variance, we repeat the editing m times with each method, and introduce a filtering step that selects
the k < m top candidates with the highest similarity scores to the original image, measured by the
cosine similarity of their feature embeddings from a pre-trained image encoder.

Image-only intervention. While the above procedure is designed for image-text data, it can be
easily adapted to image-only data by using manually designed prompts. For example, we can use
“a photo of a man/woman” in null-text inversion, and “turn the man/woman into a woman/man”
in InstructPix2Pix. Although more sophisticated strategies are possible (e.g., using a captioning
model), we use the simple method described above, as it is sufficient for our experiments.

2This is a simplified view of text intervention, as some words like “actor/actress” implies both gender and
occupation. However, this can be easily addressed by using more sophisticated language models.
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Figure 3: Bias-free adaptation of BLIP on different VL tasks. CVLD enables the debiasing of foundation VLMs
on classification, retrieval and captioning tasks, with minimal modification to the training pipeline.

4 CVLD: BIAS-FREE ADAPTATION OF FOUNDATION MODELS

Successful application of foundation VLM often requires adaptation to a small number of examples
from the target distribution, which can cause it to overfit to dataset-specific biases. In this section,
we introduce a novel method for unbiased adaptation of VLMs to image classification (Sec. 4.2),
retrieval (Sec. 4.3) and captioning (Sec. 4.4) tasks that facilitates synthetic counterfactuals of Sec. 3.

4.1 PRELIMINARIES

Architecture. We use BLIP (Li et al., 2022) as the base model for bias-free adaptation. BLIP is a
versatile VLM containing a ViT (Dosovitskiy et al., 2020) image encoder and a BERT (Devlin et al.,
2018) text encoder modified with additional cross-modal attention layers, demonstrating strong per-
formance on various vision-language tasks. Its components and training are also representative of
other foundation VLMs such as Florence (Yuan et al., 2021) and BLIP-2 (Li et al., 2023).

Training with counterfactuals. The key intuition of CVLD is to augment the training setD = {I}
with counterfactual examples D̃ = {Ia′ | a′ ∈ A, I ∈ D}, and optimize the model on the combined
set D ∪ D̃. In the case of binary protected attributes such as gender, it suffices to partition the
training set into subgroups (D1,D−1) containing examples of attribute A = 1 or −1, and construct
counterfactuals by flipping the attribute of each example in Da, i.e. D̃a = {I−a | I ∈ Da}.

Finally, given a batch of training examples B = {(I, T )} and their counterfactuals B̃ = {(Ĩ , T̃ )},
the augmented loss for model θ is defined as

Lλ(θ;B, B̃) = ℓ(θ;B) + λℓ(θ; B̃), (3)

where λ is a hyperparameter for the trade-off between the original and counterfactual losses. In the
following sections we will elaborate on the task-specific implementations of the CVLD framework.

4.2 IMAGE CLASSIFICATION

Foundation VLMs like CLIP (Radford et al., 2021) pre-trained on massive image-text corpora have
shown remarkable zero-shot classification capabilities, simply by evaluating the cross-modal affinity
between input images and text prompts p(c) of each class c (e.g., p(c) = “a photo of a [c]”):

f(I, C; θ) = argmax
c∈C

g(I, p(c); θ). (4)
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The affinity score g(I, T ; θ) can be implemented by cosine similarity in the joint embedding space
(as in CLIP), or in the case of BLIP a dedicated image-text matching (ITM) head trained with binary
classification loss. When zero-shot classification produces suboptimal results, fine-tuning is needed
on a small set of examples to adapt the VLM to the target distribution. However, adaptation may
also inject biases specific to the target dataset into the foundation model.

