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ABSTRACT

Recent multimodal large language models (MLLMs), such as GPT-4o, Gemini
1.5/2.5 Pro, and Reka Core, have advanced audio-visual reasoning capabilities,
achieving strong performance in tasks like cross-modal understanding and gener-
ation. However, our DeafTest uncovers unanticipated failures: most of the state-
of-the-art MLLMs struggle with very simple audio tasks, such as distinguishing
louder sounds or sound counting. This raises a fundamental question—does a
deficiency in low-level audio perception constrain higher-level audio-visual rea-
soning? To address this, we introduce AV-Odyssey Bench—a comprehensive
benchmark of 4,555 meticulously designed problems that integrate text, audio,
and visual modalities. Each task requires models to unify cross-modal reasoning,
leveraging synchronized audio-visual cues to infer solutions. By structuring ques-
tions as multiple-choice, we ensure objective, reproducible evaluations without
reliance on subjective human or LLM-based judgments. Through comprehensive
benchmarking of closed-source and open-source models, we showcase: (i) current
MLLMs lack robust audio-visual integration ability and (ii) performance on Deaf-
Test (Pearson’s r = 0.945) strongly correlates with AV-Odyssey accuracy. These
findings not only challenge prevailing assumptions about the “multimodal profi-
ciency” of leading models, but also highlight the importance of fundamental audio
perception as a bottleneck for audio-visual reasoning. We believe that our results
provide concrete guidance for future research in future dataset design, alignment
strategies, and architectures toward truly integrated audio-visual understanding.

1 INTRODUCTION

Multimodal reasoning has advanced significantly through two key stages: vision-language models
(VLMs) and their evolution into audio-visual extensions. Early VLMs, such as GPT-4V(ision) (Ope-
nAI, 2023), pioneered visual perception capabilities, enabling tasks like object counting (Xu
et al., 2023), numerical reasoning on tabular data (Yang et al., 2023), and geometric problem-
solving (Zhang et al., 2025). Building on this foundation, modern Multimodal Large Language
Models (MLLMs)1 integrate audio modalities, exemplified by GPT-4o (Hurst et al., 2024), Gemini
1.5 (Team et al., 2024a), and Gemini 2.5 Pro (Google, 2025). These models push the boundaries of
multimodal reasoning, achieving strong performance in automatic speech recognition (ASR) (Hurst
et al., 2024), cross-modal translation (Team et al., 2024a), and audio-visual captioning (Han et al.,
2024; Zhan et al., 2024).

Benchmarking is a critical component of the community, as it helps specify the development direc-
tion. Prior work mainly focus on visual problem-solving, such as general comprehension (Li et al.,
2024b; Liu et al., 2023c; Fu et al., 2023) and mathematical reasoning (Chen et al., 2021; Cao & Xiao,
2022; Chen et al., 2022; Zhang et al., 2025; Lu et al., 2023). On the other hand, audio-visual bench-
marks such as AVQA (Yang et al., 2022), OmniBench (Li et al., 2025), and MusicAVQA (Li et al.,
2022) focus on testing MLLMs with audio-visual tasks that require the simultaneous processing and
integration of visual and auditory information.

In this paper, we directly test MLLMs’a ability to see instead of reasoning on simple low-level audio
task. This is inspired by the BlindTest (Rahmanzadehgervi et al., 2024), which reveals that powerful

1In this work, MLLMs specifically refer to audio-vision LLMs, distinct from vision-only VLMs.
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vision language models are still struggling with very simple vision tasks that are easy for humans.
Concretely, we propose a DeafTest benchmark (Fig. 1), including four extremely simple audio tasks
inspired from Schwabach test (Huizing, 1975). We test a set of powerful MLLMs like Gemini
1.5 (Team et al., 2024a), Gemini 2.5 Pro (Google, 2025), Reka (Team et al., 2024b), and GPT-
4o (Hurst et al., 2024) on these easy task that only involve basic sound properties (e.g., loudness,
pitch, duration), as shown in Table 1. Our key findings are:

• Despite their ability to recognize complex speech content, MLLMs do not perform as well
as expected on sound counting tasks. The best-performing model, Gemini 1.5 Pro, achieves
only 81%, while humans can easily score 100%. The sounds in these tasks are monotonous
and are clearly separated by silent intervals within the audio clip.

• Most MLLMs appear to be insensitive to sound loudness or sound pitch, except for Gemini
2.5 Pro and Qwen-2.5-Omni-7B. Models are required to distinguish the louder sound or the
higher pitch from two given sounds. Several models perform under 60%, while a random
guess baseline is 50%.

• The duration comparison task presents models with two sounds and asks them to determine
which has the longer duration. Model performance varies significantly, where Gemini 2.5
Pro achieves a high score of 99.0%, models such as Reka Core and Reka Edge perform
poorly, with scores of 40.0% and 44.0%, respectively.

These findings are noteworthy: despite the strong performance of proprietary models on complex
tasks such as automatic speech recognition, their performance on basic audio perception tasks re-
veals a noticeable gap compared to human capabilities. Notably, Gemini 2.5 Pro (Google, 2025)
generally outperforms other models. This raises a critical question: Does a deficiency in low-level
audio perception limit a model’s ability to perform higher-level audio-visual reasoning? Further-
more, can the performance on DeafTest serve as a key indicator of a model’s overall audio-visual
reasoning ability?

To address this, we introduce a novel and comprehensive benchmark AV-Odyssey to evaluate the
audio-visual reasoning performance of MLLMs. This benchmark comprises 4,555 questions across
26 tasks, spanning a wide range of audio attributes, each strategically engineered to require cross-
modal synergy (Fig. 3). Key design principles include: 1) multimodal necessity: questions are
filtered using VLMs and audio models to exclude tasks solvable by single-modal reasoning; 2)
diverse scopes: coverage of sound attributes (timbre, spatial dynamics), application domains (music,
transportation), and temporal reasoning; 3) objective evaluation: multiple-choice format eliminates
reliance on subjective human or LLM-based assessments.

We benchmark closed-source (GPT-4o (Hurst et al., 2024), Gemini 1.5 (Team et al., 2024a), Gemini
2.5 Pro (Google, 2025)) and open-source models (Han et al., 2024; Lu et al., 2022; Zhan et al., 2024;
Wu et al., 2023; Su et al., 2023; Cheng et al., 2024; Fu et al., 2024) on our proposed AV-Odyssey.
Combined with DeafTest results, the key findings are:

• Overall, current MLLMs still fall short in processing complex audio-visual information
integration tasks.

• Performance on DeafTest strongly correlates with AV-Odyssey accuracy with a Pearson’s
r = 0.945 (Fig. 2). In other words, models that perform poorly on simple audio tasks
(DeafTest) also consistently underperform on AV-Odyssey.

• Error analysis (see Sec. 4.3) shows that most audio-visual inference errors stem from mis-
perceiving audio inputs. This finding aligns with findings on DeafTest, where models with
weak performance on simple auditory tasks also underperform on AV-Odyssey.

To conclude, this work systematically investigates the audio-visual comprehension capabilities of
current MLLMs through two complementary perspectives: DeafTest and AV-Odyssey Bench. Our
main contributions are as follows: (1) DeafTest provides the first dedicated evaluation of MLLMs’
basic listening abilities (e.g., pitch and loudness discrimination), uncovering critical weaknesses in
fundamental audio perception. (2) AV-Odyssey Bench introduces a large-scale and comprehensive
benchmark for advanced cross-modal reasoning, spanning diverse audio attributes, visual contexts,
and real-world scenarios. (3) We empirically demonstrate a strong correlation between fundamen-
tal audio perception and overall audio-visual reasoning performance, highlighting the dependency
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Question: Which audio is louder? 
The first audio [audio1] or the 
second audio [audio2]?

Loudness Comparison

[audio1] 

[audio2] 

Gemini 1.5 Pro

GPT-4o 

Reka Core

the first audio

the first audio

the first audio

Question: Which audio has a higher 
pitch? The first audio [audio1] or 
the second audio [audio2]? 

Pitch Comparison

[audio1] 

[audio2] 

the second audio

the second audio

the second audio

Gemini 1.5 Pro

GPT-4o 

Reka Core

Figure 1: Illustration of two out of four Deaf-
Test tasks: loudness and pitch comparison.
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Figure 2: Performance on DeafTest and AV-
Odyssey, showing a strong positive correlation.

Comprehensive Audio Attributes

Timbre Tone

MelodySpace

TimeHallucination Intricacy Music, Weapons, Animals, Materials, 
Transportation, Scenes, Actions, Speech, 

Memes, Daily life

Extensive Domains

Question: Considering the vocal timbre, 
which person from [img1], [img2], [img3], 
or [img4] is most likely to sing [audio1]?

Interleaved Text, Audio, Images 

[img1] 

[img3] [img4] 

[audio1] audio content: an AI covered 
song with Taylor Swift’s timbre

[img2] 

Figure 3: Overview of AV-Odyssey Benchmark. AV-Odyssey Bench demonstrates three major fea-
tures: 1. Comprehensive Audio Attributes; 2. Extensive Domains; 3. Interleaved Text, Audio, and
Images.

of higher-level multimodal reasoning on low-level perceptual skills. By explicitly linking low-
level perception to high-level reasoning, our benchmarks offer the first comprehensive diagnosis
of MLLMs’ multimodal capabilities. We reveal that when pursuing strong audio-visual compre-
hension ability, it’s noteworthy to monitor the model performance on fundamental audio perception
performance. These resources provide a foundation for targeted advances in dataset construction,
alignment strategies, and model architectures, ultimately paving the way toward truly integrated
audio-visual intelligence.

