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ABSTRACT

Neural networks can be significantly compressed by pruning, yielding sparse mod-
els with reduced storage and computational demands while preserving predictive
performance. Model soups (Wortsman et al., 2022a) enhance generalization and
out-of-distribution (OOD) performance by averaging the parameters of multiple
models into a single one, without increasing inference time. However, achiev-
ing both sparsity and parameter averaging is challenging as averaging arbitrary
sparse models reduces the overall sparsity due to differing sparse connectivities.
This work addresses these challenges by demonstrating that exploring a single
retraining phase of Iterative Magnitude Pruning (IMP) with varied hyperparameter
configurations such as batch ordering or weight decay yields models suitable for
averaging, sharing identical sparse connectivity by design. Averaging these models
significantly enhances generalization and OOD performance over their individual
counterparts. Building on this, we introduce SPARSE MODEL SOUPS (SMS), a
novel method for merging sparse models by initiating each prune-retrain cycle
with the averaged model from the previous phase. SMS preserves sparsity, exploits
sparse network benefits, is modular and fully parallelizable, and substantially im-
proves IMP’s performance. We further demonstrate that SMS can be adapted to
enhance state-of-the-art pruning-during-training approaches.

1 INTRODUCTION

State-of-the-art Neural Network architectures typically rely on extensive over-parameterization with
millions or billions of parameters (Zhang et al., 2016). In consequence, these models have significant
memory requirements and the training and inference process is computationally demanding. However,
recent work (e.g. Han et al., 2015; Lin et al., 2020; Renda et al., 2020; Zimmer et al., 2022) has
demonstrated that these resource demands can be significantly reduced by pruning the model, i.e.,
removing redundant structures such as individual parameters or groups thereof. The resulting sparse
models demand considerably less storage and floating-point operations (FLOPs) during inference,
while retaining performance comparable to dense models.

A different line of research has shown that the performance of a predictor can be significantly
enhanced by leveraging multiple models, instead of selecting the best one on a hold-out validation
dataset and discarding the rest. Such ensembles combine the predictions of m ∈ N individually
trained models by averaging their output predictions (Ganaie et al., 2021; Mehrtash et al., 2020;
Chandak et al., 2023; Fort et al., 2019). Prediction ensembles have been shown to improve the
predictive performance and positively impact predictive uncertainty metrics such as calibration,
out-of-distribution generalization as well as model fairness (Lakshminarayanan et al., 2017; Mehrtash
et al., 2020; Allen-Zhu & Li, 2023; Ko et al., 2023). A significant drawback of ensembling is that
all models have to be evaluated during deployment: the inference costs are hence increasing by a
factor of m, a problem that has partially been addressed by leveraging an ensemble of sparsified,
more efficient models (Liu et al., 2021; Whitaker & Whitley, 2022; Kobayashi et al., 2022).

Several works propose to instead average the parameters (Izmailov et al., 2018; Wortsman et al.,
2022a; Rame et al., 2022; Matena & Raffel, 2022), constructing a single model for inference.
Unlike prediction ensembles that require sufficiently diverse models for better performance, such
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Model Soups (Wortsman et al., 2022a) need models to lie in a linearly connected basin of the
loss landscape. However, training models from scratch with differing random seeds but identical
initialization often yields models whose parameter average will perform much worse than the
individual models (Neyshabur et al., 2020) with recent studies investigating neuron permutation to
align them within a single basin (Singh & Jaggi, 2020; Ainsworth et al., 2023). Beyond the initial
challenge of identifying networks suitable for averaging, another problem emerges when attempting
to leverage the computational advantages of sparse networks: averaging models with different sparse
connectivities reduces overall sparsity (cf. Figure 1) and may require to prune again (Yin et al.,
2022a;b), potentially resulting in further performance degradation.
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1
2(θ1 + θ2) θ2

Figure 1: Creating the average (mid-
dle) of two networks with different spar-
sity patterns (left, right) may lower over-
all sparsity, changing pruned weights
(dashed) to non-zero (solid), with reacti-
vated weights highlighted in orange.

In this work, we tackle the challenge of concurrently lever-
aging sparsity as well as the benefits of combining multiple
models into a single one. We draw our inspiration from
recent work in the domain of transfer learning (Neyshabur
et al., 2020; Wortsman et al., 2022a; Rame et al., 2022),
which has shown that fine-tuning multiple copies of a
pretrained model, differing only in random seed, yields
models sufficiently similar for averaging and sufficiently
diverse for generalization improvements. At the core of
our work lies the observation that a single prune-retrain
phase in standard prune after training strategies, such
as ITERATIVE MAGNITUDE PRUNING (IMP, Han et al.,
2015), closely resembles the transfer learning paradigm.
Starting from a pretrained model, the optimization objec-
tive shifts abruptly, either due to a new target domain or
subspace constraints imposed by pruning, followed by a training process termed ‘fine-tuning’, often
used interchangeably with ‘retraining’ to recover from pruning (Hoefler et al., 2021).

We find that, akin to the fine-tuning phase in transfer learning, exploring various hyperparameter
configurations during the retraining phase after pruning generates models that are suitable for
averaging while sharing the same sparse connectivity by design. Such sparse averages exhibit
superior performance compared to both their individual counterparts as well as to models retrained
m times as long, effectively reducing IMP’s runtime. Additionally, we initiate the next prune-retrain
cycle from the averaged model just obtained, which remarkably also enhances the performance of the
individual retraining runs before averaging again. Our proposed approach, SPARSE MODEL SOUPS
(SMS), tackles the aforementioned challenges and enables inference complexity independent of m,
utilizes pretrained models without requiring training from scratch, preserves the sparsity pattern while
leveraging sparsity benefits, and considerably improves IMP’s generalization and OOD performance.

Contributions. To summarize, our contributions can be stated as follows.

1. We demonstrate that pruning a well-trained model and retraining multiple copies with varied
hyperparameter like batch ordering, weight decay, or retraining duration and length, produces
models suitable for constructing an averaged model which exhibits superior generalization
and OOD performance compared to its individual components. Importantly, these models
retain the sparsity pattern of their pruned parent, preserved in their parameter average.

2. We propose Sparse Model Soups (SMS), a novel method for merging sparse models into
a single classifier, leveraging the idea of starting each prune-retrain phase of IMP from
an averaged model. SMS significantly enhances the performance of IMP in two ways:
first, the average improves upon the individual models in terms of generalization and OOD
performance and, secondly, the models retrained from an average exhibit better performance
compared to those retrained from a single model.

3. We extend our findings to the pruning during training domain, demonstrating SMS’s
versatility by integrating it with multiple other state-of-the-art approaches. This yields
substantial performance improvements and enhances their competitiveness in comparison to
other leading methods that sparsify during training.
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Algorithm 1 Sparse Model Soups

Input: Pretrained model θ
Output: Sparse model soup

1: for each prune-retrain cycle do
2: Prune θ
3: for i← 1 to m do ▷ Fully parallelizable
4: θi ← θ
5: Retrain θi with specific hyperparameters
6: end for
7: θ ←Merge(θ1, . . . , θm)
8: end for
9: return θ

Figure 2: Left: Sketch of the algorithm for a single phase and m = 3. Right: Pseudocode for SMS.
Merge(·) takes m models as input and returns a linear combination of the models (cf. Section 2.2).

Outline. We introduce our framework in Section 2. In Section 3, we experimentally validate
our findings across image classification, semantic segmentation, and neural machine translation
architectures and datasets. Section 4 reviews relevant literature, followed by a discussion in Section 5.

2 METHODOLOGY: SPARSE MODEL SOUPS

2.1 PRELIMINARIES

Our focus lies on model pruning which aims at removing individual weights as exemplified by the
previously introduced IMP approach. IMP, a prune after training algorithm, follows a three-stage
pipeline. It starts with a pretrained model parameterized by θ, prunes weights with magnitudes below
a certain threshold, and then restores predictive power through retraining. This prune-retrain cycle is
repeated multiple times, with each pruning step’s threshold determined by the suitable percentile to
achieve the desired target sparsity after a predefined number of such phases. Recent studies (Gale
et al., 2019; Zimmer et al., 2023) have demonstrated that magnitude pruning results in sparse models
with performance competitive to more complex algorithms.

Given m sparse models fθi with weights θi ∈ Rn, i ∈ {1, . . . ,m}, prediction ensembles construct a
model as the functional equivalent of the average of the models’ output (Liu et al., 2021; Whitaker &
Whitley, 2022; Kobayashi et al., 2022). This ensemble requires m forward passes for evaluation, but
maintains the overall sparsity level. In contrast, our focus lies on examining the performance and
sparsity of a single model, specifically a linear combination of other models. Given scalars λi ∈ R,
we consider the prediction function fθ̄, parameterized by the weights given by

θ̄ =
∑

1≤i≤m

λiθi. (1)

A special case occurs when λi = 1/m for all i, resulting in θ̄ representing the average of all networks.
Averaging the weights of arbitrary sparse models can result in reduced overall sparsity, as different
networks may possess distinct sparse connectivities, causing the averaging process to eliminate zeros
from the tensors (cf. Figure 1). Yin et al. (2022b) and Yin et al. (2022a) address this issue by pruning
θ̄ to align with the original networks’ sparsity levels. However, this approach has a notable drawback:
if the sparsity patterns differ significantly, pruning-induced performance degradation may occur.

2.2 SPARSE MODEL SOUPS

Inspired by recent advancements in the transfer learning domain (Neyshabur et al., 2020; Wortsman
et al., 2022a), which demonstrate that models fine-tuned from the same pretrained model end up in
the same loss basin and can be combined into a soup, we hypothesize that a similar behavior can be
achieved during retraining from the same pruned model. Our motivation stems from the resemblance
between the transfer learning paradigm and a single phase of IMP. When transitioning from the
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source to the target domain, the optimization objective changes abruptly, requiring adaptation (i.e.,
fine-tuning) to minimize the new objective. Similarly, ‘hard’ pruning alters the loss abruptly and
requires adapting (i.e., retraining) given the newly added sparsity constraints.

A single phase of this idea is illustrated on the left of Figure 2. The pretrained model’s weights
θ are pruned, yielding model θp, which is then replicated m times. In this setup, pruned weights
remain permanently non-trainable. Subsequently, each of the m models is independently retrained
with different hyperparameter configurations, such as varying random seeds, weight decay factors,
retraining lengths, or learning rate schedules. Finally, the m retrained models are merged into a
single model. This process ensures that all m retrained models θ1, . . . , θm share the same sparsity
pattern, as they all originate from the same pruned network with a fixed pruning mask. However,
when combining models after multiple prune-retrain cycles, identical sparsity connectivity between
all models is not guaranteed. To address this, we average the models after each phase and begin
the subsequent phase with the previously averaged model. The resulting method, termed SPARSE
MODEL SOUPS (SMS), is presented as pseudocode on the right of Figure 2.