As illustrated in Fig. 3 (top left), we use a multimodal prompt tuning strategy (Jia et al., 2022; Zang
et al., 2022; Khattak et al., 2023) to perform BLIP adaptation while using counterfactual examples
to mitigate model bias. Specifically, we create learnable prompt embeddings pI and pT and prepend
them to the tokenized inputs to the visual and text transformer encoders, respectively. During few-
shot adaptation, only the prompt embeddings of both modalities are updated, while the rest of the
model parameters are frozen. The image and text prompts are updated with gradient descent on the
augmented loss of Eq. (3), where ℓ(θ;B) denotes the standard cross-entropy classification loss:

pI ← pI − η∇pI
Lλ(θ;B, B̃), pT ← pT − η∇pT

Lλ(θ;B, B̃). (5)

Note that on a labeled classification dataset D = {(I, C,A)} with images I , ground-truth classes C
and protected attribute A, applying equation 3 with λ = 1 effectively decorrelates the C with A:

pC,A(D ∪ D̃) = pC,A(D) + pC,A(D̃) = pC,A(D) + pC,−A(D) = pC(D). (6)

4.3 IMAGE-TEXT RETRIEVAL

Image retrieval with BLIP is a two-stage procedure following earlier work of Li et al. (2021). First,
K image nearest neighbors to the text query are identified in their joint embedding space. This is
trained using an image-text contrastive (ITC) loss3 based on InfoNCE (Oord et al., 2018):

ℓITC(θ;B,B−) = E(I,T )∈B

[
− log

exp⟨gI(I; θ), gT (T ; θ)⟩∑
(I′,∗)∈B− exp⟨gI(I ′; θ), gT (T ; θ)⟩

]
. (7)

The likelihood of each nearest-neighbor candidate is then evaluated with the binary ITM head, the
output of which is used to refine the initial retrieval rankings. The ITM loss is a standard binary
cross-entropy loss, with hard negative sampling by upweighting negative pairs with high ITC scores.

To see how this retrieval framework can be debiased by CVLD, consider a batch of training exam-
ples B = {(I, T )}Ni=1 consisting of paired images Ii and captions Ti. Not all of these examples
contain information about the protected attribute A; for the subset of examples Ba ⊂ B that do, a
counterfactual set can be constructed with flipped attribute, i.e., B̃a = {(I−a, T−a) | (I, T ) ∈ Ba}.
Candidate extension. An abstract illustration of CVLD for debiasing ITC loss is shown in Fig. 3
(top right). In retrieval, both the query set (text prompts) and candidate set (images) can be aug-
mented with counterfactuals. First, we expand the set of candidates by including the batch of inter-
vened images {I | (I, T ) ∈ B̃a}. Instead of treating these images as separate instances (negatives to
original queries), we use the unimodal similarity between the original and intervened text queries T
and T−a to supervise ITC learning. This makes sense as for a neutral prompt T (e.g., “a photo of a
person”), both I and I−a should be considered positives despite having opposite gender attributes.

Query extension. To further improve the fairness of retrieval, we introduce counterfactual text
queries {T | (I, T ) ∈ B̃a} and compute the augmented ITC loss using Eq. (3):

L(θ;B, B̃) = ℓITC(θ;B,B ∪ B̃) + λℓITC(θ; B̃,B ∪ B̃). (8)

The debiasing for ITM also follows the formulation of Eq. (3), although we exclude counterfactual
examples from being chosen as hard negatives, for similar reasons to the use of soft labels in ITC
above.

4.4 IMAGE CAPTIONING

Figure 3 (bottom) shows the pipeline for debiasing image captioning with CVLD. It follows a similar
procedure to classification (Sec. 4.2), except that the ground-truth captions T are also intervened to
match counterfactual images Ia′ , and the classification loss is replaced with language modeling loss:

ℓ(θ;B) = E(I,T )∈B [− log p(T | I; θ)] . (9)

Also, as with image classification, counterfactual augmentation decorrelates the protected attribute
A with all other words in the text, thus removing spurious associations in the original dataset.

3BLIP also uses a momentum encoder to augment positive and negative sets, omitted here for simplicity.
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Fairness Performance
DEO ↓ ∆Acc ↓ AP ↑ mAcc ↑

BLIPPT 10.4 46.2 54.4 66.1
BLIP 14.2 27.6 85.2 84.2
RN-50 (He et al., 2016) 16.7 – 83.9 –
+Ramaswamy et al. (2021) 13.9 – 83.0 –

256-shot

BLIP 16.0 14.2 88.7 82.8
CVLD 10.2 11.2 89.4 83.9

16-shot

BLIP 20.1 20.7 82.3 76.5
CVLD 15.6 18.2 82.2 76.5

Table 1: Image classification on CelebA. All metrics are
computed over 14 gender-independent target attributes.
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Figure 4: K-shot image classification on CelebA.
Compared to naı̈ve cross-entropy training, CVLD
greatly reduces bias with little performance loss.