2 RELATED WORK

Multimodal Large Language Models. Large language models (LLMs) have demonstrated re-
markable performance across diverse textual domains (OpenAI, 2023; Radford, 2018; Brown, 2020;
Touvron et al., 2023; Bi et al., 2024). The success of these models has catalyzed significant advance-
ments in vision language models and multimodal large language models. Inspired by the textual
prowess of LLMs, vision language models have emerged to extend computational capabilities into
visual comprehension. These models enable LLMs to perform sophisticated visual tasks, including
visual question answering (Liu et al., 2023a; Li et al., 2023a; Zhu et al., 2023; Liu et al., 2023b;
Ye et al., 2023; Dai et al., 2023; Bai et al., 2023; Zhang et al., 2023b), visual grounding (Peng
et al., 2023; Wang et al., 2023; Chen et al., 2023a;b), document understanding (Ye et al., 2023;
Hu et al., 2024; Zhang et al., 2023c; Lv et al., 2023), long video understanding (Liu et al., 2024;
Shen et al., 2024; Zhang et al., 2024a; Li et al., 2024c; Ren et al., 2024). Building upon vision-
language achievements, researchers have further expanded multimodal horizons by integrating the
audio modality (Han et al., 2024; Lu et al., 2022; Zhan et al., 2024; Wu et al., 2023; Su et al., 2023;
Fu et al., 2024; Cheng et al., 2024; Chowdhury et al., 2024; Xu et al., 2025; Lu et al., 2025) . These
advanced models now accommodate audio inputs, further expanding the landscape of multimodal
artificial intelligence.

Benchmarking Multimodal Large Language Models. The rapid development of vision language
models has been accompanied by the emergence of specialized benchmarks to assess their perfor-
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Table 1: Results on four basic auditory tasks (DeafTest). The questions are designed as two-choice
questions. The random baseline performance is 50%. The final column shows the average perfor-
mance across the four tasks.

Method Sound
Counting

Loudness
Comparison

Pitch
Comparison

Duration
Comparison Average

Random 50.0 50.0 50.0 50.0 50.0

Gemini 1.5 Flash (Team et al., 2024a) 55.0 62.0 54.0 89.0 65.0
Gemini 1.5 Flash-8B (Team et al., 2024a) 49.0 55.0 51.0 51.0 51.5
Gemini 1.5 Pro (Team et al., 2024a) 81.0 60.0 52.0 84.0 69.3
Gemini 2.5 Pro (Google, 2025) 69.0 100.0 98.0 99.0 91.5
Reka Core (Team et al., 2024b) 54.0 43.0 42.0 40.0 44.8
Reka Flash (Team et al., 2024b) 48.0 58.0 51.0 44.0 50.3
Reka Edge (Team et al., 2024b) 47.0 56.0 50.0 44.0 49.3
GPT-4o audio-preview (Hurst et al., 2024) 50.0 58.0 58.0 57.0 55.8
Qwen-2.5-Omni-7B (Xu et al., 2025) 60.0 100.0 86.0 80.0 81.5

Table 2: Comparisons between MLLM benchmarks / datasets.

Benchmark / Dataset Modality Questions Answer Type Customized
Question

Audio Attributes Multiple
Domains Interleaved

Timbre Tone Melody Space Time Hallucination Intricacy

MME Bench (Fu et al., 2023) Image 2194 Y/N ✓ - - - - - - - ✓ ✗
MMBench (Liu et al., 2023c) Image(s) 2974 A/B/C/D ✓ - - - - - - - ✓ ✗

SEED-Bench-2 (Li et al., 2024b) Image(s) & Video 24371 A/B/C/D ✓ - - - - - - - ✓ ✓

AVQA Dataset (Yang et al., 2022) Video & Audio 57335 A/B/C/D ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗
Pano-AVQA Dataset (Yun et al., 2021) Video & Audio 51700 defined words & bbox ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗
Music-AVQA Dataset (Li et al., 2022) Video & Audio 45867 defined words ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

SAVE Bench (Sun et al., 2024) Image & Video & Audio 4350 free-form ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗
OmniBench (Li et al., 2025) Image & Audio 1142 A/B/C/D ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗

AV-Odyssey Bench (ours) Image(s) & Video & Audio(s) 4555 A/B/C/D ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

mance across various domains (Yue et al., 2024; Fu et al., 2023; Li et al., 2024b; Chen et al., 2021;
Lu et al., 2023). A significant subset of these benchmarks focuses on vision comprehension (Yue
et al., 2024; Fu et al., 2023; Li et al., 2024b;a) and mathematical reasoning capabilities (Chen et al.,
2021; Cao & Xiao, 2022; Lu et al., 2023; Zhang et al., 2025; Yue et al., 2024; Seo et al., 2015).
However, current audio-visual benchmarks (Yang et al., 2022; Li et al., 2022; Yun et al., 2021;
Sun et al., 2024; Li et al., 2025; Leng et al., 2024; Sung-Bin et al., 2024; Tang et al., 2024) face
significant limitations in comprehensively assessing multimodal large language models (MLLMs).
First, they predominantly focus on high-level visual tasks and neglect to explore the basic auditory
perception limitations. Secondly, they do not comprehensively evaluate all attributes of the audio,
comparison is detailed in Table 2. This paper begins by evaluating basic audio tasks to highlight
shortcomings in auditory perception and introduces the AV-Odyssey benchmark, covering diverse
audio attributes and domains. By leveraging both evaluations, we reveal key limitations of existing
models and demonstrate a strong correlation between low-level audio perception and higher-level
cross-modal reasoning. We emphasize that effective audio-visual comprehension requires attention
to fundamental audio perception, a factor not emphasized by previous work.

3 METHOD

3.1 DEAFTEST TASKS

Drawing inspiration from the Schwabach test (Huizing, 1975), we introduce DeafTest, a suite of
four extremely simple auditory tasks that critically examine the fundamental audio perception ca-
pabilities of Multi-modal Large Language Models (MLLMs). DeafTest includes the determination
of the number of sounds, identification of the louder sound, recognition of the sound with a higher
pitch, and detection of the sound with a longer duration. We hypothesize that MLLMs may not
perform as well as expected on these basic tasks. This potential shortcoming arises from the training
objectives of these models, which primarily focus on achieving high-level semantic alignment be-
tween different modalities. Consequently, this approach tends to overlook the effective utilization of
low-level auditory information, which is crucial for accurately processing and understanding basic
sound characteristics.

1. Count the Number of Sounds. This task evaluates MLLMs’ ability to count distinct sounds
in audio clips containing 3 to 8 monotonous, clearly separated sounds. Despite strong ASR perfor-
mance (e.g., GPT-4o’s 3% word error rate (OpenAI)), this tests basic auditory segmentation. Each
trial presents a two-choice question. We curate 100 questions in total.
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Table 3: Detailed statistics of the AV-
Odyssey Benchmark.

Statistics Number

Total Questions 4555
Total Tasks 26
Domains 10

Multi-Image, Single-Audio 2610
Single-Image, Multi-Audio 891
Single-Image, Single-Audio 434
Single-Video, Single-Audio 220
Single-Video, Multi-Audio 400

Correct Option Dist. (A:B:C:D) 1167:1153:1119:1116

Avg. Audio Time (s) 16.32
Avg. Image Res. (px) 1267×891
Avg. Video Res. (px) 1678×948
Avg. Video Time (s) 15.58

Material 

Recognition

Audio 3D Angle 

Estimation

Figure 4: Overview of the 26 evaluation
tasks, categorized into 7 classes based
on sound attributes.

2. Discriminate the Louder Sound. In this task, we test the basic ability of MLLMs to distinguish
between the loudness of sounds. The goal of MLLMs is to discriminate which sound is louder out
of two given audio clips. Specifically, the decibel for quieter audio ranges from 30 dB to 60 dB,
while the decibel for louder audio ranges from 70 dB to 100 dB. We randomly sample decibels from
these two ranges to create two audio clips. In addition, we randomly switch the input order of the
two audio clips; that is, for some questions, the quiet audio comes first, and for the rest, the loud
audio comes first. Similarly, the question format is also a two-choice question.

3. Discriminate the Higher Pitch. This task focuses on pitch differentiation. Clips feature lower-
pitched sounds (100–500 Hz) vs. higher-pitched ones (1000–2000 Hz), validated for human dis-
cernibility. Input order is randomized, with two-choice questions (100 total).

4. Recognize the Duration of Sound. We also test MLLMs with the duration of sound. In this task,
we simplify the question by giving two audio clips of different durations. We sample the duration
from 1s to 3s for the short audio, while we sample from 4s to 6s for the long audio. Similar to task
2, we provide the MLLMs with two audio clips, asking them to identify the longer one.

The DeafTest results in Table 1 reveal significant variation in model performance, with Gemini 2.5
Pro and Qwen-2.5-Omni-7B outperforming others. However, for all other models, performance falls
far below expectations, with none exceeding 62%, particularly on tasks such as loudness and pitch
comparison. These findings highlight substantial limitations in basic auditory perception among
current MLLMs. This raises the question: could deficiencies in basic audio perception impair per-
formance on higher-level audio-visual reasoning tasks? To investigate, we introduce the AV-Odyssey
benchmark, which reveals a strong correlation between fundamental audio perception and overall
audio-visual reasoning, as shown in Fig. 2.