SMS offers several benefits and addresses key challenges. First, the inference complexity of the
final model remains independent of m. The method is highly modular, allowing for different
hyperparameter configurations and different m in each phase. Further, the retraining of the m models
can be fully parallelized, enhancing efficiency as detailed in Section 3.2. By initiating each phase
with the merged model from the previous one, sparsity patterns are preserved, and the advantages
of sparse networks are utilized; as the number of cycles increases, the networks become sparser,
potentially leading to further efficiency gains. Moreover, SMS effectively leverages the benefits of
large pretrained models without the need for training from scratch.

Effectively merging models for enhanced generalization can be challenging, as models may end up
far apart. We primarily employ two convex combination methods from Wortsman et al. (2022a):
UniformSoup and GreedySoup. UniformSoup equally weighs each model with λi = 1/m. On the
other hand, GreedySoup orders models by validation accuracy, sequentially including models only if
they improve validation accuracy over the prior subset.

3 EXPERIMENTAL RESULTS

We first outline our general experimental approach. For reproducibility, our implementation is
available at github.com/ZIB-IOL/SMS. We evaluate our approach on well-known datasets for image
recognition, semantic segmentation, and neural machine translation (NMT), including ImageNet-1K
(Russakovsky et al., 2015), CIFAR-10/100 (Krizhevsky et al., 2009), Celeb-A (Liu et al., 2015),
CityScapes (Cordts et al., 2016), WMT16 DE-EN (Bojar et al., 2016) and the benchmark OOD-
datasets CIFAR-100-C and ImageNet-C (Hendrycks & Dietterich, 2019). We utilize state-of-the-art
architectures, such as ResNets (He et al., 2015), WideResNets (Zagoruyko & Komodakis, 2016),
MaxViT (Tu et al., 2022), PSPNet (Zhao et al., 2017), and the T5 transformer (Raffel et al., 2020). For
validation, we use 10% of the training data. We use magnitude-based unstructured pruning and filter
norm-based structured pruning as suggested by Li et al. (2016). For retraining, we stick to the linear
learning rate schedules LLR and ALLR (Zimmer et al., 2023), with further details in Appendix A.2.
Appendix A describes exact hyperparameters and settings for pretraining, pruning and retraining.

Recomputing Batch-Normalization (BN) (Ioffe & Szegedy, 2015) statistics is crucial in both pruning
and model averaging, as observed by Li et al. (2020) and Jordan et al. (2022), respectively. When
reporting test accuracy for single or averaged models, we reset all BN layers and recompute statistics
using a forward pass on the entire training dataset.

3.1 EVALUATING SPARSE MODEL SOUPS

We evaluate SMS against key baselines, beginning with a comparison at each prune-retrain phase to
the best-performing single model among all averaging candidates (best candidate), the mean accuracy
of these candidates (mean candidate) and regular IMP (i.e., m = 1). From the second phase onwards,
averaging candidates are retrained from a previous model soup, distinguishing best candidate from
regular IMP without averaging. Given the lower computational demands of regular IMP compared to
SMS, which trains m models per phase and hence increases the total number of retraining epochs by a
factor of m, we also contrast SMS with an extended IMP version retrained m times as long (IMPm×).
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Table 1: WideResNet-20 on CIFAR-100 and ResNet-50 on ImageNet: Test accuracy comparison
for target sparsities 98% (top) and 90% (bottom) given three prune-retrain cycles. We report results
using UniformSoup as well as GreedySoup for merging. Results are averaged over multiple seeds
with standard deviation included. The best value is highlighted in bold.

CIFAR-100 (98%)
Sparsity 72.8% (Phase 1) Sparsity 92.6% (Phase 2) Sparsity 98.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS (uniform) 76.50 ±0.16 76.59 ±0.13 76.75 ±0.28 75.55 ±0.60 76.19 ±0.37 76.21 ±0.43 72.67 ±0.29 72.90 ±0.64 73.05 ±0.45
best candidate 75.58 ±0.19 75.71 ±0.08 75.96 ±0.13 74.51 ±0.47 75.01 ±0.74 75.00 ±0.34 71.77 ±0.04 71.77 ±0.37 72.21 ±0.02
mean candidate 75.37 ±0.12 75.58 ±0.03 75.55 ±0.26 74.32 ±0.40 74.71 ±0.48 74.70 ±0.42 71.41 ±0.09 71.61 ±0.40 71.66 ±0.19

SMS (greedy) 76.06 ±0.69 76.43 ±0.24 76.60 ±0.47 75.34 ±0.15 75.39 ±0.44 75.51 ±0.66 72.08 ±0.23 71.86 ±0.64 72.44 ±0.20
best candidate 75.58 ±0.19 75.65 ±0.00 75.94 ±0.15 74.85 ±0.04 74.53 ±0.42 74.57 ±0.21 71.05 ±0.43 71.01 ±0.49 71.47 ±0.23
mean candidate 75.37 ±0.12 75.54 ±0.03 75.54 ±0.27 74.52 ±0.25 74.27 ±0.52 74.20 ±0.31 70.84 ±0.41 70.69 ±0.75 70.87 ±0.01

IMPm× 75.85 ±0.26 76.05 ±0.00 75.76 ±0.24 74.09 ±0.24 74.19 ±0.44 74.74 ±0.06 70.92 ±0.07 70.31 ±0.52 71.85 ±0.15
IMP-RePrune — N/A — — N/A — 68.19 ±0.44 65.53 ±0.06 63.62 ±0.90
IMP — 75.54 ±0.41 — — 74.09 ±0.13 — — 70.74 ±0.08 —

ImageNet (90%)
Sparsity 53.6% (Phase 1) Sparsity 78.5% (Phase 2) Sparsity 90.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS (uniform) 76.74 ±0.20 76.89 ±0.18 77.01 ±0.05 76.04 ±0.21 76.30 ±0.13 76.49 ±0.12 74.53 ±0.04 74.82 ±0.08 74.96 ±0.16
best candidate 76.07 ±0.01 76.07 ±0.21 76.14 ±0.18 75.48 ±0.16 75.46 ±0.11 75.70 ±0.03 74.00 ±0.03 74.19 ±0.08 74.25 ±0.13
mean candidate 75.99 ±0.04 75.95 ±0.14 75.96 ±0.08 75.40 ±0.11 75.42 ±0.10 75.55 ±0.05 73.94 ±0.03 74.11 ±0.11 74.13 ±0.12

SMS (greedy) 76.74 ±0.19 76.92 ±0.15 76.88 ±0.11 76.12 ±0.18 76.35 ±0.21 76.11 ±0.26 74.58 ±0.03 74.77 ±0.03 74.52 ±0.11
best candidate 76.08 ±0.01 76.08 ±0.21 76.14 ±0.18 75.48 ±0.18 75.53 ±0.24 75.34 ±0.19 74.03 ±0.11 74.21 ±0.00 73.95 ±0.07
mean candidate 75.98 ±0.04 75.95 ±0.14 75.95 ±0.08 75.42 ±0.15 75.45 ±0.21 75.24 ±0.17 73.94 ±0.01 74.09 ±0.03 73.76 ±0.12

IMPm× 76.25 ±0.08 76.21 ±0.14 76.46 ±0.04 75.74 ±0.03 75.87 ±0.11 75.93 ±0.03 74.34 ±0.09 74.56 ±0.24 74.50 ±0.09
IMP-RePrune — N/A — — N/A — 72.97 ±0.25 72.58 ±0.01 72.08 ±0.12
IMP — 75.97 ±0.16 — — 75.19 ±0.14 — — 73.59 ±0.04 —

Unlike SMS, IMPm× cannot be parallelized in each phase as the extended number of epochs are
executed sequentially, yet, the overall computational and memory requirements remain identical
between both methods. We also compare SMS to another baseline termed IMP-RePrune, where
regular IMP is executed m times and model averaging is performed after the final phase. Unlike
SMS, which merges after every phase and hence maintains a consistent pruning mask, the individual
models in IMP-RePrune may develop diverging pruning masks over multiple phases, potentially
reducing the overall sparsity when averaged. To ensure comparable sparsity levels, IMP-RePrune
incorporates a repruning step to address any sparsity reduction after averaging (Yin et al., 2022b).

Table 1 presents results for three-phase IMP using WideResNet-20 on CIFAR-100 and ResNet-50 on
ImageNet, employing ALLR and ten retraining epochs per phase. For SMS, we vary the random seeds
across each of the m models. The three main columns correspond to phases and sparsities, targeting
98% sparsity for CIFAR-100 and 90% for ImageNet. Each main column has three subcolumns,
indicating the number of models to average (3, 5, or 10). We discuss the main observations below.

1. SMS significantly enhances generalization. We find that SMS consistently improves upon
the test accuracy of the best candidate, often with a 1% or higher margin. This confirms that
the models after retraining are averageable, resulting in better generalization than individual
models. SMS notably improves upon both regular IMP and its extended retraining variant,
IMPm×, with up to 2% enhancements even when using m = 3 splits.

2. Starting from a model soup enhances generalization. Surprisingly, the best candidates
in the second and third phase frequently exceed both IMP and IMPm×. While some
improvement is anticipated when picking the best among multiple candidates, it is notable
that the mean candidate accuracy (i.e., mean candidate) often surpasses both IMP and
IMPm× as well. This suggests that initiating from a soup, as opposed to starting from a
singular model as in regular IMP, enhances generalization in the subsequent phase.

3. IMP-RePrune faces sparsity reduction and performance degradation. Naively averag-
ing IMP’s models in the final phase often leads to reduced sparsity due to differing sparse
connectivities, requiring repruning which typically degrades performance compared to indi-
vidual models. Under certain conditions, IMP-RePrune can remain competitive, suggesting
that similar pruning patterns may emerge across multiple pruning rounds (cf. Appendix B.1).
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In summary, we find that averaging after each phase and starting subsequent phases from the soup of
the previous phase capitalizes on two dynamics, which often enable significant improvements over
IMP: first of all, the model soup consistently improves upon individual soup candidates, demonstrat-
ing that pruned and retrained models are indeed averageable and exhibit enhanced generalization.
Secondly, models retrained from a pruned soup also outperform those following the classical prune-
retrain cycle. Pruning a model with higher generalization performance yields better models after
retraining, despite experiencing a larger pruning-induced performance drop. For full results on
different architectures, datasets, target sparsities, and structured pruning, we refer to Appendix B.1.

Table 1 also contrasts uniform and greedy soup selections. With just the random seed varied for the
m models, none appear to diverge to a different basin, rendering greedy subset selection unnecessary.
The uniform approach predominantly outperforms the greedy one, notably when comparing the best
or mean candidates in scenarios like the last phase of CIFAR-100, indicating that retraining from
previous greedy soups yields less performant models.

3.2 EXAMINING SPARSE MODEL MERGING

Having established the merits of SMS, we now investigate its success and limitations in more detail.
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Figure 3: Accuracy of average of two
models vs. the maximal individual ac-
curacy. All models are pruned to 70%
sparsity (One Shot) and retrained, vary-
ing the indicated hyperparameters.