5 RESULTS

In this section, we evaluate the effectiveness of CVLD in debiasing vision-language models on a vari-
ety of downstream tasks, including image classification, image-text retrieval, and image captioning.

5.1 EXPERIMENTAL SETUP

We briefly describe the data and models in the experiments. Refer to the Appendix for more details.

Datasets. Different datasets are used to evaluate the bias of the adapted BLIP models on each
downstream task. For image classification, we use CelebA (Liu et al., 2015) to evaluate the gender
bias of BLIP in a few-shot adaptation setting. Specifically, for K-shot classification, K images from
each target class are sampled from the CelebA training set and used to optimize the pre-trained BLIP
model. For image-text retrieval, we use COCO (Chen et al., 2015) to adapt the model and evaluate it
on the test sets of COCO and Flickr30K (Plummer et al., 2015). Performance is measured by top-1
recall (Rec@1) and mean top-K recall with K ∈ {1, 5, 10} (mRec@K). We follow Berg et al.
(2022) to use an explicitly balanced dataset, FairFace (Karkkainen & Joo, 2021), to evaluate gender
bias in the retrieved images through Bias@K and MaxSkew@K. For image captioning, we fine-
tune the pre-trained BLIP model on COCO and evaluate it on both COCO and nocaps. Following
prior work (Hirota et al., 2022; 2023) we evaluate the group error, bias amplification (BA) and
leakage (LIC) of adapted models on COCO to quantify their fairness.

Intervention. We follow the procedure introduced in Sec. 3.3 to generate counterfactual examples
for model adaptation. In CelebA classification, simple manual text prompts are used to flip the gen-
der of each training image. For image-text retrieval and captioning, we use GPT-3.5 Turbo to gen-
erate counterfactual text prompts from original captions. Using either null-text inversion (Mokady
et al., 2023) with prompt-to-prompt (Hertz et al., 2022) or InstructPix2Pix (Brooks et al., 2023), we
generate m = 10 edited images per example and keep the top k = 3 examples with the highest co-
sine similarity in to the original image, using visual features of a pre-trained Swin transformer (Liu
et al., 2021). The edited image-text pairs are used to augment the training set for model adaptation.

Models. We use the official BLIP model (Li et al., 2022) for all downstream experiments, adapt-
ing the model using the objectives detailed in Sec. 4. We use multimodal prompt tuning to adapt
the model for few-shot classification and unlock the full model in retrieval and captioning tasks.
Specifically, we prepend m = 4 learnable prompt embeddings to input sequences to each of the first
9 layers of the visual and text transformer encoders. During few-shot adaptation, only the prompt
embeddings of both modalities are updated, while the rest of the model parameters are frozen.

5.2 DEBIASED IMAGE CLASSIFICATION

To simulate realistic scenarios of VLM adaptation, we consider a low-shot classification setup with
a varying number of shots K per class. For CelebA, the model is fine-tuned on 2K examples per
attribute (K positives & K negatives), and compared to zero-shot classification of pre-trained BLIP.

Results. Table 1 compares the performance and fairness of attribute classification on CelebA using
CVLD vs. baseline fine-tuning. We make the following findings: First, zero-shot model (BLIPPT)
reports decent DEO bias, albeit with much lower classification performance. Its performance gap
is also the largest among all models evaluated, which is due to its poor balance between positive
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Fairness (FairFace) Retrieval (COCO) Zero-shot (Flickr30K)
Bias1K ↓ MaxSkew1K ↓ Bias128 ↓ MaxSkew128 ↓ Rec@1 ↑ mRec ↑ Rec@1 ↑ mRec ↑