3.2 OVERVIEW OF AV-ODYSSEY BENCH

Our AV-Odyssey Bench is a meticulously curated benchmark designed to comprehensively assess
the audio-visual capabilities of MLLMs. To ensure a robust and unbiased assessment, all questions
in AV-Odyssey are structured as multiple-choice, with four options per question, and options can
be presented in various formats, including text, images, or audio clips. To mitigate format-specific
biases, we have curated five distinct multi-choice question types. Additionally, all inputs, including
text, image/video, and audio clips, are fed into MLLMs in an interleaved manner.

We compare our AV-Odyssey benchmark with previous MLLM benchmarks and datasets in Ta-
ble 2. It can be found that previous works suffer from certain limitations, such as restricted audio
attributes, which fail to capture the full spectrum of auditory complexity and the absence of inter-
leaved settings, crucial for assessing real-world multimodal integration capabilities. For instance,
OmniBench (Li et al., 2025) lacks multiple audio attributes, making it difficult to comprehensively
assess the capabilities of MLLMs in audio-visual tasks. In contrast, our AV-Odyssey encompasses
26 tasks across 10 diverse domains and spans 7 audio attributes, with interleaved and customized

5
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Question: Out of the four audio pieces 
[audio1] [audio2] [audio3] [audio4], 
which one is the animal audio that 
corresponds with the image [img1]?
A: the third audio B: the second audio
C: the fourth audio D: the first audio

Animal Recognition

[audio1] audio content: cow sound

[img1] 

category: timbre; domain: animals

Question: Which potentially hazardous 
scene shown in [img1], [img2], [img3], or 
[img4] corresponds best to the sound in 
[audio1]?
A: the fourth image B: the second image
C: the third image D: the first image

Hazard Recognition

[audio1] audio content: burning sound

[img1] [img2] 

[img3] [img4] 

category: timbre; domain: scenes 

Question: Based on [audio1] and [video1], 
what makes this meme funny?
A: The meme is funny … 'Oh My God' is delivered in a calm, 
monotone voice, … facial expression remains neutral …
B:  … the exaggerated tone and the person's wide-eyed … 
and the way the phrase is said adds a musical quality that …
C: The humor arises … is yelled repeatedly in an intense voice, 
but the facial expression stays completely blank, while …
D: The meme is funny because … in a cheerful, upbeat tone, … 
smiling face contrasts humorously with the intense…

Meme Understanding

[audio1] audio content: “oh my god”

category: tone; domain: memes

Question: Which image [img1] [img2] 
[img3] [img4] do you think best matches 
the emotion in the music [audio1]?
A: the third image B: the second image
C: the first image D: the fourth image

Music Sentiment Analysis

[audio1] audio content: happy music

[img1] [img2] 

[img3] [img4] 

category: melody; domain: music

Question: Please select the audio [audio1], 
[audio2], [audio3], or [audio4] that you think 
best corresponds to the dance in [video1].
A: the second audio B: the first audio
C: the third audio D: the fourth audio

Dance and Music Matching

category: melody; domain: music

Question: Based on [audio1], could you 
provide the distance of the sound next to 
the woman with white clothing in [img1]? 
The distance should be measured 
egocentrically in centimeters. 
A: 190     B: 153     C: 182     D: 159

Audio Distance Estimation

[audio1] spatial audio with 4 channels

category: space; domain: daily life

Question: Based on [audio1], what are the 
times for the action outlined in [video1]?
A: start time: 0.00 s, end time: 3.58 s
B: start time: 3.45 s, end time: 4.52 s
C: start time: 4.42 s, end time: 16.79 s
D: start time: 17.21 s, end time: 18.55 s

Audio Time Estimation

[audio1] audio content: a sequence of 
cleaning sounds for a cup

category: time; domain: daily life

Question: Which of the instruments 
depicted in [img1], [img2], [img3], or 
[img4] is not part of the sound of [audio1]?
A: the third image B: the first image
C: the fourth image D: the second image

Hallucination Evaluation

[audio1] audio content: music clip with 
guitar, piano and drums

[img1] [img2] 

[img3] [img4] 

category: hallucination; domain: music

Question: After [img1], what action is this 
person taking as heard in [audio1]?
A: fill plate 
B: get meat mix from pan
C: put meat mix on dough 
D: move plate

Action Prediction

[audio1] 
audio content: the sound of 
objects scraping in the kitchen 

[img1] 

category: intricacy; domain: daily life

[audio2] audio content: lion sound
[audio3] audio content: frog sound
[audio4] audio content: donkey sound

[video1] 

[audio1] krump dance music
[audio2] breaking dance music
[audio3] waacking dance music
[audio4] LA-style hiphop dance music

[video1] 

[img1] 

[video1] 

Figure 5: Sampled examples from our AV-Odyssey Benchmark.

questions. The detailed statistics are shown in Table 3. This design enables an exhaustive evalu-
ation of MLLMs, providing a nuanced and thorough assessment of their performance in complex,
real-world audio-visual scenarios.

Here, we will briefly introduce the task categories that span a broad spectrum of audio attributes,
including Timbre, Tone, Melody, Spatial characteristics, Temporal dynamics, and Hallucination de-
tection. The detailed task distribution and task examples are shown in Fig. 4 and Fig. 5, respectively.

Timbre Tasks. To test the concept of matching across vision and audio modalities, MLLMs are
required to match audio-visual pairs (e.g., lion’s roar sound with lion images) in timbre tasks. In ad-
dition, we have designed advanced tasks that demand internal expert-level knowledge learned from
the large-scale pretraining data to solve, such as singer recognition and bird species identification.

Tone Tasks. These tasks target evaluating MLLMs with speech sentiment analysis and meme un-
derstanding. For example, meme understanding requires MLLMs to infer humorous reasons simul-
taneously from the voice tone and visual context.

Melody Tasks. For evaluating melody understanding abilities, we propose melody tasks. For exam-
ple, the dance and music matching task requires the MLLM to understand the melody of the music
and identify the one that aligns with the dance in a video.

Space Tasks. To test the spatial inference with audio and visual information, space tasks require
MLLMs to infer the distance of a certain object producing a sound or to determine the 3D angle.
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Time Tasks. These tasks test the cross-modal matching and temporal correlation abilities at the
same time. For example, audio time estimation requires MLLMs to determine the start and end time
of an action.

Hallucination Tasks. Inspired by POPE (Li et al., 2023b) that indicates severe object hallucination
existing in vision language models, we designed this task to assess the hallucination issue in audio-
visual reasoning.

Intricacy Tasks. These tasks challenge MLLMs to perform integrated analysis or reasoning through
both visual and audio inputs, leveraging multiple attributes. For example, action prediction requires
models to infer actions based on visual elements alongside various audio attributes, such as timbre
and timing.

These diverse tasks provide a rigorous and multifaceted assessment of MLLMs’ audio-visual infor-
mation integration capabilities, systematically probing the depth, nuance, and complexity of cross-
modal perception and reasoning.

3.3 DATA CURATION PROCESS

Data Collection. AV-Odyssey Bench is an audio-visual benchmark to evaluate whether MLLMs
truly have audio-visual reasoning capability. Since the audio is the newly added modality by these
omni-modal models, and there is already an array of visual benchmarks, we put our attention on the
attributes of sound in the benchmark construction. We first design 26 tasks that cover a wide range
of audio attributes and application domains, then we manually curate each question.

Data source. Our questions involve audio, images, and videos. We use public datasets as an impor-
tant source of fetching audios (MISC; AYDEMİR; Microsoft). For example, we use the instrument
audios from MISC and bird sound audios from Microsoft. We mainly use images from the in-
ternet and manually filter out low-quality images. The sources of videos are either from existing
datasets (Shimada et al., 2024; Damen et al., 2018) or from the internet. For example, we download
meme videos from video websites to create a meme understanding question. We will detail the data
source of each task in the appendix.

Quality Control. Each question-answer pair is verified by two different experts. Duplicated text
information that describes visual inputs will induce MLLMs to bypass the visual input to directly
derive the answer by memorizing the answer from the internet-scale training dataset (Chen et al.,
2024a). Inspired by this, we first ensure that our text questions’ context is as simple as possible.
Then we filter out those questions that have redundant images or audio clips by leveraging VLMs
and audio LLMs. Specifically, we test all the curated questions with VLM: InternVL2 (Chen et al.,
2024b), Qwen2-VL (Wang et al., 2024), MiniCPM-V 2.5 (Yao et al., 2024), BLIP3 (Xue et al.,
2024), and VILA1.5 (Lin et al., 2024) and audio LLM Qwen-Audio (Chu et al., 2023), Qwen2-
Audio (Chu et al., 2024), SALMONN (Tang et al., 2023), and Typhoon-Audio (Manakul et al.,
2024), and filter out those questions that either of these models can solve. In experiment, 2.54%
questions are filtered out because they are solved by all audio LLMs or VLMs

4 EXPERIMENT

Model Testing. We evaluate closed-source and open-source MLLMs supporting text, image/video,
and audio inputs. Experiments are conducted in a zero-shot setting (no finetuning or few-shot
prompting) to assess inherent multimodal reasoning capabilities. Prompt Design. Text prompts are
minimized to exclude redundant information. To ensure robustness: 1. Predefine multiple question
templates, randomly selecting one per evaluation. 2. Conduct three trials per question to mitigate
stochasticity in model outputs.