Exploring parameters beyond random seeds. Previously,
we focused on varying the random seed for simplicity. Fig-
ure 3 presents a scatter plot for One Shot IMP (70% spar-
sity) of ResNet-50 trained on ImageNet, comparing the
effects of varying the random seed, weight decay strength,
retraining duration, and initial learning rate of a linearly
decaying schedule. Exact hyperparameters are listed in
Appendix B.2. Parameter averages are constructed from
two-element pairs of models in the uniform soup setting.
The plot displays the test accuracy of the averaged model
versus the maximal test accuracy of each pair. In this set-
ting, most averaged models show a net improvement over
their individual components, demonstrating that varying dif-
ferent hyperparameters in the retraining phase of One Shot
IMP produces models within the same loss basin. Com-
paring different hyperparameters, the most substantial and
consistent improvement comes from varying the random
seed. Unlike the random seed, which only introduces vari-
ability due to inherent randomness, other parameters such
as weight decay have a direct, controllable impact on the
results; for instance, a poorly chosen weight decay value could significantly degrade performance.

OOD-robustness and fairness. We also explored if SMS enhances robustness to out-of-distribution
data, akin to regular model soups (Wortsman et al., 2022a), using benchmark robustness datasets
CIFAR-100-C and ImageNet-C (Hendrycks & Dietterich, 2019) for evaluation. SMS consistently
outperformed individual models from IMP and other baselines, displaying better resilience to common
corruptions, especially with ImageNet-C, which showed up to a 2.5% increase in OOD-accuracy
(see Figure 8, Table 14 in Appendix B.2.3 for more details). Further, previous research suggests that
pruning can exacerbate unfairness across data subgroups (Hooker et al., 2019; 2020; Paganini, 2020).
In Appendix B.2.4, we examine if SMS could alleviate such pruning-induced unfairness, and found
SMS to exhibit less severe negative impacts on individual subgroups than IMP.

Instability to randomness and recovering it. Neyshabur et al. (2020) demonstrated that during
training from scratch, the inherent randomness in batch selection alone suffices to cause divergence
between two models to the extent that they are not averageable, even when starting from identical
(random) initialization. Such instability to randomness can be mitigated by ensuring sufficient
pretraining: Frankle et al. (2020) specifically analyze the amount of training required before splitting
a network into two copies further trained with different random seeds, such that the final models
reside within a linearly connected basin. In that vein, several works (Frankle et al., 2020; Evci et al.,
2022; Paul et al., 2023) study the stability of IMP with weight rewinding (IMP-WR) in the context of
the Lottery Ticket Hypothesis (Frankle & Carbin, 2018). In contrast, we explore retraining networks
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Figure 4: WideResNet-20 on CIFAR-100: (a) Accuracy difference between the soup (m = 5)
and best averaging candidate after One Shot pruning and retraining for varying sparsity levels. (b)
Accuracy difference between the soup (m = 3) and IMP3× retrained three times as long as indicated
on the x-axis, using One Shot pruning to 90%, 95% and 98% sparsity. Results are averaged over
multiple random seeds with min-max bands indicated.

without rewinding. Based on the aforementioned instability analysis, we conjecture that different
splits of a pruned network converge to a common basin under low sparsity and moderate learning
rates, while high pruning levels may potentially reduce stability to randomness.

Figure 4a shows the difference in test accuracy between a soup of m = 5 models and the best candidate
at different sparsity levels. Each point corresponds to the best configuration across varying retraining
lengths (5, 20, and 50 epochs) and schedules (LLR and ALLR). UniformSoup and GreedySoup
enhance accuracy by up to 2% over individual models. Yet, as sparsity increases, this benefit declines,
with UniformSoup collapsing in performance. Beyond a certain sparsity, stability to randomness
declines, causing model divergence and hindering beneficial model averaging. Unlike UniformSoup,
GreedySoup performs at least as well as the best individual model.

Similarly, Figure 4b depicts the difference between the model soup (m = 3) and IMP3×, where the
latter is retrained for m · k epochs and the former trains m models for k epochs, with k denoted on
the x-axis. Again, we plot the best configuration varying the retraining schedule (LLR, ALLR) and
merging method (UniformSoup, GreedySoup). For moderate sparsity (green), averaging m models
is more effective than training a single model m-times as long, even with brief retraining. At high
sparsity (red), short-term retraining and averaging m models underperforms compared to extending
a single model’s training. However, a break-even point emerges around 15 epochs, beyond which
the benefit of extended single model training diminishes, with the m models sufficiently trained for
merging. In iterative pruning, we expect SMS to require fewer retraining epochs per phase, benefiting
from the gradual sparsity increment. Despite extensive retraining, IMPm× fails to match SMS.

Efficiency of SMS. Each IMP-cycle consists of k epochs, while IMPm× extends this to m · k epochs
sequentially. Contrarily, SMS executes each phase with m distinct models, independently trained for
k epochs, allowing parallelization that can lower wall-time by a factor of 1/m compared to IMPm×.
Nevertheless, the overall compute and memory requirements for both IMPm× and SMS remain at
m · k units. Resource-wise, IMPm× and SMS are hence on par; however, the parallelization in SMS
underscores a practical advantage. Further, our data shows SMS often significantly outperforming
IMPm×, suggesting comparable accuracy can be achieved with fewer total retraining epochs.

In Appendix C, we conduct ablation studies to individually assess the impact of the retraining
schedule and the number of epochs per phase during the execution of SMS.

3.3 IMPROVING PRUNING DURING TRAINING ALGORITHMS

We extend our findings to magnitude-pruning based methods within the pruning during training
domain. These methods, unlike IMP, start with a randomly initialized model and sparsify it during
regular training. We focus on GMP (Zhu & Gupta, 2017; Gale et al., 2019), DPF (Lin et al., 2020),
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Table 2: ResNet-50 on ImageNet: Comparison of BIMP, GMP and DPF with their SMS-extended
variants for goal sparsity levels of 70%, 80% and 90%. Each subcolumn denotes the top-1 accuracy
and the theoretical speedup at a given sparsity. All results are averaged over multiple seeds and
include standard deviations. The best, second best, and third best values are highlighted.

ImageNet
Sparsity 70% Sparsity 80% Sparsity 90%

Method Accuracy Speedup Accuracy Speedup Accuracy Speedup

BIMP+SMS 76.20 ±0.09 2.7 ±0.0 75.76 ±0.11 3.7 ±0.0 74.05 ±0.02 6.1 ±0.0
BIMP 75.62 ±0.02 2.7 ±0.0 75.08 ±0.16 3.7 ±0.0 73.53 ±0.05 6.1 ±0.0

GMP+SMS 75.10 ±0.00 2.7 ±0.0 74.48 ±0.00 3.9 ±0.0 73.12 ±0.02 7.7 ±0.0
GMP 74.55 ±0.07 2.7 ±0.0 73.92 ±0.12 4.0 ±0.0 72.81 ±0.00 7.0 ±0.0

DPF+SMS 76.26 ±0.10 2.7 ±0.0 75.85 ±0.05 3.6 ±0.0 74.31 ±0.00 6.0 ±0.0
DPF 75.74 ±0.02 2.6 ±0.0 75.27 ±0.02 3.6 ±0.0 73.88 ±0.01 5.9 ±0.0

GSM 73.69 ±0.70 2.9 ±0.1 72.75 ±0.62 4.5 ±0.3 70.08 ±0.94 9.5 ±0.8
DNW 75.81 ±0.05 2.5 ±0.0 75.35 ±0.21 3.3 ±0.0 74.24 ±0.12 5.5 ±0.1
LC 75.03 ±0.20 2.4 ±0.0 73.87 ±0.62 3.2 ±0.0 67.57 ±2.71 5.1 ±0.0
DST 72.47 ±0.01 4.1 ±0.0 72.32 ±0.03 9.7 ±0.3 71.35 ±0.09 13.2 ±0.4

and BIMP (Zimmer et al., 2023). GMP applies a pruning schedule to iteratively update a pruning
mask throughout training. DPF, while following the same schedule, enables error compensation by
updating the dense parameters using the pruned model’s gradient. BIMP divides the training budget
into a pretraining phase and multiple IMP cycles thereafter, rendering it closest to IMP.

These three approaches can be easily adapted using SMS. BIMP can integrate SMS within individual
phases. Both GMP and DPF prune at uniformly distributed timesteps during training. We regard the
interval between two such steps as a phase, during which we create m copies of the recently pruned
model, train them with different random seeds, and merge them before the next pruning step. Unlike
IMP or BIMP, GMP and DPF follow the original learning rate schedule throughout a phase.

Table 2 compares accuracy and sparsity-induced theoretical speedup (Blalock et al., 2020) of the three
methods and their SMS-enhanced versions to other state-of-the-art pruning during training methods
like GSM (Ding et al., 2019), DNW (Wortsman et al., 2019), LC (Carreira-Perpinán & Idelbayev,
2018), and DST (Liu et al., 2020). For a fair comparison, we solely consider the dense-to-sparse
training paradigm, as opposed to pruning at initialization (Lee et al., 2019; Tanaka et al., 2020) or
dynamic sparse training (DST, Mocanu et al., 2018; Dettmers & Zettlemoyer, 2019; Evci et al., 2020)
methods. We applied LC and GSM to both randomly initialized and pretrained models, selecting
the best results for each sparsity, noting the original works only applied these to pretrained models.
Further, we experimented with STR (Kusupati et al., 2020), but omitted the results as we were unable
to cover the exact sparsity range, being controllable only indirectly through regularization parameters.
Detailed training and hyperparameters can be found in the corresponding subsection of Appendix A.2.

Incorporating SMS into BIMP, GMP, and DPF consistently improves performance, despite their
deviation from IMP. BIMP benefits the most, likely due to the decaying learning rate facilitating
convergence in each phase. In comparison, SMS stands out as a simple yet effective way to enhance
the competitiveness of magnitude-based pruning methods, noting that SMS-enhanced methods
increase computational costs by branching into m models, a cost mitigable through parallelizing.

4 RELATED WORK

We review the related literature, focusing on sparsity-related studies. We refer to Hoefler et al. (2021)
for a comprehensive review of sparsification approaches.

Model Averaging. Stochastic Weight Averaging (Izmailov et al., 2018) averages parameters across
the SGD trajectory for improved generalization. Wortsman et al. (2022a) and Rame et al. (2022)
demonstrate model soups’ enhanced generalization and OOD-performance by averaging models
finetuned with varying hyperparameters. The approach closest to ours in Section 3.3 is Late-phase
learning (von Oswald et al., 2020), independently training and averaging specific parameters, albeit
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without pruning. Gueta et al. (2023) explores fine-tuning in language models, revealing a clustering-
like behavior with regions around close models containing potentially superior models. Croce et al.
(2023) explore soups of adversarially-robust models, while Choshen et al. (2022) enhance base models
by merging multiple finetuned ones. Wortsman et al. (2022b) introduce robust fine-tuning through
averaging zero-shot and fine-tuned models. Similar to SMS, concurrent work by Jolicoeur-Martineau
et al. (2023) regularly averages independently trained models, although without pruning.