BLIPPT .195 .171 .339 .277 55.0 73.7 79.7 90.4
BLIP384 .328 .271 .437 .350 63.9 80.5 85.1 93.5

COCO 10%

BLIP .237 .199 .338 .274 58.5 76.6 80.7 90.9
BLIPBal .220 .186 .283 .225 58.7 76.5 80.7 90.8
CVLD .172 .151 .241 .205 58.6 76.5 80.6 90.8

BLIP384 .313 .257 .455 .359 61.5 78.6 83.6 92.8
BLIPBal

384 .269 .216 .377 .295 60.6 78.1 83.3 92.6
CVLD384 .257 .219 .367 .295 61.2 78.5 84.1 92.9

COCO 1%

BLIP .216 .186 .394 .317 58.4 76.4 80.2 90.7
BLIPBal .300 .256 .442 .358 58.2 76.2 80.3 90.6
CVLD .173 .150 .214 .179 58.0 76.1 80.3 90.7

BLIP384 .301 .250 .348 .281 59.7 77.5 82.1 92.0
BLIPBal

384 .435 .355 .556 .434 60.1 77.7 82.5 92.1
CVLD384 .205 .174 .270 .222 59.4 77.4 82.2 91.9

Table 2: Results on image-text retrieval. All models use 224×224 resolution unless specified in subscripts.

Figure 5: Qualitative results in image-text retrieval. Left: MaxSkew@K for varying values of K averaged over
all text queries on FairFace; Right: gender ratio of top K examples when querying “a photo of a doctor/nurse”.

and negative predictions. Second, baseline fine-tuning with cross entropy improves classification
accuracy, but also introduces significant DEO bias. This effect is even more pronounced in low-
shot settings, as DEO increases from 14.2 on the full dataset to 16.0 (256-shot) and 20.1 (16-shot).
Finally, CVLD with λ = 1 significantly reduces both DEO and ∆Acc compared to fine-tuning, while
maintaining or even improving the classification performance. In 256-shot classification, it produces
lower biases than BLIPPT while attaining a classification AP more than 40% higher.

Ablation studies. We further vary the loss weight λ of counterfactual examples, and plot the
performance and bias of adapted models in Fig. 4. It can be seen that CVLD is robust to the choice of
λ, with larger values producing a lower bias. We start to observe performance degradation when λ >
1 (i.e., weighting counterfactual examples over the originals) while fairness continues to improve.

5.3 DEBIASED TEXT-TO-IMAGE RETRIEVAL

Next, we apply CVLD to the image-text retrieval task (Sec. 4.3). We perform fine-tuning on subsets
of COCO of different sizes, and report the retrieval performance and fairness of the adapted models.

Method FairFace COCO
MaxSkew128 mRec

Base .317 76.4
Hard label .416 76.2
Neg only .261 76.2
ITC .227 76.2
ITM .189 76.1
CVLD .179 76.1

Table 3: Ablation on CVLD variants for
debiasing image retrieval. All models
trained on COCO 1%; 224×224 input.

Results. As shown in Tab. 2, naı̈ve fine-tuning (BLIP) results
in significant bias amplification compared to the pre-trained
model (BLIPPT), similar to the trend observed in image clas-
sification. In both 10% and 1% COCO, CVLD achieves lower
bias than standard fine-tuning with comparable recall scores.
Notably, alternative dataset debiasing methods such as bal-
anced sampling (BLIPBal) do not produce the same level of
bias reduction as CVLD, even increasing the bias in 1% COCO.
This shows the importance of debiasing in low-shot settings by
augmenting the training data, rather than resampling which ef-
fectively reduces the sample count.