4.1 MODEL EVALUATION AND METHODOLOGY

Evaluated Models. We assess 21 models: 9 closed-source (Gemini 2.5 Pro (Google, 2025), Gemini
1.5 Flash/Pro (Team et al., 2024a), Reka Core/Flash/Edge (Team et al., 2024b), GPT-4o (Hurst et al.,
2024)) and 12 open-source (Qwen-2.5-Omni-7B (Xu et al., 2025), AV-Reasoner (Lu et al., 2025),
Unified-IO-2 L/XL/XXL (Lu et al., 2022), PandaGPT (Su et al., 2023), VideoLLaMA (Zhang et al.,
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Table 4: Evaluation results of various MLLMs in different parts of AV-Odyssey Bench. The highest
performance is highlighted in bold. T̄ is the averaged accuracy across corresponding dimensions,
and RT̄ is the rank based on the averaged accuracy. “All Avg.” represents the averaged accuracy
over all questions in our AV-Odyssey Bench.

Model LLM
Size

Timbre Tone Melody Space Time Hallucination Intricacy All Avg.

T̄ RT̄ T̄ RT̄ T̄ RT̄ T̄ RT̄ T̄ RT̄ T̄ RT̄ T̄ RT̄ T̄ RT̄

Random - 25.0 14 25.0 11 25.0 20 25.0 16 25.0 19 25.0 14 25.0 18 25.0 21

O
pe

n
So

ur
ce

Unified-IO-2 L (Lu et al., 2022) 1B 23.8 20 24.1 14 28.8 8 15.0 22 26.8 10 30.0 7 30.4 12 26.0 18
Unified-IO-2 XL (Lu et al., 2022) 3B 24.3 17 23.2 16 27.8 9 22.5 19 25.3 18 31.5 4 34.8 5 26.3 15

Unified-IO-2 XXL (Lu et al., 2022) 7B 26.3 9 22.7 18 26.4 14 32.5 6 26.8 10 24.5 16 33.8 8 27.2 9
OneLLM (Han et al., 2024) 7B 25.0 15 25.5 9 21.5 22 37.5 5 29.3 1 25.5 13 38.4 3 27.4 8
PandaGPT (Su et al., 2023) 7B 23.5 19 23.2 16 27.6 12 45.0 1 23.8 21 28.0 12 23.9 20 26.7 13

Video-llama (Zhang et al., 2023a) 7B 25.5 10 22.3 19 24.4 21 30.0 9 26.2 15 25.0 14 30.7 11 26.1 17
VideoLLaMA2 (Cheng et al., 2024) 7B 24.1 18 25.5 9 26.4 16 30.0 9 27.2 9 33.0 2 34.5 6 26.8 12

AnyGPT (Zhan et al., 2024) 7B 24.6 16 25.0 11 26.4 17 27.5 14 29.2 2 29.0 8 25.7 17 26.1 19
NExT-GPT (Wu et al., 2023) 7B 23.2 22 20.9 20 27.8 11 30.0 9 28.8 3 28.5 10 23.6 21 25.5 20

VITA (Fu et al., 2024) 8× 7B 24.1 19 26.4 8 27.8 9 22.5 19 26.3 14 31.0 6 36.8 4 26.4 14
Qwen-2.5-Omni-7B (Xu et al., 2025) 7B 38.6 4 30.0 6 30.4 7 40.0 3 25.8 16 31.5 4 39.6 2 34.5 4

AV-Reasoner (Lu et al., 2025) 7B 42.5 2 31.4 4 28.3 9 40.0 3 26.5 12 32.5 3 43.4 1 36.4 2

C
lo

se
d

So
ur

ce

Gemini 1.5 Flash (Team et al., 2024a) - 27.2 7 25.0 11 28.8 8 30.0 9 25.3 18 28.5 10 31.2 10 27.8 7
Gemini 1.5 Flash-8B (Team et al., 2024a) - 25.1 13 24.5 13 28.9 6 27.5 14 27.5 5 29.0 5 30.2 13 26.8 13

Gemini 1.5 Pro (Team et al., 2024a) - 30.8 6 31.4 4 31.3 5 37.5 5 27.7 4 20.5 21 33.0 9 30.8 6
Gemini 2.5 Pro (Google, 2025) - 53.6 1 40.0 1 41.9 1 32.5 6 23.8 21 40.5 1 37.8 3 44.4 1
Reka Core (Team et al., 2024b) 67B 26.7 8 27.7 7 26.4 15 22.5 19 26.5 12 24.0 17 34.3 7 26.9 10
Reka Flash (Team et al., 2024b) 21B 25.5 11 24.1 14 27.2 13 30.0 9 27.5 5 31.5 4 24.1 19 26.3 16
Reka Edge (Team et al., 2024b) 7B 23.8 21 20.5 22 26.3 18 22.5 19 25.5 17 22.5 19 36.8 4 25.0 22

GPT-4o visual caption (Hurst et al., 2024) - 37.4 5 28.6 6 32.3 4 27.5 14 25.5 17 23.0 18 28.9 14 32.3 5
GPT-4o audio caption (Hurst et al., 2024) - 38.6 3 31.8 2 33.6 2 42.5 2 27.5 5 25.0 15 26.1 16 34.5 3

2023a), OneLLM (Han et al., 2024), AnyGPT (Zhan et al., 2024), NExT-GPT (Wu et al., 2023),
VITA (Fu et al., 2024)). Open-source models were tested using their latest checkpoints and default
hyperparameters from published code; closed-source models relied on official APIs.

GPT-4o Workaround. Due to API limitations preventing simultaneous multimodal inputs, we
evaluate GPT-4o via two pipelines: 1. Audio Caption Method: We use GPT-4o-audio to generate
audio captions, then use the audio caption, question text, and visual as the inputs of GPT-4o. 2.
Visual Caption Method: We use GPT-4o to generate visual captions, then use the visual caption,
question text, and audio as the inputs of GPT-4o-audio.

Baseline and Interpretation. A 25% random baseline (corresponding to a four-choice task) is
established. Performance below this threshold indicates the model’s inability to tackle the task.

4.2 EXPERIMENTAL ANALYSIS

In this section, we analyze the performance of MLLMs in our AV-Odyssey benchmark, as presented
in Table 4. We showcase the mean accuracy of each audio attribute. Detailed results and data
distribution are provided in the Appendix. Our key findings are as follows:

1. Challenging Nature of AV-Odyssey. Table 4 shows that most MLLMs achieve barely above
25% accuracy—only marginally better than random guessing. The top-performing model, Gemini
2.5 Pro, reaches just 44.4%. These results highlight the rigor of AV-Odyssey, which evaluates capa-
bilities beyond the scope of current training data. By establishing demanding standards, AV-Odyssey
serves as a crucial benchmark for assessing MLLM robustness and versatility in audio-visual rea-
soning, revealing key limitations and providing insights for future advancements.

2. Comparison Between Audio Captions and Visual Captions. It can be observed that GPT-
4o audio caption achieves higher performance than GPT-4o visual caption as shown in Table 4.
However, drawing conclusions from this comparison is challenging, as the captions are generated
by the model itself, introducing potential biases. To isolate the influence of each modality, we
further investigate this phenomenon by providing ground-truth (GT) captions for both audio and
visual tasks. In this setup, GPT-4o’s performance improves to 73.33% with ground-truth audio

w/ GT audio caption w/ GT visual caption
GPT-4o 73.33% 47.33%

Table 5: GPT-4o with GT audio/visual caption on randomly selected 300 Questions.

captions, while performance with ground-truth visual captions increases to 47.33%. These results
suggest that the primary limitation of current models lies in their audio understanding capabilities.
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Question: Can you determine which of the four pictures

[img1] [img2] [img3] [img4] is the animal image that

matches the audio [audio1]?

A: the fourth image  B: the second image  

C: the first image   D: the third image

Gemini 1.5 Pro:

The audio clip is the sound of an elephant trumpeting. 

Therefore, the correct answer is **A: the fourth image**.

Error Reason:

Gemini 1.5 Pro correctly identified the image content, but 

incorrectly identified the audio content. It misidentified 

the roar of a lion as elephant trumpeting due to the similar 

sounds characteristics.

[img1] [img2] [img3] [img4] 

[audio1] audio content: lion roar sound

Audio Understanding Error

Figure 6: An example of audio under-
standing error. More examples are pro-
vided in the Appendix.
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Figure 7: Comparison performance between each Deaf-
Test task and AV-Odyssey.

3. Correlation between each DeafTest task and AV-Odyssey. We analyze the relationship be-
tween performance on DeafTest and AV-Odyssey (Fig. 7). Notably, loudness and pitch perception
show a stronger correlation with AV-Odyssey performance, as these fundamental auditory compo-
nents are crucial for accurate audio understanding. Tasks such as audio length recognition and sound
counting exhibit weaker correlations with AV-Odyssey performance. This is because AV-Odyssey is
designed to evaluate comprehensive audio-visual understanding. As such, tasks focused on isolated
auditory features, such as temporal duration or discrete event counting, are less strongly aligned
with the broader, more integrated tasks within AV-Odyssey.

4.3 ERROR ANALYSIS

Text 

Understanding

Audio Understanding

Vision

Understanding

Reject to Answer

Reasoning

63%

10%

13%
6%8%

Figure 8: Distribution of 104 human-
annotated errors in the Gemini 1.5 Pro.

We analyzed 104 human-annotated errors (4 randomly
sampled per task) to identify failure modes. The error
distribution is shown in Fig. 8, with case details in the
Appendix.

1. Perception Understanding Errors (81%). Most
errors stemmed from flawed input interpretation, domi-
nated by audio-related failures (63%). For example,
Fig. 6 shows a misidentified audio clip leading to incor-
rect answers. Vision (10%) and text (8%) understand-
ing errors were less frequent. This aligns with DeafTest
findings: deficient audio perception undermines cross-
modal integration. 2. Reasoning Errors (13%). In these
cases, Gemini 1.5 Pro correctly parsed audio/visual inputs
but failed in logical inference (e.g., misconnecting cause-
effect relationships). 3. Other Errors (6%). Mostly
rejected responses (e.g., content flagged for security).