We highlight key distinctions between our work and existing studies that combine sparsity with
parameter averaging. Yin et al. (2022b) utilize dynamic sparse training, averaging models within a
single run with fixed hyperparameters, in contrast to our prune-after-training method that averages
models across multiple runs with diverse hyperparameter settings. Their prune-and-grow approach,
exploring different sparsity patterns and requiring re-pruning to maintain sparsity, contrasts with our
method which deliberately avoids re-pruning by keeping consistent sparsity patterns. We explicitly
demonstrate that this approach significantly improves upon the re-pruning approach (IMP-RePrune),
even when using strategies like CIA or CAA that are designed to mitigate the impact of re-pruning
(Yin et al., 2022b). Similarly, Yin et al. (2022a) employ IMP with weight rewinding, averaging IMP
subnetworks of different prune-retrain-cycles across a single training trajectory, which also requires
re-pruning, unlike our approach of averaging parallely trained models. Furthermore, their objective
is to generate lottery tickets, as opposed to creating sparse models for inference. In a similar vein,
Stripelis et al. (2022) introduce FedSparsify, a Federated Learning algorithm that centrally updates a
global mask with local client masks, resolving disparities through majority voting. Furthermore, our
work is distinct from that of Jaiswal et al. (2023), who focus on averaging early pruning masks for
mask generation, whereas we concentrate on averaging parameters of sparse models.

Mode Connectivity. Neyshabur et al. (2020) demonstrate that models trained from scratch are not
linearly connected, while models finetuned from a pretrained model tend to be similar and reside
within the same loss basin. Entezari et al. (2022) conjecture different-seed trained models are linear
mode connected up to neuron permutations. Partially demonstrating this, Ainsworth et al. (2023)
propose permutation algorithms for transforming models into a shared loss basin and Singh & Jaggi
(2020) employ model fusion for neuron soft-alignment, further also enhancing filter pruning by
fusing dense into sparse models. Similarly, Benzing et al. (2022) introduce a permutation algorithm,
demonstrating that models share a loss valley (up to permutation) even at initialization. Jordan et al.
(2022) explore ‘variance collapse’ in interpolations of deep networks, proposing mitigation strategies.
Several works (Frankle et al., 2020; Evci et al., 2022; Paul et al., 2023) study IMP’s stability to
randomness, specifically with weight rewinding (IMP-WR). Evci et al. (2022) demonstrate that
trained lottery tickets and IMP-WR solutions converge to identical basins, while Paul et al. (2023)
find successive IMP-WR solutions at varied sparsity are linearly mode connected, maintaining loss
stability along the linear interpolation between adjacent solutions.

Prediction Ensembling. A range of studies focus on prediction ensembling, where outputs of
multiple models are averaged (Lakshminarayanan et al., 2017; Huang et al., 2017; Garipov et al.,
2018; Mehrtash et al., 2020; Chandak et al., 2023). In the sparsity context, Liu et al. (2021) leverage
DST for efficient generation of diverse ensemble candidates. Whitaker & Whitley (2022) form
ensembles by randomly pruning and retraining model copies, while Kobayashi et al. (2022) finetune
subnetworks of a pretrained model. We refer to Ganaie et al. (2021) for a survey of ensembling.

5 DISCUSSION

Efficient, high-performing sparse networks are crucial in resource-constrained environments. How-
ever, sparse models cannot easily leverage the benefits of parameter averaging. We addressed this
issue proposing SMS, a technique that merges models while preserving sparsity, substantially enhanc-
ing IMP and outperforming multiple baselines. By integrating SMS into magnitude-pruning methods
during training, we elevated their performance and competitiveness. Despite the focus on pruning,
a single type of network compression, we think that our work serves as an important step towards
understanding and improving sparsification algorithms.
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A TECHNICAL DETAILS AND TRAINING SETTINGS

A.1 PRETRAINING

Training settings and metrics. Table 3 shows the exact pretraining settings for each dataset-
architecture pair, reporting the number of epochs used for pretraining, the batch size, weight decay
as well as the learning rate used. We stick to SGD as the optimizer, noting that a variety of other
optimization methods for training deep neural networks exist (see e.g. Kingma & Ba, 2014; Pokutta
et al., 2020). We keep momentum at the default value of 0.9. The last column reports the performance
we achieve when performing regular dense training. For image classification tasks, we report the top-1
test accuracy being the fraction of correctly classified test samples. For semantic segmentation, we
used pretrained backbones and evaluated the mean Intersection-over-Union (IoU) on the validation
dataset, which we use as the test set. For NMT, we report the BLEU score on the test set with
sequence length limited to 128. We utilized label smoothing and gradient clipping for MaxViT. If
needed, we report the theoretical speedup, a metric indicating the FLOPs ratio for inference between
dense and sparse models (Blalock et al., 2020). The speedup, defined as Fd/Fs where Fd and Fs are
the FLOPs required for dense and pruned models respectively, depends solely on the distribution of
pruned weights, not on the values attained by non-zero parameters. FLOPs are computed using a
single test batch, with code adapted from the ShrinkBench framework (Blalock et al., 2020).

Table 3: Exact pretraining configurations in our experiments.

Dataset Network (number of weights) Epochs Batch size Weight decay Learning rate (t = training epoch) Unpruned test accuracy/IoU/BLEU

CIFAR-10 ResNet-18 (11 Mio) 200 128 5e-4 ηt =


0.1 t ∈ [1, 90],

0.01 t ∈ [91, 180],

0.001 t ∈ [181, 200]

95.0% ±0.04%

Celeb-A ResNet-18 (11 Mio) 100 256 1e-5 linear from 0.1 to 0 98.9% ±0.01%
CIFAR-100 WRN-20 (26 Mio) 200 128 2e-4 linear from 0.1 to 0 76.5% ±0.1%
ImageNet ResNet-50 (26 Mio) 90 256 1e-4 linear from 0.1 to 0 76.12% ±0.01%

ImageNet MaxViT (31 Mio) 200 256 1e-5 ηt =



0.2 t
20 t ∈ [1, 20],

0.2 t ∈ [20, 60],

0.02 t ∈ [61, 120],

0.002 t ∈ [121, 160],

0.0002 t ∈ [161, 200]

78.0% ±0.02%

CityScapes PSPNet (68 Mio) 300 12 1e-5 ηt =



0.1 t
20 t ∈ [1, 20],

0.1 t ∈ [20, 100],

0.01 t ∈ [101, 200],

0.001 t ∈ [201, 270],

0.0001 t ∈ [271, 290]

0.00001 t ∈ [291, 300]

58.3 IoU ±0.5

WMT16 (EN-DE) T5-small (77 Mio) 5 16 1e-5 ηt =



0.1t t ∈ [0, 1.0],

0.1 t ∈ [1, 2[,

0.01 t ∈ [2, 3[,

0.001 t ∈ [3, 4[,

0.0001 t ∈ [4, 5]

24.56 BLEU ±0.007

A.2 PRUNING AND RETRAINING

Pruning settings. Identifying which weights to remove is essential for successful magnitude
pruning, with multiple methods developed to address this. Zhu & Gupta (2017) presented the
UNIFORM allocation that prunes each layer to the same relative sparsity level. Gale et al. (2019)
refined this approach to UNIFORM+, leaving the first convolutional layer dense and capping pruning
in the final fully-connected layer at 80%. Evci et al. (2020) reformulate the Erdős-Rényi kernel (ERK)
(Mocanu et al., 2018) to consider layer and kernel dimensions for layerwise sparsity distribution. Lee
et al. (2020) suggested Layer-Adaptive Magnitude-based Pruning (LAMP), which minimizes output
distortion at pruning time measured by the L2-distortion on the worst-case input. Throughout this
work, we stick to the GLOBAL allocation, in which all trainable parameters are treated as a single
vector and a global threshold is computed to remove parameters independent of the layer they belong
to. In experiments where we prune convolutional filters instead of weights, we adopt the L2-norm
criterion from Li et al. (2016), ensuring a uniform sparsity distribution across layers.

We follow the recommendations of Evci et al. (2020) and Dettmers & Zettlemoyer (2019) and refrain
from pruning biases and batch-normalization parameters, as their negligible weight contribution is
offset by their significant performance impact. Moreover, for GMP experiments, we opt for the global
selection criterion due to its superior performance compared to UNIFORM+ (Zimmer et al., 2023).
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Retraining schedules. The choice of learning rate schedule during the retraining phase has recently
attracted interest due to its significant influence on the performance of pruned networks. To avoid the
undesired necessity of individually tuning the learning rate schedule in each phase, various retraining
schedules have been devised to transpose the original learning rate schedule to the retraining phase.
We briefly outline these schedules. Let T represent the total epochs the original network is trained for
with the learning rate schedule (ηt)t≤T , and let Trt denote the epochs allocated for retraining per
prune-retrain cycle. The following retraining schedules have been proposed.

• FINE TUNING (FT, Han et al., 2015): Retrains the pruned network using the constant
learning rate, ηT , from the last epoch of the original training.

• LEARNING RATE REWINDING (LRW, Renda et al., 2020): Utilizes the last T −Trt learning
rates from the original training.

• SCALED LEARNING RATE RESTARTING (SLR, Le & Hua, 2021): Compresses the original
learning rate schedule into the retraining timeframe with a short warm-up.

• CYCLIC LEARNING RATE RESTARTING (CLR, Le & Hua, 2021): Employs a cosine based
schedule with a short warm-up to η1.

• LINEAR LEARNING RATE RESTARTING (LLR, Zimmer et al., 2023): A linear decay from
η1 to zero during each retrain cycle.

• ADAPTIVE LINEAR LEARNING RATE RESTARTING (ALLR, Zimmer et al., 2023): LLR
but dynamically adapts the initial learning rate based on the impact of the previous pruning
step and the retraining time available, addressing both the length of a prune-retrain cycle
and the performance drop induced by pruning.

Hyperparameters for Retraining. The choice of hyperparameters during retraining significantly
impacts the tradeoff between model performance and achieved sparsity. We briefly discuss the
hyperparameters applied during the retraining phase, differentiating them from those we leave
unchanged compared to the pretraining phase. The exact retraining hyperparameters are specified
explicitly in the descriptions of each experiment or in the corresponding subsection in Appendix B.

Specifically, we retain the same batch size and weight decay parameters as used in pretraining. For
each IMP-based experiment, we treat the retraining learning rate schedule, the number of retraining
epochs, and the number of phases as experiment-specific hyperparameters.

• Learning Rate Schedule: The retraining schedule has a dramatic impact on the final
performance, as outlined in the previous paragraph. Zimmer et al. (2023) demonstrate
that LLR and ALLR surpass previously proposed methods across a broad spectrum of
architectures, sparsity levels, and retraining durations. Thus, we adhere to these schedules
in our experiments, specifying our choice explicitly when important.

• Number of Retraining Epochs: The number of epochs in retraining influences the extent
to which the model can recover the pre-pruned accuracy. Further, in the high sparsity regime,
sufficient retraining is required to ensure that models are averageable, as highlighted in
Figure 4b.

• Number of Phases: The number of prune-retrain phases similarly impacts the performance
vs. sparsity tradeoff. In general, high goal sparsity levels require multiple phases.