Ablation studies. We make several observations by comparing the results of different variants of
CVLD in Tab. 3: 1) CVLD with hard labels increases bias relative to the base model, likely because
all counterfactual examples are considered negatives, forcing the model to learn gender-discriminant
representations; 2) CVLD with counterfactuals as negative candidates but no additional loss (λ = 0)
achieves lower bias than base BLIP, but higher than CVLD. This suggests that using counterfactuals
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Fairness (COCO) Captioning (COCO) Zero-shot (nocaps)
Error ↓ BiasAmp ↓ LIC ↓ BLEU4 ↑ CIDEr ↑ CIDEr ↑ SPICE ↑

BLIPPT 3.8 1.67 2.3 38.5 129.2 74.4 10.7
BLIP 4.3 1.34 4.3 39.6 133.0 109.5 14.6
OSCAR (Li et al., 2020) 3.0 1.78 2.4 39.4 119.8 – –
+LIBRA (Hirota et al., 2023) 4.6 −1.95 0.3 37.2 113.1 – –
GRIT (Nguyen et al., 2022) 3.5 3.05 3.1 42.9 123.3 – –
+LIBRA 4.1 1.57 0.7 40.5 116.8 – –

COCO 10%

BLIP 4.2 1.54 4.8 38.9 130.8 107.4 14.5
BLIPBal 4.9 0.97 4.0 39.1 130.4 106.5 14.2
CVLD 4.6 0.12 1.5 38.5 129.9 106.8 14.4

COCO 1%

BLIP 5.6 0.91 5.6 39.0 130.0 106.4 14.1
BLIPBal 4.2 0.37 5.5 39.1 129.5 106.5 14.1
CVLD 5.0 −0.42 3.7 39.4 130.4 106.6 14.2

Table 4: Results on image captioning. All models except BLIPPT use 384×384 resolution.

Baseline: A man holding an umbrella
in the back of a car.

Ours: A woman holding an umbrella
standing in the back of a car.

Baseline: A woman in a black dress
standing next to a white horse.

Ours: A man standing next to a
white horse.

Baseline: Two li�le girls si�ing next to
each other holding stu�ed animals

Ours: Two young children si�ing at a
table with stu�ed animals.

Figure 6: Qualitative results on image captioning with baseline BLIP and CVLD, fine-tuned on 1% COCO.

as negatives alone is not sufficient to debias the model; 3) ours with either debiased ITC or ITM loss
improves over “Neg only”, showing the benefit of using counterfactuals in query sets. CVLD uses a
combination of both, which achieves the best fairness score.

Qualitative results. We take a closer look at the fairness of retrieval by plotting the gender uni-
formity in the top K retrieved images, measured by MaxSkew@K. As Fig. 5 (left) shows, CVLD
produces consistently lower skew than standard fine-tuning, despite the noisy curve when K is small.
Beyond the standard set of queries in Berg et al. (2022), we also plot the gender ratio in retrieved im-
ages from occupation queries. As shown in Fig. 5 (right), when querying “a photo of a doctor/nurse”,
CVLD produces more balanced results, indicating a lower gender-occupation association.

5.4 DEBIASED IMAGE CAPTIONING

We finally study the debiasing performance of CVLD for image captioning. As fine-tuning with
224×224 resolution does not improve the scores, we use 384×384 for all adapted captioning models.

Results. As the results in Tab. 4 reveal, all baseline models without explicit debiasing exhibit
noticeable bias amplification and leakage regardless of dataset size. This is partially remedied by
balancing the training set (BLIPBal), at the cost of captioning scores. A similar fairness-performance
trade-off is observed in LIBRA (Hirota et al., 2023), a recent work on mitigating gender bias of
image captioning models. In comparison, CVLD attains much lower BiasAmp and LIC scores, while
maintaining similar captioning quality. When trained on 1% COCO, it produces a negative BiasAmp
score, indicating a bias reduction vs. ground-truth annotations. As a side product of debiasing, we
also observed a slight improvement in captioning performance on both COCO and nocaps, likely
due to the additional intervened examples reducing overfitting of fine-tuned model.

Qualitative results. As Fig. 6 shows, we found that CVLD improves gender resolution in chal-
lenging scenes (left & center), indicating robustness to contextual bias; it also tends to produce
gender-neutral captions (right), when given insufficient information to infer the gender of subjects.