5 LIMITATIONS AND FUTURE WORK

In this work, we introduce DeafTest and AV-Odyssey to evaluate MLLMs from fundamental au-
dio perception and audio-visual reasoning perspectives. Further, we reveal the strong correlation
between basic audio perception and complex audio-visual reasoning.

Our study does not yet address long video understanding (e.g., five minutes or more), real-time
interactive scenarios, or joint understanding–generation tasks. These directions remain promising
avenues for future work. While our results underscore the importance of fundamental audio per-
ception, additional factors influencing audio-visual reasoning are likely to exist and warrant further
investigation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Erhan AKBAL, Turker TUNCER, and Sengul. Vehicle interior sound dataset, October 2021. URL
https://doi.org/10.5281/zenodo.5606504.

Andrada. Gtzan dataset - music genre classification. https://www.kaggle.com/
datasets/andradaolteanu/gtzan-dataset-music-genre-classification.
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A APPENDIX

B USE OF LLM

We employed large language models (LLMs), such as ChatGPT, to assist in manuscript preparation.
Their role was restricted to language refinement (including grammar, spelling, and word choice),
code formatting (e.g., adding explanatory comments), and drafting preliminary figures to support
the development of final visualizations. All scientific concepts, analyses, and conclusions were
independently conceived, verified, and interpreted by the authors. We sincerely acknowledge the
valuable support of LLMs in this work.

C DATA DISTRIBUTION

In this section, we present the detailed data distribution of our AV-Odyssey Bench in Table 6. Our
AV-Odyssey bench consists of 26 tasks covering a wide range of task categories.

We will make all the data and evaluation codes public.

Table 6: Detailed task statistics in AV-Odyssey Bench.

Task ID Task Name Task Category Class Number Data Source

1 Instrument Recognition Timbre 28 200 MISC
2 Singer Recognition Timbre 20 200 Internet
3 Gunshot Recognition Timbre 13 200 AYDEMİR
4 Bird Recognition Timbre 39 200 Microsoft
5 Animal Recognition Timbre 13 200 Putthewad
6 Transportation Recognition Timbre 8 200 AKBAL et al. (2021)
7 Material Recognition Timbre 10 200 Sterling et al. (2018)
8 Scene Recognition Timbre 8 200 Heittola et al. (2019)
9 Hazard Recognition Timbre 8 108 Kay et al. (2017)

10 Action Recognition Timbre 20 196 Soomro (2012)
11 Eating Sound Recognition Timbre 20 200 Ma
12 Speech Sentiment Analysis Tone 7 200 Lok
13 Meme Understanding Tone N/A 20 Internet
14 Music Sentiment Analysis Melody 7 197 yash bhaskar
15 Music Genre Classification Melody 8 200 Andrada
16 Dance and Music Matching Melody 10 200 Tsuchida et al. (2019)
17 Film and Music Matching Melody 5 200 Defferrard et al. (2016)
18 Music Score Matching Melody N/A 200 Zhang et al. (2024b)
19 Audio 3D Angle Estimation Space N/A 20 Shimada et al. (2024)
20 Audio Distance Estimation Space N/A 20 Shimada et al. (2024)
21 Audio Time Estimation Time N/A 200 Damen et al. (2018)
22 Audio-Visual Synchronization Time N/A 200 Tian et al. (2018)
23 Action Sequencing Time N/A 200 Damen et al. (2018)
24 Hallucination Evaluation Hallucination 19 200 Ostermann et al. (2023)
25 Action Prediction Intricacy N/A 199 Damen et al. (2018)
26 Action Tracing Intricacy N/A 195 Damen et al. (2018)
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D BREAKDOWN RESULTS

In this section, we provide detailed results of evaluated methods on our proposed AV-Odyssey
Bench, as demonstrated in Table 7 and Table 8.

Table 7: Evaluation results of various MLLMs in ‘Timbre’ part of AV-Odyssey Bench. The best
performance is in bold. The corresponding brackets for each task indicate the number of associated
questions.

Model LLM
Size

Instrument
Recognition

Singer
Recognition

Gunshot
Recognition

Bird
Recognition

Animal
Recognition

Transportation
Recognition

Material
Recognition

Scene
Recognition

Hazard
Recognition

Action
Recognition

Eating Sound
Recognition

(200) (200) (200) (200) (200) (200) (200) (200) (108) (196) (200)

O
pe

n
So

ur
ce

Unified-IO-2 L (Lu et al., 2022) 1B 20.5 22.5 25.5 18.5 27.0 26.5 23.0 28.0 21.3 20.9 26.5
Unified-IO-2 XL (Lu et al., 2022) 3B 20.0 23.5 24.0 20.5 27.5 26.0 27.5 30.0 19.4 19.9 26.5

Unified-IO-2 XXL (Lu et al., 2022) 7B 29.5 24.0 23.5 29.0 23.5 25.5 30.5 26.5 23.1 27.0 25.5
OneLLM (Han et al., 2024) 7B 26.0 21.5 27.0 26.0 22.0 20.0 29.5 24.5 26.9 23.0 29.5
PandaGPT (Su et al., 2023) 7B 20.0 21.5 23.0 17.5 26.0 26.5 28.0 27.0 23.1 21.4 24.5

Video-llama (Zhang et al., 2023a) 7B 22.5 24.5 27.0 26.5 27.0 23.5 28.0 25.0 25.0 26.0 25.5
VideoLLaMA2 (Cheng et al., 2024) 7B 22.5 24.0 27.0 17.0 23.5 27.5 26.5 26.5 19.4 23.0 25.5

AnyGPT (Zhan et al., 2024) 7B 22.5 28.5 28.0 17.5 24.0 25.5 23.0 28.0 25.9 20.4 27.5
NExT-GPT (Wu et al., 2023) 7B 21.0 23.5 25.5 21.5 25.5 25.5 21.0 24.0 19.4 23.0 24.0

VITA (Fu et al., 2024) 8 × 7B 22.0 20.5 24.5 21.5 27.5 25.0 23.5 28.5 21.3 19.4 29.5
Qwen-2.5-Omni-7B (Xu et al., 2025) 7B 52.0 26.0 24.0 28.5 66.0 34.0 32.5 33.5 45.4 61.7 23.0

AV-Reasoner (Lu et al., 2025) 7B 56.5 28.5 32.0 33.5 53.5 48.5 36.5 39.5 47.2 67.9 27.0

C
lo

se
d

So
ur

ce

Gemini 1.5 Flash (Team et al., 2024a) - 24.5 24.0 23.5 17.0 32.5 26.0 22.5 29.5 34.3 48.0 21.5
Gemini 1.5 Flash-8B (Team et al., 2024a) - 16.5 22.5 24.0 19.0 28.0 26.5 27.0 29.0 26.9 32.7 24.5

Gemini 1.5 Pro (Team et al., 2024a) - 33.0 26.0 29.0 25.0 25.5 26.0 29.5 30.0 38.0 57.7 22.5
Gemini 2.5 Pro (Google, 2025) - 79.0 41.0 39.5 21.0 76.0 60.5 39.0 44.0 65.7 87.8 42.5
Reka Core (Team et al., 2024b) 67B 32.5 20.0 26.5 25.0 24.0 27.0 30.0 27.0 25.0 34.2 21.5
Reka Flash (Team et al., 2024b) 21B 20.0 22.5 26.5 26.0 28.5 26.5 26.5 29.0 28.7 22.4 25.0
Reka Edge (Team et al., 2024b) 7B 21.5 24.0 30.5 20.0 19.5 22.5 20.5 25.5 25.9 23.5 29.0

GPT-4o visual caption (Hurst et al., 2024) - 33.0 30.5 24.0 26.5 43.0 42.0 32.5 39.0 49.1 67.3 30.5
GPT-4o audio caption (Hurst et al., 2024) - 40.0 38.0 27.5 26.5 45.0 42.0 27.0 41.0 42.6 62.2 35.5

Table 8: Evaluation results of various MLLMs in ‘Time’, ‘Melody’, ‘Space’. ‘Time’, ‘Hallucina-
tion’, and ‘Intricacy’ parts of AV-Odyssey Bench. The best (second best) is in bold (underline). The
corresponding brackets for each task indicate the number of associated questions.