Model Soups and Batch-Normalization statistics. Throughout our experiments, we also explored
variants of LearnedSoup (Wortsman et al., 2022a), which learns the coefficients λi to maximize the
validation accuracy. Specifically, we observed improvements when utilizing knowledge distillation
techniques (Hinton et al., 2015) with the original pretrained model as the teacher, instead of minimiz-
ing the validation loss as suggested by Wortsman et al. (2022b). Nevertheless, these improvements
were marginal, so we opted for UniformSoup and GreedySoup for simplicity and to avoid introducing
new hyperparameters.

Moreover, we noticed that in later IMP phases, assuming standard IMP rather than starting from
an averaged model as in SMS, sparse connectivities tend to diverge, leading to diminished sparsity
upon averaging. Specifically, while in the first phase two model splits converge to the same loss
basin, subsequent pruning may project them into different subspaces, motivating the combination of
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individual models into a single one at the end of each phase to ensure that effectively averaging them
remains possible. Therefore, we also explored weight alignment, as notably proposed by Ainsworth
et al. (2023) and Singh & Jaggi (2020) (see Section 4 for a detailed discussion), hoping to permute
models in later phases to a common linear subspace. Although we partially mitigated the sparsity
reduction, we were unable to fully recover the original sparsity. This approach may only work if
different IMP runs share the same distribution of sparsity among layers (i.e., a specific layer in model
one must have the same sparsity as the same layer in model two), which is generally not the case.

When constructing an averaged model or changing the parameters in any other way, the Batch-
Normalization statistics have to be updated, which can be done by performing a forward pass on (part
of) the training data without backpropagation. Since doing so only for model soups could potentially
skew the results, we decided to recompute the statistics for single models as well to have a comparable
setting independent of whether we changed the parameters or not. In particular, we enforce using the
entire train data loader and we fixed its random batch ordering to ensure reproducibility and to avoid
the batch ordering having any influence.

A.3 PRUNING DURING TRAINING

Hyperparameters for Pruning during Training algorithms. Unless stated otherwise, we set
weight decay to 1e-4 and momentum to 0.9, with all methods following a linear learning rate schedule
starting from 1e-1. For GSM and LC, we select the best result either from scratch or using a pretrained
model, applying these methods for 10, 20, or 40 epochs. When extending BIMP, GMP and DPF with
SMS, we choose the number of copies to create within a phase, m, between 2 and 3. Further, we
tuned the epoch at which we begin to train multiple copies between 50 and 75. Otherwise, we applied
the following hyperparameter grids.

• BIMP
– Initial training budget epochs: 60, 75.
– Number of pruning phases of equal length: 1, 2, 3.

• GMP
– Equally distributed pruning steps: 5, 9, 18, 45.

• DPF
– Equally distributed pruning steps: 9, 18.

• GSM
– Momentum: 0.9, 0.95.
– Weight decay: 1e-4, 1e-5.

• LC
– Weight decay: 1e-4, 1e-5.

• DNW
– Weight decay: 1e-4, 1e-5.

• DST
– Weight decay: 1e-4, 1e-5.
– α: 1e-7, 5e-7, 1e-6, 2e-6, 5e-6, 8e-6, 1e-5, 1e-4.
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B EXTENDED RESULTS

This section contains additional tables and plots. The subsections follow the same structure as the
main experimental section. To maintain transparency, we explicitly mention the retraining schedule
and duration in the captions of tables and figures, or in the beginning of the subsection if suitable.

B.1 EVALUATING SPARSE MODEL SOUPS

Table 4: WideResNet-20 on CIFAR-100 (unstructured pruning): Test accuracy comparison of SMS
to several baselines for target sparsities 90% (top) and 98% (bottom) given three prune-retrain cycles.
We report results using UniformSoup as well as GreedySoup for merging, employing ALLR as the
retraining schedule for 10 epochs of retraining per phase. Results are averaged over multiple seeds
with standard deviation included. The best value is highlighted in bold.

CIFAR-100 (90%)
Sparsity 53.6% (Phase 1) Sparsity 78.5% (Phase 2) Sparsity 90.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS (uniform) 76.30 ±0.07 76.38 ±0.29 76.45 ±0.34 76.55 ±0.17 76.89 ±0.42 76.94 ±0.25 75.98 ±0.43 76.26 ±0.76 76.67 ±0.02
best candidate 76.03 ±0.06 76.18 ±0.03 76.13 ±0.35 75.88 ±0.49 75.78 ±0.35 75.82 ±0.21 75.15 ±0.05 75.23 ±0.38 75.52 ±0.30
mean candidate 75.88 ±0.00 75.86 ±0.15 75.93 ±0.27 75.50 ±0.21 75.48 ±0.12 75.45 ±0.13 74.99 ±0.22 75.06 ±0.42 75.15 ±0.16

SMS (greedy) 76.28 ±0.10 76.04 ±0.16 76.12 ±0.32 76.16 ±0.21 76.45 ±0.61 76.45 ±0.28 75.48 ±0.16 75.91 ±0.08 75.81 ±0.13
best candidate 76.05 ±0.03 76.18 ±0.03 76.11 ±0.33 75.44 ±0.11 75.66 ±0.19 75.59 ±0.35 75.14 ±0.06 75.08 ±0.35 74.97 ±0.11
mean candidate 75.93 ±0.02 75.86 ±0.15 75.92 ±0.26 75.26 ±0.11 75.34 ±0.15 75.24 ±0.19 74.87 ±0.01 74.81 ±0.23 74.72 ±0.21

IMPm× 76.30 ±0.42 75.97 ±0.30 76.27 ±0.02 75.69 ±0.43 75.86 ±0.48 75.91 ±0.25 74.59 ±0.61 74.73 ±0.42 75.00 ±0.57
IMP-RePrune — N/A — — N/A — 75.70 ±0.59 75.68 ±0.25 75.60 ±0.23
IMP — 75.64 ±0.21 — — 75.51 ±0.52 — — 74.91 ±0.71 —

CIFAR-100 (98%)
Sparsity 72.8% (Phase 1) Sparsity 92.6% (Phase 2) Sparsity 98.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS (uniform) 76.50 ±0.16 76.59 ±0.13 76.75 ±0.28 75.55 ±0.60 76.19 ±0.37 76.21 ±0.43 72.67 ±0.29 72.90 ±0.64 73.05 ±0.45
best candidate 75.58 ±0.19 75.71 ±0.08 75.96 ±0.13 74.51 ±0.47 75.01 ±0.74 75.00 ±0.34 71.77 ±0.04 71.77 ±0.37 72.21 ±0.02
mean candidate 75.37 ±0.12 75.58 ±0.03 75.55 ±0.26 74.32 ±0.40 74.71 ±0.48 74.70 ±0.42 71.41 ±0.09 71.61 ±0.40 71.66 ±0.19

SMS (greedy) 76.06 ±0.69 76.43 ±0.24 76.60 ±0.47 75.34 ±0.15 75.39 ±0.44 75.51 ±0.66 72.08 ±0.23 71.86 ±0.64 72.44 ±0.20
best candidate 75.58 ±0.19 75.65 ±0.00 75.94 ±0.15 74.85 ±0.04 74.53 ±0.42 74.57 ±0.21 71.05 ±0.43 71.01 ±0.49 71.47 ±0.23
mean candidate 75.37 ±0.12 75.54 ±0.03 75.54 ±0.27 74.52 ±0.25 74.27 ±0.52 74.20 ±0.31 70.84 ±0.41 70.69 ±0.75 70.87 ±0.01

IMPm× 75.85 ±0.26 76.05 ±0.00 75.76 ±0.24 74.09 ±0.24 74.19 ±0.44 74.74 ±0.06 70.92 ±0.07 70.31 ±0.52 71.85 ±0.15
IMP-RePrune — N/A — — N/A — 68.19 ±0.44 65.53 ±0.06 63.62 ±0.90
IMP — 75.54 ±0.41 — — 74.09 ±0.13 — — 70.74 ±0.08 —

Table 5: ResNet-18 on CIFAR-10 (unstructured pruning): Test accuracy comparison of SMS to
several baselines for target sparsity 98% given three prune-retrain cycles. We report results using
UniformSoup as well as GreedySoup for merging, employing ALLR as the retraining schedule for
20 epochs of retraining per phase. Results are averaged over multiple seeds with standard deviation
included. The best value is highlighted in bold.

CIFAR-10 (98%)
Sparsity 72.8% (Phase 1) Sparsity 92.6% (Phase 2) Sparsity 98.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS (uniform) 95.41 ±0.00 95.46 ±0.13 95.64 ±0.01 95.45 ±0.01 95.59 ±0.09 95.61 ±0.03 94.91 ±0.16 95.24 ±0.11 95.40 ±0.10
best candidate 94.84 ±0.10 94.96 ±0.13 94.94 ±0.07 94.92 ±0.07 95.11 ±0.06 95.12 ±0.02 94.40 ±0.02 94.69 ±0.16 94.81 ±0.09
mean candidate 94.70 ±0.13 94.82 ±0.00 94.75 ±0.08 94.85 ±0.04 94.93 ±0.03 94.94 ±0.01 94.32 ±0.12 94.57 ±0.16 94.66 ±0.13

SMS (greedy) 95.42 ±0.04 95.45 ±0.18 95.50 ±0.05 95.46 ±0.08 95.27 ±0.24 95.32 ±0.20 95.01 ±0.08 94.92 ±0.04 94.94 ±0.25
best candidate 94.84 ±0.10 94.96 ±0.13 94.94 ±0.07 94.96 ±0.26 94.86 ±0.09 94.92 ±0.08 94.55 ±0.11 94.48 ±0.01 94.54 ±0.06
mean candidate 94.70 ±0.13 94.82 ±0.00 94.75 ±0.08 94.80 ±0.15 94.76 ±0.11 94.79 ±0.07 94.44 ±0.06 94.34 ±0.01 94.29 ±0.06

IMPm× 95.18 ±0.08 95.16 ±0.16 95.19 ±0.18 95.02 ±0.11 95.11 ±0.18 95.20 ±0.02 94.62 ±0.28 94.61 ±0.02 94.59 ±0.23
IMP-RePrune — N/A — — N/A — 94.44 ±0.28 94.24 ±0.13 93.62 ±0.16
IMP — 94.71 ±0.08 — — 94.92 ±0.01 — — 94.17 ±0.04 —
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Table 6: ResNet-18 on CIFAR-10 (unstructured pruning): Test accuracy comparison of SMS to
several baselines for target sparsities 80%, 90%, 95% in the One Shot setting, using ALLR for a
retrain length of 20 epochs per phase. We report results using UniformSoup as well as GreedySoup
for merging. Results are averaged over multiple seeds with standard deviation included. The best
value is highlighted in bold.