6 CONCLUSION

In this work, we introduced the CVLD framework for debiasing vision-language foundation models
using counterfactually edited image-text data. CVLD utilizes language models and text-guided im-
age editing to perform causal interventions on the protected attribute, and adapts the model on the
counterfactual examples without major modifications to the training pipeline. The effectiveness of
CVLD was demonstrated on a set of vision-language tasks, including image classification, text-to-
image retrieval and image captioning, where it is shown to improve the fairness of adapted VLMs
with little performance loss. We hope that CVLD can serve as a universal framework for studying and
mitigating vision-language bias, and inspire future research on the fairness of foundation models.
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A DATASETS AND EVALUATION

Image classification. Following the evaluation protocol in Ramaswamy et al. (2021), we use each
of the 14 gender-independent binary facial attributes of CelebA (Bags Under Eyes Bangs, Black
Hair, Blond Hair, Brown Hair, Chubby, Eyeglasses, Gray Hair, High Cheekbones, Mouth Slightly
Open, Narrow Eyes, Smiling, Wearing Earrings, Wearing Hat) as target labels, and gender as the
protected attribute. Classification performance is measured by average precision (AP) and mean ac-
curacy (mAcc) over demographic groups; gender bias is evaluated by difference in equal opportunity
(DEO) and accuracy gap (∆Acc). Specifically, DEO measures the difference in true positive rate
between examples of each gender; ∆Acc measures the difference in accuracy between the worst-
performing group (defined as target attribute Y× protected attribute A, e.g., blond males, or female
with eyeglasses) and the dataset average. The results are averaged over 10 independent few-shot
episodes to account for the variance in low-shot sampling.

Image-text retrieval. We evaluate text-to-image retrieval on COCO and Flickr30K using the stan-
dard procedure of BLIP (Li et al., 2022). The fairness of retrieval is evaluated on FairFace, using
the standard query template by Berg et al. (2022): “a photo of a {good, evil, smart, dumb, attrac-
tive, unattractive, lawful, criminal, friendly, unfriendly} person”. We use Bias@K (Wang et al.,
2021) and MaxSkew@K (Geyik et al., 2019) to quantify the model bias, where a zero Bias@K or
MaxSkew@K indicates a uniform representation of each gender in the top K retrieved images.

Image captioning. We evaluate image captioning on COCO using the standard metrics of BLEU-
4, CIDEr, and on nocaps validation split using CIDEr and SPICE. The evaluation on nocaps is
performed using the official evaluation server4. Following the protocol of (Hirota et al., 2022), the
fairness of captioning is measured by group error rate (accuracy of predicting gender of the sub-
ject), bias amplification (BiasAmp; difference in gender association in ground-truth and predicted
captions), and leakage (LIC; classifier accuracy in predicting gendered words in captions).

B IMAGE-TEXT INTERVENTION

We use the official GPT-3.5 Turbo API5 by OpenAI to perform text intervention and prompt gener-
ation on COCO. To generate counterfactual text prompts, we use the following template:

Copy the sentence, but follow these steps:
- Determine if there are human in the image.
- If no human, do not change anything.
- If there is human, turn all female people into male. For example, replace
”woman” with ”man”, ”girl” with ”boy”.
- Do not change the age of people. For example, avoid replacing ”boy” with
”man”, or ”man” with ”boy”.
- Do not change anything unrelated to gender, such as ethnicity or colors.

4http://eval.ai/web/challenges/challenge-page/355/
5https://platform.openai.com/docs/models/gpt-3-5
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To generate text prompts for image editing, we use the following template:

Compare the gender of image captions (before–after), and find the best editing
prompt such as:
- Turn the man into a woman.
- Turn the woman into a man.
- Turn the boy into a girl.
- Turn the girl into a boy.
- Turn the woman into a man and the girl into a boy.
- No change.

As each image in COCO is associated with multiple captions, we generate one text prompt per
caption using the procedure above, and only accept the intervened example if a majority agreement
is reached in the edit prompts (e.g., if 5 captions are available for image I , 3 of the output prompts
must agree on the same edit). This leads to a smaller counterfactual dataset D̃ (approximately 20%
of the original dataset D). Samples without counterfactuals are trained with the standard retrieval
and captioning losses.