Model LLM
Size

Tone Melody Space Time Hallucination Intricacy

Speech Sentiment
Analysis

Meme
Understanding

Music Sentiment
Analysis

Music Genre
Classification

Dance and Music
Matching

Film and Music
Matching

Music Score
Matching

Audio 3D Angle
Estimation

Audio Distance
Estimation

Audio Time
Estimation

Audio-Visual
Synchronization

Action
Sequencing

Hallucination
Evaluation

Action
Prediction

Action
Tracing

(200) (20) (97) (200) (200) (200) (200) (20) (20) (200) (200) (200) (200) (199) (195)

O
pe

n
So

ur
ce

Unified-IO-2 L (Lu et al., 2022) 1B 24.5 20.0 27.9 31.0 27.5 32.5 24.5 15.0 15.0 28.0 25.5 27.0 30.0 27.1 33.8
Unified-IO-2 XL (Lu et al., 2022) 3B 23.0 25.0 26.9 30.5 27.0 31.5 22.5 30.0 15.0 26.5 25.5 24.0 31.5 35.7 33.8

Unified-IO-2 XXL (Lu et al., 2022) 7B 23.0 20.0 23.9 31.5 27.5 24.5 23.5 50.0 15.0 28.0 25.0 27.5 24.5 33.2 34.4
OneLLM (Han et al., 2024) 7B 26.0 20.0 20.8 23.5 26.5 18.5 18.0 45.0 30.0 31.5 29.5 27.0 25.5 41.7 34.9
PandaGPT (Su et al., 2023) 7B 23.5 20.0 21.6 28.0 27.0 32.5 26.0 45.0 45.0 18.5 26.0 27.0 28.0 19.6 28.2

Video-llama (Zhang et al., 2023a) 7B 23.0 15.0 25.8 24.0 20.0 25.0 28.0 45.0 15.0 28.5 23.5 26.5 25.0 28.6 32.8
VideoLLaMA2 (Cheng et al., 2024) 7B 26.0 20.0 26.8 29.0 25.5 30.5 20.5 45.0 15.0 28.5 26.5 26.5 33.0 28.6 40.5

AnyGPT (Zhan et al., 2024) 7B 25.5 20.0 23.4 29.5 25.5 26.0 26.0 40.0 15.0 30.5 28.0 29.0 29.0 21.1 30.3
NExT-GPT (Wu et al., 2023) 7B 21.5 15.0 23.7 26.0 28.0 31.0 28.0 45.0 15.0 31.5 24.0 31.0 28.5 20.6 26.7

VITA (Fu et al., 2024) 8 × 7B 24.5 45.0 26.8 26.0 27.5 33.5 24.5 25.0 20.0 26.5 25.5 27.0 31.0 34.2 39.5
Qwen-2.5-Omni-7B (Xu et al., 2025) 7B 30.5 25.0 24.4 47.5 23.5 30.0 26.5 50.0 30.0 24.5 28.5 24.5 31.5 39.7 39.5

AV-Reasoner (Lu et al., 2025) 7B 29.0 55.0 22.8 40.0 24.5 31.5 22.5 55.0 25.0 25.0 27.5 27.0 32.5 51.3 35.4

C
lo

se
d

So
ur

ce

Gemini 1.5 Flash (Team et al., 2024a) - 23.5 40.0 21.3 31.0 27.5 32.5 28.0 30.0 30.0 27.5 23.5 25.0 28.5 27.6 34.9
Gemini 1.5 Flash-8B (Team et al., 2024a) - 24.5 25.0 25.9 33.0 27.5 32.0 24.5 40.0 15.0 31.0 25.5 26.0 29.0 25.6 34.9

Gemini 1.5 Pro (Team et al., 2024a) - 29.5 50.0 25.4 42.5 28.0 28.5 29.0 35.0 40.0 30.0 24.5 28.5 20.5 32.2 33.8
Gemini 2.5 Pro (Google, 2025) - 38.5 55.0 27.4 79.5 24.5 50.5 27.5 45.0 20.0 18.5 19.5 33.5 40.5 38.2 37.4
Reka Core (Team et al., 2024b) 67B 28.5 20.0 22.8 24.5 27.5 30.0 25.5 25.0 20.0 30.0 25.5 24.0 24.0 33.7 34.9
Reka Flash (Team et al., 2024b) 21B 24.5 20.0 30.5 29.5 27.5 25.5 24.5 45.0 15.0 30.0 25.5 27.0 31.5 19.1 29.2
Reka Edge (Team et al., 2024b) 7B 20.5 20.0 24.9 24.5 27.5 30.0 24.0 30.0 15.0 30.0 25.5 21.0 22.5 38.2 35.4

GPT-4o visual caption (Hurst et al., 2024) - 26.0 55.0 24.4 48.0 27.0 34.5 23.5 25.0 30.0 21.5 22.5 32.5 23.0 32.2 25.6
GPT-4o audio caption (Hurst et al., 2024) - 28.0 70.0 24.4 56.5 27.5 32.5 22.5 30.0 35.0 23.5 25.5 33.5 25.0 30.2 22.0
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Timbre: Instrument Recognition

Question: Out of these instruments highlighted in images, which do you think matches audio 
[audio1] best? [img1] [img2] [img3] [img4].
A: the fourth image 
B: the first image
C: the third image
D: the second image

[img1] [img2] [img3] [img4] 

[audio1] audio content: music with the keyboard instrument 

Gemini 1.5 Pro: The instrument in the audio is a vibraphone, which corresponds to image D, 
the second image.  The distinct metallic tone and resonance are characteristic of the 
vibraphone's metal bars and resonators. So the answer is D. 

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro accurately identified the image content but made an error in 
recognizing the audio. It mistakenly identified the keyboard’s audio as the vibraphone’s audio.

Correct Answer: C: the third image

Figure 9: A sampled error case in the instrument recognition task.
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Timbre: Singer Recognition

Question: From the timbre in [audio1], which individual in [img1], [img2], [img3], or [img4] 
is most likely the singer?
A: the second image
B: the fourth image
C: the third image
D: the first image

[img1] [img2] [img3] [img4] 

[audio1] audio content: an AI covered song with Rihanna’s vocal timbre

Gemini 1.5 Pro: The singer in the audio clip is most likely **B: the fourth image**, Billie 
Eilish.  This is based on the distinctive vocal timbre and phrasing, which are characteristic of 
Eilish's style.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro accurately identified the visual content in the image but made 
an error in audio recognition, incorrectly attributing Rihanna's vocal timbre to Billie Eilish.

Correct Answer: D: the first image

Figure 10: A sampled error case in the singer recognition task.
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Timbre: Gunshot Recognition

Question: Which image [img1], [img2], [img3], [img4] do you think best aligns with the 
gunfire audio [audio1]?
A: the fourth image
B: the third image
C: the second image
D: the first image

[img1] [img2] [img3] [img4] 

[audio1] audio content: The sound of the AK-12 firing precise single bursts 
instead of continuous automatic fire

Gemini 1.5 Pro: The audio clip sounds like sustained automatic gunfire, which best aligns 
with the first image, a machine gun.  Therefore, the answer is D.  The other images depict 
weapons that are not typically capable of sustained automatic fire in the same way.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro accurately identified the visual content in the images but 
made an error in audio recognition, incorrectly interpreting the sound of the AK-12's 
controlled burst fire as sustained automatic gunfire, leading to the wrong conclusion that the 
answer is D, a machine gun.

Correct Answer: A: the fourth image

Figure 11: A sampled error case in the gunshot recognition task.
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Timbre: Bird Recognition

Question: Which of the four audio segments ([audio1] [audio2] [audio3] [audio4]) shows the 
bird sound related to the image [img1]?
A: the second audio
B: the third audio
C: the fourth audio
D: the first audio

[audio1] audio content: sound of  other bird categories

Gemini 1.5 Pro: The bird in the image is a Brewer's Blackbird. The second audio clip 
contains the Brewer's Blackbird's call. So the answer is A.

Error Category: Audio Understanding Error, Vision Understanding Error
Error Reason: Gemini 1.5 Pro made errors in both visual and audio recognition: it 
incorrectly identified the common grackle bird in the image as a Brewer's Blackbird and 
subsequently misattributed the sound of the common grackle to that of a Brewer's Blackbird.

Correct Answer: C: the fourth audio

[audio2] audio content: sound of  other bird categories

[audio3] audio content: sound of  other bird categories

[audio4] audio content: sound of  common grackle birds

[img1] 

Figure 12: A sampled error case in the bird recognition task.
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Timbre: Animal Recognition

Question: From the four audio options [audio1] [audio2] [audio3] [audio4], can you find the 
animal audio that corresponds to the image [img1]?
A: the third audio
B: the fourth audio
C: the first audio
D: the second audio

[audio1] audio content: cat meow

Gemini 1.5 Pro: The audio of a cat meowing is the fourth audio clip. So the answer is B.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly identified the cat in the image but made an error in 
audio recognition, mistakenly identifying the sound of a frog as a cat's meow.

Correct Answer: C: the first audio

[audio2] audio content: chicken cluck 

[audio3] audio content: elephant trumpet

[audio4] audio content: frog croak

[img1] 

Figure 13: A sampled error case in the animal recognition task.
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Timbre: Transportation Recognition

Question: Select the image ([img1], [img2], [img3], [img4]) that best represents the sound of 
a vehicle in [audio1].
A: the fourth image
B: the second image
C: the first image
D: the third image

[img1] [img2] [img3] [img4] 

[audio1] audio content: the sound of an airplane

Gemini 1.5 Pro: The sound clip is of a motorcycle engine. Therefore, the correct answer is 
the fourth image, which depicts a Harley-Davidson motorcycle. Final Answer: The final 
answer is $\\boxed{A}$

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly identified the motorcycle in the image but made an 
error in audio recognition, mistakenly identifying the sound of an airplane as the sound of a 
motorcycle.

Correct Answer: B: the second image

Figure 14: A sampled error case in the transportation recognition task.
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Timbre: Material Recognition

Question: Based on [audio1], which of the materials shown in [img1] [img2] [img3] [img4] 
is most likely to be the source?
A: the second image 
B: the first image
C: the third image
D: the fourth image

[img1] [img2] [img3] [img4] 

[audio1] audio content: the sound of hitting or stepping on fallen leaves

Gemini 1.5 Pro: None of these images appear to be the source of the first image, which 
depicts a wooded path in autumn. The other images show water, tile, and a glass.  There's no 
direct connection between any of them and the forest path.