CIFAR-10
Sparsity 80.0% (One Shot) Sparsity 90.0% (One Shot) Sparsity 95.0% (One Shot)

Accuracy of m = 3 m = 3 m = 3

SMS (uniform) 95.49 ±0.05 95.42 ±0.06 95.03 ±0.15
best candidate 95.04 ±0.06 94.84 ±0.03 94.63 ±0.06
mean candidate 94.92 ±0.08 94.76 ±0.03 94.48 ±0.05

SMS (greedy) 95.36 ±0.16 95.41 ±0.07 95.04 ±0.19
best candidate 95.04 ±0.06 94.84 ±0.03 94.63 ±0.06
mean candidate 94.92 ±0.08 94.76 ±0.03 94.48 ±0.05

IMPm× 95.17 ±0.17 95.02 ±0.01 94.72 ±0.24
IMP 95.02 ±0.05 94.71 ±0.28 94.38 ±0.02

Table 7: MaxViT on ImageNet (unstructured pruning): Test accuracy comparison of SMS to several
baselines for target sparsities 75%, 80%, 85% in the One Shot setting, using ALLR for a retrain
length of 10 epochs per phase. We report results using UniformSoup as well as GreedySoup for
merging. Results are averaged over multiple seeds with standard deviation included. The best value
is highlighted in bold.

ImageNet
Sparsity 75.0% (One Shot) Sparsity 80.0% (One Shot) Sparsity 85.0% (One Shot)

Accuracy of m = 3 m = 3 m = 3

SMS (uniform) 78.31 ±0.21 78.12 ±0.17 77.59 ±0.24
best candidate 78.11 ±0.07 77.85 ±0.10 77.37 ±0.02
mean candidate 77.83 ±0.01 77.67 ±0.07 77.17 ±0.04

SMS (greedy) 78.21 ±0.14 78.06 ±0.01 77.45 ±0.13
best candidate 78.11 ±0.07 77.85 ±0.10 77.37 ±0.02
mean candidate 77.83 ±0.01 77.66 ±0.06 77.17 ±0.04

IMPm× 78.17 ±0.15 77.99 ±0.12 77.68 ±0.23
IMP 78.07 ±0.09 77.88 ±0.06 77.34 ±0.12

Table 8: PSPNet on Cityscapes (unstructured pruning): Test accuracy comparison of SMS to several
baselines for target sparsity 90% given two prune-retrain cycles of 50 retraining epochs each. We
report results using UniformSoup as well as GreedySoup merging. Results are averaged over multiple
seeds with standard deviation included. The best value is highlighted in bold.

CityScapes (90%)
Sparsity 68.3% (Phase 1) Sparsity 90.0% (Phase 2)

Accuracy of m = 3 m = 5 m = 3 m = 5

SMS (uniform) 58.52 ±0.15 58.47 ±0.10 58.73 ±0.20 58.40 ±0.30
best candidate 58.20 ±0.37 58.25 ±0.48 58.62 ±0.60 57.92 ±0.36
mean candidate 57.96 ±0.29 57.80 ±0.33 58.38 ±0.41 57.62 ±0.48

SMS (greedy) 58.14 ±0.14 58.63 ±0.36 58.46 ±0.24 58.79 ±0.09
best candidate 58.26 ±0.06 58.59 ±0.14 58.13 ±0.27 58.73 ±0.06
mean candidate 57.82 ±0.13 58.17 ±0.14 57.90 ±0.09 58.15 ±0.04

IMPm× 57.39 ±0.06 58.35 ±0.08 58.27 ±0.42 58.39 ±0.17
IMP-RePrune — N/A — 58.10 ±0.24 58.64 ±0.34
IMP — 57.92 ±0.04 — — 58.89 ±0.23 —
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Table 9: PSPNet on Cityscapes (unstructured pruning): Test accuracy comparison of SMS to several
baselines for target sparsities 60%, 70%, 80% and 90% in the One Shot setting, using LLR as the
retraining schedule for 50 epochs of retraining. We report results using UniformSoup as well as
GreedySoup merging. Results are averaged over multiple seeds with standard deviation included.
The best value is highlighted in bold.

CityScapes
Sparsity 60.0% (One Shot) Sparsity 70.0% (One Shot) Sparsity 80.0% (One Shot) Sparsity 90.0% (One Shot)

Accuracy of m = 3 m = 3 m = 3 m = 3

SMS (uniform) 58.11 ±0.22 57.59 ±0.38 58.40 ±0.03 58.19 ±0.28
best candidate 57.74 ±0.11 57.36 ±0.43 57.97 ±0.06 57.87 ±0.49
mean candidate 57.37 ±0.47 57.04 ±0.48 57.88 ±0.03 57.70 ±0.44

SMS (greedy) 58.41 ±0.13 58.13 ±0.31 57.95 ±0.40 57.30 ±0.21
best candidate 58.16 ±0.49 57.78 ±0.13 57.78 ±0.26 57.32 ±0.28
mean candidate 58.05 ±0.50 57.55 ±0.07 57.49 ±0.38 57.18 ±0.25

IMPm× 58.02 ±0.09 58.09 ±1.04 58.26 ±0.13 58.47 ±0.22
IMP 57.44 ±0.71 58.05 ±0.28 57.43 ±0.24 56.99 ±0.69

Table 10: T5 on WMT16 (unstructured pruning): BLEU score comparison of SMS to several baselines
for target sparsities 50%, 60%, 70% in the One Shot setting. We report results using UniformSoup as
well as GreedySoup merging, employing ALLR as the retraining schedule for 2 epochs of retraining
per phase. Results are averaged over multiple seeds with standard deviation included. The best value
is highlighted in bold.

WMT-16
Sparsity 50.0% (One Shot) Sparsity 60.0% (One Shot) Sparsity 70.0% (One Shot)

Accuracy of m = 3 m = 3 m = 3

SMS (uniform) 25.47 ±0.52 25.09 ±0.00 24.51 ±0.43
best candidate 25.39 ±0.03 24.96 ±0.26 24.12 ±0.01
mean candidate 25.16 ±0.08 24.79 ±0.19 24.03 ±0.01

SMS (greedy) 25.51 ±0.28 24.92 ±0.47 24.14 ±0.02
best candidate 25.39 ±0.03 24.96 ±0.26 24.12 ±0.01
mean candidate 25.16 ±0.08 24.79 ±0.19 24.03 ±0.01

IMPm× 25.36 ±0.12 25.09 ±0.05 24.00 ±0.04
IMP 25.15 ±0.20 24.90 ±0.20 24.04 ±0.28

22



Published as a conference paper at ICLR 2024

Table 11: WideResNet-20 on CIFAR-100 (structured pruning): Test accuracy comparison of SMS to
several baselines for target sparsities 60% (top) and 80% (bottom) given three prune-retrain cycles.
We report results using UniformSoup as well as GreedySoup for merging, employing ALLR as the
retraining schedule for 10 epochs of retraining per phase. Results are averaged over multiple seeds
with standard deviation included. The best value is highlighted in bold.

CIFAR-100 (60%)
Sparsity 26.2% (Phase 1) Sparsity 45.6% (Phase 2) Sparsity 60.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS (uniform) 76.54 ±0.19 76.56 ±0.21 76.82 ±0.19 75.99 ±0.07 76.23 ±0.35 76.46 ±0.16 75.34 ±0.11 75.44 ±0.11 75.74 ±0.18
best candidate 75.12 ±0.04 75.19 ±0.06 75.23 ±0.07 74.73 ±0.15 74.90 ±0.12 74.85 ±0.16 74.31 ±0.42 74.45 ±0.11 74.53 ±0.16
mean candidate 74.98 ±0.12 74.87 ±0.06 74.86 ±0.05 74.49 ±0.14 74.53 ±0.14 74.53 ±0.06 73.84 ±0.36 73.95 ±0.19 73.95 ±0.05

SMS (greedy) 76.55 ±0.41 76.45 ±0.24 76.40 ±0.18 75.85 ±0.06 76.10 ±0.38 76.03 ±0.43 75.10 ±0.12 75.24 ±0.20 74.48 ±0.42
best candidate 75.09 ±0.01 75.19 ±0.06 75.21 ±0.10 74.88 ±0.16 74.92 ±0.11 74.80 ±0.23 74.04 ±0.15 74.28 ±0.37 74.23 ±0.22
mean candidate 74.96 ±0.09 74.87 ±0.06 74.88 ±0.02 74.62 ±0.12 74.56 ±0.28 74.43 ±0.20 73.85 ±0.05 73.78 ±0.12 73.87 ±0.14

IMPm× 75.55 ±0.04 75.72 ±0.18 75.92 ±0.16 74.84 ±0.02 75.12 ±0.09 75.68 ±0.47 74.28 ±0.05 74.63 ±0.32 74.73 ±0.94
IMP-RePrune — N/A — — N/A — 74.65 ±0.63 75.54 ±0.28 75.49 ±0.33
IMP — 74.96 ±0.20 — — 74.09 ±0.05 — — 73.47 ±0.04 —

CIFAR-100 (80%)
Sparsity 41.5% (Phase 1) Sparsity 65.8% (Phase 2) Sparsity 80.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS (uniform) 75.94 ±0.01 75.99 ±0.40 76.19 ±0.40 74.18 ±0.02 74.23 ±0.27 74.76 ±0.06 71.56 ±0.16 71.59 ±0.14 71.78 ±0.25
best candidate 74.65 ±0.29 74.65 ±0.11 74.78 ±0.17 73.27 ±0.26 73.22 ±0.27 73.71 ±0.18 70.61 ±0.11 70.58 ±0.50 70.96 ±0.33
mean candidate 74.44 ±0.17 74.37 ±0.16 74.39 ±0.13 72.90 ±0.08 72.94 ±0.23 73.19 ±0.09 70.50 ±0.08 70.31 ±0.52 70.40 ±0.23

SMS (greedy) 75.87 ±0.10 75.97 ±0.44 76.14 ±0.52 74.13 ±0.23 74.21 ±0.10 74.48 ±0.38 71.63 ±0.25 71.70 ±0.27 71.06 ±0.87
best candidate 74.70 ±0.23 74.65 ±0.11 74.80 ±0.15 73.18 ±0.22 73.40 ±0.32 73.59 ±0.25 70.86 ±0.30 70.93 ±0.04 70.37 ±0.79
mean candidate 74.47 ±0.13 74.37 ±0.16 74.38 ±0.14 72.95 ±0.33 73.03 ±0.07 73.13 ±0.10 70.56 ±0.45 70.37 ±0.04 69.83 ±0.88

IMPm× 75.06 ±0.04 75.48 ±0.16 75.39 ±0.09 73.44 ±0.22 73.70 ±0.06 73.96 ±0.54 72.06 ±0.10 72.15 ±0.58 72.32 ±0.58
IMP-RePrune — N/A — — N/A — 70.52 ±0.18 68.60 ±2.94 69.89 ±1.34
IMP — 73.95 ±0.08 — — 72.71 ±0.15 — — 69.88 ±0.50 —

Table 12: ResNet-18 on CIFAR-10 (structured pruning): Test accuracy comparison of SMS to
several baselines for target sparsities 40%, 50%, 60% in the One Shot setting, using ALLR as the
retrain schedule for a retrain length of 20 epochs. We report results using UniformSoup as well as
GreedySoup for merging. Results are averaged over multiple seeds with standard deviation included.
The best value is highlighted in bold.