C TRAINING DETAILS

We follow the official BLIP implementation6 to adapt the pre-trained models on retrieval and cap-
tioning tasks. Models are optimized for 6 epochs for retrieval and 5 epochs for captioning, using a
learning rate of 10−5 and batch size of 128 over 4 GPUs. In few-shot classification, we use a batch
size of 32 and a learning rate of 10−2 for multimodal prompt tuning. The loss weight λ in CVLD
is set to 1 for classification and 0.3 for retrieval and captioning. We intend to make the counter-
factual datasets and adapted models using CVLD publicly available to facilitate future research on
vision-language bias.

D QUALITATIVE RESULTS

Edit quality. Figure 7 shows the original and counterfactually edited COCO examples. Although
the editing process is not perfect, it successfully alters the protected attribute (gender) in most images
consistent with the text edits generated by the LLM, while preserving other visual information such
as background objects, posture, and hair style of the subjects. Similar findings hold for image editing
in CelebA (Fig. 8), where we found CVLD to produce high-quality samples to minority combinations
of attributes (e.g., male with earrings), by editing images from the majority group (female with
earrings). This indeed translates to a significantly lower classification bias of the adapted VLM.

Debiased image classification. Figure 9 shows the relative improvement in the classification bias
(DEO) of CVLD over baseline fine-tuning on 256-shot CelebA. We find CVLD to be the most ef-
fective for the most biased attributes such as “bags under eyes” and “wearing earrings”, where the
original training distribution is heavily unbalanced with respect to gender.

Figure 10 shows the gender uniformity of retrieved examples for each text query on FairFace. It can
be seen that CVLD significantly reduces gender bias for 5 of the 10 queries (good, dumb, attractive,
unattractive, friendly), while maintaining similar levels of fairness for the rest of concepts.

E LIMITATIONS

While CVLD validates the effectiveness of text-to-image editing diffusion models for generating
counterfactual vision-language data, it is not without limitations. First, the quality of counterfactual
examples is bounded by the capacity of the underlying image editing model. CVLD relies on the ca-
pacity of state-of-the-art editing models to alter the protected attribute while keeping the remaining
features unchanged, which is not guaranteed for all types of images. More importantly, the editing
models may encompass their own biases, which can be transferred to the counterfactual examples
and ultimately the debiased model. Further research may be needed for a comprehensive and ob-
jective evaluation of the quality of counterfactual examples. Second, the current implementation
of CVLD is limited to debiasing downstream tasks with minimal adaptation, while the debiasing of

6https://github.com/salesforce/LAVIS
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A li�le boy → girl is walking pass a �re hydrant.

A tall man → woman is si�ing on his → her car on the phone.

Elderly man → woman typing on his → her laptop at a desk.A boy → girl holding a tennis racket in a gym.

A man → woman stands amongst a �ock of sheep.

A man → woman riding a skateboard up the side of a ramp.

A woman → man si�ing on bear statues holding a teddy bear. Three women → men are posing with glasses of wine.

A lady → man wearing a straw hat in a boat with oars. A lady → man with an umbrella stands next to a dog.

Figure 7: Counterfactual image-text editing on COCO dataset.
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Male (edit)

Male

Female

Blond hair

Wearing earrings

Male

Female

Male (edit)

Chubby

Female

Male

Female (edit)

Figure 8: Counterfactual image editing on CelebA dataset. For each target attribute, we show original examples
from the minority group A = a′ (top), majority group A = a (middle), and counterfactually edited examples
from a to a′ (bottom).
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Figure 9: Per-attribute improvement over baseline fine-tuning on CelebA.
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Figure 10: Gender ratio of top K retrieved examples per query on FairFace.

foundation models themselves remains an open problem. It is tempting to apply CVLD to debias the
pretraining process of foundation models, but the scale of the experiment is prohibitive due to the
large number of counterfactual examples required. Finally, simply introducing interventions on pro-
tected attributes may not be sufficient to remove biases from the model. For example, the model may
learn to rely on other attributes that are correlated with the protected attribute to make predictions,
such as the association between “earrings” and “blond hair”, even when intervention is performed
on the gender attribute. We leave the study of such implicit biases to future work.
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