Error Category: Text Understanding Error
Error Reason: Gemini 1.5 Pro misunderstood the question text, incorrectly interpreting it as 
asking which image the first image originates from, rather than identifying which material 
depicted in the images most likely matches the sound in the audio clip.

Correct Answer: B: the first image

Figure 15: A sampled error case in the material recognition task.
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Timbre: Scene Recognition

Question: Choose the picture that you think best fits the audio [audio1] from [img1] [img2] 
[img3] [img4].
A: the third image 
B: the fourth image
C: the first image
D: the second image

[img1] [img2] [img3] [img4] 

[audio1] audio content: the sound of traffic street with cars

Gemini 1.5 Pro: The audio sounds like the whooshing of a train passing quickly. Therefore, 
the image that best fits the audio is the inside of a subway train (C).

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly identified the content of the image but made an 
error in audio recognition, mistakenly identifying the sound of the traffic street with cars as 
the sound inside of a subway train.

Correct Answer: B: the fourth image

Figure 16: A sampled error case in the scene recognition task.
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Timbre: Hazard Recognition

Question: Among [img1], [img2], [img3], and [img4], which potentially dangerous event fits 
the sound of [audio1] best?
A: the third image 
B: the second image
C: the fourth image
D: the first image

[img1] [img2] [img3] [img4] 

[audio1] audio content: the sound of fire burning

Gemini 1.5 Pro: The sound is a high-pitched whistling or hissing, like steam escaping under 
pressure. This best fits the boiling water in the fourth image. So the answer is C.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly identified the content of the image but made an 
error in audio recognition, mistakenly identifying the sound of fire burning as the sound of 
water boiling.

Correct Answer: A: the third image

Figure 17: A sampled error case in the hazard recognition task.
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Timbre: Action Recognition

Question: Which action in the images [img1], [img2], [img3], or [img4] do you think best 
corresponds to the sound [audio1]?
A: the fourth image 
B: the second image
C: the first image
D: the third image

[img1] [img2] [img3] [img4] 

[audio1] audio content: the sound of running on a treadmill

Gemini 1.5 Pro: The answer is C. The sound of a bouncing basketball best corresponds to the 
first image, which depicts two people playing basketball.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly identified the content of the image but made an 
error in audio recognition, mistakenly identifying the sound of running on a treadmill as the 
sound of playing basketball.

Correct Answer: A: the fourth image

Figure 18: A sampled error case in the action recognition task.
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Timbre: Eating Sound Recognition

Question: From the foods in the images [img1], [img2], [img3], or [img4], which one is most 
likely to create the sound [audio1] when consumed?
A: the fourth image 
B: the first image
C: the second image
D: the third image

[img1] [img2] [img3] [img4] 

[audio1] audio content: the sound of eating juicy grapes

Gemini 1.5 Pro: The answer is D: the third image (French fries). The sound "crunch" is 
associated with crispy or brittle foods.  French fries, when properly cooked, have a crisp 
exterior that makes a crunching sound when bitten into.  The other foods are less likely to 
produce this specific sound. Grapes are juicy and soft, chocolate is typically smooth or melts 
in the mouth, and noodles, though they can have some texture, don't typically produce a 
distinct crunch.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly identified the content of the image but made an 
error in audio recognition, mistakenly identifying the sound of eating juicy grapes as the 
sound of eating crispy chips.

Correct Answer: B: the first image

Figure 19: A sampled error case in the eating sound recognition task.
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Tone: Speech Sentiment Analysis

Question: Which of the following images [img1] [img2] [img3] [img4] best represents the 
emotion conveyed in this audio clip [audio1]?
A: the fourth image 
B: the second image
C: the third image
D: the first image

[img1] [img2] [img3] [img4] 

[audio1] audio content: an angry voice

Gemini 1.5 Pro: The audio clip expresses disgust. The woman in the first image best depicts 
this emotion. So the answer is D.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly identified the content of the image but made an 
error in audio recognition, mistakenly identifying an angry voice as a disgusted voice.

Correct Answer: C: the third image

Figure 20: A sampled error case in the speech sentiment analysis task.
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Tone: Meme Understanding

Question: According to [audio1] and [video1], what is funny about this meme?
A: The humor comes from the cat's overly excited face, which contradicts the serious tone of 
the sound, creating a funny visual and audio mismatch.
B: The meme is funny because the cat's expression is overly dramatic, and the sound is yelled, 
adding intensity to simple or mundane events.
C: The humor comes from the perfect match between the cat's blank, emotionless stare and 
the disinterested sound, both of which represent a complete lack of energy or surprise, 
making even absurd situations seem trivial.
D: It's funny because the cat's face shows anger, but the sound is very calm, making the 
reaction seem less serious than expected in a high-stress scenario.

[video1] 

[audio1] audio content: “bruh”

Gemini 1.5 Pro: Reject to Answer.

Error Category: Reject to Answer
Error Reason: Content may be mistakenly flagged for security reasons by Gemini 1.5 Pro, 
preventing the model from providing an answer.

Correct Answer: C

Figure 21: A sampled error case in the meme understanding task.
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Melody: Music Sentiment Analysis

Question: Which image [img1] [img2] [img3] [img4] best represents the emotion conveyed 
by the music [audio1]?
A: the fourth image
B: the second image
C: the first image
D: the third image

[img1] [img2] [img3] [img4] 

[audio1] audio content: upbeat and cheerful music

Gemini 1.5 Pro: The music seems to evoke sadness and melancholy.  Therefore, the best 
choice is A, the fourth image, which depicts crying emoji faces.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly identified the content of the image but made an 
error in audio recognition, mistakenly identifying joyful music as sad music.

Correct Answer: C: the first image

Figure 22: A sampled error case in the music sentiment analysis task.
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Melody: Music Genre Classification

Question: Considering the audio [audio1] which image [img1] [img2] [img3] [img4] reflects 
the depicted music style?
A: the fourth image
B: the second image
C: the first image
D: the third image

[img1] [img2] [img3] [img4] 

[audio1] audio content: classical music

Gemini 1.5 Pro: The music has a distinct country twang, featuring pedal steel guitar and a 
walking bass line characteristic of country music.  The first image, showing country music 
artists, best reflects this style. So the answer is C.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly identified the content of the image but made an 
error in audio recognition, mistakenly identifying classical music as country music.

Correct Answer: B: the second image

Figure 23: A sampled error case in the music genre classification task.
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Melody: Dance and Music Matching

Question: Which of the audio files [audio1], [audio2], [audio3], or [audio4] do you think best 
fits the dance performed in [video1]?
A: the second audio
B: the third audio
C: the first audio
D: the fourth audio

[video1] 

[audio3] audio content: dance music of other genres

Gemini 1.5 Pro: Reject to Answer.

Error Category: Reject to Answer
Error Reason: Content may be mistakenly flagged for security reasons by Gemini 1.5 Pro, 
preventing the model from providing an answer.

Correct Answer: A: the second audio

[audio1] audio content: dance music of other genres

[audio2] audio content: the dance music corresponding to [video1]

[audio4] audio content: dance music of other genres

Figure 24: A sampled error case in the dance and music matching task.
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Melody: Film and Music Matching

Question: In your view, which movie scene in the images [img1] [img2] [img3] [img4] do 
you feel is most suitable for this music [audio1]?
A: the third image
B: the second image
C: the first image
D: the fourth image

[img1] [img2] [img3] [img4] 

[audio1] audio content: fast-paced, cheerful music accompanied by comical 
screams

Gemini 1.5 Pro: I'd say A, the third image, is the most suitable. The fast-paced, somewhat 
chaotic energy of the music fits an action scene like the one depicted, with the characters on a 
motorcycle.  The other images suggest romance, thriller, or comedy, none of which are as 
good a match for this particular piece of music.

Error Category: Reasoning Error
Error Reason: Gemini 1.5 Pro successfully understood both the audio and visual inputs but 
made a reasoning error when interpreting the data. It incorrectly associated the fast-paced 
nature of the music with the action genre, assuming that the combination of high energy and 
disorder aligns with action films. However, the audio, characterized by fast-paced music 
accompanied by comical screams, is more indicative of a comedy film rather than an action 
movie. This mistake highlights a gap in the model's contextual reasoning, as it overlooked the 
playful and humorous tone of the audio, which is a key attribute of comedy rather than action.

Correct Answer: D: the fourth image

Figure 25: A sampled error case in the film and music matching task.
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Melody: Music Score Matching

Question: Focusing on the rhythmic phrasing and articulation, which musical score in these 
images [img1] [img2] [img3] [img4] most closely matches this audio file [audio1]?
A: the third image
B: the second image
C: the fourth image
D: the first image

[img1] [img2] [img3] [img4] 

[audio1] audio content: slow-paced music with a long, sustained vocal at the 
end

Gemini 1.5 Pro: The answer is C: the fourth image. The audio clip has a moderately paced, 
syncopated rhythm with a swing feel. The fourth image features eighth and sixteenth notes 
grouped in a way that creates this rhythmic character, along with staccato markings that 
suggest a short, detached articulation similar to what's heard in the audio.  The other images 
either have a slower tempo, longer sustained notes, or different rhythmic groupings that don't 
match the audio.

Error Category: Audio Understanding Error, Reasoning Error
Error Reason: First, an audio understanding error occurred, as it failed to accurately 
interpret the audio input, which features slow-paced music with a long, sustained vocal at the 
end. Instead, the model incorrectly identified the audio as having a moderately paced, 
syncopated rhythm with a swing feel, entirely mischaracterizing its tempo and articulation. 
Second, the model incorrectly concluded that the fourth image, with its eighth and sixteenth 
notes and staccato markings, matches the rhythmic character. However, staccato markings, 
indicating short, detached articulation, conflict with the described swing feel, which requires 
smoother, connected phrasing. This reliance on rhythm alone is limiting, as pitch is equally 
important in musical notation. The model needs to capture the pitch in the audio and align it 
with the notes in the images to make accurate judgments. 