CIFAR-10
Sparsity 40.0% (One Shot) Sparsity 50.0% (One Shot) Sparsity 60.0% (One Shot)

Accuracy of m = 3 m = 3 m = 3

SMS (uniform) 94.91 ±0.00 94.68 ±0.02 94.32 ±0.10
best candidate 94.42 ±0.04 94.28 ±0.01 93.81 ±0.06
mean candidate 94.31 ±0.01 94.16 ±0.03 93.77 ±0.06

SMS (greedy) 94.87 ±0.02 94.70 ±0.08 94.31 ±0.11
best candidate 94.42 ±0.04 94.28 ±0.01 93.81 ±0.06
mean candidate 94.31 ±0.01 94.17 ±0.04 93.77 ±0.06

IMPm× 94.77 ±0.01 94.38 ±0.23 94.34 ±0.16
IMP 94.45 ±0.18 94.06 ±0.17 93.96 ±0.34
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B.2 EXAMINING SPARSE MODEL MERGING

B.2.1 EXPLORING PARAMETERS BEYOND RANDOM SEEDS.

Similar to Figure 3, Figure 5 visualizes the effects of different hyperparameters given One Shot IMP
(90% sparsity) with WRN-20 trained on CIFAR-100. Again, we created eight variations for each
parameter (random seed, weight decay strength, retraining duration, and initial learning rate in a
linear decay schedule) based on equidistant values around the defaults. The scatter plot compares
the test accuracy of models in the uniform soup setting (averaged from pairs of models) against the
maximum test accuracy within each pair.

To generate the averaging candidates, we employed the following hyperparameter configurations. For
ImageNet, as showcased in Figure 3, our base configuration utilized ALLR for 5 retraining epochs
with weight decay as stated in Table 3. While varying the random seed, we maintained the base
configuration and selected eight distinct random seeds. In adjusting the weight decay, we adhered to
the base configuration and experimented with weight decay strengths of 4e-5, 6e-5, 8e-5, 1e-4, 1.2e-4,
1.4e-4, 1.6e-4, 1.8e-4. For retraining length variation, we examined all integral values between 2 and
9 epochs. In terms of retraining schedule modification, we adopted a linearly decaying learning rate
schedule, tuning the initial value among 2e-2, 4e-2, 6e-2, 8e-2, 1e-1, 1.2e-1, 1.4e-1 and 1.6e-1. For
CIFAR-100, as in Figure 5, we used ALLR for 10 epochs with weight decay as in Table 3. To adjust
the weight decay, we experimented with weight decay strengths of 1e-4, 2e-4, 3e-4, 4e-4, 5e-4, 6e-4,
7e-4, 8e-4. For retraining length variation, we examined all integral values between 6 and 13 epochs.
In terms of retraining schedule modification, we adopted a linearly decaying learning rate schedule,
tuning the initial value among 6e-2, 7e-2, 8e-2, 9e-2, 1e-1, 1.1e-1, 1.2e-1 and 1.3e-1.
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Figure 5: WideResNet-20 on CIFAR-100: Accuracy of average of two models vs. the maximal
individual accuracy. All models are pruned to 90% sparsity (One Shot) and retrained, varying the
indicated hyperparameters.
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B.2.2 INSTABILITY TO RANDOMNESS AND RECOVERING IT.

Figure 6 replicates the plots from Figure 4, albeit for CIFAR-10, adhering to the identical retraining
hyperparameter configuration delineated in the main text.
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Figure 6: ResNet-18 on CIFAR-10: (a) Accuracy difference between the soup and best performing
model after One Shot pruning and retraining. The lines for UniformSoup and GreedySoup show the
envelope considering all retraining schedules and durations. (b) Accuracy difference between the
soup (m = 3) and IMP3× retrained three times as long as indicated on the x-axis, using One Shot
pruning to 90% and 98% sparsity. Results are averaged over multiple random seeds with min-max
bands indicated.
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B.2.3 OOD-ROBUSTNESS OF SPARSE MODEL SOUPS.

Figure 7 depicts OOD-robustness effects for One Shot IMP on WRN-20 trained on CIFAR-100 at
90% sparsity, while Figure 8 does the same for ResNet-50 on ImageNet at 70% sparsity. For each
parameter (random seed, weight decay strength, retraining duration, and initial learning rate in a linear
decay schedule), we formulated eight variations centered on default values (see subsubsection B.2.1
for exact hyperparameters). Contrary to previous scatter plots, these evaluate models on the robustness
benchmarks CIFAR-100-C and Imagenet-C. The plots contrast the OOD accuracy in the uniform
soup setting (averaged across model pairs) with the peak OOD accuracy of each pair. The OOD
accuracy is computed on the entire corrupted dataset, i.e., among all corruption types and degrees of
severity (ranging from 1 to 5).

Further, Table 13 and Table 14 display the OOD-robustness evaluated on CIFAR-100-C and
ImageNet-C, respectively, when aiming for higher sparsities and using multiple cycles. SMS con-
sistently improves over the baselines and improves the out-of-distribution accuracy significantly.
For the pretrained models we obtain a base ood accuracy of 49.03%(±0.33) for CIFAR-100-C and
40.35%(±0.30) for ImageNet-C.
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Figure 7: WideResNet-20 evaluated on CIFAR-100-C: OOD Accuracy of average of two models
vs. the maximal individual OOD accuracy. All models are pruned to 90% sparsity (One Shot) and
retrained, varying the indicated hyperparameters.
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Figure 8: ResNet-50 evaluated on ImageNet-C: OOD Accuracy of average of two models vs. the
maximal individual OOD accuracy. All models are pruned to 70% sparsity (One Shot) and retrained,
varying the indicated hyperparameters.

Table 13: WideResNet-20 trained on CIFAR-100 and evaluated on CIFAR-100-C (unstructured
pruning): OOD accuracy comparison of SMS to several baselines for target sparsities 90% (top)
and 98% (bottom) given three prune-retrain cycles. We only report results using UniformSoup for
merging, employing ALLR as the retraining schedule for 10 epochs of retraining per phase. Results
are averaged over multiple seeds with standard deviation included. The best value is highlighted in
bold.

CIFAR-100 (90%)
Sparsity 53.6% (Phase 1) Sparsity 78.5% (Phase 2) Sparsity 90.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS 49.60 ±0.14 49.48 ±0.20 49.57 ±0.24 49.90 ±0.11 50.09 ±0.08 50.33 ±0.14 48.65 ±0.31 48.86 ±0.06 49.38 ±0.14
best candidate 49.31 ±0.14 49.18 ±0.22 49.17 ±0.23 48.51 ±0.09 48.64 ±0.08 48.82 ±0.17 47.42 ±0.29 47.87 ±0.15 47.87 ±0.09
mean candidate 49.10 ±0.18 48.97 ±0.15 48.97 ±0.18 48.40 ±0.12 48.33 ±0.11 48.37 ±0.03 47.29 ±0.28 47.51 ±0.20 47.61 ±0.07

IMPm× 49.25 ±0.10 49.01 ±0.52 49.17 ±0.38 48.06 ±0.07 48.24 ±0.52 48.17 ±0.65 47.10 ±0.74 46.59 ±0.05 47.12 ±0.52
IMP-RePrune — N/A — — N/A — 48.72 ±0.25 49.03 ±0.15 49.35 ±0.11
IMP — 49.41 ±0.22 — — 48.25 ±0.08 — — 46.88 ±0.27 —

CIFAR-100 (98%)
Sparsity 72.8% (Phase 1) Sparsity 92.6% (Phase 2) Sparsity 98.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS 50.05 ±0.09 50.01 ±0.07 50.28 ±0.09 48.30 ±0.15 48.52 ±0.07 48.80 ±0.12 44.18 ±0.43 44.81 ±0.26 44.80 ±0.75
best candidate 49.36 ±0.17 49.01 ±0.16 49.18 ±0.02 47.11 ±0.12 47.07 ±0.20 47.27 ±0.25 43.37 ±0.41 43.49 ±0.23 43.72 ±0.64
mean candidate 48.95 ±0.07 48.68 ±0.09 48.67 ±0.09 46.87 ±0.14 46.80 ±0.08 46.87 ±0.23 42.94 ±0.52 43.31 ±0.34 43.17 ±0.54

IMPm× 48.70 ±0.19 48.81 ±0.10 48.66 ±0.17 46.20 ±0.27 45.90 ±0.10 46.17 ±0.07 41.97 ±0.17 41.62 ±1.55 42.76 ±0.30
IMP-RePrune — N/A — — N/A — 39.57 ±0.82 37.17 ±1.04 35.28 ±1.26
IMP — 48.60 ±0.14 — — 45.89 ±0.14 — — 42.43 ±0.58 —

Table 14: ResNet-50 trained on ImageNet and evaluated on ImageNet-C (unstructured pruning): OOD
accuracy comparison of SMS to several baselines for target sparsity 90% given three prune-retrain
cycles. We only report results using UniformSoup for merging, employing ALLR as the retraining
schedule for 10 epochs of retraining per phase. Results are averaged over multiple seeds with standard
deviation included. The best value is highlighted in bold.

ImageNet (90%)
Sparsity 53.6% (Phase 1) Sparsity 78.5% (Phase 2) Sparsity 90.0% (Phase 3)

Accuracy of m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10

SMS 42.19 ±0.17 42.65 ±0.17 42.94 ±0.02 41.17 ±0.15 41.62 ±0.10 42.11 ±0.06 38.70 ±0.02 39.23 ±0.15 39.70 ±0.02
best candidate 39.98 ±0.12 40.00 ±0.25 40.11 ±0.05 39.31 ±0.11 39.43 ±0.03 39.66 ±0.05 37.30 ±0.01 37.57 ±0.13 37.84 ±0.11
mean candidate 39.87 ±0.10 39.90 ±0.22 39.91 ±0.09 39.19 ±0.10 39.28 ±0.05 39.47 ±0.01 37.21 ±0.01 37.39 ±0.14 37.62 ±0.03

IMPm× 40.05 ±0.17 40.36 ±0.29 40.44 ±0.11 39.31 ±0.02 39.46 ±0.05 39.45 ±0.28 37.13 ±0.22 37.47 ±0.26 37.36 ±0.34
IMP-RePrune — N/A — — N/A — 37.10 ±0.15 36.81 ±0.18 36.48 ±0.66
IMP — 39.84 ±0.05 — — 38.74 ±0.02 — — 36.64 ±0.00 —
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B.2.4 REDUCING COMPRESSION-INDUCED UNFAIRNESS.

Classification model performance, usually measured by the top-1 accuracy, can mask the dispropor-
tionate effect of compression on individual class performance (Hooker et al., 2019; 2020; Paganini,
2020). Pruning often sacrifices difficult samples, benefiting well-performing classes and worsening
the performance of others (Tran et al., 2022). Recent research by Ko et al. (2023) highlights the bene-
fits of prediction ensembling in enhancing fairness metrics, including minority group performance.