Correct Answer: B: the second image

Figure 26: A sampled error case in the music score matching task.
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Space: Audio 3D Angle Estimation

Question: Based on [audio1], could you provide the azimuth and elevation angles of the 
sound located in front of the man dressed in white and black, as illustrated in [img1]? The 
angles are measured egocentrically, with the azimuth ranging from -180° to 180° (left to right) 
and the elevation ranging from -90° to 90° (bottom to top).
A: azimuth: 0°, elevation: -1°
B: azimuth: 38°, elevation: 9°
C: azimuth: 51°, elevation: -6°
D: azimuth: 54°, elevation: 10°

[img1] 

[audio1] audio content: 4-channel spatial audio featuring men's voice and the 
sound of water flowing from a tap

Gemini 1.5 Pro: The man in the maroon shirt is the one dressed in white and black. The 
microphone pointed at him appears to be at approximately 0° azimuth (directly in front) and 
about -1° elevation (slightly below the horizontal). So the answer is A.

Error Category: Vision Understanding Error, Audio Understanding Error
Error Reason: First, the statement, "The man in the maroon shirt is the one dressed in white 
and black," is incorrect. The individual dressed in white and black is not the same as the man 
in the maroon shirt but is located elsewhere in the scene. This indicates a failure to accurately 
identify and associate visual details, leading to a misunderstanding of the relationship 
between these individuals. 
Second, It failed to identify the sound of water flowing from the tap, which is visually 
obscured behind the individual dressed in white and black. This highlights a critical limitation 
in linking audio cues to visually occluded sources. Additionally, the model was unable to 
accurately determine the 3D spatial orientation of the tap's water flow.

Correct Answer: C: azimuth: 51°, elevation: -6°

Figure 27: A sampled error case in the audio 3D angle estimation task.
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Space: Audio Distance Estimation

Question: Using [audio1] as a reference, could you determine the distance of the sound 
coming from below the man in [img1]? The distance should be measured egocentrically in 
centimeters.
A: 143
B: 137
C: 115
D: 109

[img1] 

[audio1] audio content: 4-channel spatial audio featuring people’s talking, as 
well as the sound of a vacuum cleaner

Gemini 1.5 Pro: The sound source is the vacuum cleaner being operated by the person in the 
yellow hat.  Considering the camera's position (likely near the head of the person sitting at the 
table), the vacuum is roughly 115 centimeters away. So the answer is **C: 115**.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro correctly recognized the visual content in the scene but failed 
to effectively utilize the spatial audio data to determine the precise distance of the vacuum 
cleaner.  While the audio content featured 4-channel spatial information that could have been 
used to calculate the vacuum cleaner's exact position relative to the camera, the model instead 
relied exclusively on visual estimations of the distance. This reliance on visual cues alone 
ignored the valuable depth and directional data provided by the audio, resulting in an 
inaccurate calculation of 115 centimeters. The error underscores a critical gap in multi-modal 
reasoning, where the model did not effectively integrate spatial audio with visual context.  
This highlights the need for enhanced alignment between auditory and visual processing, 
especially in scenarios where audio provides essential spatial information that visual inputs 
alone cannot resolve accurately.  

Correct Answer: B: 137

Figure 28: A sampled error case in the audio distance estimation task.
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Time: Audio Time Estimation

Question: From [audio1], what timestamps correspond to the action portrayed in [video1]?
A: start time: 0.00 s, end time: 1.35 s
B: start time: 1.31 s, end time: 2.66 s
C: start time: 2.45 s, end time: 3.15 s
D: start time: 4.30 s, end time: 7.16 s

[video1] 

[audio1] audio content: the sound of a series of actions

Gemini 1.5 Pro: The action portrayed, putting utensils into a drawer, primarily occurs from 
[00:00:04.30] to [00:00:07.16]. Therefore, the answer is **D**.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro failed to accurately identify the timing of the action where a 
knife is placed into a drawer. Specifically, it misinterpreted the action as occurring in the time 
range start time: 4.30 s to end time: 7.16 s, instead of the correct range start time: 0.00 s to 
end time: 1.35 s. 

Correct Answer: A: start time: 0.00 s, end time: 1.35 s

Figure 29: A sampled error case in the audio time estimation task.
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Time: Audio-Visual Synchronization

Question: Can you identify which of [audio1], [audio2], [audio3], or [audio4] best 
synchronizes with [video1]?
A: the first audio
B: the third audio
C: the fourth audio
D: the second audio

[video1] 

[audio3] audio content: the original audio corresponding to [video1]

Gemini 1.5 Pro: The first audio best synchronizes with the video. The correct answer is A.

Error Category: Audio Understanding Error, Vision Understanding Error
Error Reason: Gemini 1.5 Pro failed to understand the temporal synchronization between 
visual and audio elements, leading to errors in aligning events across modalities.

Correct Answer: B: the third audio

[audio1] audio content: audio with random offsets, speed-ups, slow-downs

[audio2] audio content: audio with random offsets, speed-ups, slow-downs

[audio4] audio content: audio with random offsets, speed-ups, slow-downs

Figure 30: A sampled error case in the audio-visual synchronization task.
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Time: Action Sequencing

Question: Based on [audio1], which order most likely represents the actions in [img1], 
[img2], [img3], and [img4]?
A: the first image --> the second image --> the third image --> the fourth image
B: the third image --> the fourth image --> the second image --> the first image
C: the first image --> the fourth image --> the third image --> the second image
D: the third image --> the fourth image --> the first image --> the second image

[img1] [img2] [img3] [img4] 

[audio1] audio content: the sound of a series of actions

Gemini 1.5 Pro: The correct answer is A. Here's why: **Image 1:** Shows a potato being 
washed under the tap. This is likely the first step, as raw food preparation usually precedes 
dishwashing. **Image 2:** Shows a sponge and an empty sink with running water, implying 
the potato has been washed and now the dishes are being cleaned.* **Image 3:**  Shows a 
plate being washed. This follows the cleaning of the potato and the preparation of the sink 
with soapy water. **Image 4:** Shows the plate being placed in a drying rack with other 
clean dishes, indicating the dishwashing process is nearing completion. The other options 
don't make logical sense in terms of the typical sequence of washing a potato and then doing 
dishes.

Error Category: Audio Understanding Error, Reasoning Error
Error Reason: Gemini 1.5 Pro failed to accurately identify the sequence of actions based on 
the audio cues. The model misinterpreted the order in which sounds corresponding to specific 
actions occurred, leading to an incorrect understanding of the temporal flow of events. 
Furthermore, it compounded this error with a reasoning mistake by incorrectly inferring the 
logical order of the actions.

Correct Answer: D: the third image --> the fourth image --> the first image --> the second image

Figure 31: A sampled error case in the action sequencing task.
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Hallucination: Hallucination Evaluation

Question: In the sound of [audio1], which instrument among [img1], [img2], [img3], and 
[img4] is included?
A: the second image
B: the third image
C: the fourth image
D: the first image

[img1] [img2] [img3] [img4] 

[audio1] audio content: a music clip including drums but excluding sitar, 
ukulele, and Fujara

Gemini 1.5 Pro: The instrument being played in the audio clip is a sitar, which corresponds 
to the first image. Therefore, the answer is D.

Error Category: Audio Understanding Error
Error Reason: Gemini 1.5 Pro incorrectly identified the presence of a sitar in the music, 
despite the audio containing no such instrument. This hallucination demonstrates a failure in 
accurately analyzing the audio content, leading the model to perceive elements that are not 
present in the actual input.

Correct Answer: A: the second image

Figure 32: A sampled error case in the hallucination evaluation task.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Intricacy: Action Prediction

Question: With [img1] preceding [audio1], what does the audio suggest about this person's 
actions?
A: turn box
B: wrap up coffee
C: smell box
D: put coffee in cupboard

[img1] 

[audio1] audio content: the sound of actions

Gemini 1.5 Pro: The audio suggests the person is opening a box or bag, most likely of coffee. 
Therefore the answer is **B: wrap up coffee**.

Error Category: Audio Understanding Error, Reasoning Error
Error Reason: Gemini 1.5 Pro failed to correctly understand the audio, leading to a 
misinterpretation of the events. Additionally, the model was unable to understand the order of 
actions, resulting in an incorrect ordering of the events. This highlights deficiencies in both 
audio recognition and the ability to reason about temporal relationships between actions.

Correct Answer: D: put coffee in cupboard

Figure 33: A sampled error case in the action prediction task.
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Intricacy: Action Tracing

Question: With [img1] and the preceding [audio1] in mind, what actions were being 
performed by this person during the audio?
A: bend machine
B: rinse chopping board
C: carry machine
D: wipe chopping board with rag

[img1] 

[audio1] audio content: the sound of actions

Gemini 1.5 Pro: The person is wiping the chopping board with a rag (D).

Error Category: Text Understanding Error 
Error Reason: Gemini 1.5 Pro misinterpreted the question, failing to recognize the temporal 
focus of the query. The model incorrectly assumed the question was asking about the person's 
current actions, rather than the actions at the time the audio occurred. This misunderstanding 
of both the question's intent and its temporal context led to an incorrect response.

Correct Answer: B: rinse chopping board

Figure 34: A sampled error case in the action tracing task.
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