We investigate whether model averaging mitigates pruning’s adverse effects on fairness using ResNet-
18 trained on the Celeb-A facial attribute recognition dataset, a fairness benchmark due to its strong
sub-group and target label correlation. Table 15 compares the dense model, One Shot SMS, and IMP
at sparsities of 90%, 95%, and 97%, where 20 epochs of retraining yields similar top-1 test accuracies
for SMS and IMP. We report the recall for the disjoint sub-groups: Male-Blonde (MB), Male-Non-
Blonde (MN), Female-Blonde (FB), and Female-Non-Blonde (FN), in addition to top-1 test accuracy.
Although SMS and IMP reach similar test accuracy, differences in subgroup performance arise for
sparsities above 90%. SMS notably increases recall for MB and FB, the most challenging classes
in the dense model. This emphasizes the negative effects of regular pruning through IMP, which
sacrifices weakly represented subgroups to maintain high overall accuracy. In contrast, SMS has
a less significant impact on MB and FB but leads to a more nuanced decline in easier-to-classify
subgroups.

Table 15: ResNet-18 on Celeb-A: Comparison of the pretrained (i.e. dense) base model against SMS
and IMP for different sparsity levels, employing ALLR as the retraining schedule for 20 epochs of
retraining. We indicate the top-1 test accuracy as well as the recall on the four different sub-groups.
All results are averaged over multiple random seeds with standard deviation included.

Celeb-A
Sub-group Recall

Setting Sparsity Top-1 acc. Balanced acc. MB MN FB FN
Pretrained 0% 98.99 ±0.01 98.09 ±0.02 94.41 ±0.20 99.93 ±0.00 98.48 ±0.00 99.54 ±0.00

SMS 90% 99.02 ±0.00 98.13 ±0.04 94.52 ±0.20 99.92 ±0.00 98.57 ±0.02 99.50 ±0.04
IMP 90% 98.99 ±0.02 98.12 ±0.03 94.52 ±0.20 99.93 ±0.01 98.51 ±0.04 99.52 ±0.03

SMS 95% 98.91 ±0.01 98.08 ±0.05 94.74 ±0.20 99.88 ±0.01 98.53 ±0.07 99.17 ±0.06
IMP 95% 98.79 ±0.01 97.89 ±0.08 94.02 ±0.31 99.92 ±0.01 98.20 ±0.01 99.41 ±0.01

SMS 97% 97.79 ±0.08 96.04 ±0.53 89.44 ±1.78 99.67 ±0.07 97.38 ±0.24 97.68 ±0.49
IMP 97% 97.74 ±0.08 95.73 ±0.32 87.42 ±1.17 99.88 ±0.01 96.71 ±0.07 98.90 ±0.04
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C ABLATION STUDIES

C.1 ABLATION: SMS HYPERPARAMETERS

We conduct several ablation studies to assess the influence of key hyperparameters in IMP: the
retraining schedule and retraining length. Given the large number of individual runs in each ablation
study, we restrict ourselves to examining WideResNet-20 trained on CIFAR-100. Besides the default
pretraining parameters shown in Table 3, we employ a pretraining learning rate initiated at 1e-1,
decaying by a factor of 0.2 at epochs 60, 120, and 160.

C.1.1 ABLATION: THE RETRAINING SCHEDULES

We begin by isolating the impact of the retraining schedule, comparing LRW, SLR, CLR, LLR and
ALLR. Figure 9 depicts the difference between soup accuracy and best candidate accuracy for a
wide range of sparsities in the One Shot setting, where we distinguish between m = 3 (left) and
m = 5 (right). Note that each retraining schedule also influences the accuracy of candidate models.
Throughout these experiments, the number of retraining epochs is fixed at 10.

First of all, we observe that all schedules except LRW effectively train pruned models to a state
suitable for averaging. LRW, solely basing the initial learning rate magnitude on retraining duration,
potentially falls short in recovering high pruning-induced performance degradation, thus hindering
feasible averaging. Contrastingly, for all other schedules we see consistent improvements upon their
averaging candidates, with strategies performing comparably well, although ALLR also augments
performance in high sparsity scenarios. The lesser convergence of, for instance, SLR versus LLR, as
identified by Zimmer et al. (2023), does not notably affect the accuracy disparity between soup and
best model, even though LLR results in superior candidates and a better soup model.

We conclude that SMS requires retraining that is sufficiently accelerated by a proper learning rate
schedule.
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Figure 9: WideResNet-20 on CIFAR-100: Test accuracy difference between the soup of a) m = 3 or
b) m = 5 models compared to the best candidate model for a wide range of sparsity levels. Each line
depicts one retrain schedule. Note that we only consider the One Shot case and that the candidate
models themselves depend on the retraining schedule at hand. Results are averaged over multiple
random seeds with min-max bands indicated.

C.1.2 ABLATION: THE RETRAINING LENGTH

Next, we evaluate the impact of the retraining duration by comparing retraining lengths of 1, 2, 5,
10, and 20 epochs. As before, Figure 10 illustrates the accuracy difference between the soup and
best candidate models across a spectrum of sparsity levels in the One Shot setting, differentiating
between m = 3 (left) and m = 5 (right). We emphasize that the number of retraining epochs affects
both the soup model accuracy as well as all candidate models for averaging. We stick to ALLR as the
retraining schedule.
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We encounter a diminishing returns scenario: the longer we retrain, the smaller the improvement of
the soup upon the individual models. More surprisingly however, averaging models yields consistent
improvements even with a mere single retraining epoch, which is clearly not enough for recovering
performance in the high sparsity regime. The learning rate schedule ALLR seems to be of particular
importance here, since it also incorporates the retraining length when choosing the learning rate
schedule. As visible in Figure 9, such a consistent improvement is not achievable with other schedules,
even when using 10 epochs of retraining.

We conclude that SMS is able to consistently improve upon the individual models even when using
short amounts of retraining, provided that proper care is taken of the learning rate.
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Figure 10: WideResNet-20 on CIFAR-100: Test accuracy difference between the soup of a) m = 3
or b) m = 5 models compared to the best candidate model for a wide range of sparsity levels. Each
line depicts one retraining length configuration. Note that we only consider the One Shot case and
that the candidate models themselves depend on the length of retraining at hand. Results are averaged
over multiple random seeds with min-max bands indicated.

C.2 ABLATION: SUITABLE BASELINES FOR SMS

We have demonstrated that SMS, which trains m models per phase in parallel for k epochs each,
surpasses IMPm× – a natural baseline where IMP retraining duration in each phase is extended by a
factor of m (totaling k ·m epochs). In Table 16, we compare IMPm× to another relevant baseline
in the same setting as in Table 1: increasing the number of IMP phases by m, matching the total
retraining epochs of SMS and IMPm×, but with a reduced pruning rate per phase. The results indicate
that IMPm×, and consequently SMS, outperform this additional baseline.

Table 16: Comparison of test accuracy for different IMP baselines on ResNet-50 trained on ImageNet.
Results are averaged over multiple seeds with standard deviation included.

m = 3 m = 5 m = 10

Method Accuracy Accuracy Accuracy
IMPm× 74.34% ±0.09% 74.56% ±0.24% 74.50% ±0.09%
IMP with m phases 73.69% ±0.10% 74.08% ±0.04% 74.70% ±0.02%

C.3 ABLATION: DIFFERENCES TO STOCHASTIC WEIGHT AVERAGING

Stochastic Weight Averaging (SWA, Izmailov et al. (2018)) is a popular procedure to improve the
generalization performance of models by averaging their parameters along the training trajectory. In
consequence, SWA and SMS are similar approaches, despite SWA being designed for dense models.
We highlight some of the main observations and problems when combining SWA and IMP:
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1. SWA is only beneficial if models of the same sparsity level and pattern are averaged, as
differing sparsities will densify the model (see Figure 1). We hence apply SWA separately
in each phase, starting each phase with the averaged model from the previous phase and
reinitializing SWA accordingly.

2. In general, SWA and SMS are not excluding each other, they can be used in conjunction,
potentially further improving the effect of SMS.

3. SWA requires either a cyclic or high constant learning rate to explore multiple optima for
beneficial averaging. However, retraining after pruning uses specific translated learning rate
schedules (such as FT, LRW, SLR, CLR, LLR or ALLR) to maximize performance.

Despite these issue of differing learning rate schedules, we conduct experiments using ResNet-50 on
ImageNet, following the setup of Table 1 for a sparsity of 90% in three cycles. Precisely, Table 17
compares classical IMP to IMP with SWA, where we update the SWA-model after each epoch
and set the retrained model to its averaged variant at the end of the phase as discussed above. We
observe slightly inferior results when adding SWA, comparing a wide range of retraining learning
rate schedules.

SWA is not able to improve the results of classical IMP (and hence also falls behind SMS by a large
margin, cf. Table 1). We think that this is mostly due to the specific retraining schedules used for
IMP, which stand in conflict with the requirements for SWA.

Table 17: ResNet-50 on ImageNet: Test Accuracy comparison of IMP (first row) vs. IMP with SWA
(second row) for different retraining schedules when aiming for a goal sparsity of 90% in three cycles
of ten retraining epochs each. Results are averaged over multiple seeds with standard deviation
included.

Method FT LRW SLR CLR LLR ALLR

IMP 27.38% ±0.51% 73.65% ±0.08% 73.29% ±0.07% 73.36% ±0.02% 73.38% ±0.25% 73.80% ±0.10%
IMP + SWA 22.11% ±0.36% 73.34% ±0.08% 72.10% ±0.02% 72.19% ±0.18% 72.25% ±0.11% 73.01% ±0.04%

C.4 ABLATION: PERFORMANCE DEGRADATION FOR EXTREME LEVELS OF SPARSITY

We have argued that extremely high sparsity levels lead to a model that is not stable to randomness
anymore, i.e., two retrained models do not lie in the same basin and thus cannot be averaged. For
WRN-20 on CIFAR-100, this problem occurs at 99% pruned in One Shot and above, see Figure 4a
where the uniform approach is unable to average the models with increasing performance.

To investigate this issue, we track the L2-norm distance between the candidates for averaging.
Table 18 displays the mean and maximal L2 distance between each pair of five candidates for
averaging, using One Shot pruning and retraining in the same setting as in Figure 4a. We observe that
for sparsities in the range 90%-98%, the mean and maximal L2-distance between the five candidate
models are relatively stable among sparsities. Increasing the sparsity to 99% and 99.5% however
leads to a much increased distance between the retrained models. At this sparsity, the models are
driven further apart, supporting our hypothesis of instability to randomness - they do not converge to
the same basin.

Table 18: Mean (first row) and maximal (second row) L2-distance when comparing each pair of
the five candidates for averaging in Figure 4a for different sparsity levels between 90% and 99.5%.
Results are averaged over multiple seeds, where we omit the standard deviation for the sake of clarity.

Sparsity 90% 92% 94% 96% 98% 99% 99.5%

mean L2-distance 29.17 29.44 29.61 29.66 30.13 32.95 39.41
max L2-distance 29.22 29.48 29.69 29.70 30.24 33.35 40.18
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